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Abstract  8 

 9 

Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive 10 

oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as 11 

signaling molecules, regulating different physiological processes and response to stress, but also 12 

inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by 13 

scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important 14 

increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally 15 

operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an 16 

enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the 17 

effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the 18 

mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria 19 

for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism 20 

and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying 21 

processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated 22 

senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.  23 
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1.  Introduction 34 

     In photosynthetically active cells, both photosynthesis and respiration produce energy in the form 35 

of ATP via photophosphorylation and oxidative phosphorylation, respectively in chloroplasts and 36 

mitochondria. Both organelles share the provision of energy whose the balance is tightly regulated 37 

under stress conditions especially (Gardestrom and Igamberdiev, 2016). Tropospheric ozone (O3) is a 38 

secondary air pollutant, mainly produced by the photochemical dissociation of nitrogen oxides in the 39 

presence of organic compounds issued from car exhaust and industrial fuel combustion.  O3 40 

concentrations increased fourfold during the last century reaching yearly average values of around 50 41 

to 60 ppb but with peak values commonly observed between 100 and 250 ppb (Renaut et al., 2009). 42 

These concentrations have harmful impact on crops and forests (Wittig et al., 2009; Ainsworth et al., 43 

2012; Matyssek et al., 2012; Jolivet et al., 2016; Cailleret et al., 2018; Emberson et al., 2018; Franz et 44 

al., 2018; Grulke and Heath, 2019). Plants exposed to moderate O3 concentrations during prolonged 45 

time (chronic O3 exposure) commonly exhibit a reduction in photosynthesis and photorespiration and 46 

an increase in respiration (Reich, 1983; Dizengremel, 2001; Bohler et al., 2007; Jolivet et al., 2016). 47 

The cellular changes induced by chronic O3 injury were associated to an accelerated senescence in cell 48 

leaves (Pell et al., 1997; Pleijel et al., 1997; Miller et al., 1999; Gielen et al., 2007; Heath, 2008; 49 

Yendrek et al., 2017; Emberson et al., 2018; Vollenweider et al., 2019), the chloroplasts being early 50 

degraded while mitochondria remain intact until rather late (Sutinen et al., 1990; Holopainen et al., 51 

1996). This delayed response of mitochondria thus confers a prominent role to this organelle in the 52 

mechanism of cell response to O3 injury. 53 

 54 

Although occurring in normal conditions, the generation of reactive oxygen species (ROS) at the level 55 

of the mitochondrial electron transport chain (mETC) is strongly increased under chronic O3 which 56 

induces oxidative stress (Baier et al., 2005). However, the increase in the respiratory process raises 57 

many questions even though it is usually associated to repair, detoxification and synthesis of defense 58 

compounds (Dizengremel, 2001; Ainsworth et al. 2012). Respiration not only provides energy to plant 59 

cells in the form of ATP and NAD(P)H but also contributes to the production of carbon skeletons and 60 

the maintenance of redox balancing. These three functions co-exist, could overlap and thus need to be 61 

coordinated to regulate plant respiration (O’Leary et al., 2019). A range of papers describe different 62 

aspects of the implication of the mitochondria in the O3-induced increase of respiration, but a 63 

coordinated synthesis of the results is lacking. This review deepens the role of mitochondria in the 64 

response to O3, highlighting its ability to catabolize carbon intermediates, balance reducing power and 65 

induce antioxidant systems. The time course of mitochondrial events under O3 exposure, from a 66 

successful scavenging of ROS to the initiation of senescence, will be proposed. The integration of the 67 

mitochondrial behavior in a coordinated cellular response to O3 will be discussed. 68 

 69 
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2. Ozone-increased carbohydrate breakdown in the cytosol to feed mitochondria 70 

The increase in respiration observed in plants submitted to chronic O3 exposure is associated to an 71 

increased activity of a set of enzymes belonging to the glycolytic pathway and the oxidative pentose 72 

phosphate pathway (OPPP)(Dizengremel et al., 1994; Sehmer et al. 1998; Dizengremel et al., 2009; 73 

Dghim et al., 2012). This increase provides additional reducing power in the form of NADH and/or 74 

NADPH, which are useful for detoxification mechanisms (Fig 1.) (Dizengremel, 2001; Dizengremel et 75 

al., 2008). It must also be emphasized that several metabolites branch off from glycolysis or/and OPPP 76 

(Plaxton and Podesta, 2006) to initiate biosynthetic pathways (Fig 1.). Thus, phosphoenolpyruvate 77 

(PEP), end-product of the glycolysis, has a central role under O3 stress (Dizengremel et al., 2012), and 78 

can bind to erythrose-4-phosphate from OPPP, allowing an increased functioning of the 79 

phenylpropanoid pathway essential to the production of defense compounds. Furthermore, the 80 

carboxylation of PEP into oxaloacetate (OAA) via phosphoenolpyruvate carboxylase (PEPcase) could 81 

in part mitigate the loss of CO2 fixation by Rubisco under O3 (Fontaine et al., 1999; Renaut et al., 82 

