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MULTIFRACTAL ANALYSIS OF WEIGHTED ERGODIC AVERAGES

We propose to study the multifractal behavior of weighted ergodic averages. Our study in this paper is concentrated on the symbolic dynamics. We introduce a thermodynamic formalism which leads to a multifractal spectrum. It is proved that this thermodynamic formalism applies to different kinds of dynamically defined weights, including stationary ergodic random weights, uniquely ergodic weights etc. But the validity of the thermodynamic formalism for very irregular weights, like Möbius function, is an unsolved problem. The paper ends with some other unsolved problems.

Introduction

For a given topological dynamical system (X, T ), a continuous function f ∈ C(X) and a sequence of weights w = (w n ) ⊂ C such that ∞ n=0 |w n | = ∞, we would like to study the asymptotic behavior of the weighted Birkhoff sums

S (w) N f (x) = N -1 n=0 w n f (T n x).
One of associated problems is the multifractal analysis of S (w) N f (x). This is a difficult problem even for simple dynamical systems when the sequence of weights is irregular like the Möbius function µ : N → {-1, 0, 1}. Recall that µ(1) = 1; µ(n) = (-1)

k if n = p 1 • • • p k a product of k distinct primes; µ(n) = 0 otherwise.
The usual Birkhoff sums (with constant weight w n = 1) were extensively studied in the literature for different dynamical systems ( [START_REF] Barreira | Birkhoff averages for hyperbolic flows: variational principles and applications[END_REF], [START_REF] Barreira | Higher-dimensional multifractal analysis[END_REF], [START_REF] Barreira | Distribution of frequencies of digits via multifractal analysis[END_REF], [START_REF] Chung | Birkhoff spectra for one-dimensional maps with some hyperbolicity[END_REF], [START_REF] Fan | On the distribution of long-term time averages on symbolic space[END_REF], [START_REF] Fan | Recurrence, dimension and entropy[END_REF], [START_REF] Fan | Generic points in systems of specification and Banach valued Birkhoff ergodic average[END_REF], [START_REF] Feng | Ergodic limits on the conformal repellers[END_REF], [START_REF] Hofbauer | Multifractal spectra of Birkhoff averages for a piecewise monotone interval map[END_REF], [START_REF] Iommi | Multifractal analysis of Birkhoff averages for countable Markov maps[END_REF], [START_REF] Johansson | Multifractal analysis of non-uniformly hyperbolic systems[END_REF], [START_REF] Kesseböhmer | Stern-Brocot pressure and multifractal spectra in ergodic theory of numbers[END_REF], [START_REF] Olivier | Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures[END_REF], [START_REF] Olsen | Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages[END_REF], [START_REF] Olsen | Multifractal analysis of divergence points of the deformed measure theoretical Birkhoff averages[END_REF], [START_REF] Olsen | Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV. Divergence points and packing dimension[END_REF], [START_REF] Olsen | Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II. Non-linearity, divergence points and Banach space valued spectra[END_REF], [START_REF] Pesin | The multifractal analysis of Birkhoff averages and large deviations[END_REF], [START_REF] Reeve | Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers[END_REF], [START_REF] Reeve | The packing spectrum for Birkhoff averages on a self-affine repeller[END_REF], [START_REF] Takens | Multifractal analysis of local entropies for expansive homeomorphisms with specification[END_REF], [START_REF] Takens | On the variational principle for the topological entropy of certain non-compact sets[END_REF], [START_REF] Thompson | A variational principle for topological pressure for certain noncompact sets[END_REF], [START_REF] Tian | Topological pressure for the completely irregular set of Birkhoff averages[END_REF]). Some variants or generalizations of the usual Birkhoff sums were also well studied ( [START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF], [START_REF] Barreira | A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems[END_REF], [START_REF] Barreira | Multifractal Analysis of Asymptotically Additive Sequences[END_REF], [START_REF] Fan | Multifractal analysis for expanding interval maps with infinitely many branches[END_REF], [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF], [START_REF] Fan | On Khintchine exponents and Lyapunov exponents of continued fractions[END_REF], [START_REF] Feng | Lyapunov exponents for products of matrices and multifractal analysis.I. Positive matrices[END_REF], [START_REF] Feng | Lyapunov exponents for products of matrices and multifractal analysis[END_REF], [START_REF] Feng | Lyapunov spectrum of asymptotically sub-additive potentials[END_REF], [START_REF] Iommi | Multifractal analysis for quotients of Birkhoff sums for countable Markov maps[END_REF], [START_REF] Pfister | On the topological entropy of saturated sets[END_REF], [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF]). For surveys on the topic, see [START_REF] Climenhaga | The thermodynamic approach to multifractal analysis[END_REF], [START_REF] Fan | Some aspects of multifractal analysis[END_REF], [START_REF] Pesin | The multifractal analysis of Gibbs measures: motivation,mathematical foundation, and examples[END_REF].

In this paper we consider the symbolic dynamics (X, T ) where X := S N , S being a finite set of q elements (q ≥ 2 being an integer), and T is the shift transformation defined by (T x) n = x n+1 for x = (x n ) ∈ S N . Let us assume that (w n ) is bounded so that w n f (T n x) is a bounded sequence of functions in C(X). So, more generally, we consider [START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF] S N f (x) :=

N -1 n=0 f n (T n x) = N -1 n=0 f n (x n , x n+1 , • • • ) where f = (f n ) ⊂ C(X) is a sequence of continuous functions such that f n ∞ = O(1)
, where • ∞ denotes the supremum norm in C(X).

Define the lower and upper weighted Birkhoff averages by

A(x) := lim inf N →∞ S N f (x) N ; A(x) := lim sup N →∞ S N f (x) N .
For -∞ < a ≤ b < +∞, we define the level set

E([a, b]) := {x ∈ X : a ≤ A(x) ≤ A(x) ≤ b}.
If [a, b] reduces to a singleton {a}, we write E(a) instead of E([a, a]).

