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Abstract

Deployable membrane structures such as in�atable stratospheric balloons

are known to be sensitive to the occurrence of local instabilities such as

wrinkles. The wrinkling phenomenon a�ects the working performances of

the membrane and the occurrence of this phenomenon has to be controlled

numerically in order to predict the best means of deployment during the

in�ation of aerospace balloons. To improve their performances and reliability

during �ight, the balloons also need to be sized appropriately without the

stress �eld being disturbed by the wrinkles. These instabilities originate

numerically from the membrane elements which have a negligible bending

sti�ness. Several wrinkling models have been presented in the literature in

order to solve this problem. However, in most of these models an elastic law

and the Green deformation approach have been used for this purpose.

The new model called the PS-DPS model presented here for correcting

the e�ects of wrinkles on membrane structures was implemented in the in-
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house �nite element software Herezh++. A projection technique based on

a Newton-Raphson method is used to control the stress plane and the in-

plane contraction. Using the Almansi strain formulation, this model also

accounts for the changes in membrane thickness liable to occur during simu-

lations. The problems due to numerical instabilities are overcome by deter-

mining the equilibrium with the so-called Dynamic Relaxation method using

kinetic damping procedures. Unlike other membrane models of literature,

the PS-DPS model can be used with materials showing complex mechanical

behaviour of all kinds. Several benchmark problems are analysed with the

present wrinkling model and compared with results available in the litera-

ture, focusing �rst on an elastic law and then on a non-linear hyperelastic

law. Lastly, the in�ation of a square cushion test and that of a Zero Pressure

Balloon are simulated with this non-linear law. The results obtained indi-

cate that the PS-DPS model is valid and accurate to take into account the

wrinkles in �exible structures with all these linear and non-linear behaviours.

Keywords: Wrinkling model, Membrane structures, In�ated structures,

Dynamic Relaxation method, Plane Stress projection procedure, Non-linear

behaviour
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1. Introduction1

In�ated stratospheric balloons made of thin plastic �lm are widely used2

by the French Space Agency (CNES) for studying atmospheric and astro-3

nomic phenomena and testing technological innovations. Due to the large4

size of these balloons (which measure anything up to 180 m in height) and5

the �exibility of their polyethylene envelope (which is only a few tens of µm6

thick), in�ation of the stratospheric balloons causes local buckling phenom-7

ena, which appears as wrinkling. These buckling processes are due to the8

fact that these membrane structures, which have been referred to as "with-9

out compression", have a negligible bending sti�ness. If no compressive stress10

is induced in the membrane, an out-of-plane displacement of the membrane11

will occur, resulting in wrinkles.12

The number of numerical studies on wrinkled structures such as �exible13

membranes and �ne fabric structures has increased considerably since the14

1990s. Jenkins in his 1996 review <1> was the �rst to not only outline the15

problem of wrinkling, but also to cover all the aspects of the theory and16

applications of thin structures that can be de�ned as membranes. Several17

reviews <2�9> have been subsequently published on the various �nite ele-18

ment methods developed for simulating wrinkling problems. The basic idea19

was introduced by Wagner <10>, based in particular on Tension-Field (TF)20

theory, and on the assumption that a membrane has no bending sti�ness21

and cannot resist any compression forces. Many wrinkling models (see for22

example <6; 11>) have since been developed on these lines for predicting23

the wrinkling direction and eliminating the in-plane sti�ness in the direction24

perpendicular to the wrinkles.25

Thus, the �rst type of wrinkling model was to modify the deformation26

gradient tensor to represent TF responses of wrinkled membranes <12; 13>.27
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By introducing the concept of relaxed energy density, Pipkin <14> de�ned28

membrane wrinkling as a problem of energy minimization arising in the case29

of elastic bodies devoid of bending rigidity. This method inspired several30

other models <15�17>, and Epstein and Forcinito <18> extended this re-31

laxed energy function model to include anisotropic membranes by introducing32

the idea of saturated elasticity and by modifying the Green's strain tensor.33

The second approach, on which this paper focuses, is based on a local34

modi�cation of the stress-strain relationship within an element, i.e. the35

constitutive equation is modi�ed in order to eliminate all the compressive36

stresses <19>. In this case, there exist several possible solutions. One of37

them consists in modifying the sti�ness tensor of elasticity by adding a cor-38

rective factor <4; 20�22>. Another one consists in modifying the constants39

of the material such as the modulus of elasticity and/or the Poisson's ratio40

<23�26>. Another method consists in post-multiplying the sti�ness matrix41

with a projection matrix that eliminates the compressive stresses <19; 27>.42

The in�uence of these various solutions can be seen in the paper by Wang43

et al. <6>. These previous approaches provide a rigorous mathematical44

formulation of the wrinkling mechanism and can easily be applied to existing45

�nite element codes for the analysis of membrane structures with wrinkles.46

However, the exact physical signi�cance of the modi�ed elasticity matrix is47

somewhat obscure because of the arbitrary choice of projection matrix.48

The last approach to modelling wrinkles worth mentioning consists in49

using thin shell elements that include both membrane and bending contribu-50

tions and can be used to model the amplitude and wavelength of wrinkles.51

This method has been adopted in several studies (e.g. <3; 28>). Unfor-52

tunately, in order to obtain su�ciently realistic results, the mesh size must53

be su�ciently �ne which requires fairly long computational times. Shell el-54
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ements are naturally more expensive in terms of computational time than55

membrane elements because a large number of degrees of freedom (rota-56

tions) and integration points (through the thickness) is required. During the57

last few years, however, shell elements devoid rotational degrees of freedom58

have been developed <29�32> and used to model the shape of wrinkles on59

isotropic and anisotropic �exible structures <33>. Elements of this kind are60

the most e�cient for modelling the wrinkles phenomena in small structures,61

but in the case of large structures such as stratospheric balloons, this option62

does not seem to be the most e�cient due to the long computational times63

induced by the mesh size. In addition, it is worth noting that the wrinkling64

behaviour (i.e. buckling) often depends on the size and type of mesh.65

Finding suitable means of modelling wrinkling processes in the design66

stage is therefore an important challenge for constructing reliable membrane-67

based space structures <34>. It is of the utmost importance to be able to68

predict the behaviour of membrane wrinkles, including the direction in which69

they occur and what stresses are at work in the case of in�ated stratospheric70

balloons <11>. However, most previous studies have focused so far on de-71

termining the direction of the wrinkling process and the corresponding stress72

state in the case of materials with isotropic <7; 14; 35> or anisotropic linear73

behaviour <12; 17; 18; 22; 36> as well as for linear viscoelastic behaviour74

<37�40>. However, in the case of materials with non linear behaviour, this75

subject still requires further investigation <41; 42>, and in the context of76

stratospheric balloons, it should be noted that thin �lms show complex be-77

haviour characterized by large irreversible strains and strain rate dependency,78

and therefore, elasto-visco-plastic behaviour. In this context, the aim of this79

paper is to present a new simple, accurate method of modelling membrane80

structures giving the wrinkling directions for all kinds of material behaviours.81
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This model, which we have called the "Plane Stress-Double Plane Stress"82

(PS-DPS) model, is based on two approaches. The �rst approach consists in83

adjusting the components of the constitutive tensor in the direction of the84

compressive stress. The principle underlying this method is in fact consistent85

with other approaches used in <4; 19; 43>, for example, but the Newton-86

Raphson method of projection used here makes it possible to control the87

constitutive matrix in the case of materials of all kinds. In this case, the aim88

is not to simulate the shape of the wrinkles but to account for their occurrence89

on the equilibrium state of the membrane. Another originality feature of this90

model is that the thickness of the membrane structure is updated throughout91

the simulation.92

The second approach used in the PS-DPS model overcomes the numeri-93

cal instabilities that are liable to occur due to the poor convergence of the94

numerical resolution of the membrane structure. This is can be explained95

by the fact that the local sti�ness of the membrane can vary between large96

positive values and zero during the iterative process. A Dynamic Relaxation97

(DR) method (which is also known as the pseudo-Dynamic method) is then98

introduced to determine the global equilibrium in the analysis of undercon-99

strained membranes <44; 45>.100

These two approaches and the DR method are implemented in the in-101

house �nite element software Herezh++<46�48>. In the literature, wrinkled102

membrane models have been classically written based on the initial con�g-103

uration of the structure using the Green strain tensor <6; 7; 27> whereas104

the PS-DPS model is written here based on the current con�guration of the105

structure using the Almansi strain measure and the Cauchy stress tensor.106

This paper is structured as follows: the numerical methods used to de-107

velop the PS-DPS model are presented in Section 2. The distinctive char-108
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acteristics of the Plane Stress and Double Plane Stress approaches are ex-109

plained in sections 2.3 and 2.4 respectively. The pseudo-Dynamic process110

is then described in section 3. To show the accuracy and potential of the111

present model, several benchmark examples are modelled and analysed in112

section 4 using isotropic elastic law and compare with results available in the113

