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Introduction

Inated stratospheric balloons made of thin plastic lm are widely used by the French Space Agency (CNES) for studying atmospheric and astronomic phenomena and testing technological innovations. Due to the large size of these balloons (which measure anything up to 180 m in height) and the exibility of their polyethylene envelope (which is only a few tens of µm thick), ination of the stratospheric balloons causes local buckling phenomena, which appears as wrinkling. These buckling processes are due to the fact that these membrane structures, which have been referred to as "without compression", have a negligible bending stiness. If no compressive stress is induced in the membrane, an out-of-plane displacement of the membrane will occur, resulting in wrinkles.

The number of numerical studies on wrinkled structures such as exible membranes and ne fabric structures has increased considerably since the 1990s. Jenkins in his 1996 review <1> was the rst to not only outline the problem of wrinkling, but also to cover all the aspects of the theory and applications of thin structures that can be dened as membranes. Several reviews <29> have been subsequently published on the various nite element methods developed for simulating wrinkling problems. The basic idea was introduced by Wagner <10>, based in particular on Tension-Field (TF) theory, and on the assumption that a membrane has no bending stiness and cannot resist any compression forces. Many wrinkling models (see for example <6; 11>) have since been developed on these lines for predicting the wrinkling direction and eliminating the in-plane stiness in the direction perpendicular to the wrinkles. Thus, the rst type of wrinkling model was to modify the deformation gradient tensor to represent TF responses of wrinkled membranes <12; 13>.

By introducing the concept of relaxed energy density, Pipkin <14> dened membrane wrinkling as a problem of energy minimization arising in the case of elastic bodies devoid of bending rigidity. This method inspired several other models <1517>, and Epstein and Forcinito <18> extended this relaxed energy function model to include anisotropic membranes by introducing the idea of saturated elasticity and by modifying the Green's strain tensor.

The second approach, on which this paper focuses, is based on a local modication of the stress-strain relationship within an element, i.e. the constitutive equation is modied in order to eliminate all the compressive stresses <19>. In this case, there exist several possible solutions. One of them consists in modifying the stiness tensor of elasticity by adding a corrective factor <4; 2022>. Another one consists in modifying the constants of the material such as the modulus of elasticity and/or the Poisson's ratio <2326>. Another method consists in post-multiplying the stiness matrix with a projection matrix that eliminates the compressive stresses <19; 27>.

The inuence of these various solutions can be seen in the paper by Wang et al. <6>. These previous approaches provide a rigorous mathematical formulation of the wrinkling mechanism and can easily be applied to existing nite element codes for the analysis of membrane structures with wrinkles.

However, the exact physical signicance of the modied elasticity matrix is somewhat obscure because of the arbitrary choice of projection matrix.

The last approach to modelling wrinkles worth mentioning consists in using thin shell elements that include both membrane and bending contributions and can be used to model the amplitude and wavelength of wrinkles. This method has been adopted in several studies (e.g. <3; 28>). Unfortunately, in order to obtain suciently realistic results, the mesh size must be suciently ne which requires fairly long computational times. Shell el-ements are naturally more expensive in terms of computational time than membrane elements because a large number of degrees of freedom (rotations) and integration points (through the thickness) is required. During the last few years, however, shell elements devoid rotational degrees of freedom have been developed <2932> and used to model the shape of wrinkles on isotropic and anisotropic exible structures <33>. Elements of this kind are the most ecient for modelling the wrinkles phenomena in small structures, but in the case of large structures such as stratospheric balloons, this option does not seem to be the most ecient due to the long computational times induced by the mesh size. In addition, it is worth noting that the wrinkling behaviour (i.e. buckling) often depends on the size and type of mesh.

Finding suitable means of modelling wrinkling processes in the design stage is therefore an important challenge for constructing reliable membranebased space structures <34>. It is of the utmost importance to be able to predict the behaviour of membrane wrinkles, including the direction in which they occur and what stresses are at work in the case of inated stratospheric balloons <11>. However, most previous studies have focused so far on determining the direction of the wrinkling process and the corresponding stress state in the case of materials with isotropic <7; 14; 35> or anisotropic linear behaviour <12; 17; 18; 22; 36> as well as for linear viscoelastic behaviour <3740>. However, in the case of materials with non linear behaviour, this subject still requires further investigation <41; 42>, and in the context of stratospheric balloons, it should be noted that thin lms show complex behaviour characterized by large irreversible strains and strain rate dependency, and therefore, elasto-visco-plastic behaviour. In this context, the aim of this paper is to present a new simple, accurate method of modelling membrane structures giving the wrinkling directions for all kinds of material behaviours. This model, which we have called the "Plane Stress-Double Plane Stress" (PS-DPS) model, is based on two approaches. The rst approach consists in adjusting the components of the constitutive tensor in the direction of the compressive stress. The principle underlying this method is in fact consistent with other approaches used in <4; 19; 43>, for example, but the Newton-Raphson method of projection used here makes it possible to control the constitutive matrix in the case of materials of all kinds. In this case, the aim is not to simulate the shape of the wrinkles but to account for their occurrence on the equilibrium state of the membrane. Another originality feature of this model is that the thickness of the membrane structure is updated throughout the simulation.

The second approach used in the PS-DPS model overcomes the numerical instabilities that are liable to occur due to the poor convergence of the numerical resolution of the membrane structure. This is can be explained by the fact that the local stiness of the membrane can vary between large positive values and zero during the iterative process. A Dynamic Relaxation (DR) method (which is also known as the pseudo-Dynamic method) is then introduced to determine the global equilibrium in the analysis of underconstrained membranes <44; 45>. These two approaches and the DR method are implemented in the inhouse nite element software Herezh++ <4648>. In the literature, wrinkled membrane models have been classically written based on the initial conguration of the structure using the Green strain tensor <6; 7; 27> whereas the PS-DPS model is written here based on the current conguration of the structure using the Almansi strain measure and the Cauchy stress tensor. This paper is structured as follows: the numerical methods used to develop the PS-DPS model are presented in Section 2. The distinctive char-acteristics of the Plane Stress and Double Plane Stress approaches are explained in sections 2.3 and 2.4 respectively. The pseudo-Dynamic process is then described in section 3. To show the accuracy and potential of the present model, several benchmark examples are modelled and analysed in section 4 using isotropic elastic law and compare with results available in the literature. First, structures constrained in their planes are studied. Shear test is rst analysed since this is the most widely used test for checking the validity of wrinkling models. In this test, the membrane is fully wrinkled (in either a single direction or all possible directions) in order to check the accuracy of the PS-DPS model. The results of a torsion test in which the membrane shifts locally from a wrinkled to a taut state is then compared with an analytical solution. Next, a square cushion deployment is carried out in order to test the model on a structure resembling that of stratospheric balloon. In this test, comparisons are also made with nite element simulations performed with Abaqus <49> using the "No compression" procedure, in which the elastic behaviour is modied by imposing the appropriate principal stress at zero. To determine the inuence of behavioral laws on the results obtained, the ination of a square cushion test is also simulated using a hyperelastic law with the PS-DPS model in section 4.4. Lastly, in section 5, to show the applicability of the PS-DPS model in a real case of balloon ination, simulations of the deployment of a Zero Pressure Balloon with both elastic and non linear laws are presented.