The space X is equipped with its natural distance defined by d(x, y) = q -n where n is the least k such that x k = y k and we can then define the Hausdorff dimension dim E and the packing dimension Dim E of a set E (see [START_REF] Falconer | Fractal Geometry. Mathematical Foundations and Applications[END_REF] or [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF] for the definitions). We are concerned with the multifractal analysis of S N f defined by [START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF], in other words, we would like to compute the dimensions of E([a, b])'s.

To this end, let us present the following thermodynamic formalism, adapted from that introduced in [START_REF] Fan | Multifractal analysis of infinite products[END_REF]. Let dx = σ(dx) denote the uniform Bernoulli measure on X := S N , which is defined by

σ([x 0 , x 1 , • • • , x n-1 ]) = q -n
where [x 0 , x 1 , • • • , x n-1 ] is the cylinder set consisting of all points y such that y k = x k for 0 ≤ k < n. This Bernoulli measure, which is T -invariant, is our reference measure. For any real number λ ∈ R, define

P n (x) := exp n-1 k=0 f k (x k , x k+1 , • • • ) ; Z n (λ) := EP λ n (x)
where the expectation E is relative to the Bernoulli measure σ. In the sequel, we will make the following assumptions (H1) ∀λ ∈ R, φ(λ) := lim n→∞ 1 n log Z n (λ) exists.

(H2) sup

N ≥1 sup x 0 =y 0 ,••• ,x N -1 =y N -1 N -1 k=0 |f k (x k+1 , • • • ) -f k (y k+1 , • • • )| < ∞.
The function φ is convex then continuous. It is called the pressure function, associated to (f n ). Recall that the subderivative of φ at λ, denoted ∂φ(λ), is the set of real numbers d's such that ∀η ∈ R, φ(λ + η) -φ(λ) ≥ dη.

Notice that ∂φ(λ) is a closed interval. The conjugate of a convex function φ on R is defined by

φ * (β) = sup α∈R (βα -φ(α)) (∀β ∈ R),
which is a convex function too. For all these notions and facts on convex functions we can refer to [START_REF] Ellis | Entropy, Large deviations, Statistical Mechanics[END_REF]. Let ψ(λ) := φ(λ) + log q.

It would be better to call ψ the pressure function, because, when

f n (x n , x n+1 , • • • ) = f (T n
x) for all n ≥ 1 (f being fixed), ψ(λ) is exactly the pressure of λf in the usual sense (see [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]) defined by lim

N →∞ 1 N log a 0 ,a 1 ,••• ,a N -1 sup x∈[a 0 ,a 1 ,••• ,a N -1 ] e λ N -1 k=0 f (T k x) .
One of our main results is the following theorem.

Theorem 1.1. Suppose that the assumptions (H1) and (H2) are satisfied. For λ > 0, we have

- ψ * (max ∂ψ(λ)) log q ≤ dim E(∂ψ(λ)) ≤ DimE(∂ψ(λ)) ≤ - ψ * (min ∂ψ(λ)) log q .
For λ < 0, we have similar estimates but we have to exchange the roles of min ∂ψ(λ) and max ∂ψ(λ).

The ideal case is when ψ is differentiable. Then ∂ψ(λ) reduces to a singleton and we get equalities instead of inequalities in Theorem 1.1. In other words, for α = ψ (λ) we have [START_REF] Barreira | A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems[END_REF] dim

E(α) = DimE(α) = - ψ * (α) log q = ψ(λ) -λα log q .
Thus, a natural problem is to prove the differentiability of ψ in concrete cases. We will prove this in some cases.

Let us apply Theorem 1.1 to f n (x) = w n f (T n x) where the weights (w n ) are dynamically defined. We say that f is of bounded variation,

if ∞ n=1 var n (f ) < ∞ with var n (f ) := sup x 0 =y 0 ,••• ,x n-1 =y n-1 |f (x) -f (y)|.
First we apply Theorem 1.1 to the case of ergodic random stationary weights. Especially in the case that f depends only on a finite number of coordinates, the pressure function be will proved to be analytic.

Theorem 1.2. Consider the case f n (x) = ω n f (T n x). Suppose that (ω n ) is an ergodic sequence of real random variables with ω n ∞ = O(1)
and that f is of bounded variation. Then (a) almost surely the assumptions (H1) and (H2) are satisfied and the function φ is independent of ω;

(b) if, furthermore, f depends only on a finite number of coordinates, then φ is an analytic function of λ ∈ R.

As we will see, the first assertion of Theorem 1.2 follows from Kingman's subadditive ergodic theorem and the second assertion follows from Ruelle's theorem [START_REF] Ruelle | Analyticity properties of the characteristic exponents of random matrix products[END_REF]. If f depends only on a finite number of coordinates and if (ω n ) is a sequence of independent and identically distributed random variable taking a finite number of values, Pollicott's method in [START_REF] Pollicott | Maximal Lyapunov exponents for random matrix products[END_REF] can allow us to numerically compute ψ and then to numerically find the multifractal spectrum presented by the formula [START_REF] Barreira | A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems[END_REF].

If the weight (w n ) is realized by a uniquely ergodic dynamical system, it is natural to ask if the pressure exists for every such realization. The answer is confirmative under the extra condition that f depends only on a finite number of coordinates. The problem is actually converted to the existence of maximum Lyapunov exponent of matrix-valued cocycles.

Theorem 1.3. Consider the case f n (x) = φ(Θ n ω)f (T n x)
, where Θ : Ω → Ω is a uniquely ergodic dynamical system and φ ∈ C(Ω) is a continuous function and f ∈ C(X) is a function depending only on a finite number of coordinates. Then for every ω ∈ Ω, the pressure function φ is well defined and independent of ω, and is an analytic function of λ.