2009). Furthermore, an increase of pyruvate kinase activity, providing more pyruvate to the 83 

tricarboxylic acid (TCA) cycle, was also observed under O3 exposure (Dizengremel et al., 1994, 84 

2009). Another role of PEP will be however emphasized here in the context of an increased 85 

mitochondrial respiration under O3 stress. OAA produced from PEPcase can be transported into the 86 

mitochondrion or produce malate in the cytosol (Fig 1.). Malate can thus either produce pyruvate 87 

through the O3-increased activity of the cytosolic NADP-malic enzyme (Dghim et al., 2012; Chen et 88 

al., 2019), providing additional NADPH for detoxification purposes, or be transported into the 89 

mitochondrion. It cannot be excluded that malate could thus be decarboxylated to pyruvate within the 90 

mitochondrion via NAD(P)-malic enzyme (Møller and Rasmusson, 1998; Dizengremel et al., 2012). 91 

An increasing offer in OAA, malate and/or pyruvate, would then replenish the TCA cycle 92 

(Dizengremel et al., 2012). 93 

 94 

3. Deciphering the role of mitochondria under ozone stress 95 

During the first thirty years following the observation of damaging effects of O3 on plants (Haagen-96 

Smit et al., 1952), few studies were devoted to the effect of O3 specifically on plant mitochondria 97 

(Dizengremel and Citerne, 1988). The concentration of O3 used was often acute (1 ppm delivered for 98 

several hours) and the resulting effect was mainly an inhibition of the oxidative phosphorylation (Lee, 99 

1967). More recent works using chronic O3 exposure explored the responses of the different 100 

mitochondrial pathways contributing to the oxidative degradation of the organic acids. 101 

 102 

3.1. A noncyclic anabolic function of TCA to enhance antioxidant defense 103 

The TCA cycle operates in the matrix of mitochondria by fully decarboxylating the organic acids; 104 

however, a noncyclic functioning of TCA can also occur (Tcherkez et al., 2009; Sweetlove et al., 105 

2010) allowing the leak of some organic acids (citrate, isocitrate, oxoglutarate) towards amino acid 106 
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synthesis (Fig. 1A, O’Leary et al., 2011). This anaplerotic pathway would be solicited under chronic 107 

O3 exposure (Dizengremel et al., 2012). Citrate is exported from the mitochondrion to the cytosol to 108 

produce 2-oxoglutarate (OG) via cytosolic isocitrate dehydrogenase (IDH), a reaction that provides 109 

NADPH and is increased under O3 stress (Dghim et al., 2012). Mitochondrial OG can also be directly 110 

exported after being produced from isocitrate by the mitochondrial NAD(P)-IDH. OG may thus be 111 

integrated into the glutamine synthetase 2 ⁄ glutamate oxoglutarate aminotransferase or into the 112 

glutamine synthetase 1 (GS1) / aspartate aminotransferase cycles to give glutamate in the chloroplast 113 

or cytosol, respectively (Fig 1A). The activity of GS1 was shown to increase in plants fumigated with 114 

O3 (Galant et al., 2012). This could allow to cope with a diminished NH4
+ remobilisation due to O3-115 

decreased photorespiratory activity (Bagard et al., 2008). Interestingly, a higher supply of cytosolic 116 

glutamate could also support de novo glutathione (GSH) synthesis by γ-glutamylcysteine synthetase 117 

and glutathione synthetase and therefore contributes to cell ROS detoxification. In animal cells, a 118 

specific OG transporter has been described in the mitochondrial inner membrane (Lash, 2006). This 119 

transporter carries out OG to the cytosol in exchange for cytosolic GSH (Fig. 1A). The presence of 120 

such a transporter still needs to be investigated in plants in which GSH biosynthesis only occurs in 121 

cytosol and chloroplast. Such transporters would therefore insure mitochondrial import of cytosolic 122 

GSH during stress. The enhancement of noncyclic TCA and anaplerotic pathway under O3 would thus 123 

feed cytosolic antioxidant synthesis in carbon skeletons and simultaneously import antioxidants in 124 

mitochondria. 125 

 126 

O3 enters the leaf through stomata and rapidly generate various ROS (Kangasjarvi et al., 1995) that 127 

cause the peroxidation of membrane lipids (Ranieri et al., 1996; Loreto and Velikova, 2001). In this 128 

respect, the leak of compounds out of TCA cycle may result from inactivation of some downstream 129 

enzymes of the cycle by the lipid peroxidation products, as 4-hydroxy-2-nonenal, which has been 130 

shown to specifically inhibit oxoglutarate dehydrogenase and pyruvate dehydrogenase complexes by 131 

about 80% (Millar and Leaver, 2000). To maintain the rate of respiration, part of the TCA cycle can be 132 

by-passed, as do the γ-aminobutyrate shunt (GABA shunt) for succinate synthesis in bypassing 133 

oxoglutarate dehydrogenase and succinyl-coA-synthetase (Fig. 1B, Rhoads et al., 2006; Dizengremel 134 

et al., 2012). GABA synthesis is catalyzed by glutamate dehydrogenase and glutamic acid 135 

decarboxylase, which both increased in O3-treated rice leaves (Cho et al., 2008). Increased 136 

concentrations of GABA were generally observed in response to stress, conferring on the GABA shunt 137 

an adaptive mechanism (Michaeli and Fromm, 2015). Recently, Che-Othman et al. (2019) concluded 138 

that increase in GABA shunt activity in wheat leaves overcome the inhibition of the TCA cycle key 139 

enzymes, providing an alternative carbon source to support the stress-dependent increase in 140 

mitochondrial respiration. In response to O3, GABA could also act as a transmembrane signal 141 
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indicating changes in TCA cycle activity from cell to cell (Ramesh et al., 2015; Gilliham and 142 