The PS-DPS model

Before presenting the PS-DPS model, some notations are introduced in order to explain the kinematic hypotheses and tensor notations used. First, let us take a Gauss point M and the associated material frame {M, g i } (where i = 1 . . . 3). The covariant base vectors, which follow the point M as a function of time t, are dened in the tangent membrane plane, using a curvilinear coordinate system θ α , by:

g α (t) = ∂ M (t) ∂θ α with α = 1, 2 (1) 
In the Herezh++ software, these curvilinear coordinates constituting a set of material coordinates are those used in the base of the reference element (for further details, see for instance <30; 50>). The normal vector of the tangent plane is obtained by taking g 3 = g 1 ∧ g 2 . The norm of g 3 is arbitrarily set at 1 (see g. 1).

The contravariant components σ ij of the Cauchy stress tensor σ are dened at each Gauss Point M in the current conguration using these covariant base vectors according to:

σ = σ ij g i ⊗ g j (2) 
The Almansi strain tensor can also be dened in the contravariant current base vector taking:

ε = ε ij g i ⊗ g j (3) 

Evaluation of the membrane states

In the literature, to denote the various states of the membrane (taut, slacked and wrinkled), three criteria based on the signs of the components σ I and σ II of the principal stresses and/or the principal strains ε I and ε II are now widely used (see table 1).

According to Liu et al. <21>, the stress criterion underestimates the state of "slackness" and the strain criterion underestimates the state of "tautness" of the membrane. Several authors <20; 51> have suggested that the mixed criterion seems to be the most useful means of dierentiating between these

Membrane states Stress criterion Strain criterion Mixed criterion

Taut a combination between the stress criterion and the strain criterion. This new approach seems to be as eective as the mixed criterion but it requires the use of the Poisson's ratio, which restricts its use to material with linear elastic behaviour. In view of this constraint, the mixed criterion was adopted in the PS-DPS model. From a numerical point of view, a rst computation without taking into account the wrinkles is carried out to determine these zones.

σ II > 0 ε II > 0 σ II > 0 Wrinkled σ II < 0 & σ I > 0 ε II < 0 & ε I > 0 σ II < 0 & ε I > 0 Slacked σ I < 0 ε I < 0 ε I < 0

Principles underlying the PS-DPS model

As mentioned above in the Introduction, there are several ways of approaching wrinkles numerically. In the PS-DPS model, the aim is not to model the shape of the wrinkles, but to predict the consequences of the presence of wrinkles on the mechanical equilibrium of the membrane. From the practical point of view, the PS-DPS is intended to apply to a wrinkled structure, regarded as a unwrinkled planar membrane. The out-of-plane displacement caused by compressive stresses is simply approached like an in-plane contraction, as shown in g. 1.

The PS-DPS model is based on two numerical assumptions. First, in the case of any 3D behavioural law, a Newton-Raphson technique is used to impose a "Plane Stress" (PS) state on the membrane structures. In the second step, the assumptions of the TF theory, which we refer to here as the "Double Plane Stress" (DPS), are applied to the wrinkled part in a state of uniaxial tension on the plane of the membrane.

Membrane behaviour without any wrinkles: the PS state

During the equilibrium incremental, we assume that we have reached the end of an increment of time t + ∆t, in which the kinematic displacements are known, i.e. the 3D deformation state ε (t+∆t) , the increment of deformation ∆ t+∆t t ε between t and t+∆t, the strain rate tensor D (t+∆t) and the 3D stress state σ (t+∆t) are all known.

The rst step in this approach consists in nding a PS state such that σ 3i = 0 as a function of the unknowns ε 3i , where i = 1 . . . 3, at each Gauss point M . In this case, as g 3 is assumed to be a principal direction (i.e. an eigenvector for stress and strain tensors) and ε 31 = ε 32 = 0, the sole condition which has to be found is:

σ 33 (ε 33 ) = 0 (4) 
To obtain this no stress compression state σ 33 (ε 33 ) = 0, which is denoted σ (int) , a scheme based on a three steps Newton-Raphson algorithm is used (see also the rst algorithm scheme of the PS state in g. 2):

1. The initial value of the strain tensor is such that ε γη (t+∆t) where γ, η = 1, 2 is due to the kinematic displacement of the membrane at the point M , taking: ε 31 = ε 32 = 0. These values will stay constant during the Newton loops during the n iterations. The unknown ε 33 is initialized at the beginning of the initial step n=1, by: ε At the end of this state "int", the wrinkling areas are located in the membrane using the mixed criterion (see table 1). A new double plane stress (DPS) is then built into these wrinkles areas in order to release the compression by using a new Newton-Raphson algorithm (which will be discussed in the next section). The global equilibrium of the membrane is then updated with this new behaviour, which yields a new nal stress σ (end) and strain tensors ε (end) that can be used in the next equilibrium iteration. In the ten- sile areas of the structure, the local state of the membrane satises the PS condition.

(n=1) 33 (t+∆t) = ε 33 (t)
To dene these wrinkled zones, eigenvalues of tensors σ (int) and ε (int) are calculated based on the notations σ (int) I , σ (int) II which are the major and minor principal stresses, and ε (int) I , ε (int) II which are the major and minor principal strains, respectively.

According to the mixed criterion (see section 2.1), the membrane could be in one of the following three states:

1. σ (int) II > 0: the membrane is in a state of tension in all the directions on its median plane, 2. ε (int) I < 0: the membrane lacks of tension in all the directions on its median plane, 3. σ (int) II < 0: there are wrinkles in the direction of the eigenvector V 2 associated with σ (int) II .

Membrane with wrinkles: the PS-DPS Wrinkles Model

After determining the presence of wrinkles in the structure with the mixed criterion and the orientation of these wrinkles, the new stress and strain elds obtained with the DPS condition are determined using a new Newton-Raphson algorithm. This DPS condition consists in imposing a new plane stress state in the direction of the wrinkles.