This follows essentially from a result due to Furman [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] and from Theorem 1.2. Now assume that (w n ) is a sequence taking a finite number of real values, say A ⊂ R. The shift Θ : A ∞ → A ∞ acts on the closed orbit {Θ k w}. We will assume that the subsystem ({Θ k w}, Θ) is minimal and uniquely ergodic (then we will simply say that w is minimal and uniquely ergodic). Then the condition imposed in Theorem 1.3 that f depends on the first coordinates can be dropped for the function φ to be well defined. Let us point out that all primitive substitutive sequences are minimal and uniquely ergodic [START_REF] Michel | Stricte ergodicité d'ensembles minimaux de substitutions[END_REF].

Theorem 1.4. Consider f n (x) = w n f (T n x). Suppose that (w n ) ∈ A ∞
is minimal and uniquely ergodic and that f is of bounded variation. Then the assumptions (H1) and (H2) are satisfied.

The proof of Theorem 1.4 is based on the notion of return word (see [START_REF] Durand | A characterization of substitutive sequences using return words[END_REF]). Now let us look at some particular cases for which we can find an explicit formula for the function φ and then an explicit formula for the spectrum given by [START_REF] Barreira | A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems[END_REF]. For simplicity, just consider the case

S = {-1, 1}. A typical example of f n (x n , x n+1 , • • • ) is of the form (3) w n (α + βx n + γx n+1 + δx n x n+1 + ξx n x 2n + ζx n x 2n x 3n )
where α, β, γ, δ, ξ, ζ are fixed constants. Special cases include

f n (x n , x n+1 , • • • ) = w n x n x n+1 , (4) f n (x n , x n+1 , • • • ) = w n x n x 2n , (5) f n (x n , x n+1 , • • • ) = w n x n x 2n x 3n . (6) 
When w n = 1 for all n, the first case defined by ( 4) is classical and well studied (for example, see [START_REF] Fan | On the distribution of long-term time averages on symbolic space[END_REF][START_REF] Fan | Recurrence, dimension and entropy[END_REF]), and the cases defined by ( 5) and ( 6) are studied in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] using Riesz product measures. Notice that we cannot apply Theorem 1.1 to the last two cases because the assumption (H2) is not satisfied.

In the following we discuss the case f n (x) = w n x n x n+1 with some more or less regular weights (w n ). By the way, we will also discuss some generalizations of w n x n x n+1 . An explicit formula for φ will be obtained. As a corollary of Theorem 1.1, we can then prove the following result. But we can and we will provide a direct proof of the following theorem too.

Theorem 1.5. Let S = {-1, 1}. Assume that (w n ) takes a finite number of values v 0 , v 1 , • • • , v m and that the functions f n are of the form f n (x) = x n g n (x n+1 , x n+2 , • • • ).

Suppose further that

(C1) all g n take values in {-1, 1} and there is an integer L ≥ 1 such that g n (x n , • • • ) depends only on x n , x n+1 , • • • , x n+L ;

(C2) the following frequencies exist (7)

p j := lim N →∞ #{1 ≤ n ≤ N : w n = v j } N (0 ≤ j ≤ m).
Then for α ∈ (-

p j |v j |, p j |v j |) we have dim E(α) = 1 log 2 m j=0
p j log(e λαv j + e -λαv j ) -λ α v j e λαv j -e -λαv j e λαv j + e -λαv j where λ α is the unique solution of the equation m j=0 p j v j e λαv j -e -λαv j e λαv j + e -λαv j = α.

Notice that the result does not depend on the form of g n , but only on the weights (w n ). The key point for this independence is that g n only takes -1, 1 as its values.

As a corollary of Theorem 1.5, we have the following result for

F (α) = x ∈ {-1, 1} N : lim N →∞ 1 N N n=1 µ(n)x n x n+1 = α
where µ is the Möbius function.

Theorem 1.6. For any α ∈ (-6/π 2 , 6/π 2 ), we have

dim F (α) = 1 - 6 π 2 + 6 π 2 log 2 H 1 2 + π 2 12 α
where

H(x) = -x log x -(1 -x) log(1 -x).
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Thermodynamic formalism: Proof of Theorem 1.1

We present here a thermodynamic formalism proposed in [START_REF] Fan | Multifractal analysis of infinite products[END_REF], adapted to our setting in the present paper. This formalism would work in other cases. As we will point out in the last section, there will be works to do with the limit defining the pressure and with the differentiability of the pressure. The following inequalities are fundamental. In [START_REF] Fan | Multifractal analysis of infinite products[END_REF] (p. 1318), the inequalities are stated in a more general case and proved in a different way.

Lemma 2.1 (Fundamental inequalities). For any real number λ ∈ R, there exists a positive constant C(λ) > 0 such that for all integers 0 ≤ l ≤ m ≤ n we have

(8) 1 C(λ) ≤ Z l,n (λ) Z l,m (λ)Z m,n (λ) ≤ C(λ).
The constant C(λ) grows at most exponentially as function of λ, i.e. C(λ) = e O(|λ|) .

Proof. For all integers 0 ≤ m ≤ n, let

S m,n f (x) = n-1 k=m f k (T k x) = n-1 k=m f k (x k , x k+1 , • • • ).
Then P m,n = e Sm,nf (by convention S n,n f = 0 so that P n,n = 1). First we notice that for any (a 0 , a 1 ,

• • • , a m-1 ) ∈ S m we have (9) Z m,n (λ) = q m [a 0 ,a 1 ,••• ,a m-1 ]
e λSm,nf (x) dσ(x).

Indeed, the map

T m : [a 0 , a 1 , • • • , a m-1 ] → X is bijective and it maps the probability measure q m σ| [a 0 ,a 1 ,••• ,a m-1 ]
to the probability measure σ. So, by a change of variables, the member at the right hand side of ( 9) is equal to

q m [a 0 ,a 1 ,••• ,a m-1 ] e λ n-1 k=m f k (T k x) dσ(x) = X e λ n-1 k=m f k (T k-m x) dσ(x).
Then, by the T -invariance of σ, we get

X e λ n-1 k=m f k (T k-m x) dσ(x) = X e λ n-1 k=m f k (T k x) dσ(x) = Z m,n (λ). 
Thus, ( 9) is proved. Now write

Z l,n (λ) = a 0 ,a 1 ,••• ,a m-1 [a 0 ,a 1 ,••• ,a m-1 ]
e λS l,m f (x)+λSm,nf (x) dσ(x).