literature. First, structures constrained in their planes are studied. Shear114

test is �rst analysed since this is the most widely used test for checking the115

validity of wrinkling models. In this test, the membrane is fully wrinkled116

(in either a single direction or all possible directions) in order to check the117

accuracy of the PS-DPS model. The results of a torsion test in which the118

membrane shifts locally from a wrinkled to a taut state is then compared119

with an analytical solution. Next, a square cushion deployment is carried120

out in order to test the model on a structure resembling that of stratospheric121

balloon. In this test, comparisons are also made with �nite element simula-122

tions performed with Abaqus <49> using the "No compression" procedure,123

in which the elastic behaviour is modi�ed by imposing the appropriate prin-124

cipal stress at zero. To determine the in�uence of behavioral laws on the125

results obtained, the in�ation of a square cushion test is also simulated using126

a hyperelastic law with the PS-DPS model in section 4.4. Lastly, in section 5,127

to show the applicability of the PS-DPS model in a real case of balloon in-128

�ation, simulations of the deployment of a Zero Pressure Balloon with both129

elastic and non linear laws are presented.130

2. The PS−DPS model131

Before presenting the PS−DPS model, some notations are introduced in132

order to explain the kinematic hypotheses and tensor notations used. First,133

let us take a Gauss pointM and the associated material frame {M,~gi} (where134
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i = 1 . . . 3). The covariant base vectors, which follow the point M as a func-135

tion of time t, are de�ned in the tangent membrane plane, using a curvilinear136

coordinate system θα, by:137

~gα(t) =
∂ ~M(t)

∂θα
with α = 1, 2 (1)

In the Herezh++ software, these curvilinear coordinates constituting a set138

of material coordinates are those used in the base of the reference element139

(for further details, see for instance <30; 50>). The normal vector of the140

tangent plane is obtained by taking ~g3 = ~g1∧~g2. The norm of ~g3 is arbitrarily141

set at 1 (see �g. 1).142

The contravariant components σij of the Cauchy stress tensor σ are de-143

�ned at each Gauss Point M in the current con�guration using these covari-144

ant base vectors according to:145

σ = σij~gi ⊗ ~gj (2)

The Almansi strain tensor can also be de�ned in the contravariant current146

base vector taking:147

ε = εij~g
i ⊗ ~g j (3)

2.1. Evaluation of the membrane states148

In the literature, to denote the various states of the membrane (taut,149

slacked and wrinkled), three criteria based on the signs of the components150

σI and σII of the principal stresses and/or the principal strains εI and εII are151

now widely used (see table 1).152

According to Liu et al. <21>, the stress criterion underestimates the state153

of "slackness" and the strain criterion underestimates the state of "tautness"154

of the membrane. Several authors <20; 51> have suggested that the mixed155

criterion seems to be the most useful means of di�erentiating between these156
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Membrane states Stress criterion Strain criterion Mixed criterion

Taut σII > 0 εII > 0 σII > 0

Wrinkled σII < 0 & σI > 0 εII < 0 & εI > 0 σII < 0 & εI > 0

Slacked σI < 0 εI < 0 εI < 0

Table 1: The three membrane states de�ned by the stress, strain and mixed criteria as a

function of the principal stresses and strains.

states. Wang et al. <6> recently presented a new means of modelling157

these three states, taking the previous state obtained in the membrane and158

a combination between the stress criterion and the strain criterion. This159

new approach seems to be as e�ective as the mixed criterion but it requires160

the use of the Poisson's ratio, which restricts its use to material with linear161

elastic behaviour. In view of this constraint, the mixed criterion was adopted162

in the PS−DPS model. From a numerical point of view, a �rst computation163

without taking into account the wrinkles is carried out to determine these164

zones.165

2.2. Principles underlying the PS−DPS model166

As mentioned above in the Introduction, there are several ways of ap-167

proaching wrinkles numerically. In the PS−DPS model, the aim is not to168

model the shape of the wrinkles, but to predict the consequences of the169

presence of wrinkles on the mechanical equilibrium of the membrane. From170

the practical point of view, the PS−DPS is intended to apply to a wrinkled171

structure, regarded as a unwrinkled planar membrane. The out-of-plane172

displacement caused by compressive stresses is simply approached like an173

in-plane contraction, as shown in �g. 1.174

The PS−DPS model is based on two numerical assumptions. First, in175
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Figure 1: Diagram of the position and stress state of a Gauss point M in the membrane

plane formed by (~g1, ~g2) in the Cartesian coordinate system ~ei. a) Real membrane stress

with wrinkles. b) Accounting for the behaviour of wrinkles with the PS−DPS model.

the case of any 3D behavioural law, a Newton-Raphson technique is used176

to impose a "Plane Stress" (PS) state on the membrane structures. In the177

second step, the assumptions of the TF theory, which we refer to here as the178

"Double Plane Stress" (DPS), are applied to the wrinkled part in a state of179

uniaxial tension on the plane of the membrane.180

2.3. Membrane behaviour without any wrinkles: the PS state181

During the equilibrium incremental, we assume that we have reached the182

end of an increment of time t+∆t, in which the kinematic displacements are183
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known, i.e. the 3D deformation state ε(t+∆t), the increment of deformation184

∆t+∆t
t ε between t and t+∆t, the strain rate tensorD(t+∆t) and the 3D stress185

state σ(t+∆t) are all known.186

The �rst step in this approach consists in �nding a PS state such that187

σ3i = 0 as a function of the unknowns ε3i, where i = 1 . . . 3, at each Gauss188

point M . In this case, as ~g3 is assumed to be a principal direction (i.e. an189

eigenvector for stress and strain tensors) and ε31 = ε32 = 0, the sole condition190

which has to be found is:191

σ33(ε33) = 0 (4)

To obtain this no stress compression state σ33(ε33) = 0, which is denoted192

σ(int), a scheme based on a three steps Newton-Raphson algorithm is used193

(see also the �rst algorithm scheme of the PS state in �g. 2):194

1. The initial value of the strain tensor is such that εγη(t+∆t)
where γ, η =195

1, 2 is due to the kinematic displacement of the membrane at the point196

M , taking: ε31 = ε32 = 0. These values will stay constant during the197

Newton loops during the n iterations. The unknown ε33 is initialized198

at the beginning of the initial step n=1, by: ε(n=1)
33(t+∆t)

= ε33(t)
199

2. Do while ‖ σ33
(int) ‖< e1 where e1 is a given level of precision (in the200

loop on n):201

(a) evaluate σij(n) and
∂σij(n)

∂εkl
from the 3D behaviour202

(b) calculate δε33 = −
[
∂σ33(n)

∂ε33

]−1

σ33(n), resulting from the applica-203

tion of the condition eq. (4)204

(c) then ε33(n+1) = δε33 + ε33(n) and increment n as: n = n+ 1205

(d) update the membrane thickness.206
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At the end of this �rst intermediate state "int", after convergence, the207

data obtained are:208

� the 3D stress tensor σ(int) that satis�es the �rst PS condition,209

� the new thickness deformation ε33(t+∆t)
and the associated new210

thickness h(t+∆t) of the membrane.211

3. In the case of an implicit scheme, the tangent matrix of the behavioural212

law is also calculated:

[
∂σαβ

∂εγη

]
where α, β, γ, η = 1, 2 which includes213

the PS condition. Details of the calculation of the tangent matrix in214

the PS condition are given in appendix A.215

Thanks to this process, the plane stress state can be applied to any type of216

mechanical behavior.217
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Equilibrium iteration
t + ¢t

From the 3D behavior law :
fi The kinematic ("(t +¢t ),¢t

t+¢t and D(t +¢t )
fi Data from the previous step are known

PLANE STRESS (PS)
by a Newton-Raphson algorithm

æ3i = 0 with i= 1,2,3
æ33("33) = 0 (4)

Calculation of æij(n) and @æij(n)

@"kl

Calculation and update of the thickness

PS condition
“ æ33

(i nt ) “< e1 ?

n=n+1

fi 3D stress tensor æ(i nt ) that satisfied the PS condition
fi Thickness strain : "33(t+¢t)

fi Thickness : h(t+¢t)

3D material model

elastic, elastoplastic
...

t + ¢t

2D behavior

Final state for

PS model (int)