Tyerman, 2016).  143 

 144 

The exchange of metabolites between chloroplast and mitochondria allows balancing the cellular 145 

redox within plant cell (Hoefnagel et al., 1998; Gardestrom and Igamberdiev, 2016; O’Leary et al., 146 

2019). This is mediated via a system, often called malate valve, which couples a malate/OAA redox 147 

shuttle based on mitochondrial NAD-malate dehydrogenase to a chloroplastic NADP-malate 148 

dehydrogenase (Hoefnagel et al., 1998; Scheibe, 2004). When the NADPH/NADP ratio is high, malate 149 

is transported from the chloroplast into the mitochondria where it is transformed in OAA, resulting in 150 

the transfer of chloroplast NADPH in excess to mitochondrial NADH (Fig 1.)(Scheibe, 2004, Yoshida 151 

et al., 2007). This system allows to minimize chloroplast endogenous ROS production due to an overly 152 

reduced photosynthetic reaction system and a lack of NADP (Finnegan et al., 2004). This could 153 

happen under O3 stress when a transient stromal over-reduction due to damaged Calvin cycle occurs 154 

before any impairment of the light reactions (Dizengremel, 2001; Dizengremel et al., 2009). In 155 

addition, O3 is well known to induce stomatal closure (Wittig et al., 2007; Hoshika et al., 2015) that 156 

would also drive a NADPH accumulation in chloroplast by reducing CO2 levels. Malate valve 157 

contributes to import reducing power in mitochondria and therefore to detoxification capacity in 158 

supporting mitochondrial antioxidant regeneration and to minimize chloroplastic ETC imbalance 159 

resulting in ROS generation.  160 

 161 

3.2. Role of the mitochondrial electron transport chain 162 

The mETC is a major site of ATP synthesis, but is also a source of ROS (Fig. 1C) through complex I 163 

(NADH: ubiquinone oxidoreductase) and complex III (UQH2: cytochrome c oxidoreductase; 164 

cytochrome bc1 complex) (Murphy, 2009). More recently, it was shown that complex II (SDH) can 165 

also produce O2
− at the FAD-binding site through the monovalent electron reduction of O2 (Jardim-166 

Messeder et al., 2015; Huang et al, 2019). Endogenous ROS production by mETC can however be 167 

mitigated by the use of alternative pathways. The plant mETC possesses an alternative non-proton 168 

pumping pathway, by-passing complexes III and IV, and mediated by alternative oxidase (AOX) (Fig 169 

1C)(Lance et al., 1985; Vanlerberghe and McIntosh, 1997; Millar et al., 2011). AOX might act to 170 

maintain a basal ubiquinone pool reduction state, preventing over-reduction of upstream electron-171 

transport components and lowering ROS production (Purvis and Shewfelt, 1993; Rhoads et al., 2006 ; 172 

Mittler, 2002; Umbach et al., 2005; Saha et al., 2016). It has been stated that the participation of the 173 

alternative oxidase is maintained very low under standard conditions by repressing its gene expression, 174 

potentially because of its wasteful nature (Selinski et al. 2018). However, the activity of AOX can be 175 

enhanced by several parameters acting at different levels (transcriptional, translational, post-176 

translational) in response to a large range of stressors. The AOX gene expression was shown to be 177 

increased by H2O2 itself (Vanlerberghe & McIntosh, 1997) or through specific transcription factors 178 
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(e.g. NAC17; Ng et al., 2013). Furthermore, differential expression of AOX isogenes can lead to the 179 

production of heterodimers having varying catalytic properties which potentially offer a fine-tune 180 

mechanism of AOX activity in response to stress. Under O3 exposure, an activation of AOX at both 181 

transcriptional and translational levels was observed in poplar, tobacco and Arabidopsis (Jolivet et al., 182 

1997; Dizengremel, 2001, Ederli et al., 2006; Tosti et al., 2006). In tobacco, the O3 induced activation 183 

of gene expression of AOX1a was suggested to be NO-dependent, in cooperation with ethylene 184 

signaling, and correlated to an inhibition of cytochrome oxidase by NO (Ederli et al., 2006, Kumari et 185 

al., 2019). This is a good example of a disfunctioning of mETC triggering the expression of a nuclear 186 

gene encoding a mitochondrial protein (retrograde signaling system, Ng et al., 2014).  187 