Take the eigenvector frame V α with α = 1, 2, where V 1 is the direction of the tension and V 2 the transverse direction of the wrinkles. V 3 is identical to g 3 and gives a complete 3D eigenvector frame. In this frame, the presence of wrinkles must lead to σ 22 = 0 and the PS model implies that: σ 33 = 0. So the local behaviour is like a DPS constrain and the local stress state has to be studied again with the new conditions:

σ αα ε 11 , ε 22 (mec) = 0 (5) 
where α = 2, 3 and a new unknown ε 22 (mec) is introduced to denote the transverse mechanical strain, which diers from the kinematic deformation of the membrane ε 22 (kin) .

A Newton-Raphson scheme for the DPS state is therefore written in the frame V i according to the following algorithm (see also this algorithm in g. 3):

1. Initialization of the strain tensor component: ε 11 (t+∆t) with the kinematic displacement of the membrane at the point M, taking ε 12 = ε 31 = ε 32 = 0. These values will stay constant during the Newton loops on the n iterations. The unknowns are initialized by:

ε 22 (t+∆t) , ε 33 (t+∆t) (n=1) = ε 22 (t) , ε 33 (t) for n = 1.

Do while

σ 22 (int) , σ 33 (int)
< e 2 where e 2 is a given precision (loop on n):

(a) evaluate σ ij(n) and ∂σ ij(n) ∂ε kl from the 3D behaviour (b) calculate δε f f = - ∂σ ee(n) ∂ε f f -1
σ ee(n) with e, f =2 and 3, because of the double conditions of eq. ( 5)

Equilibrium iteration t + ¢t

From the 3D behavior law :

fi The kinematic ("(t + ¢t ), ¢t t +¢t and D(t + ¢t ) fi Data from the previous step are known

PLANE STRESS (PS) imposed by a Newton-Raphson algorithm

Determine new stress and strain fields with PS condition :

ae 3i = 0 with i= 1,2,3 ae 33 ("33) = 0 (4)
Calculation of ae ij(n) and @ae ij(n)

@"kl

Calculation and update of the thickness PS condition " ae [START_REF] Flores | Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element[END_REF] (int) "< e1 ? ae(int) II < aeII mi n ? No trigger of the wrinkles criterion

Mixed criterion

Taut state : Same 3D stress tensor and thickness than PS condition

Wrinkled state : Determine wrinkling direction

Slack state :

Contribution to equilibrium is zero ae ij(n) = 0 ; @ae ij(n)
@"kl = 0

DOUBLE PLANE STRESS (DPS) imposed by a Newton-Raphson algorithm

Determine new stress and strain fields with DPS condition : ae AEAE ("11, "mec 22 ) = 0 (5) ; AE = 2, 3 Calculation of ae ij(n) and @ae ij(n)

@"kl

Calculation and update of the thickness strain and width strain DPS condition " hae [START_REF] Woo | Analysis of Wrinkling Behavior of 57 Anisotropic Membrane[END_REF] (int) , ae 33 (int) i "< e2 ?

fi 3D stress tensor that satisfied the DPS condition :

ae (end) = ae ª (t + ¢t)
fi Thickness strain : " 33 (t + ¢t) fi Width strain : "22 (mec) (t

+ ¢t) 6 = "22 (kin) (t + ¢t) fi "22 (mec) (t + ¢t) = "22(t + ¢t) fi Thickness : h(t + ¢t) ae (int)II > 0 " (int)I < 0 ae (int)II < 0 & " (int)I > 0 n=n+1 n=n+1 3D material model elastic, elastoplastic ... t + ¢t

2D behavior

Wrinkle 1D behavior

Final state 2xPS¥DPS PS (c) then take

ε f f (n+1) = δε f f + ε f f (n) and increment n as: n = n + 1,
with f =2 and 3 (d) update the membrane thickness.

At the end of the process, after convergence has been reached, which is denoted σ (end) , the following data are obtained: the 3D stress tensor σ (end) that satises the DPS condition (i.e. only one value diers from zero: σ 11 (end) ).

the new thickness strain ε 33 (t+∆t) and the new thickness h (t+∆t) of the membrane, the transverse mechanical strain ε 22 (t+∆t) which is noted ε 22 (mec) . The dierence between the strain ε 22 (kin) due to the kinematic eects and the new ε 22 (mec) is the presence of wrinkles.

3. as with the PS Newton scheme, in the case of an implicit scheme, the tangent behavioural matrix is also calculated based on: ∂σ 11 ∂ε 11 which includes the DPS condition. Details of the calculation of the tangent matrix of the DPS condition are given in appendix B.

The shape of the wrinkle is not simulated in the PS-DPS model, i.e. the membrane remains locally plane. The aim of this approach is simply to obtain the eects of the wrinkles. In this context, the kinematic deformation ε 22 (kin)

is the global deformation due to the undulation of the wrinkled membrane, and the mechanical deformation ε 22 (mec) is the local behaviour of the material due to a single tension. ε 22 (kin) could be much higher than ε 22 (mec) and does not depend directly on the behaviour of the material, but mainly on the intensity of the undulation of the wrinkles, which is responsible of the global equilibrium.

Comment 1. Let us consider a length l of a membrane strip with a thickness h 0 and assume that a uniform simple tensile stress is applied along g 2 as described in g. 1. This stress makes it possible to obtain a unidirectional tensile state. In this case, wrinkles may appear in the direction g 1 on the membrane. If no condition is imposed in the direction g 1 , the mechanical balance of the wrinkled membrane will be identical to that of the non-wrinkled structure, and it is possible to have the following cases:

If the structure remains at (no wrinkles), the new thickness and the width of the membrane will be those corresponding to the initial dimensions modied by the strains required to obtain zero transverse stresses.

If the structure undulates, the width in the absence of any particular conditions along g 1 can be arbitrary. In this case, the calculation of the tensile force required to achieve the balance of the structure creates an issue since the cross section (the thickness and width) can be arbitrary.

In this context, two types of thickness have to be considered:

1. The physical thickness h (mec) of the undulating membrane. This thickness will decrease with the tensile stress. In this paper, this thickness is also called the mechanical thickness.

2. The geometric thickness h (kin) , which is associated with the geometric width of the corrugated strip l (kin) must yield a correct tensile force.

The length of the strip l is identical whether the membrane is wrinkled or not. On the other hand, the section of the non-wrinkled membrane given by the dimensions h (mec) × l (mec) must be identical to the section of the wrinkled membrane h (kin) × l (kin) . To obtain an identical volume, it is necessary to assume that:

h (kin) = h (mec) × l (mec) l (kin) (6) 
The geometric thickness will therefore tend to increase when wrinkles are present. This nding is described in the numerical shear test presented in section 4.1.

Comment 2. The given precisions e 1 and e 2 may be dierent. In sections 4 and 5, for example, the values of these parameters are e 1 = e 2 = 1.10 -3 .