PS

Figure 2: First algorithm used to de�ne the PS state at a Gauss point on the membrane.
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At the end of this state "int", the wrinkling areas are located in the218

membrane using the mixed criterion (see table 1). A new double plane stress219

(DPS) is then built into these wrinkles areas in order to release the compres-220

sion by using a new Newton-Raphson algorithm (which will be discussed in221

the next section). The global equilibrium of the membrane is then updated222

with this new behaviour, which yields a new �nal stress σ(end) and strain223

tensors ε(end) that can be used in the next equilibrium iteration. In the ten-224

sile areas of the structure, the local state of the membrane satis�es the PS225

condition.226

To de�ne these wrinkled zones, eigenvalues of tensors σ(int) and ε(int) are227

calculated based on the notations σ(int)I
, σ(int)II

which are the major and228

minor principal stresses, and ε(int)I
, ε(int)II

which are the major and minor229

principal strains, respectively.230

According to the mixed criterion (see section 2.1), the membrane could231

be in one of the following three states:232

1. σ(int)II
> 0: the membrane is in a state of tension in all the directions233

on its median plane,234

2. ε(int)I
< 0: the membrane lacks of tension in all the directions on its235

median plane,236

3. σ(int)II
< 0: there are wrinkles in the direction of the eigenvector ~V2237

associated with σ(int)II
.238

2.4. Membrane with wrinkles: the PS−DPS Wrinkles Model239

After determining the presence of wrinkles in the structure with the mixed240

criterion and the orientation of these wrinkles, the new stress and strain241

�elds obtained with the DPS condition are determined using a new Newton-242
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Raphson algorithm. This DPS condition consists in imposing a new plane243

stress state in the direction of the wrinkles.244

Take the eigenvector frame ~Vα with α = 1, 2, where ~V1 is the direction of245

the tension and ~V2 the transverse direction of the wrinkles. ~V3 is identical to246

~g3 and gives a complete 3D eigenvector frame. In this frame, the presence of247

wrinkles must lead to σ22 = 0 and the PS model implies that: σ33 = 0. So248

the local behaviour is like a DPS constrain and the local stress state has to249

be studied again with the new conditions:250

σαα
(
ε11, ε22(mec)

)
= 0 (5)

where α = 2, 3 and a new unknown ε22(mec)
is introduced to denote the251

transverse mechanical strain, which di�ers from the kinematic deformation252

of the membrane ε22(kin)
.253

A Newton-Raphson scheme for the DPS state is therefore written in the254

frame ~Vi according to the following algorithm (see also this algorithm in255

�g. 3):256

1. Initialization of the strain tensor component: ε11(t+∆t)
with the kine-257

matic displacement of the membrane at the point M, taking ε12 =258

ε31 = ε32 = 0. These values will stay constant during the New-259

ton loops on the n iterations. The unknowns are initialized by:260 〈
ε22(t+∆t)

, ε33(t+∆t)

〉(n=1)

=
〈
ε22(t)

, ε33(t)

〉
for n = 1.261

2. Do while ‖
〈
σ22

(int), σ
33
(int)

〉
‖< e2 where e2 is a given precision (loop on262

n):263

(a) evaluate σij(n) and
∂σij(n)

∂εkl
from the 3D behaviour264

(b) calculate 〈δεff〉 = −
[
∂σee(n)

∂εff

]−1

σee(n) with e, f =2 and 3, be-265

cause of the double conditions of eq. (5)266
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Equilibrium iteration
t + ¢t

From the 3D behavior law :
fi The kinematic ("(t +¢t ),¢t

t+¢t and D(t +¢t )
fi Data from the previous step are known

PLANE STRESS (PS)
imposed by a Newton-Raphson algorithm

Determine new stress and strain fields
with PS condition :
æ3i = 0 with i= 1,2,3

æ33("33) = 0 (4)

Calculation of æij(n) and @æij(n)

@"kl

Calculation and update of the thickness
PS condition
“æ33

(i nt ) “< e1 ?

æ(i nt )II < æIImi n ? No trigger of the
wrinkles criterion

Mixed criterion

Taut state :
Same 3D stress

tensor and thickness
than PS condition

Wrinkled state :
Determine wrinkling

direction

Slack state :
Contribution to

equilibrium is zero

æij(n) = 0 ; @æij(n)

@"kl
= 0

DOUBLE PLANE STRESS (DPS)
imposed by a Newton-Raphson algorithm

Determine new stress and strain fields
with DPS condition :

æÆÆ("11,"mec22 ) = 0 (5) ; Æ = 2,3

Calculation of æij(n) and @æij(n)

@"kl

Calculation and update of
the thickness strain and width strain

DPS condition
“ hæ22

(i nt ),æ
33
(i nt )i “< e2 ?

fi 3D stress tensor that satisfied the DPS condition : æ(end) =æª(t+¢t)

fi Thickness strain : "33(t+¢t)
fi Width strain : "22(mec) (t+¢t) 6= "22(kin) (t+¢t) fi "22(mec) (t+¢t) = "22(t+¢t)
fi Thickness : h(t+¢t)

æ(i nt )II > 0 "(i nt )I < 0
æ(i nt )II < 0 & "(i nt )I > 0

n=n+1

n=n+1

3D material model
elastic, elastoplastic

...

t + ¢t

2D behavior

Wrinkle

1D behavior

Final state

2xPS¥DPSPS

Figure 3: Total algorithm used to model the PS−DPS state with any type of 3D mechanical

behaviour.
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(c) then take εff(n+1) = δεff + εff(n) and increment n as: n = n+ 1,267

with f =2 and 3268

(d) update the membrane thickness.269

At the end of the process, after convergence has been reached, which270

is denoted σ(end), the following data are obtained:271

� the 3D stress tensor σ(end) that satis�es the DPS condition (i.e.272

only one value di�ers from zero: σ11
(end)).273

� the new thickness strain ε33(t+∆t)
and the new thickness h(t+∆t) of274

the membrane, the transverse mechanical strain ε22(t+∆t)
which is275

noted ε22(mec)
. The di�erence between the strain ε22(kin)

due to the276

kinematic e�ects and the new ε22(mec)
is the presence of wrinkles.277

3. as with the PS Newton scheme, in the case of an implicit scheme, the278

tangent behavioural matrix is also calculated based on:
∂σ11

∂ε11

which279

includes the DPS condition. Details of the calculation of the tangent280

matrix of the DPS condition are given in appendix B.281

The shape of the wrinkle is not simulated in the PS−DPS model, i.e. the282

membrane remains locally plane. The aim of this approach is simply to obtain283

the e�ects of the wrinkles. In this context, the kinematic deformation ε22(kin)
284

is the global deformation due to the undulation of the wrinkled membrane,285

and the mechanical deformation ε22(mec)
is the local behaviour of the material286

due to a single tension. ε22(kin)
could be much higher than ε22(mec)

and does287

not depend directly on the behaviour of the material, but mainly on the288

intensity of the undulation of the wrinkles, which is responsible of the global289

equilibrium.290
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Comment 1. Let us consider a length l of a membrane strip with a thickness291

h0 and assume that a uniform simple tensile stress is applied along ~g2 as292

described in �g. 1. This stress makes it possible to obtain a unidirectional293

tensile state. In this case, wrinkles may appear in the direction ~g1 on the294

membrane. If no condition is imposed in the direction ~g1, the mechanical bal-295

ance of the wrinkled membrane will be identical to that of the non-wrinkled296

structure, and it is possible to have the following cases:297

� If the structure remains �at (no wrinkles), the new thickness and the298

width of the membrane will be those corresponding to the initial di-299

mensions modi�ed by the strains required to obtain zero transverse300

stresses.301

� If the structure undulates, the width in the absence of any particular302

conditions along ~g1 can be arbitrary. In this case, the calculation of the303

tensile force required to achieve the balance of the structure creates an304

issue since the cross section (the thickness and width) can be arbitrary.305

In this context, two types of thickness have to be considered:306

1. The physical thickness h(mec) of the undulating membrane. This thick-307

ness will decrease with the tensile stress. In this paper, this thickness308

is also called the mechanical thickness.309

2. The geometric thickness h(kin), which is associated with the geometric310

width of the corrugated strip l(kin) must yield a correct tensile force.311

The length of the strip l is identical whether the membrane is wrinkled or312

not. On the other hand, the section of the non-wrinkled membrane given by313

the dimensions h(mec)× l(mec) must be identical to the section of the wrinkled314
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membrane h(kin) × l(kin). To obtain an identical volume, it is necessary to315

assume that:316

h(kin) =
h(mec) × l(mec)

l(kin)

(6)

The geometric thickness will therefore tend to increase when wrinkles are317

present. This �nding is described in the numerical shear test presented in318

section 4.1.319

Comment 2. The given precisions e1 and e2 may be di�erent. In sections 4320

and 5, for example, the values of these parameters are e1 = e2 = 1.10−3.321

Comment 3. In principle, the PS−DPS model rules out the possibility of322

compressive stresses in the structure. In reality, in�nitely small compression323

forces can accumulate in �exible structures, such as the plastic �lms used324

to make balloons. This admissible compression in the structure depends on325

many parameters such as the nature of the material used and its thickness.326

It can be observed with numerical simulations using shell elements as in the327

validation example tested in section 4.1. In the PS−DPS model, it is also328

possible to leave some compression in the structure by using a parameter329

named: σIImin
(see item item 3 of the algorithm in section 2.3). During a330

calculation, if the value of σ(int)II
is less than σIImin

then the mixed criterion331

is activated and all compressive stresses are eliminated. In the numerical332

examples presented in section 4.1, the value of the admissible compression is333

taken to be a very small value of σIImin
= −1.10−15.334

Comment 4. In section 4, several numerical benchmarks will be simulated.335

The PS model presented in section 2.3 will also be compared with the336

PS−DPS model for analysing the e�ects of wrinkles on the local and global337

equilibrium.338
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3. The Dynamic Relaxation method339