 188 

AOX activity can also be regulated by redox state. The reduced form of the AOX dimer is more active 189 

than the oxidized form, suggesting that AOX activity can be modulated depending on reducing power 190 

availability, but may be affected by excessive accumulation of ROS. Thioredoxins belonging to Trxo 191 

and Trxh families are able to render AOX operational by reducing disulfide bonds (Trxo family: Marti 192 

et al., 2009; Umekawa and Ito, 2019; Trxh family: Gelhaye et al., 2004). The redox state activation of 193 

AOX protein is also coupled to ketocarboxylic acids binding that enhance its activity: pyruvate and 194 

OG are very effective activators in lowering Km for UQ substrate (Umbach et al., 2002; Selinski et al., 195 

2018). These two systems of AOX activation, redox state and metabolite binding, interact with each 196 

other to complete AOX activity regulation. The increased availability of pyruvate under O3 197 

(Dizengremel et al., 1994, 2009) could explain the enhancing participation of AOX to the 198 

mitochondrial electron flow; however this activation would require sufficient reducing power 199 

availability to maintain AOX in its reduced form and minimize endogenous ROS production by 200 

mETC. In addition, AOX, that has a lower O2 affinity than cytochrome oxidase (Km of 1-2.5µm vs. 201 

0.1-0.2µm), allows to maintain a low level of O2 in mitochondria that therefore contributes to 202 

minimize ROS production (Gupta et al. 2015). 203 

 204 

Alternative pathways of mETC also include the shunt of complexes I and II, implying one of the four 205 

alternative non-proton pumping NAD(P)H dehydrogenases located either on the outer (NDex) or inner 206 

(NDin) surface of the inner mitochondrial membrane (Fig. 1C). The NDin might largely participate for 207 

the reoxidation of matrix NADH under conditions where its concentration is increased (Møller, 2001), 208 

which could be the case under O3 stress as mentioned above. Matrix NAD(P)H can be produced via 209 

the NAD(P)-IDH and NAD-malic enzyme or imported through the malate/OAA shuttle. The activity 210 

of the NAD(P)-malic enzyme is increased under O3 (Dizengremel et al., 2009; Dghim et al., 2012. 211 

NDin is thus probably competing with NAD(P)H-dependent ROS-detoxifying enzymes for matrix 212 

NAD(P)H (Møller, 2001). Although rather inactive in normal conditions, the Ca2+-dependent NDex 213 

linked to the outer face of the inner mitochondrial membrane could be activated under stress by an 214 

increase in Ca2+ cytosolic concentration, as it has been previously shown under O3 (Heath and Castillo, 215 
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1988; Clayton et al., 1999). In addition, an increased expression of the NDex was demonstrated to 216 

accompany increased AOX expression under several stress treatments (Rhoads et al., 2006). Under 217 

oxidative stress, alternative dehydrogenases could help decrease ROS production linked to a high 218 

reduction level of mETC, by keeping the cytosolic NAD(P) pool relatively oxidized (Rhoads et al., 219 

2006). In addition, uncoupling proteins (UCP) cross the inner mitochondrial membrane (Vercesi et al., 220 

2006) and mildly participate to the modulation of the transmembrane potential (Fig 1C)(Rhoads et al., 221 

2006). UCP is also able to decrease ROS formation in reintegrating proton and thus bypassing 222 

respiratory control by ATP synthase (Rhoads et al., 2006). While AOX can be inactivated by a strong 223 

oxidative stress (Winger et al., 2005), UCP is able to keep operating when ROS level is much higher 224 

(Considine et al., 2003; Rhoads et al., 2006). The role of the NADH dehydrogenases and UCP under 225 

O3-driven oxidative stress must however be confirmed, especially in regard to the role of AOX. 226 

 227 

Beside electron transport, mETC also hosts the final step of ascorbate (ASA) biosynthesis that 228 

converts L-galactono-1,4-lactone to ASA and is catalysed by L-galactono-1,4-lactone dehydrogenase 229 

(Fig 1C)(Ôba et al., 1995; Bartoli et al., 2000). This enzyme is located on the inner mitochondrial 230 

membrane where it is physically associated to complex I and regulated by electron transport. 231 

Furthermore, oxidized cytochrome c is essential to the functioning of L-GLDH in acting as a specific 232 

electron acceptor (Fig 1C)(Bartoli et al., 2000). As an example, L-GLDH activity was decreased by 233 

40% in Arabidopsis knockdown mutants under-expressing cytochrome c (Welchen et al. 2016). The 234 

question remains as the relative contribution of ASA synthesis to respiratory electron flux compared to 235 

that driven by TCA cycle activity and whether this contribution is modulated in O3 stress conditions. 236 

In any case, produced ASA can thereafter be used by cytosolic and mitochondrial antioxidant systems 237 

to minimize ROS accumulation. Therefore, the coupling of L-GLDH and mETC activities via 238 

cytochrome c could contribute to couple respiration and antioxidant defense to cope with oxidative 239 

stress.  240 

 241 

4. Antioxidant systems present in mitochondria and known effects of ozone 242 

Several antioxidant mechanisms, mainly present in the soluble parts of the mitochondria (i.e. 243 

intermembrane space and matrix), can contribute to mitigate the increased ROS production during O3 244 

exposure. A matrix-localized Mn-superoxide dismutase was reported in literature, coping with 245 

endogenous O2
- production by mETC, and involved in the protection against ROS produced by O3 246 

attack (Fig 1C)(Alscher et al., 2002). To manage superoxide dismutase products, the occurrence of a 247 