By the distortion hypothesis (H2), we have

Z l,n (λ) ≈ a 0 ,a 1 ,••• ,a m-1 q -m e λS l,m f (a 0 ,a 1 ,••• ,a m-1 , * ) •q m [a 0 ,a 1 ,••• ,a m-1 ]
e λSm,nf (x) dσ(x).

where * represents any fixed sequence, and the constant involved in "≈" is e O(|λ|) . By [START_REF] Brown | On the multifractal analysis of measures[END_REF], the above expression reads as

Z l,n (λ) ≈ a 0 ,a 1 ,••• ,a m-1 q -m e λS l,m f (a 0 ,a 1 ,••• ,a m-1 , * ) • Z m,n (λ).
Using once more the hypothesis (H2), we get that the last sum is equal to Z l,m (λ) up to a multiplicative constant e O(|λ|) .

We emphasize that the equality ( 9) is a key point.

Construction of Gibbs measure.

Let

dµ n,λ := P λ n (x) Z n (λ) dx.
It is a probability measure on X.

Lemma 2.2 (Gibbs property). All weak limits of the sequence of probability measures (µ n,λ ) are equivalent. For any such a limit, denoted by µ λ , we have

µ λ ([x 0 , x 1 , • • • , x n-1 ]) ≈ P λ n (x) q n Z n (λ)
.

The constant involved in "≈" depends on λ but is independent of n and x, and is of the size e O(|λ|) .

Proof. The proof is already in ( [START_REF] Fan | Multifractal analysis of infinite products[END_REF], p.1319). It is simpler in the present case. For completeness, we include it here. Let C n (x) be the cylinder

[x 0 , x 1 , • • • , x n-1 ].
Assume that µ λ is the weak limit of (µ N j ,λ ) for some sequence of integers (N j ). We have

µ λ (C n (x)) = lim j→∞ 1 Z N j (λ) Cn(x) P λ N j (y)dy ≤ C lim sup j→∞ 1 Z n (λ)Z n,N j (λ) Cn(x) P λ n (y)P λ n,N j (y)dy ≤ C lim sup j→∞ P λ n (x) q n Z n (λ) • q n Z n,N j (λ) Cn(x) P λ n,N j (y)dy = C P λ n (x) q n Z n (λ)
.

The first inequality above is a consequence of the fundamental inequalities [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]; the second inequality is a consequence of the distortion hypothesis (H2) and the last equality is because of ( 9). The inverse inequality can be proved in the same way, because we have both side estimates in our fundamental inequalities.

The measure µ λ will be called Gibbs measure associated to (f k ) and λ. Fix n ≥ 1. Define

∀k ≥ 0, g k (x) = f n+k (x)
The Gibbs measure associated to (g k ) and λ will be denoted by µ

(n) λ .
This measure depends on the tail from n on of (f k ).

Notice that

µ λ = µ (0)
λ . The family (µ

(n)
λ ) has the following quasi-Bernoulli property, which is a direct consequence of the above Lemma 2.1 and Lemma 2.2.

Lemma 2.3 (Quasi-Bernoulli property). For all integers n and m and for all sequences I ∈ S n and J ∈ S m , we have

µ λ ([IJ]) ≈ µ λ ([I])µ (n) λ ([J])
where the constants involved in "≈" are independent of n, m and I, J.

Large deviation.

We are going to present a law of large numbers with respect to our Gibbs measures. It is a consequence of a well known result on large deviation. The large deviation was used in multifractal analysis in early works (see [START_REF] Brown | On the multifractal analysis of measures[END_REF], for example). The following result on convex functions and their conjugates will be useful.

Proposition 2.4 ([14], p.221). For any convex function defined on R, we have

(i) αβ ≤ φ(β) + φ * (α), (∀α, β ∈ R). (ii) αβ = φ(β) + φ * (α) ⇐⇒ α ∈ ∂φ(β). (iii) α ∈ ∂φ(β) ⇐⇒ β ∈ ∂φ * (α). (iv) φ * * (β) = φ(β), (∀β ∈ R).
Let (W n ) be a sequence of random variables on a probability space (Ω, A, ν) and (a n ) be a sequence of positive real numbers tending to infinity. Suppose that the following limit exits

c(β) := c W (β) := lim n→∞ 1 a n log Ee βWn , ∀β ∈ R.
We call c(β) the free energy function of (W n ) with respect to ν and weighted by (a n ). By the upper large deviation bound theorem ( [START_REF] Ellis | Entropy, Large deviations, Statistical Mechanics[END_REF], p. 230), for any non empty compact set K ⊂ R we have lim sup

n→∞ 1 a n log ν a -1 n W n ∈ K ≤ -inf α∈K c * (α).
Notice that c(0) = 0. By Proposition 2.4 (i), we have c * (α) ≥ 0 for all α ∈ R. By Proposition 2.4 (ii), we have c * (α) = 0 iff α ∈ ∂c(0). Let ∆ -:= min ∂c(0), ∆ + := max ∂c(0).

For any compact set K disjoint from [∆ -, ∆ + ], we have η := inf K c * (α) > 0.
By the upper large deviation bound theorem, for large n we have

ν a -1 n W n ∈ K ≤ e -ηan/2 .
Suppose that e -an < ∞ for all > 0 (it is the case when a n = n). By the Borel-Cantelli lemma, we get [START_REF] Chung | Birkhoff spectra for one-dimensional maps with some hyperbolicity[END_REF] 

ν -a.e min ∂c(0) ≤ lim inf n→∞ W n a n ≤ lim sup n→∞ W n a n ≤ max ∂c(0).
Now fix a Gibbs measure µ λ . We consider the free energy of S n f (x) relative to (µ λ , {n}) defined as follows

c λ (β) := lim n→∞ 1 n log E µ λ P β n (x).
Lemma 2.5 ([18], p.1322). Suppose the limits defining φ(λ) exist.