Comment 3. In principle, the PS-DPS model rules out the possibility of compressive stresses in the structure. In reality, innitely small compression forces can accumulate in exible structures, such as the plastic lms used to make balloons. This admissible compression in the structure depends on many parameters such as the nature of the material used and its thickness.

It can be observed with numerical simulations using shell elements as in the validation example tested in section 4.1. In the PS-DPS model, it is also possible to leave some compression in the structure by using a parameter named: σ II min (see item item 3 of the algorithm in section 2.3). During a calculation, if the value of σ (int) II is less than σ II min then the mixed criterion is activated and all compressive stresses are eliminated. In the numerical examples presented in section 4.1, the value of the admissible compression is taken to be a very small value of σ II min = -1.10 -15 .

Comment 4. In section 4, several numerical benchmarks will be simulated.

The PS model presented in section 2.3 will also be compared with the PS-DPS model for analysing the eects of wrinkles on the local and global equilibrium.

The Dynamic Relaxation method

The complexity of the numerical modelling of stratospheric balloons is due in particular to the lack of exural rigidity of the membranes and the occurrence of wrinkles on their surface. During an equilibrium search with a Newton-Raphson type algorithm, a singular stiness matrix was obtained.

Various methods such as the use of a numerical viscosity as in the Abaqus software <49>, for example, have been conventionally used to remove this singularity. With an implicit approach, it is dicult to accurately model the deployment phases which occur while the structures are being inated;

whereas explicit methods are more suitable for dealing with these phases involving large displacements. On the other hand, these explicit methods require a large number of computational steps and the nal static balancing of the structure is often very time consuming. For this reason, the Dynamic Relaxation (DR) method has proven to be useful. This method has the advantages of the explicit approach while minimizing the computational times involved. This method, which has also been called pseudo-Dynamic method <44; 45; 52>, has been used by several authors for the simulations of pressurized balloons <40; 5356> and wrinkling problems <11; 15>.

In line with our previous studies <52; 57; 58>, an original DR method was used here to deal with inatable structure shape search problems. The main idea underlying the classical DR methods is that a static solution corresponds to the limit case of a damped dynamic system. Starting with the fundamental dynamic equation (eq. ( 7)), since the mass matrix intervenes only during the transient phase, the idea is to replace its real value by a ctitious value

[M ], which is optimized with respect to the Courant-Friedrichs-Lewy (CFL) stability condition <59>.

[M ]

..

{X } + [C ]

.

{X } + R X, . X = 0 (7) 
where ..

{X },

.

{X } and {X} are the acceleration vector, the velocity and the position of nodes, respectively. [C ] is the ctitious viscous damping matrix and R X, .

X stands for the residual internal and external forces.

..

{X } and

.

{X } are regarded ctitious because these terms do not correspond to the real acceleration and the real velocity of the structure.

At convergence, the nodes tend to oscillate around the equilibrium position. The introduction of a damping term thus make it possible to approach the state of static equilibrium. The kinetic or viscous damping have been classically used for this purpose. These two types of damping stabilize the structure in very dierent ways <58>. In the present study, the kinetic damping method of stabilization, proposed by <44>, with which the overall balance of the structure can be obtained very quickly, was used.

In the case of the kinetic damping, an "undamped" movement is taken to occur with [C ] = 0 and the kinetic energy given in eq. ( 8) is used:

[M ] .. {X } + R(X, . X) = 0 (8) 
where the term [M ]

..

{X } is the generalized expression for the acceleration forces.

In the case of a conservative system, the kinetic energy reaches a maximum when the potential energy reaches a minimum. However, a minimum potential energy denes a state closely resembling the state of equilibrium.

At each peak in the kinetic energy, the velocities are reset at zero and the computation is relaunched starting at the current position. This process, which consists in freezing the geometrical state of each peak in the kinetic energy, tends to dampen the oscillations. The addition of an articial damping parameter leads the structure to gradually adopt a statically balanced form. The condition for stopping the calculation is dened by a xed parameter, named ε DR , which corresponds to the equilibrium state of the structure.

This parameter is calculated using the relation:

max Residual static ∞ Reactions ∞ , Kinetic energy Internal energy ε DR (9) 
Comment. In section 4, the precision is set at ε DR = 1.10 -4 which makes it possible to make novel comparisons with data in the literature. In section 5, a numerical test on the ination of a stratospheric balloon is performed with the PS-DPS model and a non-linear behavioural law. In this case, the precision is set at ε DR = 5.10 -3 . This value is currently used by the CNES in all their balloon simulations because it gives precise local and global equilibria.

To solve the time problem, the method used here is based on the explicit Centered Finite Dierences (CFD) method. The ow of the process is controlled by a ctitious time with an increment which is arbitrarily set at 1.

The ctitious mass matrix is sized so as to satisfythe stability condition of eq. ( 10) more closely. For this purpose, a mass matrix calculated from the effective stiness matrix is used, based on the Gershgorin theorem <45>. The mass matrix is updated only at specic times: at the start of the calculation and possibly after a damping step, which limits the time required to perform the computation. The mass matrix is calculated here only at the beginning of the simulation, taking:

m i = λ∆t 2 2 S i → S i = j | K ij | (10) 
where m i is the mass at node i, ∆t is the ctitious time, S i is calculated from the matrix K ij which is the local stiness matrix of each elements. S i is calculated by taking the maximum value of the sum of the absolute values of the stiness along the three axes of the Cartesian coordinate system. This maximum is applied in all the three directions. An increase occurs in the three eigenvalues obtained via the Gershgorin theorem applied locally to each matrix <45>. λ is an adjustable parameter used to compensate for the instability of the schema resulting, for example, to the approximation of Gershgorin's theorem.

Numerical experiments

To investigate the performances of the present wrinkling model, several numerical benchmarks are modelled here and compared with data presented in literature. The at membrane was loaded with a prestress with a magnitude of 1.5

N/mm 2 in the Y -direction to introduce an initial stiness. The prestress was then held constant while the upper edge was gradually moved in the horizontal direction until this movement had covered a distance of +3 mm (see g. 4).

In order to compare our results with data in the literature, this test was also simulated with shell elements in Abaqus <49> using the same method presented by Wong and Pellegrino in <3>. In this case, this simulation was performed by taking 3960 S4R5 shell elements. As with membrane elements in Herezh++, a 1.5 N/mm 2 prestress was prescribed on the upper side of the rectangular membrane in order to induce an initial stiness. After calculating the rst buckling modes, the out-of-plane displacements caused by these modes were imposed like imperfections in addition to the boundary conditions of displacement of 3 mm in the X-direction. If the shell mesh is suciently ne, this method gives the shape of the wrinkles and eliminates the compression stresses due to the wrinkles.