Halliwell-Asada-Foyer cycle (HAF, Fig. 1D) has been reported in cytosol, chloroplasts, peroxisomes 248 

as well as in mitochondria (Jiménez et al., 1997; Noctor and Foyer, 1998; Foyer and Noctor, 2011) 249 

even though the presence of dehydroascorbate reductase (DHAR) in mitochondria remains 250 

questionable (Møller, 2001; Noctor et al., 2018). Several ascorbate peroxidases (APX) have been 251 

identified in plant mitochondria, one intermembrane APX bound to the inner mitochondrial membrane 252 
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(De Leonardis et al., 2000) and two others located in the matrix, either soluble or bound to the inner 253 

membrane (Mittova et al., 2004). As mentioned above, ASA is delivered to the mitochondrial 254 

intermembrane space where it can be oxidized by the intermembrane APX. Dehydroascorbate (DHA) 255 

can then be transported into the matrix via a GLUT-like transporter of the glucose transporter family 256 

(Chew et al., 2003; Szarka et al., 2013). In addition, if the lack of DHAR in the matrix were 257 

confirmed, DHA will have to be reduced in ASA by the glutaredoxin or directly by GSH (Fig 258 

1D)(Ehrhart and Zeevalk, 2003). Recent work also demonstrated the presence of mitochondrial 259 

ascorbate transporter-MAT, a member of the SLC25 family, to directly transport ASA through the 260 

mitochondrial inner membrane (Scalera et al., 2018). 261 

 262 

The synthesis of GSH only occurs in cytosol and chloroplast (Rausch et al., 2007); however GSH 263 

presence has been reported in mitochondria suggesting a crossing of the inner mitochondrial 264 

membrane via a still unknown transporter in plants (Fig. 1A; Chen and Lash, 1998; Maughan and 265 

Foyer, 2006). The presence of gluthatione reductase (GR) was confirmed in mitochondria to allow 266 

GSH regeneration where its activity is NADPH dependent (Fig. 1D, Edwards et al., 1990; Jimenez et 267 

al., 1997). Under O3, the synthesis of GSH is increased likely to maintain glutathione redox state 268 

(Dumont et al., 2014) and compensates ROS scavenging by glutathione. Similarly, the activities of 269 

APX, monodehydroascorbate reductase (MDHAR) and GR have been shown to increase under O3 270 

(Dusart et al., 2019; Gandin et al., 2019).  271 

 272 

As previously mentioned, thioredoxins have been reported in plant mitochondria (Sweetlove and 273 

Foyer, 2004; Navrot et al., 2007; Vieira Dos Santos and Rey, 2008). Also, a type II peroxiredoxin 274 

(PrxII F), has been identified in plant mitochondria (Rhoads et al., 2006; Finkemeier et., 2005), where 275 

it could reduce mitochondrial H2O2 by using thioredoxin or GSH (Fig 1D). The latter are then 276 

regenerated by thioredoxin reductase or GR (Sweetlove et al., 2004; Rhoads et al., 2006). The type II 277 

peroxiredoxin/thioredoxin system could also reduce lipid peroxides (Rouhier et al., 2004) and could 278 

therefore contribute to maintain mitochondria membrane integrity under stress. A mitochondrial 279 

protein disulfide isomerase functioning together with thioredoxin and NADPH could also reduce 280 

disulfides resulting from protein oxidation (Sweetlove et al., 2002; Rhoads et al., 2006). In addition to 281 

the above-mentioned effect of thioredoxin on AOX, the association of all these processes would lower 282 

the content of ROS in the matrix in O3 exposed plants. 283 

 284 

5. Suggested steps of the response of mitochondria to ozone: from resistance to cell death 285 

O3 being a powerful oxidant, a plausible scenario of the successive mechanisms coping with the 286 

progressively rising intensity of the O3-related stress is proposed below (Table 1). The sequential 287 

presentation is probably an idealized view of more intricate relationships between the responses to O3. 288 

In addition, ROS, responsible for oxidative damages caused by O3, are also known to play an 289 
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important role in triggering signaling pathways. Thus, there is a permanent fine-tuning of ROS 290 

accumulation to balance beneficial signaling and phytotoxic effect. The steps described below lie on 291 

results obtained from a series of O3 experiments and, in a minor way, are complement in integrating 292 

probable events derived from general oxidative stress. 293 

 294 

5.1. Mobilisation of pre-existing mechanisms to cope with ROS  295 

The first impact of O3 on photosynthesis, and especially on the biochemical components, leads to 296 

excessive NADPH accumulation within the chloroplast. A series of metabolic pathways, generally 297 

associated to carbohydrate breakdown as glycolysis and OPP, are also enhanced and result in even 298 

more NAD(P)H produced (Fig1, Table 1). This additional reducing power allows the existing 299 

detoxification processes to function at optimal level. An increase in APX activity has been described 300 

under O3 and shown to be supported by enhanced ASA regeneration by NADH-dependent MDHAR 301 