Then the limit defining c λ (β) exists and we have

c λ (β) = φ(λ + β) -φ(λ).
It follows that c λ (0) = 0 so that c * λ (α) ≥ 0 for all α. Also c * λ (α) = 0 iff α ∈ ∂φ(λ). Then we can apply [START_REF] Chung | Birkhoff spectra for one-dimensional maps with some hyperbolicity[END_REF] to get the following law of large numbers.

Lemma 2.6 (Law of large numbers). For µ λ -almost all x, we have

min ∂φ(λ) ≤ A(x) ≤ A(x) ≤ max ∂φ(λ).
It will be more practical to work with ψ(λ) := φ(λ) + log q.

The above inequalities in Lemma 2.6 also hold with ψ replacing φ.

2.4.

Dimensions of Gibbs measures. The local lower and upper dimensions of a measure µ are respectively defined by

D(µ, x) = lim inf n→∞ log µ([x 0 , x 1 , • • • , x n-1 ]) log q -n , D(µ, x) = lim sup n→∞ log µ([x 0 , x 1 , • • • , x n-1 ]) log q -n
The lower and upper Hausdorff dimensions of µ are respectively defined by

dim * µ = inf{dim E : µ(E) > 0}, dim * µ = inf{dim E : µ(E c ) = 0}.
The lower packing dimension Dim * µ and the upper packing dimension Dim * µ are similarly defined by using the packing dimension DimE instead of the Hausdorff dimension dim E.

A systematic study of the Hausdorff dimensions dim * µ and dim * µ was carried out in [START_REF] Fan | Décompositions de mesures et Recouvrements alétoires (French)[END_REF][START_REF] Fan | Sur les dimension de mesures[END_REF] when X is a homogeneous space. Later, the packing dimensions Dim * µ and Dim * µ were studied independently by Tamashiro [START_REF] Tamashira | Dimensions in a separable metric space[END_REF] and Heurteaux [START_REF] Heurteaux | Estimations de la dimension inférieure et de la dimension supérieure des mesures[END_REF]. Let us just state the following result.

Proposition 2.7 ( [START_REF] Fan | Décompositions de mesures et Recouvrements alétoires (French)[END_REF][START_REF] Fan | Sur les dimension de mesures[END_REF][START_REF] Heurteaux | Estimations de la dimension inférieure et de la dimension supérieure des mesures[END_REF][START_REF] Tamashira | Dimensions in a separable metric space[END_REF]). For the Hausdorff dimensions we have

dim * µ = essinf µ D(µ, x), dim * µ = esssup µ D(µ, x).
Similar formulas hold for the packing dimensions Dim * µ and Dim * µ if we replace D(µ, x) by D(µ, x).

From the Gibbs property (Lemma 2.2), we get immediately the following relation between the local dimensions of a Gibbs measure and the averages A(x) and A(x). Lemma 2.8 (Local dimensions of Gibbs measures). For all x ∈ X we have

D(µ λ , x) = ψ(λ) -λA(x) log q if λ > 0; D(µ λ , x) = ψ(λ) -λA(x) log q if λ < 0. . Similar equalities hold when D(µ λ , x) is replaced by D(µ λ , x) and A(x) by A(x).
The measure µ 0 is the symmetric Bernoulli measure and its dimension is equal to 1. The dimensions of the Gibbs measures are estimated as follows.

Lemma 2.9 (Dimensions of Gibbs measures).

(1) If λ > 0, we have

- ψ * (max ∂ψ(λ)) log q ≤ dim * µ λ ≤ dim * µ λ ≤ - ψ * (min ∂ψ(λ)) log q .
(2) If λ < 0, we have similar estimates but we have to exchange the positions of max ∂ψ(λ) and min ∂ψ(λ).

(3) We have exactly the same estimates for the packing dimensions Dim * µ λ and Dim * µ λ .

Proof. (1) From Lemma 2.8, Lemma 2.6 and Proposition 2.7, we get

ψ(λ) -λ max ∂ψ(λ) log q ≤ dim * µ λ ≤ dim * µ λ ≤ ψ(λ) -λ min ∂ψ(λ) log q .
But, by Proposition 2.4 (ii), we have

ψ(λ) -λ min ∂ψ(λ) = -ψ * (min ∂ψ(λ)), ψ(λ) -λ max ∂ψ(λ) = -ψ * (max ∂ψ(λ)).
(2) It is the same argument, but we have to exchange the roles of max ∂ψ(λ) and min ∂ψ(λ) in the above inequalities. Notice that A(x) and A(x) have the same bounds in Lemma 2.6.

(3) It is the exactly the same argument as in ( 1) and (2).

2.5. Proof of Theorem 1.1. Now we are ready to prove Theorem

1.1. Let ∂φ(λ) = [α -, α + ]. Assume λ > 0. The fact A(x) ≥ α -for x ∈ E([α -, α + ]) implies that the set E([α -, α + ]) is contained in (11) >0 N ≥1 n>N n(α --) ≤ n-1 k=0 f k (T k x) .
By the σ-stability of the packing dimension, to upper bound the packing dimension of E([α -, α + ]) it suffices to estimate the Minkowski dimension of the last set of intersection, i.e. ∩ n≥N {n(α --) ≤ S n f (x)}.