The shear forces applied to the membrane using the PS, PS-DPS and shell models are presented and compared in g. 5a as a function of the shear displacement. wrinkles. The following equations can be used to determine σ I in this region:

ε I = λ 2 and σ I = E × ε I (11) 
where λ = δ H is the elongation along X, δ is the horizontal displacement imposed, H is the height of the membrane (see g. 4) and E is the Young's modulus.

Based on these equations, Wong and Pellegrino <63> have established that this major principal stress, is equal to 41.37 MPa. With the PS-DPS model, a value of 41.79 MPa is obtained, amounting to a dierence of 1%. subjected a rectangular membrane to a state of simple shear. These authors reported that the out-of-plane deection was greater near to the free edges on both sides of the membrane. In the middle, the out-of-plane displacement decreased and the region was characterised by fairly uniform wrinkles.

To conclude this part, although the PS-DPS model is not suitable for modelling the shape of wrinkles, the geometrical thickness is a good indication to the wrinkling pattern in the membrane. This shear test was the rst step in the validation of the PS-DPS wrinkle model. The torsion test which will now be described was performed in order to analyse the response of the PS-DPS model under these new loading conditions with an elastic law.

Torsion test on an annular membrane

In this numerical test, an annular membrane is attached to a rigid hub along the inner edge and to a guard ring along the outer edge as shown in g. 8. The rotation of the rigid disc causes wrinkling of the membrane <12>.

Two tests, classically used in the literature, are simulated: the rst is a torsion test without any initial prestress <4; 19> and an initial prestress is added in the second test <7; 27>. In both cases, an analytical solution is presented in <64> and theses solutions are also obtained with a Python script. In the case of the prestress torsion test, the membrane shifts locally from a onedirectional wrinkled state to a stretched state (devoid of wrinkles). The aim of this prestress torsion test is to determine the robustness of the PS-DPS model when moving from one state to another. The value of parameter λ adopted in the DR method was set at 4 in all these torsion tests.

Torsion without any prestress

In this test, all translations of the outer nodes are fully constrained and the inner rigid disk is rotated clockwise by the angle θ (see g. 8). The mesh is composed of 180 quadrangular membrane elements with linear interpolation. These elements include four Gauss points and involve nite transformations (i.e. large displacements and deformations). The dimensions and loading conditions of the membrane studied here are given in g. 8 as well as the properties of the linear elastic law used.

In the studies by Jarasjarungkiat et al. <4; 19>, the angle θ imposed on the inner rigid disk is 10 • . However, with this angle, the strain values obtained are signicantly greater than 10% which results relatively large strains. As explained above in the Introduction, the PS-DPS model involves the Almansi strain measure whereas in literature, the Green strain measure has been generally used so far with wrinkle models. As shown in g. 9, the directions of the major principal stresses are nevertheless compatible with those reported in <12; 65> with an angle of 10 • . In order to compare the numerical results obtained with the PS-DPS model and data presented in previous numerical studies, an analytical solution given by Mikulas <64>

in the case of small deformations was used with an angle of 0.728 • , which corresponds to a moment equal to 10 5 N.m. This small angle makes it possible to compare data obtained in the case of small rotations with strain elds of less than 10%. In this case, wrinkling occurs over the entire membrane as soon as an angle is applied to the hub. Based on equations given in <64>, it is possible to compute the stress state in the membrane in two steps.

The rst step consists in determining the value of the constant C 2 which satises the boundary conditions on the edges of the membrane, according to the following equation:

1 4π 2 t 2 C 2 2 a 2 M 2 -1 + log 4π 2 t 2 C 2 2 a 2 M 2 -1 - 1 4π 2 t 2 C 2 2 b 2 M 2 -1 -log 4π 2 t 2 C 2 2 b 2 M 2 -1 = 0 ( 12 
)
where a is the inner radius, b is the outer radius, t is the membrane thickness and M is the torque applied.

When the constant C 2 is known, the second step consists in calculating the radial σ r and tangential stresses σ θ based on the following equations:

       σ r = 1 r C 2 - M 2 4π 2 t 2 r 2 σ θ = M 2 4π 2 t 2 r 4 1 σ r ( 13 
)
where r is the radial position in the membrane.

To determine the angle of the wrinkles α, as shown in g. 10, the stress eld can be written as follows:

     α = arcsin M 2πt √ C 2 r σ I = σ r cos 2 α = σ θ sin 2 α (14)
This same problem has been solved using TF theory by Reissner <66>, who established that the tension lines start from the inner edge, and because of the symmetry, each of these lines forms along the inner edge the same angle with the radius from the origin (g. 10). 

Torsion with prestress

The rigid hub was then subjected to a torque loading M and rotated through an angle φ, and this membrane was subjected to a uniform prestress σ 0 . The geometric and elastic material parameters used in this test are presented in g. 12a.

When the torsion loading was applied by increasing the moment M , wrinkles began to form around the hub up to some radius R, as explained for example by Akita et al. <27>. The two meshes, described in g. 12b, with quadrangular membrane elements, with linear interpolation and four Gauss points, are tested in order to determine the inuence of the nite element size. The coarse mesh was composed here of 324 elements and the ne mesh, of 1600 elements.

The analytical solution of this problem presented in <64; 67> has been used by several authors <27; 68>. In this analytical solution, the relation between the wrinkle radius R and the moment M is given by the following equations. The quadratic eq. ( 15) has to be solved to determine the constant C 1 . This constant C 1 can be used to calculate C 2 with eq. ( 16). Lastly, we checked the values of this constant with eq. ( 17).

C 1 2 -1 + 2C 1 a b 2 2 R 4 + M 2 = 0 ( 15 
)
C 2 = (R + [ 1 R + 2R a b 2 )]C 1 ) 2 + ( M R ) 2 (16) 1 A + 1 B -ln( B A ) - 2 3 = 0 ( 17 
)
where

M = M 2Π σ 0 t a 2 ; A = C 2 M 2 -1 ; B = R 2 C 2 M 2 -1 in which R = R a ,
R being the radial extent of the wrinkled region, C 1 and C 2 are constants which can be used to calculate the stress eld, t is the thickness of the lm and a and b are the inner and outer radii, respectively.

The relation between the moment M and the twist angle φ is given by:

φ = 3M 8(1 -a 2 b 2 ) 1 R 2 -1 B + ln B A + 1 R 2 - 8 3 
a 2 b 2 + 5 3 (18) 
where:

φ = 4φσ 0 1 -a 2 b 2 3E ( 19 
)
In the simulation, the angle φ determined by eq. ( 19) is imposed on the inner radius a.