(Gandin et al., 2019). In addition, the cytosolic carboxylating enzyme, PEPcase, is requested, either to 302 

cope with the decreased CO2 fixation by Rubisco and/or to contribute to the anaplerotic pathway 303 

(Dizengremel et al., 2012). Several intermediates of catabolism are therefore favoured, either by 304 

pyruvate kinase (e.g. pyruvate) or/and by PEPcase (e.g. OAA and malate), and have impact on 305 

mitochondria functioning (Dghim et al., 2012). These organic acids will be transported into the 306 

mitochondria to feed TCA cycle and finally provide NAD(P)H to the mETC. Additional reducing 307 

power is also provided by the transfer of redox equivalents (e.g. through malate/OAA shuttle) either 308 

from chloroplasts, in which the redox pressure is transiently high, or from cytosol. However, 309 

increasing feeding of mitochondria with NAD(P)H threaten to over-reduce mETC and induce 310 

endogenous ROS production.  311 

 312 

To maintain the mETC in a sufficiently oxidized state, ATP synthesis and respiratory control could be 313 

balanced by the UCP while the electron flow may use the activated AOX and some of the four 314 

NAD(P)H dehydrogenases located on both sides of the inner mitochondrial membrane (Table 1). 315 

Three NAD(P)H-DH are activated by Ca2+ which concentration is known to be increased by O3 and is 316 

involved in phytohormone cascade signals (Short et al,. 2012). An increase of the amount of salicylic 317 

acid (SA) was shown under O3 fumigation (Koch et al., 2000). At low concentration, SA was shown to 318 

uncouple the mETC (Gleason et al., 2011) and to increase AOX expression (Rhoads and McIntosh, 319 

1992), suggesting a potential role for SA (and may be ethylene) to the signaling process regulating 320 

mitochondrial electron flux (Rao et al., 2000; Dizengremel, 2001; Heath, 2008). NO production due to 321 

O3 stress could also be an important regulator of electron partitioning between cytochrome and 322 

alternative pathways, in reducing and enhancing cytochrome oxidase and alternative oxidase activities, 323 

respectively (Ederli et al. 2006). Therefore, NO impact on mETC could initiate a bottom-up regulation 324 

starting with the decrease in mETC ATP yield that would require an increase in glycolysis and TCA 325 
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cycle activities to fulfill mitochondria ATP demands. Evidence may be seen in the stimulation by O3 326 

of a mitochondrial phosphate transporter located in the inner membrane, which catalyzes the influx of 327 

Pi, essential for the synthesis of ATP in the matrix (Kiiskinen et al., 1997). 328 

 329 

5.2. Setting up of detoxifying processes 330 

The enhanced activities of PEPcase as well as of glycolysis and OPP tend to show a plateau for higher 331 

doses of O3, announcing a limit for the capacity of the metabolism to counteract the oxidative stress 332 

(Dizengremel et al., 1994; Fontaine et al., 1999; Renaut et al., 2009). With an extended O3 exposure, 333 

the ROS production keeps increasing and more likely starts to accumulate in plant cells. ROS shortly 334 

oxidized cell components (e.g. protein, DNA…) among which membrane lipids that are a major target 335 

(Rebouças et al., 2017). Lipid peroxidation products are able to inhibit specific TCA cycle enzymes 336 

(Millar and Leaver, 2000) and disrupt its functioning (Table 1). As a consequence, TCA cycle would 337 

leak intermediates and export isocitrate or OG to the cytosol for amino acid biosynthesis (Dizengremel 338 

et al., 2012). This leak in carbon skeletons would also support cytosolic GSH de novo biosynthesis, as 339 

the enzymes for it have never been reported in mitochondria. GSH can then return to mitochondria 340 

through OG-GSH transporters as shown in animal cells (Lash 2006), yet to be described in plants. 341 

GSH can therefore support glutathione peroxidase and glutaredoxin activities as well as ASA 342 

regeneration through non-catalytic reduction or mediated by DHAR, therefore significantly 343 

contributing to antioxidant defense (Fig 1D, Table 1). With ROS accumulation, other antioxidant 344 

systems can intervene, as the peroxiredoxin/thioredoxin systems present in mitochondria that could 345 

reduce mitochondrial H2O2. In addition, it is likely that ASA biosynthesis is also enhanced under O3 to 346 

support HAF functioning. The de novo synthesis of ASA however involves additional feeding of the 347 

mETC with electrons, increasing even more the reductant pressure on the chain and the risk for 348 

endogenous ROS production. In addition, ROS accumulation likely oxidized mETC components as 349 

AOX, which is inactive in oxidized form. This runaway effect may lead to increasing endogenous O2
- 350 

production by complexes I, II and III and ROS over-accumulation in mitochondria.   351 

 352 

Glutamate issued from OG export from mitochondria can also enter the GABA shunt that leads to the 353 

production of succinate in mitochondria, bypassing TCA cycle enzymes inactivated by oxidative stress 354 