The complexity of the numerical modelling of stratospheric balloons is340

due in particular to the lack of �exural rigidity of the membranes and the341

occurrence of wrinkles on their surface. During an equilibrium search with342

a Newton-Raphson type algorithm, a singular sti�ness matrix was obtained.343

Various methods such as the use of a numerical viscosity as in the Abaqus344

software <49>, for example, have been conventionally used to remove this345

singularity. With an implicit approach, it is di�cult to accurately model346

the deployment phases which occur while the structures are being in�ated;347

whereas explicit methods are more suitable for dealing with these phases348

involving large displacements. On the other hand, these explicit methods349

require a large number of computational steps and the �nal static balancing350

of the structure is often very time consuming. For this reason, the Dynamic351

Relaxation (DR) method has proven to be useful. This method has the ad-352

vantages of the explicit approach while minimizing the computational times353

involved. This method, which has also been called pseudo-Dynamic method354

<44; 45; 52>, has been used by several authors for the simulations of pres-355

surized balloons <40; 53�56> and wrinkling problems <11; 15>.356

In line with our previous studies <52; 57; 58>, an original DR method was357

used here to deal with in�atable structure shape search problems. The main358

idea underlying the classical DR methods is that a static solution corresponds359

to the limit case of a damped dynamic system. Starting with the fundamental360

dynamic equation (eq. (7)), since the mass matrix intervenes only during the361

transient phase, the idea is to replace its real value by a �ctitious value362

[M ′], which is optimized with respect to the Courant-Friedrichs-Lewy (CFL)363

stability condition <59>.364

[M ′]
..

{X ′}+ [C ′]
.

{X ′}+R
(
X,

.

X
)

= 0 (7)
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where
..

{X ′},
.

{X ′} and {X} are the acceleration vector, the velocity and the365

position of nodes, respectively. [C ′] is the �ctitious viscous damping matrix366

and R
(
X,

.

X
)
stands for the residual internal and external forces.

..

{X ′} and367

.

{X ′} are regarded �ctitious because these terms do not correspond to the368

real acceleration and the real velocity of the structure.369

At convergence, the nodes tend to oscillate around the equilibrium posi-370

tion. The introduction of a damping term thus make it possible to approach371

the state of static equilibrium. The kinetic or viscous damping have been372

classically used for this purpose. These two types of damping stabilize the373

structure in very di�erent ways <58>. In the present study, the kinetic374

damping method of stabilization, proposed by <44>, with which the overall375

balance of the structure can be obtained very quickly, was used.376

In the case of the kinetic damping, an "undamped" movement is taken377

to occur with [C ′] = 0 and the kinetic energy given in eq. (8) is used:378

[M ′]
..

{X ′}+R(X,
.

X) = 0 (8)

where the term [M ′]
..

{X ′} is the generalized expression for the acceleration379

forces.380

In the case of a conservative system, the kinetic energy reaches a maxi-381

mum when the potential energy reaches a minimum. However, a minimum382

potential energy de�nes a state closely resembling the state of equilibrium.383

At each peak in the kinetic energy, the velocities are reset at zero and the384

computation is relaunched starting at the current position. This process,385

which consists in freezing the geometrical state of each peak in the kinetic386

energy, tends to dampen the oscillations. The addition of an arti�cial damp-387

ing parameter leads the structure to gradually adopt a statically balanced388

form. The condition for stopping the calculation is de�ned by a �xed param-389

eter, named εDR, which corresponds to the equilibrium state of the structure.390
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This parameter is calculated using the relation:391

max

(
‖ Residual static ‖∞
‖ Reactions ‖∞

,
Kinetic energy
Internal energy

)
6 εDR (9)

Comment. In section 4, the precision is set at εDR = 1.10−4 which makes it392

possible to make novel comparisons with data in the literature. In section 5, a393

numerical test on the in�ation of a stratospheric balloon is performed with the394

PS−DPS model and a non-linear behavioural law. In this case, the precision395

is set at εDR = 5.10−3. This value is currently used by the CNES in all their396

balloon simulations because it gives precise local and global equilibria.397

To solve the time problem, the method used here is based on the explicit398

Centered Finite Di�erences (CFD) method. The �ow of the process is con-399

trolled by a �ctitious time with an increment which is arbitrarily set at 1.400

The �ctitious mass matrix is sized so as to satisfythe stability condition of401

eq. (10) more closely. For this purpose, a mass matrix calculated from the ef-402

fective sti�ness matrix is used, based on the Gershgorin theorem <45>. The403

mass matrix is updated only at speci�c times: at the start of the calculation404

and possibly after a damping step, which limits the time required to perform405

the computation. The mass matrix is calculated here only at the beginning406

of the simulation, taking:407

mi =
λ∆t′2

2
Si → Si =

∑
j

| Kij | (10)

where mi is the mass at node i, ∆t′ is the �ctitious time, Si is calculated408

from the matrix Kij which is the local sti�ness matrix of each elements. Si409

is calculated by taking the maximum value of the sum of the absolute values410

of the sti�ness along the three axes of the Cartesian coordinate system. This411

maximum is applied in all the three directions. An increase occurs in the412

three eigenvalues obtained via the Gershgorin theorem applied locally to413
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each matrix <45>. λ is an adjustable parameter used to compensate for414

the instability of the schema resulting, for example, to the approximation of415

Gershgorin's theorem.416

4. Numerical experiments417

To investigate the performances of the present wrinkling model, several418

numerical benchmarks are modelled here and compared with data presented419

in literature.420

First, by reproducing shear and torsion tests, structures subjected to in-421

plane loading are studied. The deployment of a square cushion is then carried422

out in order to test the validity of the model on a structure resembling that of423

stratospheric balloons. These complementary tests have been frequently used424

in previous studies on wrinkling models. In some cases, the membrane shifts425

locally from a wrinkled to a taut state (in torsion and cushion tests). In other426

cases, the membrane is completely wrinkled (either in one direction or in all427

directions), as in shear tests. In shear and torsion tests, an isotropic elastic428

law is used, and these tests are carried out under small strains, as performed429

in literature. In the case of the in�ation of a square cushion, �nite strains430

and elastic behaviour are �rst tested, but a hyperelastic model is then used to431

analyse the responses of the PS−DPS model with this non-linear behaviour.432

4.1. Rectangular membrane under shear loading433

A two-dimensional rectangular membrane under shear loading was �rst434

tested. This test has been widely used in the literature <3; 4; 6; 17; 60�62>.435

The solutions obtained with the PS and PS−DPS models were compared436

with numerical and experimental results previously obtained with an elastic437

law.438
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The geometry, loading conditions and material parameters used in this439

shear test are presented in �g. 4. A 0.025 mm thick 2D rectangular mem-440

brane (the plane of the membrane) measuring 380 mm x 128 mm in the XY441

plane was �xed at the lower edge, while the upper edge could move only in442

the horizontal direction. The geometry was meshed with 300 linear triangu-443

lar membrane elements. These elements include one Gauss point and �nite444

transformations (i.e. large displacements and deformations) were taken into445

account. The parameters λ used in the DR method were set at 2.446

Figure 4: Membrane properties and kinematic boundary conditions in shear test with 300

linear triangular membrane elements performed with the PS and the PS−DPS models.

The �at membrane was loaded with a prestress with a magnitude of 1.5447

N/mm2 in the Y−direction to introduce an initial sti�ness. The prestress448

was then held constant while the upper edge was gradually moved in the449

horizontal direction until this movement had covered a distance of +3 mm450

(see �g. 4).451

In order to compare our results with data in the literature, this test was452

also simulated with shell elements in Abaqus <49> using the same method453

presented by Wong and Pellegrino in <3>. In this case, this simulation was454
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performed by taking 3960 S4R5 shell elements. As with membrane elements455

in Herezh++, a 1.5 N/mm2 prestress was prescribed on the upper side of456

the rectangular membrane in order to induce an initial sti�ness. After cal-457

culating the �rst buckling modes, the out-of-plane displacements caused by458

these modes were imposed like imperfections in addition to the boundary459

conditions of displacement of 3 mm in the X−direction. If the shell mesh is460

su�ciently �ne, this method gives the shape of the wrinkles and eliminates461

the compression stresses due to the wrinkles.462

The shear forces applied to the membrane using the PS, PS−DPS and463

shell models are presented and compared in �g. 5a as a function of the shear464

displacement.
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Figure 5: (a) Comparison of shear force/displacement relationships obtained using the

shell model, the classical PS membrane model and the PS−DPS wrinkle model. (b) Zoom

of the beginning of the shear force/displacement relationship showing the in�uence of the

compressive stress σIImin
(indicated in brackets) used in the PS−DPS model.