The moment applied causes the occurence of wrinkles on a certain radius denoted R. Contrary to the torsion test without any prestress presented in section 4.2.1, the structure falls into two areas. With values of R =1.2, 1.4 and 1.6, the membrane is in a wrinkled state in one direction and beyond these values, the membrane is stretched. Comparisons are made here only with these values of R.

After solving the previous equations, the ratios σ I σ 0 and σ II σ 0 between the principal stresses and the prestress (with σ I > σ II ) are given in the wrinkled zone r < R according to the following relations:

         σ I σ 0 = C 2 r C 2 -M 2 r 2 σ II σ 0 = 0 (20) 
where r = r a .

These ratios are obtained in the wrinkle-free zone (r ≥ R), where:

           σ I σ 0 = 2C 1 a 2 b 2 + 1 + C 2 1 + M 2 r 2 σ II σ 0 = 2C 1 a 2 b 2 + 1 - C 2 1 + M 2 r 2 (21) 
Figs. 13a to 14b give the ratios σ I σ 0 and σ II σ 0 as a function of r = r a , respectively, with various torques values in the case of coarse and ne meshes.
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Analytical solution (R = 1.2) The switch between the wrinkled area and the stretched area is shown in g. 14. The ratio σ II σ 0 is equal to zero when the structure is wrinkled, but increases along the radius in the stretched area. Figure 13 shows that the evolution of σ I σ 0 is accurately predicted by the PS-DPS model with both coarse and ne meshes. However, in the case of the evolution of σ II σ 0 , the solution obtained with the ne mesh resembles the analytical solution slighlty more closely than that obtained with the coarse mesh. In fact, the inuence of the mesh is quite weak on the results of this test with the PS-DPS model. The results here resemble the analytical solutions, even with a mesh composed of only a few elements, which is not the case with a shell mesh, as observed in the shear test presented in section 4.1.
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Ination of a square cushion with an elastic law

In this example, the eciency of the PS-DPS model is tested in the case of an inatable structure. This test has been extensively studied with an elastic law in the literature <4; 19; 20; 35; 43>. It consists in gradually inating a at square elastic isotropic membrane, increasing the constant pressure up to 5 kPa. The material properties and dimensions of the undeformed cushion are given in g. 15.

By applying appropriate boundary conditions in the horizontal mid-plane, it is only necessary to model one upper quarter of the cushion. This eighth of the square cushion was simulated with various mesh sizes. The initial discretization was 4×4 and rened as 5×5, 8×8 and 10×10 quadrangular elements with linear interpolation and 4 Gauss points, consecutively. Figs The hyperelastic potential W involved in this law was dened on the basis of four material parameters, using the invariants of the Almansi measure ε according to the relation:

W = K 6 ln 2 (V ) + Q 2 0r 2µ 0 ln cosh 2µ 0 Q ε Q 2 0r + µ ∞ Q 2 ε ( 22 
)
where in the case of a shear test, µ ∞ denotes the nal slope of the stress τ -strain γ curve, µ 0 + µ ∞ denotes the initial slope τ versus γ and Q 0r stands for the level of the nal tangent to the curve (i.e. the intersection between the nal tangent and the vertical stress axis) (for details of these material parameters, see g. 19). K is the bulk modulus, on which the changes in volume mainly depend. V stands here for the relative changes in volume and Q ε denotes the intensity of the deviatoric part of ε: <69; 70> during a pure shear test.

Q ε = (2ĪI ε) 1/2 with ĪI ε = 1 2 trace (ε.ε) - (trace(ε)) 2 6 ( 23 
)
µ r = µ 0 + µ ∞ γ τ µ ∞ Q0r √ 2
To determine the inuence of this behavioural law, numerical comparisons were performed on the displacement of the cushion and its stress distribution in the case of both this non linear evolution and an equivalent elastic law.

The stress-strain curves obtained with both of these two laws are presented in g. 20 and compared with those obtained a uniaxial tensile test performed in <71> at a strain-rate of 3.6%/min on a lm with the same thickness as that of which this cushion was made.

The material parameters involved in these two laws are presented in table 2. Contrary to the test on a cushion described in section 4.3, a pressure of 2 kPa was applied here to a square cushion 2000 mm in length and 0.25 mm thick. Due to the symmetry, only an eighth of the square was simulated.

These simulations were performed with a mesh consisting of 15×15 quadrangular elements, using linear interpolation methods. The value of parameter λ involved in the DR method was set at 3. the wrinkles is independent of the constitutive law used. Their location is similar to that previously observed in g. 16a.

Application of the PS-DPS model: Zero Pressure Balloon ination

In this section, the ination of a Zero Pressure Balloon (ZPB) is simulated using the PS-DPS model both with an elastic law and with the same hyperelastic law as in the previous section.

During stratospheric missions, the volume of these balloons depends on their altitude (see g. 22.a). These variations are caused by changes of temperature and pressure inside the balloons. At the start of the take-o and throughout these missions (see g. 22.b), the wrinkles on the balloon continue to evolve. Accounting numerically for wrinkles in these structures is particularly important because the gas pressure, which depends on the volume of the balloon, aects the stress eld. The DR method has often been used to simulate these ination and wrinkle processes <40; 5356>.

To test the validity the operation of the model and investigate the impact of wrinkles on a real structure, equilibrium congurations were calculated during all the phases of a ZPB ight (during take-o and ight, depending on the altitude and the internal pressure) using both elastic and hyperelastic laws. The numerical conditions used in the simulations are presented in g. 23 and table 3.

The ZPB is composed of 74 gores, but only one gore of the balloon was simulated, and conditions of cyclic symmetry were imposed on the edges of the gore in order to account for this hypothesis. The gores, which are made of an LLDPE lm, are assembled with polyester ber reinforced tapes. In the case of these large-sized balloons, the main load to be simulated is the pressure gradient ∆p in the balloon, which reects the eects of the gas on the lm. This gradient is calculated by subtracting the pressure in the balloon from the external pressure. It depends on the balloon's altitude z, which is an input parameter in the simulation and the thickness h of the lm. The weight of the lm and that of the tapes is accounted for in the simulations by a loading gravity condition. The mass of the pole piece (9.2 kg) is signicant since it aects the shape of the balloon, and it is therefore simulated here in terms of its weight in the form of vertical point forces applied to the nodes at the end of the gore. These various loads and the mesh used are presented in g. 23. This mesh is composed of 120 quadrangular elements with linear interpolation, and 90 bar elements with linear interpolation stand for the assembly tapes. These tapes are located in the middle of the gore with an equivalent section of 9.586 mm 2 . The contact between lm and tapes is assumed to be perfect.

To simulate all the phases in the ZPB ination process, two stages are dened:

1. The rst stage consists in inating the gore by applying the hydrostatic pressure gradually until the maximum altitude of 32.5 km is reached.