(Fig 1B)(Table 1)(i.e. OG dehydrogenase and succinyl-CoA synthetase). GABA-shunt issued 355 

succinate can then be reoxidized by Complex II in mETC that still drives a strong electron flow from 356 

the complex I and NAD(P)H-DH. However, complex II can be inhibited at high concentrations of 357 

oxidative stress-induced phytohormones as SA (Gleason et al., 2011; Belt et al., 2017). This would 358 

lead to the accumulation of GABA shunt intermediates, as succinic semialdehyde that is toxic 359 

compound for plants.  360 

 361 

5.3. Towards programmed cell death 362 
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When the O3 uptake lasts and oxidative pressure keeps rising, the antioxidant defense is overwhelmed 363 

and ROS accumulates in excess. It is admitted that plant mitochondria could then play a role similar to 364 

that of animal mitochondria in the PCD process (Table 1)(Xie and Chen, 2000; Tiwari et al., 2002; 365 

Vianello et al., 2007). The decrease in ATP production and release of cytochrome c are the first 366 

signals of PCD. The depletion of ATP synthesis, above described as accompanying both UCP and 367 

AOX implication, can be accelerated by mitochondrial membrane disturbances associated to ROS. 368 

The peroxiredoxin/thioredoxin system can help by supplying reducing power to reductases acting on 369 

lipid hydroperoxides and disulfides resulting from protein oxidation, but it become insufficient. A 370 

collapse of mitochondrial transmembrane potential ΔΨm would ensue, triggering the opening of the 371 

mitochondrial permeability transition pore (Table 1)(Tiwari et al., 2002; Zandalinas and Mittler, 372 

2018). 373 

 374 

Cytochrome c, a mobile protein attached to the cytosolic face of the inner mitochondrial membrane, 375 

acts as an electron carrier between complexes III and IV and is implied in the last step of ASA 376 

synthesis. Cytochrome c is labile and can be easily detached from the inner mitochondrial membrane 377 

followed by its release into the cytosol through a permeabilization of the outer membrane due to 378 

oxidative stress (Table 1)(Dizengremel, 1983; Sun et al., 1999). A release of cytochrome c was 379 

observed upon O3 exposure of tobacco plants (Pasqualini et al., 2003). The release of cytochrome c 380 

activates caspases-like proteases that are involved in the execution of the cell death program (Tiwari et 381 

al., 2002; Vacca et al., 2006; Welchen and Gonzalez, 2016). A Ca2+ overload, admitted to occur upon 382 

O3 exposure, would trigger the entire PCD process (Xiong et al., 2006; Welchen and Gonzalez, 2016). 383 

The increased permeability of mitochondria to solutes leads to mitochondrial swelling (Vianello et al., 384 

2007; Zancani et al., 2015) which was early observed in response to O3 (Lee, 1967, 1968). This ends 385 

by overall mitochondria rupture and subsequent cell death. 386 

 387 

6. Conclusions and perspectives 388 

In the literature, the role of mitochondria facing O3 stress is often mentioned as being important but 389 

the available information is disseminated. A gathering of these information and a clearer picture of the 390 

sequential events following an increasing oxidative pressure is proposed in this review article, based 391 

on results mostly obtained with O3 itself and some others deduced from general oxidative stress (Table 392 

1). As soon as O3 enters the leaf, delivering ROS, the entire catabolic system is mobilized, partly to 393 

compensate the damages and also for providing redox compounds, organic acids and secondary 394 

metabolites. These changes allow to optimize detoxification activity and minimize ROS accumulation, 395 

in modulating TCA cycle activity and NAD(P)H production, balancing electron transport within 396 

mETC, and increasing antioxidant pool in the matrix. In the most severe cases, this wide 397 
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reorganization of mitochondria metabolism can be insufficient and mitochondria will be overwhelmed 398 

by oxidative pressure, leading its disruption through a PCD-like process.  399 

 400 

Even though this scenario is plausible, the action of O3 on some of the steps needs to be definitively 401 

confirmed. The important role of AOX (and potentially other alternative pathways) must be 402 

emphasized. AOX has been recently proposed as a functional marker for breeding stress tolerant plant 403 

varieties (Polidoros et al., 2009). On the other hand, an elaborate network of anterograde and 404 

retrograde signalling between the mitochondria and nucleus is at work in plant cells with redox status 405 

and ROS as important actors (Leister, 2005; Rhoads and Subbaiah, 2007; Ng et al, 2014; Farooq et al., 406 

2019).  Moreover, it was recently demonstrated that the Ca2+
‐dependent changes in gene expression 407 

observed in response to O3 differ markedly from Ca2+ signatures of other oxidative stress, such as 408 

H2O2 and cold (Short et al., 2012). A more deeply insight concerning the metabolic and signalling 409 

networks under O3 stress thus needs to be studied. In this context, the ambiguous role of hormones 410 

raises questions, particularly for ethylene, which is largely implicated in leaf senescence as well as O3 411 

damage (Moeder et al., 2002; Nunn et al., 2005; Heath, 2008). Finally, the role of antioxidants to cope 412 

with O3 stress is undisputable but very technically complex to assess relative to each intracellular pool. 413 