465

The initial in-plane shear sti�ness of the shell model is approximately466

equal to 101 N/mm, which corresponds to the value given by Wong and467

Pellegrino. This sti�ness obtained with the shell model decreases quickly468

at a value of 55 N/mm, showing a similar trend to that observed with the469
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PS−DPS model. This loss of sti�ness is due to the development of wrin-470

kles on the structure <3>. The PS membrane model does not account for471

the softening associated with the formation of wrinkles. Contrary to what472

occurs with the shell model, the relationship between force and displace-473

ment remains linear with the PS−DPS model, with which no compression474

by default can be included in its formulation. However, as explained in the475

Comment 3 in section 2.4, it is possible in the PS−DPS model to control the476

compressive stress state with the parameter σIImin
. Figure 5b shows the in�u-477

ence of the compressive stress parameter σIImin
on the initial sti�ness at the478

beginning of the shear-displacement curve. By default, this value was set at479

−1.10−15 MPa and in this case, during the initiation of buckling, the sti�ness480

remains linear, contrary to what is predicted by the shell model. When this481

compression stress value is increased to almost 2 MPa, the PS−DPS model482

is then re�ect the initial decrease in the sti�ness, as observed with the shell483

model used by Wong and Pellegrino.484

The principal stresses σI and σII across the middle of the membrane (see485

cross section A-A in �g. 4) are plotted in �g. 6a. This distribution of the prin-486

cipal stresses is compared with that obtained with the Abaqus shell model487

using 3960 S4R5 elements, the membrane model proposed by Deng and Pele-488

grino <38> and the PS−DPS model. The PS−DPS model gives results489

which are consistent with the Abaqus shell solution and the membrane wrin-490

kling model previously studied in the literature. The minor principal stress491

σII is null in all these cases.492

According to Deng and Pellegrino <38>, the orientation of wrinkles is493

equal to 45◦ at the centre of the membrane. The major principal strain εI494

and the major principal stress σI are exerted in the same direction as the495
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Figure 6: (a) Distribution of the principal stresses σI and σII along the middle of the

membrane for the Abaqus shell model, the membrane model presented in <38> and the

PS−DPS model. (b) Comparison of these stresses between our PS membrane model and

the PS−DPS model.

wrinkles. The following equations can be used to determine σI in this region:496

εI =
λ

2
and σI = E × εI (11)

where λ = δ
H

is the elongation along X, δ is the horizontal displacement497

imposed, H is the height of the membrane (see �g. 4) and E is the Young's498

modulus.499

Based on these equations, Wong and Pellegrino <63> have established500

that this major principal stress, is equal to 41.37 MPa. With the PS−DPS501

model, a value of 41.79 MPa is obtained, amounting to a di�erence of 1%.502

Figure 6b gives the major and minor principal stresses obtained with the PS503

and PS−DPS models in order to show the impact of the wrinkles on the local504

equilibrium of the structure. With the PS model, the major principal stress505

σI is lower than in the PS−DPS model, giving a di�erence of 20.7% and a506

minor principal stress of σII ≈ −30 MPa is obtained. This value of σII was507

also obtained by Jarasjarungkiat et al. <19> with a classical PS membrane508

model.509
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As described in section 2.4, the PS−DPS model makes it possible to510

account for the wrinkles in a membrane structure without modelling the511

out-of-plane displacement. The mechanical strain that the structure actually512

undergoes is di�erent from the geometric strain caused by the wrinkles. As513

mentioned above, the geometrical thickness h(kin) is due to the presence of514

wrinkles and the mechanical thickness h(mec) is equivalent to the physical515

thickness. The mechanical and the geometrical thicknesses obtained along516

the section of the membrane at the end of the shear test are compared in517

�g. 7.
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Figure 7: Distribution of the geometrical thickness h(kin) and the mechanical thickness

h(mec) along the middle of the membrane in the case of the PS−DPS model.

518

The geometrical thickness h(kin) increases in the wrinkled area due to the519

out-of-plane movement caused by the formation of the wrinkles, whereas the520

mechanical thickness is negative because the membrane is in a uniaxial tensile521

state. The distribution of geometric thickness consists of two high peaks522

(h(kin) ≈ 25.3 µm) located near the free edges on both sides of the membrane.523

The geometrical thickness decreases in the middle of the membrane, but it524

is still greater than the initial thickness (h(kin) ≈ 25.1 µm). Similar results525

were obtained experimentally by Wong et al. <62> in a study in which they526

subjected a rectangular membrane to a state of simple shear. These authors527
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reported that the out-of-plane de�ection was greater near to the free edges528

on both sides of the membrane. In the middle, the out-of-plane displacement529

decreased and the region was characterised by fairly uniform wrinkles.530

To conclude this part, although the PS−DPS model is not suitable for531

modelling the shape of wrinkles, the geometrical thickness is a good indica-532

tion to the wrinkling pattern in the membrane. This shear test was the �rst533

step in the validation of the PS−DPS wrinkle model. The torsion test which534

will now be described was performed in order to analyse the response of the535

PS−DPS model under these new loading conditions with an elastic law.536

4.2. Torsion test on an annular membrane537

In this numerical test, an annular membrane is attached to a rigid hub538

along the inner edge and to a guard ring along the outer edge as shown in539

�g. 8. The rotation of the rigid disc causes wrinkling of the membrane <12>.540

Two tests, classically used in the literature, are simulated: the �rst is a torsion541

test without any initial prestress <4; 19> and an initial prestress is added in542

the second test <7; 27>. In both cases, an analytical solution is presented543

in <64> and theses solutions are also obtained with a Python script. In the544

case of the prestress torsion test, the membrane shifts locally from a one-545

directional wrinkled state to a stretched state (devoid of wrinkles). The aim546

of this prestress torsion test is to determine the robustness of the PS−DPS547

model when moving from one state to another. The value of parameter λ548

adopted in the DR method was set at 4 in all these torsion tests.549

4.2.1. Torsion without any prestress550

In this test, all translations of the outer nodes are fully constrained and551

the inner rigid disk is rotated clockwise by the angle θ (see �g. 8). The mesh is552

composed of 180 quadrangular membrane elements with linear interpolation.553
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Figure 8: Geometry, physical properties and load at the inner edge of the annular mem-

brane.

These elements include four Gauss points and involve �nite transformations554

(i.e. large displacements and deformations). The dimensions and loading555

conditions of the membrane studied here are given in �g. 8 as well as the556

properties of the linear elastic law used.557

In the studies by Jarasjarungkiat et al. <4; 19>, the angle θ imposed558

on the inner rigid disk is 10◦. However, with this angle, the strain values559

obtained are signi�cantly greater than 10% which results relatively large560

strains. As explained above in the Introduction, the PS−DPS model involves561

the Almansi strain measure whereas in literature, the Green strain measure562

has been generally used so far with wrinkle models. As shown in �g. 9, the563

directions of the major principal stresses are nevertheless compatible with564

those reported in <12; 65> with an angle of 10◦. In order to compare the565

numerical results obtained with the PS−DPS model and data presented in566

previous numerical studies, an analytical solution given by Mikulas <64>567
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in the case of small deformations was used with an angle of 0.728◦, which568

corresponds to a moment equal to 105N.m. This small angle makes it possible569

to compare data obtained in the case of small rotations with strain �elds of570

less than 10%.571

Figure 9: Deformed mesh with representation of the principal stress vectors involving an

angle θ = 10◦ in the case of a linear elastic material.

In this case, wrinkling occurs over the entire membrane as soon as an572

angle is applied to the hub. Based on equations given in <64>, it is possible573

to compute the stress state in the membrane in two steps.574

The �rst step consists in determining the value of the constant C2 which575

satis�es the boundary conditions on the edges of the membrane, according576

to the following equation:577

1

4π2t2C2
2a2

M2
− 1

+ log

(
4π2t2C2

2a2

M2
− 1

)
− 1

4π2t2C2
2b2

M2
− 1

− log

(
4π2t2C2

2b2

M2
− 1

)
= 0

(12)

where a is the inner radius, b is the outer radius, t is the membrane thickness578

and M is the torque applied.579

When the constant C2 is known, the second step consists in calculating580
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the radial σr and tangential stresses σθ based on the following equations:581 
σr =

1

r

√
C2 −

M2

4π2t2r2

σθ =
M2

4π2t2r4

1

σr

(13)

where r is the radial position in the membrane.582

To determine the angle of the wrinkles α, as shown in �g. 10, the stress583

�eld can be written as follows:584 
α = arcsin

(
M

2πt
√
C2r

)
σI =

σr
cos2 α

=
σθ

sin2 α

(14)

This same problem has been solved using TF theory by Reissner <66>,585

who established that the tension lines start from the inner edge, and because586

of the symmetry, each of these lines forms along the inner edge the same587

angle with the radius from the origin (�g. 10).

Figure 10: Angles of wrinkles α as described in <64>.