During this phase, the boundary conditions for the hook and pole are applied but not the conditions of cyclic symmetry. The parameter λ in the DR method is set at 0.6. To speed up the calculation time, only the PS model is used at the start of the calculation. At the end of this step, the PS-DPS model is activated.

2. The second stage consists in applying the conditions of cyclic symmetry by means of linear boundary conditions. During this stage, the parameter λ is set at 2 and 12 with the elastic and hyperelastic law, respectively.

Comment 1. The initial conguration is the at shape of the gore.

Comment 2. The parameter λ involved in the DR method is greatly increased in the case of the hyperelastic model because the non-linear part gives rise to many kinetic peaks at the end of the simulation. The results of the stress elds presented in the table 4 and the gure 24b are in adequacy with the numerical results of the balloons of the same types <74; 75>. However, the materials, the number of balloon gores, the tapes assemblies used and the weight carried during a mission make comparisons between studies difcult. The use of the non-linear hyperelastic law and the PS-DPS model yielded many peaks in the kinetic energy. The evolution of the kinetic energy between peaks was less visible than with the other models with a linear law. However, despite the increase observed in the λ factor (which increased by 6 fold in comparison with the elastic law), the simulation was still rather unstable.

The calculation time required for each iteration was twice as long as with the PS-DPS model with an elastic law. During this simulation, the kinetic damping used in the DR algorithm was found to slow down the convergence.

In fact, a large number of kinetic energy peaks was always observed, especially at the end of the calculation. This somewhat chaotic nature of the kinetic damping may be increased by the non-linear law used to simulate the lm.

These results therefore show that the long computational times are mainly due to the complexity of the non-linear law used in this case, which also gives rise to convergence problems These simulations point to the conclusion that the use of the PS-DPS and PS models is indicated on real-life structures. They show that the local stresses at work in the structure are more intense and dierently distributed when complex behavioural laws are used in the simulations. In the context of stratospheric balloons, the use of a non-linear model resembling real-life behaviour more closely is essential to the successful design and development of these structures. The possibility of using a wrinkling model with more complex constitutive laws provides the most reliable means of predicting balloons' process of ination during their missions.

Conclusion and outlook

A new wrinkling model named the PS-DPS model, which can be used with non-linear behaviour of all kinds is presented here. This model, based on the Almansi strain involves the use of a pseudo-Dynamic Relaxation method to determine the shape of exible structures. Two plane stress conditions are imposed to simulate the wrinkled part in a state of uniaxial tension on the plane of the membrane. This model was rst tested with a linear elastic behavioural law on numerical data in the literature in order to check its eciency in classical cases. Lastly, the PS-DPS model was used to simulate the which are used to obtain the tangent matrix (where α, β = 1 and 2): 

∂σ
where e, f = 2 and 3. The degrees of freedom of the DPS condition in the present case are ε ee , where e = 2 and 3. In this context, the relevant unknowns in relation (24) are the values of ∂εee ∂ε 11 . We use the conditions σ ee = 0 that must always be satised in DPS to calculate these values : 

∂σ

Figure 1 :

 1 Figure 1: Diagram of the position and stress state of a Gauss point M in the membrane plane formed by ( g 1 , g 2 ) in the Cartesian coordinate system e i . a) Real membrane stress with wrinkles. b) Accounting for the behaviour of wrinkles with the PS-DPS model.

Figure 2 :

 2 Figure 2: First algorithm used to dene the PS state at a Gauss point on the membrane.

Figure 3 :

 3 Figure 3: Total algorithm used to model the PS-DPS state with any type of 3D mechanical behaviour.

First, by reproducing 4 . 1 .

 41 shear and torsion tests, structures subjected to inplane loading are studied. The deployment of a square cushion is then carried out in order to test the validity of the model on a structure resembling that of stratospheric balloons. These complementary tests have been frequently used in previous studies on wrinkling models. In some cases, the membrane shifts locally from a wrinkled to a taut state (in torsion and cushion tests). In other cases, the membrane is completely wrinkled (either in one direction or in all directions), as in shear tests. In shear and torsion tests, an isotropic elastic law is used, and these tests are carried out under small strains, as performed in literature. In the case of the ination of a square cushion, nite strains and elastic behaviour are rst tested, but a hyperelastic model is then used to analyse the responses of the PS-DPS model with this non-linear behaviour. Rectangular membrane under shear loading A two-dimensional rectangular membrane under shear loading was rst tested. This test has been widely used in the literature <3; 4; 6; 17; 6062>.The solutions obtained with the PS and PS-DPS models were compared with numerical and experimental results previously obtained with an elastic law.The geometry, loading conditions and material parameters used in this shear test are presented in g. 4. A 0.025 mm thick 2D rectangular membrane (the plane of the membrane) measuring 380 mm x 128 mm in the XY plane was xed at the lower edge, while the upper edge could move only in the horizontal direction. The geometry was meshed with 300 linear triangular membrane elements. These elements include one Gauss point and nite transformations (i.e. large displacements and deformations) were taken into account. The parameters λ used in the DR method were set at 2.
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 4 Figure 4: Membrane properties and kinematic boundary conditions in shear test with 300 linear triangular membrane elements performed with the PS and the PS-DPS models.
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 56 Figure 5: (a) Comparison of shear force/displacement relationships obtained using the shell model, the classical PS membrane model and the PS-DPS wrinkle model. (b) Zoom of the beginning of the shear force/displacement relationship showing the inuence of the compressive stress σ IImin (indicated in brackets) used in the PS-DPS model.

Figure 6b gives the

  Figure 6b gives the major and minor principal stresses obtained with the PS and PS-DPS models in order to show the impact of the wrinkles on the local equilibrium of the structure. With the PS model, the major principal stress σ I is lower than in the PS-DPS model, giving a dierence of 20.7% and a minor principal stress of σ II ≈ -30 MPa is obtained. This value of σ II was also obtained by Jarasjarungkiat et al. <19> with a classical PS membrane model.

Figure 7 :

 7 Figure 7: Distribution of the geometrical thickness h (kin) and the mechanical thickness h (mec) along the middle of the membrane in the case of the PS-DPS model.

Figure 8 :

 8 Figure 8: Geometry, physical properties and load at the inner edge of the annular membrane.

Figure 9 :

 9 Figure 9: Deformed mesh with representation of the principal stress vectors involving an angle θ = 10 • in the case of a linear elastic material.
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 1011 Figure 10: Angles of wrinkles α as described in <64>.

Figure 12

 12 Figure 12: a) Dimensions and material properties in the annular membrane test under torque applied to the inner edge with prestress σ 0 . b) Coarse (324 elements) and ne (1600 elements) meshes used to simulate this test.