It is therefore essential to develop new methods to estimate the relative contribution of each pool and 414 

their potential exchanges within the cell. 415 
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Table 786 

 787 

Table 1.  788 

Proposed sequential response of plant mitochondria to O3 stress (see the text and Fig 1. for a complete 789 

explanation); in italics: events inferred from general oxidative stress. 790 

__________________________________________________________________________________ 791 

Successive steps             Increasing  792 

                Phytotoxic Ozone Dose 793 

 794 

Mobilisation of pre-existing mechanisms to cope with ROS 795 
Cytosol 796 
- Enhancement of the catabolic pathways and PEPcase 797 
- Supply of organic acids and redox power (NADPH) 798 
- Maintenance of a high detoxification 799 
- Increase in the phenylpropanoid metabolism 800 
 801 
Mitochondria 802 
- Increased supply of NAD(P)H to ETC 803 

- Adjustment of electron flow path in ETC by balancing between high 804 
substrate supply (organic acid and NAD(P)H) and ATP requirement 805 

• Increased activity of UCP and AOX to lower reduction pressure  806 
• Ca2+-dependent activation of the NAD(P)H-NDext and NDint 807 
• SA-mediated uncoupling of respiratory chain 808 
• Increased gene expression of AOX 809 

 810 

 Setting up of detoxifying processes 811 
- TCA cycle inhibition by peroxidation products 812 

• Enhancement of anaplerotic pathway 813 
• Leak of organic acids to amino acids synthesis 814 
• Increase synthesis of glutathione and import in the matrix 815 
• Induction of GABA shunt 816 

- Conversion of superoxide by Mn-SOD 817 
- Induction of antioxidant defense 818 

• Increased de novo synthesis of ascorbate 819 
• Increased activity of HAF cycle and APX/GR gene expression 820 
• Enhancement of peroxyredoxin/thioredoxins systems 821 

- Inactivation of AOX 822 
- Complex II inhibition by high level of SA 823 

• Accumulation of toxic intermediates of GABA shunt 824 

 825 

Towards programmed cell death (PCD) 826 
- Increasing damage to fatty acids and proteins of mitochondrial membranes 827 
- ATP-synthesis decrease due to uncoupling of electron flow 828 
- Decrease in ascorbate synthesis 829 
- Possible occurrence of Mitochondrial Permeability Transition  830 
- Release of cytochrome c in the intermembrane space 831 

• Activation of caspases-like proteases 832 
- Disruption of the outer mitochondrial membrane 833 
- Swelling of mitochondria 834 
- Cell death 835 

__________________________________________________________________________________ 836 

  837 
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Figure legend 838 

Figure 1. Representative schema of metabolic network involved in plant mitochondria response to O3-839 

induced oxidative stress. Four main focuses of mitochondria response are presented to highlight (A) 840 

the oxoglutarate-glutathione co-transport between cytoplasm and matrix that allow to replenish 841 

matrix GSH pool jointly to the leak of OG out of mitochondria; (B) the GABA-shunt bypassing TCA 842 

cycle enzymes once they are inhibited by ROS and its potential role in cell signalling and/or death; 843 

(C) the multifaced electron pathway which is modulated to minimize endogenous ROS production and 844 

its close relationship to ascorbate synthesis and import; (D) the antioxidant system reported in 845 

mitochondria matrix to scavenge ROS. Dark lines and arrows represent mitochondria-related 846 

metabolic links. Red lines represent the connectivity between mitochondrial metabolism and ROS 847 

production or scavenging. ASA: ascorbate, APX: ascorbate peroxidase, AOX: alternative oxidase, 848 

Cit: citrate, Cyt C: cytochrome C, Er-4-P: erythrose-4-phosphate, GABA: gamma-aminobutyric acid, 849 

γ-Glu-cys: L-gamma-glutamylcysteine, GLDH: L-galactono-1,4-lactone dehydrogenase, Glu: 850 

glutamate, GLUT-like Tr: glucose transporter, Glu-6-P: glucose-6-phosphate, GS/GOGAT: glutamine 851 

synthetase/glutamate synthase, GPX: glutathione peroxidase, GR: glutathione reductase, GRX: 852 

glutathioredoxine GSH: reduced glutathione, GSSG: oxidized glutathione, iCit: isocitrate, Mal: 853 

malate, MAT Tr: mitochondrial ascorbic acid transporter, (M)DHA: (mono)dehydroascorbate, 854 

(M)DHAR: (mono)dehydroascorbate reductase, mETC: mitochondrial electron transport chain, 855 

MnSOD: Mn-dependent superoxide dismutase, NDin/ex: internal/external NAD(P)H dehydrogenases, 856 

OAA: oxaloacetate, OG: oxoglutarate, OPPP: oxidative pentose phosphate pathway, PEPc: 857 

phosphoenolpyruvate carboxylase, PRX/TRX: peroxiredoxin/thioredoxin, Pyr: pyruvate, ROS: 858 

reactive oxygen species, SSA: succinic semialdehyde, Succ: succinate, UCP: uncoupling protein 859 

 860 
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