Consider the family C n of all the n-cylinders intersecting that set of intersection. For any d > 0 we have

[x 0 ,x 1 ,••• ,x n-1 ]∈Cn q -nd ≤ [x 0 ,x 1 ,••• ,x n-1 ]∈Cn q -nd • e λ n-1 k=0 f k (T k x) e λn(α --) ≤ [x 0 ,x 1 ,••• ,x n-1 ] q -nd • e λ n-1 k=0 f k (T k x) q n Z n (λ) • q n Z n (λ) e λn(α --) .
By the Gibbs property of µ λ (Lemma 2.2), we have

[x 0 ,x 1 ,••• ,x n-1 ]∈Cn q -nd ≤ Cq -nd • q n Z n (λ) e λn(α --) µ λ ([x 0 , • • • , x n-1 ]) ≤ Cq -nd q n e n(ψ(λ)+ )-nλ(α --) = Cq -n[d-1 log q (ψ(λ)-λα -+ +λ )] ≤ C if d > 1 log q (ψ(λ)-λα -+ +λ ).
It follows that the Minkowski dimension of the set in question is smaller than 1 log q (ψ(λ) -λα -+ + λ ). Let → 0, we get

(12) DimE(∂ψ(λ)) ≤ ψ(λ) -α -λ log q = - ψ * (min ∂ψ(λ)) log q .
If λ < 0, we can similarly prove

(13) DimE(∂ψ(λ)) ≤ ψ(λ) -α -λ log q = - ψ * (max ∂ψ(λ)) log q ,
but we must start with the fact that

E [α -,α + ] is contained in (14) >0 N ≥1 n>N n(α + + ) ≥ n-1 k=0 f k (T k x) .
Notice that we have opposite inequalities in [START_REF] Climenhaga | The thermodynamic approach to multifractal analysis[END_REF] and [START_REF] Ellis | Entropy, Large deviations, Statistical Mechanics[END_REF]. Prove now the lower bound. By Lemma 2.6, E(∂ψ(λ)) is of full µ λmeasure. In particular, A(x) ≤ max ∂ψ(λ) for µ λ -almost every x. If λ > 0, by Lemma 2.8, this implies

µ λ -a.e. x D(µ λ , x) ≥ ψ(λ) -λ max ∂ψ(λ) log q . Thus (15) dim E(∂ψ(λ)) ≥ - ψ * (max ∂ψ(λ)) log q .
When λ < 0, we use the fact A(x) ≥ min ∂ψ(λ) for µ λ -almost every x to get [START_REF] Fan | Décompositions de mesures et Recouvrements alétoires (French)[END_REF] dim E(∂ψ(λ)) ≥ -ψ * (min ∂ψ(λ)) log q .

The four inequalities ( 12), (13) ( 15) and ( 16) are what we have to prove.

2.6. τ -function of the Gibbs measure µ λ . For the Gibbs measure µ λ , we define the function

τ λ (β) = lim n→∞ 1 log q -n log x 0 ,x 1 ,••• ,x n-1 µ λ ([x 0 , x 1 , • • • , x n-1 ]) β .
The function τ λ and the function φ has a simple explicit relation. The differentiability of φ at λ is equivalent to the differentiability of τ λ at 1. It is better to state the following lemma with ψ.

Lemma 2.10 (Relation between τ and ψ). Under the assumptions (H1) and (H2), the limit defining τ λ (β) exists for all β ∈ R and we have

(17) τ λ (β) = βψ(λ) -ψ(βλ) log q .
Consequently, ψ is differentiable at λ iff τ λ is differentiable at 1. In this case we have

(18) τ λ (1) = ψ(λ) -λψ (λ) log q .
Proof. By the Gibbs property (cf. Lemma 2.2) and the distorsion property (H2), we have

x 0 ,x 1 ,••• ,x n-1 µ λ ([x 0 , x 1 , • • • , x n-1 ]) β x 0 ,x 1 ,••• ,x n-1 q n [x 0 ,x 1 ,••• ,x n-1 ] e λSnf (x) q n Z n (λ) β = 1 q (β-1)n Z n (λ) β x 0 ,x 1 ,••• ,x n-1 [x 0 ,x 1 ,••• ,x n-1 ] e βλSnf (x) dx = Z n (βλ) q (β-1)n Z n (λ) β . It follows that τ λ (β) = β -1 + βφ(λ) -φ(βλ) log q = βψ(λ) -ψ(βλ) log q .
Recall that ψ(λ) = φ(λ) + log q is the pressure in the usual sense. λ the Gibbs measure corresponding to the weight ω ∈ Ω and write

Z n (λ, ω) = X e λS (ω) n f (x) dx
where

S (ω) n f (x) = n-1 k=0 ω k f (T k x).
The fundamental inequalities (8) read as

(19) 1 C(λ) ≤ Z m+n (λ, ω) Z n (λ, ω)Z n,n+m (λ, Θ n ω) ≤ C(λ).
The condition (H2) is clearly satisfied. By Kingman's ergodic theorem, almost surely the condition (H1) is also satisfied, i.e. almost surely the following limit exists ( 20)

φ (ω) (λ) = lim n→∞ 1 n log Z n (λ, ω)
and φ (ω) (λ) is almost surely equal to the function φ(λ) defined by

φ(λ) = lim n→∞ 1 n E log Z n (λ, ω).
We actually have

φ(λ) - 1 n E log Z n (λ, ω) ≤ |λ| log C(λ) n .
Now suppose that f depends only on the first r ≥ 2 coordinates ( φ(λ) is easy to compute when r = 1), i.e. f takes the form

f (x) = f (x 0 , x 1 , • • • , x r-1 ).
For fixed λ ∈ R and fixed w ∈ R, let us define a q r-1 × q r-1 -matrix