588

One simulation was performed with the PS−DPS model with an angle589

θ equal to 0.728◦ and compared with this analytical solution, as shown in590

�g. 11. The results show the evolution of the major principal stress σI along591
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the radius of the structure. The PS−DPS model predicts the same evolution592

of the decrease of the principal stress along the radius as the analytical so-593

lution. The PS−DPS model can be used to simulate a completely wrinkled594

membrane state. The next test consists in adding an initial prestress to the595

torsion test.
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Figure 11: Comparison between the results obtained with the analytical model <64> and

the PS−DPS model on the evolution of the major principal stress σI with θ = 0.728◦ and

180 quadrangular membrane elements.

596

4.2.2. Torsion with prestress597

The rigid hub was then subjected to a torque loading M and rotated598

through an angle φ, and this membrane was subjected to a uniform prestress599

σ0. The geometric and elastic material parameters used in this test are600

presented in �g. 12a.601

When the torsion loading was applied by increasing the momentM , wrin-602

kles began to form around the hub up to some radius R, as explained for603

example by Akita et al. <27>. The two meshes, described in �g. 12b, with604

quadrangular membrane elements, with linear interpolation and four Gauss605
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(a) (b)

Figure 12: a) Dimensions and material properties in the annular membrane test under

torque applied to the inner edge with prestress σ0. b) Coarse (324 elements) and �ne

(1600 elements) meshes used to simulate this test.

points, are tested in order to determine the in�uence of the �nite element606

size. The coarse mesh was composed here of 324 elements and the �ne mesh,607

of 1600 elements.608

The analytical solution of this problem presented in <64; 67> has been609

used by several authors <27; 68>. In this analytical solution, the relation610

between the wrinkle radius R and the moment M is given by the following611

equations. The quadratic eq. (15) has to be solved to determine the constant612

C1. This constant C1 can be used to calculate C2 with eq. (16). Lastly, we613

checked the values of this constant with eq. (17).614

C1
2 −

[
1 + 2C1

(
a

b

2
)]2

R
4

+M
2

= 0 (15)

C2 = (R + [
1

R
+ 2R

a

b

2

)]C1)2 + (
M

R
)2 (16)

1

A
+

1

B
− ln(

B

A
)− 2

3
= 0 (17)
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where M =
M

2Πσ0 t a2
; A =

C2

M
2 − 1 ; B = R

2 C2

M
2 − 1 in which R =

R

a
,615

R being the radial extent of the wrinkled region, C1 and C2 are constants616

which can be used to calculate the stress �eld, t is the thickness of the �lm617

and a and b are the inner and outer radii, respectively.618

The relation between the moment M and the twist angle φ is given by:619

φ =
3M

8(1− a2

b2
)

[
1

R
2 − 1

B
+ ln

(
B

A

)
+

1

R
2 −

8

3

(
a2

b2

)
+

5

3

]
(18)

where:620

φ =
4φσ0

(
1− a2

b2

)
3E

(19)

In the simulation, the angle φ determined by eq. (19) is imposed on the621

inner radius a.622

The moment applied causes the occurence of wrinkles on a certain radius623

denoted R. Contrary to the torsion test without any prestress presented in624

section 4.2.1, the structure falls into two areas. With values of R =1.2, 1.4625

and 1.6, the membrane is in a wrinkled state in one direction and beyond626

these values, the membrane is stretched. Comparisons are made here only627

with these values of R.628

After solving the previous equations, the ratios σI

σ0
and σII

σ0
between the629

principal stresses and the prestress (with σI > σII) are given in the wrinkled630

zone r < R according to the following relations:631 
σI

σ0

=
C2

r√
C2 − M

2

r2

σII

σ0

= 0

(20)

where r = r
a
.632
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These ratios are obtained in the wrinkle-free zone (r ≥ R), where:633 
σI

σ0

= 2C1
a2

b2
+ 1 +

√
C2

1 +M
2

r2

σII

σ0

= 2C1
a2

b2
+ 1−

√
C2

1 +M
2

r2

(21)

Figs. 13a to 14b give the ratios σI

σ0
and σII

σ0
as a function of r = r

a
,634

respectively, with various torques values in the case of coarse and �ne meshes.635
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Figure 13: Comparison between the analytical solution and the results obtained with

the PS−DPS model for σI

σ0
, depending of the radial position r

a . (a) Coarse mesh (324

elements). (b) Fine mesh (1600 elements).

636

The switch between the wrinkled area and the stretched area is shown637

in �g. 14. The ratio σII

σ0
is equal to zero when the structure is wrinkled,638

but increases along the radius in the stretched area. Figure 13 shows that639

the evolution of σI

σ0
is accurately predicted by the PS−DPS model with both640

coarse and �ne meshes. However, in the case of the evolution of σII

σ0
, the641

solution obtained with the �ne mesh resembles the analytical solution slighlty642

more closely than that obtained with the coarse mesh. In fact, the in�uence of643

the mesh is quite weak on the results of this test with the PS-DPS model. The644
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Figure 14: Comparison between the analytical solution and the results obtained with

the PS−DPS model for σII

σ0
, depending of the radial position r

a . (a) Coarse mesh (324

elements).(b) Fine mesh (1600 elements).

results here resemble the analytical solutions, even with a mesh composed of645

only a few elements, which is not the case with a shell mesh, as observed in646

the shear test presented in section 4.1.647

4.3. In�ation of a square cushion with an elastic law648

In this example, the e�ciency of the PS−DPS model is tested in the case649

of an in�atable structure. This test has been extensively studied with an elas-650

tic law in the literature <4; 19; 20; 35; 43>. It consists in gradually in�ating651

a �at square elastic isotropic membrane, increasing the constant pressure up652

to 5 kPa. The material properties and dimensions of the undeformed cushion653

are given in �g. 15.654

By applying appropriate boundary conditions in the horizontal mid-plane,655

it is only necessary to model one upper quarter of the cushion. This eighth656

of the square cushion was simulated with various mesh sizes. The initial657

discretization was 4×4 and re�ned as 5×5, 8×8 and 10×10 quadrangular658

elements with linear interpolation and 4 Gauss points, consecutively. Figs659
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Figure 15: Membrane geometry and material properties of the in�ated square cushion

test.

16a and 16b show the deformed mesh given by the PS−DPS and PS models,660

respectively (showing the symmetrical parts of the meshes). The parameter661

λ used in the DR method was set in this case at 1.5.

(a) (b)

Figure 16: Deformed shape of the in�ated square cushion testes at a pressure of 5 kPa with

a mesh consisting of 5×5 elements. (a) With the PS−DPS model showing the wrinkled

zones (in red). (b) With the PS model without taking the wrinkles into account.

662

Previous authors have compared four quantities: the distribution of the663

stresses along in the direction X, the major principal stress and the vertical664

displacement occurring in the centreM and the displacement in the direction665

Y at point B (see �g. 15). The results obtained with PS−DPS model were666
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compared with data previously published in the literature <4; 19; 20; 35; 43>667

and simulations performed using the "No compression" model implemented668

in Abaqus. This model approaches the elastic behaviour by �rst solving for669

the principal stresses assuming linear elasticity and then setting the appro-670

priate principal stress values to zero. The associated sti�ness matrix compo-671

nents were also set at zero. "No compression" model can be rather unstable,672

which explains why convergence problems are liable to occur.673

In �gs 17a and 17b, data obtained in previous studies and those obtained674

with the PS−DPS model are compared in terms of the displacement of points675

M and B. The results obtained with the PS−DPS model are almost identical676

to those obtained with the models presented in <4; 19; 20; 35; 43>. These677

�gures show that the shape of the cushion is accurately predicted at pointsM678

(in the stretched area) and B (in the wrinkled area) by the PS−DPS model.679

Note that the "No compression" Abaqus model gives strange displacements680

at point B in the wrinkled area, as previously reported by Contri and Schre-681

�er <35>. These models involve the used of a static implicit scheme to solve682

the wrinkling problem. An equilibrium position of the membrane is �rst de-683

termined with active compressive stresses and tensile stresses. If at least one684

such principal stress is found to be compressive in an element, a new stress685

state with only the tensile stresses active is obtained. These models do not686

seem to be as e�ective as the PS−DPS model.687

In �g. 18a, the major principal stress σI occuring at point M , depending688

of the mesh size used, is compared with results obtained in <19; 43>. The689

stress states predicted with the PS−DPS model show good agreement with690

these previous data. Figure 18b shows the evolution of the stresses σ11 and691

σ22 in the direction X in the cushion predicted by the PS−DPS model and692

the membrane model presented by Lee et al. <11>, in the only study in693

39



115

120

<43>

No compression - Abaqus

125

0 20 40 60 80 100

D
is
pl
ac
em

en
t
at

p
oi
nt

B
(m

m
)

<35>
No compression - Abaqus

<19>

Total number of elements (-)

<19>

80 100

C
en
te
r
di
sp
la
ce
m
en
t
(m

m
)

Total number of elements (-)

208

<35>

210

212

214

<20>

216

218

220

PS−DPS

222

0

<20>

20 40 60
95

100
<43>

105

110
PS−DPS

(a) (b)