Figure 13 :

 13 Figure 13: Comparison between the analytical solution and the results obtained with the PS-DPS model for σI σ0 , depending of the radial position r a . (a) Coarse mesh (324 elements). (b) Fine mesh (1600 elements).

Figure 14 :

 14 Figure 14: Comparison between the analytical solution and the results obtained with the PS-DPS model for σII σ0 , depending of the radial position r a . (a) Coarse mesh (324 elements).(b) Fine mesh (1600 elements).

Figure 15 :

 15 Figure 15: Membrane geometry and material properties of the inated square cushion test.

Figure 16 :Figure 17 :

 1617 Figure 16: Deformed shape of the inated square cushion testes at a pressure of 5 kPa with a mesh consisting of 5×5 elements. (a) With the PS-DPS model showing the wrinkled zones (in red). (b) With the PS model without taking the wrinkles into account.
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 1844 Figure 18: (a) Major principal stress σ I at point M with meshes consisting of 4×4, 5×5, 8×8 and 10×10 elements in comparison with data presented in previous studies <19; 43>, the "No compression" model and the PS-DPS model. (b) Comparison between the stresses σ 11 and σ 22 occuring in the Xdirection of the cushion obtained in <11> and with the PS-DPS model.

Figure 19 :

 19 Figure 19: Material parameters involved in the hyperelastic law proposed by Favier et al.

Figure 20 :Table 2 :Figure 21 :

 20221 Figure 20: Comparison between the elastic and hyperelastic responses during a uniaxial tensile test presented in <71>.

Figure 22 :

 22 Figure 22: (a) Evolution of the pressure and temperature during a ight mission. (b) Photo of a ZPB before take-o <72>.

Figure 23 :

 23 Figure 23: Mesh and loads applied during the ZPB simulations <73>.

Figure 24a shows theFigure 24 :Table 4 :

 244 Figure24ashows the shape of the balloon with the PS and PS-DPS models in the case of elastic behaviour and with the PS-DPS model using the hyperelastic model. The overall shape of the gore diers slightly between the models tested because modelling a single gore of the balloon constrains

Figure 25 Figure 25 :

 2525 Figure25shows the kinetic energy versus the iterations performed during the nal stage in the calculations (pressure at the altitude targeted, activation of the wrinkling model in two cases). With the PS model, the evolution of the kinetic energy is very pronounced between each peak. Table4shows the time required by the two models to perform an iteration in this nal stage. In the case of the PS model, this time was 0.15 s in the case of the elastic law, but 3.6 times longer in that of the PS-DPS model. However, contrary to the PS-DPS model, a larger number of iterations was necessary

Table 1 :

 1 The three membrane states dened by the stress, strain and mixed criteria as a function of the principal stresses and strains.

states. Wang et al. <6> recently presented a new means of modelling these three states, taking the previous state obtained in the membrane and

STRESS (PS) by a Newton-Raphson algorithm

  

	At the end of this rst intermediate state "int", after convergence, the
	data obtained are:			
	the 3D stress tensor σ (int) that satises the rst PS condition,
				Equilibrium iteration
	the new thickness deformation ε 33 (t+∆t) and the associated new t + ¢ t
	thickness h (t+∆t) of the membrane. From the 3D behavior law : fi The kinematic ("(t + ¢ t ), ¢ t fi Data from the previous step t +¢t and D(t + ¢ t )	are known
	3. In the case of an implicit scheme, the tangent matrix of the behavioural
	law is also calculated: the PS condition. Details of the calculation of the tangent matrix in ∂σ αβ ∂ε γη where α, β, γ, η = 1, 2 which includes the PS condition are given in appendix A. PLANE ae 3i = 0 with i= 1,2,3 ae 33 (" 33 ) = 0 (4)
	Thanks to this process, the plane stress state can be applied to any type of
	mechanical behavior.			
	2. Do while σ 33 (int) < e 1 where e 1 is a given level of precision (in the
	loop on n):			
	(a) evaluate σ ij(n) and	∂σ ij(n) ∂ε kl	from the 3D behaviour
	(b) calculate δε 33 = -	∂σ 33(n) ∂ε 33	-1	σ 33(n) , resulting from the applica-
	tion of the condition eq. (4)	
	(c) then ε 33(n+1) = δε 33 + ε 33(n) and increment n as: n = n + 1
	(d) update the membrane thickness.

Calculation of ae ij(n) and @ae ij(n)

  

	@" kl	
	Calculation and update of the thickness
	n=n+1	
	PS condition " ae 33 (int) "< e 1 ?	
	fi 3D stress tensor ae (int) that satisfied the PS condition	
	fi Thickness strain : " 33 (t+¢t) fi Thickness : h (t+¢t)	
	PS	
	3D material model	2D behavior
	elastic, elastoplastic ...	
	t + ¢ t	Final state for PS model (int)

Table 3 :

 3 Material properties of the lm and tapes.

  Calculation of the tangent matrix in the PS-DPS modelThe general expression for the tangent matrix is:

	αβ ∂ε γη	(P S) =	∂σ αβ ∂ε γη	(3D) +	∂σ αβ ∂ε 33	(3D)	∂ε 33 ∂ε γη
	B. ∂σ ef ∂ε kl	(DP S) =	∂σ ef ∂ε kl	(3D) +	∂σ ef ∂ε gh	(3D)	∂ε gh ∂ε kl
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ination of a zero pressure balloon and found to be compatible with complex laws such as non-linear hyperelastic behavioural laws on real-life structures.

A constitutive model of this kind was found to be the most suitable for describing the mechanical behaviour of the lms of which stratospheric balloons are made.

Further studies on the PS-DPS model are also under way in order to improve its responses when used with incremental anisotropic laws. Another drawback observed when the pseudo-Dynamic Relaxation method was used with complex constitutive laws is that the time to convergence required to determine local equilibria is very long. In addition, with the wrinkling model, the computational time tends to be slightly longer than with a so-called conventional membrane model. It is therefore now proposed to develop new numerical strategy in future studies in order to reduce the computational time requirements of the model, especially when a complex behavioural law 

Appendices

To clarify the following calculations of the tangent matrices, the following notations have been introduced: "3D" for the general 3D behaviour, "PS" for the specic 2D Plane Stress and "DPS" for the specic 1D Plane Stress when wrinkles occur.

A. Calculation of the tangent matrix in the PS model

When modelling the membrane, the plane stress condition has to be always satised, that is: σ 33 P S (ε 33 ) = 0. The dierential therefore also has to be zero: dσ 33 P S (ε 33 ) = 0

Due to the method used to enforce the plane stress, the ε