A w (λ) = (a u,v ) (u,v)∈S r-1 ×S r-1 as follows: if the (r -2)-suffix of u is equal to the (r -2)-prefix of v, i.e. u = x 0 x 1 • • • x r-2 and v = x 1 • • • x r-1 for some (x 0 , x 1 , • • • , x r-1 ) ∈ S r , then a u,v = e λwf (x 0 ,x 1 ,••• ,x r-1 ) ; otherwise a u,v = 0. Since S (ω) n f (x) is locally constant on cylinders of length n + r, it is easy to see that Z n (λ, ω) = 1 q n+r-1 A ω 0 (λ)A ω 1 (λ) • • • A ω n-1 (λ)
where A denotes the norm defined by the sum of all the entries of a non-negative matrix A. Observe that our matrices A ωn (λ) are nonnegative and that the product of any r consecutive matrices are strictly positive. So,

Z nr (λ, ω) = 1 q nr+r-1 B ω (λ)B Θω (λ) • • • B Θ n-1 ω (λ) where B ω (λ) = A ω 0 (λ)A ω 1 (λ) • • • A ω r-1 (λ)
which is a strictly positive matrix. So,

φ(λ) = 1 r lim n→∞ 1 n E log B ω (λ)B Θω (λ) • • • B Θ n-1 ω (λ) -log q.
The above limit is the largest characteristic exponent of the random positive matrix B ω (λ). Since λ → B ω (λ) analytic and B ω (λ) is positive, the exponent is an analytic function of λ, by Ruelle's theorem (Theorem 3.1. in [START_REF] Ruelle | Analyticity properties of the characteristic exponents of random matrix products[END_REF]).

Uniquely ergodic weights: Proof of Theorem 1.3

Let us borrow the notation and the argument from the above proof of Theorem 1.2. Assume f (x) = f (x 0 , x 1 , • • • , x r-1 ). For fixed λ ∈ R and fixed ω ∈ Ω, let us define a q r-1 × q r-1 -matrix

A ω (λ) = (a u,v ) (u,v)∈S r-1 ×S r-1 as follows: if the (r -2)-suffix of u is equal to the (r -2)-prefix of v, i.e. u = x 0 x 1 • • • x r-2 and v = x 1 • • • x r-1 for some (x 0 , x 1 , • • • , x r-1 ) ∈ S r , then a u,v = e λφ(ω)f (x 0 ,x 1 ,••• ,x r-1 )
; otherwise a u,v = 0. B ω is similarly defined as above. Since the function ω → A ω is eventually positive (i.e. B ω is strictly positive), by the part 3 of Theorem 3 from Furman [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF], the following limit exists

lim n→∞ 1 n log A ω (λ)A Θω (λ) • • • A Θ n-1 ω (λ)
for all ω (and all λ) and the limit is actually uniform in ω. The independence of ω of the limit is due to the ergodicity and the analyticity of the limit as function of λ follows from Theorem 1.2. But notice that Theorem 3 in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] requires that A ω belongs to GL q r-1 (R). It is not the case in general for our A ω . However the part 3 of Theorem 3 in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] does not need this condition. This is because the entries of the positive matrices B Θ n ω are bounded from below by a constant δ > 0 and from above by δ -1 (δ being independent of ω and of n).

Let us state Furman's result, that we have used above, by dropping the invertibility of the matrix: Let (X, µ, T ) be a uniquely ergodic system and suppose that A is a continuous real d × d-matrix function defined on X and that there exists an integer p ≥ 1 such that

A(T p-1 x) • • • A(T x)A(x) > 0
meaning that all entries are positive for all x. Then for every x ∈ X the following limit exists:

lim n→∞ 1 n log A(T n-1 x) • • • A(T x)A(x) .
The limit is actually uniform in x ∈ X. Lemma 5 in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] which was used in the proof of the above result can be modified as follows without requiring the invertibility: let (B n ) be a sequence of positive d × d-matrices with entries in the interval [δ, δ -1 ] (δ > 1 being a constant). Let

∆ := (x i ) ∈ R d : d i=1 x i = 1, x i ≥ 0
and ∆ be the corresponding set of ∆ in the projective space P d-1 . Then there exists a unique point u ∈ P d-1 such that

∞ n=1 B n ∆ = {u}
where B n is the projective transformation associated to B n .

Here is a proof. Let K be the cone

{(x 1 , • • • , x d ) : x i ≥ 0 (1 ≤ i ≤ d)}.
The Hilbert projective metric defined in the interior

• K of K is equal to d(x, y) = log max 1≤i≤d x i y i max 1≤i≤d y i x i .
See [START_REF] Bushell | Hilbert's metric and positive contracting mappings in a Banach space[END_REF]. Then for any positive matrix B = (b i,j ), we have

d(Bx, By) = log max 1≤i≤d d j=1 b i,j x j d j=1 b i,j y j max 1≤i≤d d j=1 b i,j y j d j=1 b i,j x j .
It easy to see that if δ ≤ b i,j ≤ δ -1 for all i and j, we have

d(Bx, By) ≤ 4 log 1 δ < ∞.
Thus, the hypothesis on B n 's implies that the projective diameters of B n 's are bounded, so that the operators B n are contractive with a uniform contracting ratio tanh(log δ -1 ) < 1 ( [START_REF] Birkhoff | Extensions of Jentzch's theorem[END_REF], see also [START_REF] Bushell | Hilbert's metric and positive contracting mappings in a Banach space[END_REF] p. 333).

Based on Lemma 5 in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF], it is proved in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] that there exists a function u : X → ∆ such that u(T x) = A(x)u(x) namely

A(x)u(x) = u(T x) A(x)u(x) .
Using this, we get

A(n, x)u(x) = A(T n-1 x)A(T n-2 x) • • • A(T x)A(x)u(x) = A(T n-1 x)A(T n-2 x) • • • A(T x)u(T x) A(x)u(x) .
Inductively we get

A(n, x)u = u(T n x) A(T n-1 x)u(T n-1 x) • • • A(T x)u(T x) A(x)u(x) . So, log A(n, x)u(x) n = log u(T n x) n + 1 n n-1 k=0 φ(T k x)
where φ(x) = log A(x)u(x) , which is a continuous function on X.

Then we can conclude by the unique ergodicity of T .