Figure 17: Displacement at the centre (point M) (a) and point B (b) predicted with

various mesh sizes (4×4, 5×5, 8×8 and 10×10 elements) in comparison with data obtained

in <4; 19; 35; 43>, the "No compression" model and the PS−DPS model.

the literature to deal with this evolution. The results give a picture of the694

wrinkling behaviour and the tensile area in the cushion. σ22 is equal to zero695

and σ11 is almost equal to 1.5 MPa in the wrinkled area. In the taut area,696

the values of σ22 and σ11 both increase. The values of σ22 and σ11 are equal697

in the centre of the cushion (position ≈ 25 mm). The stress �eld predicted698

with the PS−DPS model is similar to that obtained in previous studies.699

This test �nishes the validation section of the PS−DPS model with a700

linear elastic law in comparison with literature cases. These previous tests701

showed the ability of the PS−DPS model to account for the formation of702

wrinkles in �exible structures. The tests described in the next section were703

performed on the PS−DPS model with a non linear law in order to determine704

the e�ects of the mechanical behaviour on the shape of the cushion and the705

local equilibrium.706

40



<11> σ22

<43> 0

0.5

<19>

PS-DPS σ11

1

1.5

PS-DPS σ22

2

2.5

3

3.5

4

0 50 100 150

<11> σ11

200 250 300

PS-DPS

350 400 450

St
re
ss
es

(M
P
a)

Position (mm)

P
ri
nc
ip
al
St
re
ss
σ

I
(M

P
a)

Number of elements (-)

3.2

3.4

3.6

3.8

4

4.2

No compression - Abaqus

4.4

0 20 40 60 80 100
-0.5

(a) (b)

Figure 18: (a) Major principal stress σI at point M with meshes consisting of 4×4, 5×5,

8×8 and 10×10 elements in comparison with data presented in previous studies <19;

43>, the "No compression" model and the PS−DPS model. (b) Comparison between the

stresses σ11 and σ22 occuring in the Xdirection of the cushion obtained in <11> and with

the PS−DPS model.

4.4. In�ation of a square cushion with a non-linear law707

Stratospheric balloons are made of very �ne plastic �lms showing complex708

mechanical behaviour. In order to approach this non linear behaviour, a709

simulation was performed on the in�ation of a square cushion using the710

PS−DPS model and the original hyperelastic law initially de�ned by Favier711

et al. <69>. This hyperelastic part was previously used in a study of Zrida712

et al. <70> to simulate the behaviour of polymers.713

The hyperelastic potentialW involved in this law was de�ned on the basis714

of four material parameters, using the invariants of the Almansi measure ε715

according to the relation:716

W =
K

6
ln2 (V ) +

Q2
0r

2µ0

ln

(
cosh

(
2µ0Qε

Q2
0r

))
+ µ∞Q

2
ε (22)

where in the case of a shear test, µ∞ denotes the �nal slope of the stress717

τ -strain γ curve, µ0 +µ∞ denotes the initial slope τ versus γ and Q0r stands718
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for the level of the �nal tangent to the curve (i.e. the intersection between719

the �nal tangent and the vertical stress axis) (for details of these material720

parameters, see �g. 19). K is the bulk modulus, on which the changes in721

volume mainly depend. V stands here for the relative changes in volume and722

Qε denotes the intensity of the deviatoric part of ε:723

Qε = (2ĪIε̄)
1/2 with ĪIε̄ =

1

2
trace (ε.ε)− (trace(ε))2

6
(23)

µr = µ0 + µ∞

γ

τ

µ∞
Q0r√

2

Figure 19: Material parameters involved in the hyperelastic law proposed by Favier et al.

<69; 70> during a pure shear test.

To determine the in�uence of this behavioural law, numerical comparisons724

were performed on the displacement of the cushion and its stress distribution725

in the case of both this non linear evolution and an equivalent elastic law.726

The stress-strain curves obtained with both of these two laws are presented727

in �g. 20 and compared with those obtained a uniaxial tensile test performed728

in <71> at a strain-rate of 3.6%/min on a �lm with the same thickness as729

that of which this cushion was made.730

The material parameters involved in these two laws are presented in ta-731

ble 2. Contrary to the test on a cushion described in section 4.3, a pressure732

of 2 kPa was applied here to a square cushion 2000 mm in length and 0.25733

mm thick. Due to the symmetry, only an eighth of the square was simulated.734
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These simulations were performed with a mesh consisting of 15×15 quadran-735

gular elements, using linear interpolation methods. The value of parameter736

λ involved in the DR method was set at 3.
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Figure 20: Comparison between the elastic and hyperelastic responses during a uniaxial

tensile test presented in <71>.

737

Elastic parameters Favier's Hyperelastic parameters

E (MPa) ν K (MPa) Qor (MPa) µr (MPa) µ∞ (MPa)

1375 0.4 3000 10.5 430 35

Table 2: Material parameters of the elastic and hyperelastic laws used to simulate the

in�ation of a cushion.

The global equilibria obtained with the two laws can be compared in738

Figure 21a. This �gure gives the vertical displacement of the symmetrical739

horizontal line of the cushion at the end of the in�ation. The shape of the740

cushion is almost identical with both the elastic and hyperelastic laws. The741

evolution of the major principal stress σI along the symmetrical horizontal742

line of the cushion is presented in �g. 21b. The non-linearity of the hyper-743

elastic law results in a di�erent pattern of stress distribution, especially in744

the centre of the cushion. However, it is worth noting that the location of745
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Figure 21: (a) Vertical displacement and (b) Evolution of the major principal stress σI

along the symmetrical horizontal line of the cushion with elastic and hyperelastic laws.

the wrinkles is independent of the constitutive law used. Their location is746

similar to that previously observed in �g. 16a.747

5. Application of the PS−DPS model: Zero Pressure Balloon in-748

�ation749

In this section, the in�ation of a Zero Pressure Balloon (ZPB) is simu-750

lated using the PS−DPS model both with an elastic law and with the same751

hyperelastic law as in the previous section.752

During stratospheric missions, the volume of these balloons depends on753

their altitude (see �g. 22.a). These variations are caused by changes of tem-754

perature and pressure inside the balloons. At the start of the take-o� and755

throughout these missions (see �g. 22.b), the wrinkles on the balloon con-756

tinue to evolve. Accounting numerically for wrinkles in these structures is757

particularly important because the gas pressure, which depends on the vol-758

ume of the balloon, a�ects the stress �eld. The DR method has often been759

used to simulate these in�ation and wrinkle processes <40; 53�56>.760

To test the validity the operation of the model and investigate the impact761
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Figure 22: (a) Evolution of the pressure and temperature during a �ight mission. (b)

Photo of a ZPB before take-o� <72>.

of wrinkles on a real structure, equilibrium con�gurations were calculated762

during all the phases of a ZPB �ight (during take-o� and �ight, depending763

on the altitude and the internal pressure) using both elastic and hyperelastic764

laws. The numerical conditions used in the simulations are presented in765

�g. 23 and table 3.766

The ZPB is composed of 74 gores, but only one gore of the balloon was767

simulated, and conditions of cyclic symmetry were imposed on the edges of768

the gore in order to account for this hypothesis. The gores, which are made769

of an LLDPE �lm, are assembled with polyester �ber reinforced tapes. In770

the case of these large-sized balloons, the main load to be simulated is the771

pressure gradient ∆p in the balloon, which re�ects the e�ects of the gas on the772

�lm. This gradient is calculated by subtracting the pressure in the balloon773

from the external pressure. It depends on the balloon's altitude z, which is774

an input parameter in the simulation and the thickness h of the �lm. The775

weight of the �lm and that of the tapes is accounted for in the simulations by776

a loading gravity condition. The mass of the pole piece (9.2 kg) is signi�cant777
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Figure 23: Mesh and loads applied during the ZPB simulations <73>.

Properties Film Tapes

Young's modulus (MPa) 1883 5986

Thickness h (µm) 25 -

Poisson's ratio 0.45 0.3

Density ρ (kg/m3) 913 830

(a) Film's and tapes' elastic properties

Favier's hyperelastic parameters of the �lm

K (MPa) Qor (MPa) µr (MPa) µ∞ (MPa)

1000 18.95 614.17 0.6

(b) Hyperelastic parameters used to model the �lm

Table 3: Material properties of the �lm and tapes.

since it a�ects the shape of the balloon, and it is therefore simulated here in778

terms of its weight in the form of vertical point forces applied to the nodes779

at the end of the gore. These various loads and the mesh used are presented780

46



in �g. 23. This mesh is composed of 120 quadrangular elements with linear781

interpolation, and 90 bar elements with linear interpolation stand for the782

assembly tapes. These tapes are located in the middle of the gore with an783

equivalent section of 9.586 mm2. The contact between �lm and tapes is784

assumed to be perfect.785

To simulate all the phases in the ZPB in�ation process, two stages are786

de�ned:787

1. The �rst stage consists in in�ating the gore by applying the hydrostatic788

pressure gradually until the maximum altitude of 32.5 km is reached.789

During this phase, the boundary conditions for the hook and pole are790

applied but not the conditions of cyclic symmetry. The parameter λ in791

the DR method is set at 0.6. To speed up the calculation time, only792

the PS model is used at the start of the calculation. At the end of this793

step, the PS−DPS model is activated.794

2. The second stage consists in applying the conditions of cyclic symme-795

try by means of linear boundary conditions. During this stage, the796

parameter λ is set at 2 and 12 with the elastic and hyperelastic law,797

respectively.798

Comment 1. The initial con�guration is the �at shape of the gore.799

Comment 2. The parameter λ involved in the DR method is greatly increased800

in the case of the hyperelastic model because the non-linear part gives rise801

to many kinetic peaks at the end of the simulation.802

Figure 24a shows the shape of the balloon with the PS and PS−DPS803

models in the case of elastic behaviour and with the PS−DPS model using804

the hyperelastic model. The overall shape of the gore di�ers slightly between805

the models tested because modelling a single gore of the balloon constrains806
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Figure 24: (a) Comparison on the ZPB shape between the PS and PS−DPS models,

depending on the behavioural laws used. (b) Comparison on the local stress equilibrium

in the ZPB between the elastic law [E] and the hyperelastic law [HE] with the PS−DPS

model.

the shape of the �nal gore, which results in a slight di�erence in the overall807

shape depending on the type of law used. The major and minor principal808

stresses σImax and σIImin in all the gores are presented in table 4. Contrary to809

the shape, the stress �eld di�ers considerably between the PS and PS−DPS810

models. During these simulations, the ZPB is not very heavily loaded me-811

chanically. However, contrary to results obtained with the PS−DPS model,812

stress patterns obtained with the PS model are greatly disturbed by the813

presence of wrinkles on the balloon, which shows that taking these wrinkles814

into account greatly a�ects the simulations. The distribution of the major815

and minor principal stresses along the middle of the gore with the PS−DPS816

model are presented in �g. 24b. The stress levels obtained with the elastic817
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and hyperelastic laws are very low in these cases. However, the top and818

bottom of the balloon are the places where the �lms are the most heavily819

loaded, and where the in�uence of the constitutive law is the strongest.

Elastic law Hyperelastic law

PS model PS−DPS model PS−DPS model

σIImin (MPa) -1820. 0. 0.

σImax (MPa) 115 5.56 3.65

Computation time

for one iteration 0.150 0.542 1.097

in the second stage (s/it)

Table 4: Major and minor principal stresses obtained in all the surface of the ZPB with

the PS and PS−DPS models. Impact of the behavioural law used on the computational

time in the case of a balloon.

820

The results of the stress �elds presented in the table 4 and the �gure 24b821

are in adequacy with the numerical results of the balloons of the same types822

<74; 75>. However, the materials, the number of balloon gores, the tapes823

assemblies used and the weight carried during a mission make comparisons824

between studies dif�cult.825

Figure 25 shows the kinetic energy versus the iterations performed during826

the �nal stage in the calculations (pressure at the altitude targeted, activation827

of the wrinkling model in two cases). With the PS model, the evolution of828

the kinetic energy is very pronounced between each peak. Table 4 shows829

the time required by the two models to perform an iteration in this �nal830

stage. In the case of the PS model, this time was 0.15 s in the case of the831

elastic law, but 3.6 times longer in that of the PS−DPS model. However,832

contrary to the PS−DPS model, a larger number of iterations was necessary833
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to reach convergence with the PS model, but the time required was very short834

due to the simplicity of the elastic law used. When the balloon is in�ated835

without using the wrinkling model, the local stress �eld is very noisy because836

of the presence of these wrinkles. Balancing these internal stresses can be837

detrimental to the convergence with the PS model, whereas the number of838

iterations required to reach convergence is much smaller with the PS−DPS839

model.
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Figure 25: Evolution of the kinetic energy in the last step of the calculations in the case

of the PS−DPS model with an elastic law and a hyperelastic law and that of the PS model

with an elastic law.

840

The use of the non-linear hyperelastic law and the PS−DPS model yielded841

many peaks in the kinetic energy. The evolution of the kinetic energy between842

peaks was less visible than with the other models with a linear law. However,843

despite the increase observed in the λ factor (which increased by 6 fold in844

comparison with the elastic law), the simulation was still rather unstable.845

The calculation time required for each iteration was twice as long as with846
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the PS−DPS model with an elastic law. During this simulation, the kinetic847

damping used in the DR algorithm was found to slow down the convergence.848

In fact, a large number of kinetic energy peaks was always observed, especially849

at the end of the calculation. This somewhat chaotic nature of the kinetic850

damping may be increased by the non-linear law used to simulate the �lm.851

These results therefore show that the long computational times are mainly852

due to the complexity of the non-linear law used in this case, which also gives853

rise to convergence problems854

These simulations point to the conclusion that the use of the PS−DPS855

and PS models is indicated on real-life structures. They show that the local856

stresses at work in the structure are more intense and di�erently distributed857

when complex behavioural laws are used in the simulations. In the context858

of stratospheric balloons, the use of a non-linear model resembling real-life859

behaviour more closely is essential to the successful design and development860

of these structures. The possibility of using a wrinkling model with more861

complex constitutive laws provides the most reliable means of predicting862

balloons' process of in�ation during their missions.863

6. Conclusion and outlook864

A new wrinkling model named the PS-DPS model, which can be used with865

non-linear behaviour of all kinds is presented here. This model, based on the866

Almansi strain involves the use of a pseudo-Dynamic Relaxation method to867

determine the shape of �exible structures. Two plane stress conditions are868

imposed to simulate the wrinkled part in a state of uniaxial tension on the869

plane of the membrane. This model was �rst tested with a linear elastic870

behavioural law on numerical data in the literature in order to check its e�-871

ciency in classical cases. Lastly, the PS-DPS model was used to simulate the872
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in�ation of a zero pressure balloon and found to be compatible with complex873

laws such as non-linear hyperelastic behavioural laws on real-life structures.874

A constitutive model of this kind was found to be the most suitable for de-875

scribing the mechanical behaviour of the �lms of which stratospheric balloons876

are made.877

Further studies on the PS-DPS model are also under way in order to878

improve its responses when used with incremental anisotropic laws. Another879

drawback observed when the pseudo-Dynamic Relaxation method was used880

with complex constitutive laws is that the time to convergence required to881

determine local equilibria is very long. In addition, with the wrinkling model,882

the computational time tends to be slightly longer than with a so-called883

conventional membrane model. It is therefore now proposed to develop new884

numerical strategy in future studies in order to reduce the computational885

time requirements of the model, especially when a complex behavioural law886

is used887
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Appendices903

To clarify the following calculations of the tangent matrices, the following904

notations have been introduced: "3D" for the general 3D behaviour, "PS"905

for the speci�c 2D Plane Stress and "DPS" for the speci�c 1D Plane Stress906

when wrinkles occur.907

A. Calculation of the tangent matrix in the PS model908

When modelling the membrane, the plane stress condition has to be al-909

ways satis�ed, that is: σ33
PS(ε33) = 0. The di�erential therefore also has to910

be zero: dσ33
PS (ε33) = 0911

Due to the method used to enforce the plane stress, the ε33(t+∆t)
obtained

is in fact an implicit function of the in-plane deformations εγη where γ, η =

1 and 2 and we can write:

0 =
∂σ33

∂εγη
(PS) =

∂σ33

∂εγη
(3D) +

∂σ33

∂ε33

(3D)
∂ε33

∂εγη

which leads to the relations:

∂ε33

∂εγη
= −

[
∂σ33

∂ε33

(3D)

]−1
∂σ33

∂εγη
(3D)
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which are used to obtain the tangent matrix (where α, β = 1 and 2):

∂σαβ

∂εγη
(PS) =

∂σαβ

∂εγη
(3D) +

∂σαβ

∂ε33

(3D)
∂ε33

∂εγη

B. Calculation of the tangent matrix in the PS-DPS model912

The general expression for the tangent matrix is:913

∂σef

∂εkl
(DPS) =

∂σef

∂εkl
(3D) +

∂σef

∂εgh
(3D)

∂εgh
∂εkl

(24)

where e, f = 2 and 3. The degrees of freedom of the DPS condition in

the present case are εee, where e = 2 and 3. In this context, the relevant

unknowns in relation (24) are the values of ∂εee
∂ε11

. We use the conditions

σee = 0 that must always be satis�ed in DPS to calculate these values :

∂σee

∂ε11

(DPS) = 0 =
∂σee

∂ε11

(3D) +
∂σee

∂εff
(3D)

∂εff
∂ε11

and hence:
∂εff
∂ε11

= −
[
∂σee

∂εff
(3D)

]−1
∂σff

∂ε11

(3D)

The �nal tangent operator can then be calculated as follows:

∂σ11

∂ε11

(DPS) =
∂σ11

∂ε11

(3D) +
∂σ11

∂εff
(3D)

∂εff
∂ε11

914
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