The above argument repeats that in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] with some modifications and details (it seems that there is something wrong at the bottom of page 807 in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF]). We first recall some useful facts on orbital systems, especially orbital systems generated by primitive substitutive sequences and the notion of return word [START_REF] Durand | A characterization of substitutive sequences using return words[END_REF], which is the key for proving Theorem 1.4. The reference [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF] is a good source for primitive substitutive sequences. A substitution (ζ, A, α) is said to be primitive if there exits an integer k such that for all letters β ∈ A and γ ∈ A, β is a letter in ζ k (γ). In this case, the corresponding sequence w ζ is said to be primitive.

Let x = x 0 x 1 • • • ∈ A N , let m and n be two integers with m ≤ n. We write x [m,n] for the word x m • • • x n , called a factor of x. The index m is called the recurrence of x [m,n] . Factors x [0,n] are called prefixes. For a word x = x 0 x 1 • • • x -1 ,
we can also define its factors and prefixes. Suffixes of this word x are defined to be the words

x k x k+1 • • • x -1 for 0 ≤ k < .
An infinite sequence x = x 0 x 1 • • • ∈ A N is said to be minimal if for every integer ≥ 1, there exists an integer L ≥ 1 such that each factor of x of length occurs as factor of every factor of x of length L. Let Θ : A N → A N be the shift transformation. That x is minimal means that the orbital system ({Θ n x}, Θ) is minimal. If the system ({Θ n x}, Θ) is minimal and uniquely ergodic, we say x is minimal and uniquely ergodic.

Let x be a minimal sequence over an alphabet A and u be a nonempty prefix of x. We call return word over u every factor x [i,j-1] where i and j are two successive occurrences of u in x. We use R u (x) to denote the set of all return words over u.

Let x be a minimal sequence. For every prefix u of x, the sequence has a unique decomposition [START_REF] Fan | Recurrence, dimension and entropy[END_REF] x

= m 0 m 1 m 2 • • • ∈ R u (x) N ;
The following lemma contains the key facts for us.

Lemma 5.1. Suppose that x ∈ A ∞ is minimal and uniquely ergodic.

For each prefix u of x, (a) the set of return words R u (x) is finite.

(b) the following frequencies exist:

(22) p v = lim k→∞ #{0 ≤ i < k : m i = v} k (∀v ∈ R u (w))
where m j 's are the factors in the decomposition (21) of x.

Every primitive substitutive sequence is minimal and uniquely ergodic ( [START_REF] Michel | Stricte ergodicité d'ensembles minimaux de substitutions[END_REF]).

Let us look at the Thue-Morse sequence (t n ) defined by the substitution 0 → 01, 1 → 10: The assumption (H2) is easy to check by using the hypothesis of the bounded variation of f . In the following, we check the assumption (H1).

If w is periodic, then φ is well defined. So, in the following, we assume that w is not periodic.

Let n ≥ 1 be a fixed integer and let u be the prefix of w having length n. Since w is aperiodic, every return word

v ∈ R u (w) has length |v| ≥ n 2 . Assume that w = v 1 v 2 • • • v k • • • with v j ∈ R u (w).
Such a decomposition exists and is unique, see [START_REF] Fan | Recurrence, dimension and entropy[END_REF]. For any word

b = b 0 b 1 • • • b m-1 ∈ A + , we introduce the notation Z b := Z b (λ) = exp λ m-1 j=0 b j f (T j x) dx. Notice that (23) Z m,n (λ) = Z wmw m+1 •••w m+n-1 (λ).
Indeed, by the definition of Z m,n (λ) and the invariance of dx, we have

Z m,n (λ) = exp λ m+n-1 j=m w j f (T j x) dx = exp λ m+n-1 j=m w j f (T j-m x) dx.
Thus, by Lemma 2.1, we have

C -k ≤ Z v 1 v 2 •••v k Z v 1 Z v 2 • • • Z v k ≤ C k . It follows that (24) log Z v 1 v 2 •••v k |v 1 v 2 • • • v k | = k |v 1 v 2 • • • v k | • 1 k k i=1 log Z v i ± k |v 1 v 2 • • • v k | log C.
Here by a n = b n ± c n we mean |a n -b n | ≤ c n . By Lemma 5.1 (b), the following frequencies exist:

p v := lim k→∞ #{1 ≤ i ≤ k : v i = v} k (∀v ∈ R u (w)).
Therefore, by Lemma 5.1 (a),

lim k→∞ k |v 1 v 2 • • • v k | = 1 v∈Ru(w) p v |v| , lim k→∞ 1 k k i=1 log Z v i = v∈Ru(w) p v log Z v . Let L u = lim inf k log Z v 1 v 2 •••v k |v 1 v 2 • • • v k | , L u = lim sup k log Z v 1 v 2 •••v k |v 1 v 2 • • • v k | ;
and

A u = v∈Ru(w) p v log Z v v∈Ru(w) p v |v| . Notice that k |v 1 v 2 •••v k | ≤ 2 n . From (24), we get (25) A u - 2 log C n ≤ L u ≤ L u ≤ A u + 2 log C n . Then (26) 0 ≤ L u -L u ≤ 4 log C n .
For any N , there exists a unique integer k such that

|v 1 v 2 • • • v k | ≤ N < |v 1 v 2 • • • v k v k+1 |.
So, by the definition of Z N (λ), we have

log Z N (λ) = log Z v 1 v 2 •••v k ± |λ|M w ∞ f ∞ where M = max v∈Ru(w) |v|. It follows that (27) φ = L u , φ = L u ,
where

φ(λ) = lim inf N →∞ log Z N (λ) N , φ(λ) = lim sup N →∞ log Z N (λ) N .
From ( 26) and ( 27), we get

0 ≤ φ(λ) -φ(λ) ≤ 4 log C n .
Observe that both φ and φ are independent of n. Letting n → ∞, we get φ(λ) = φ(λ). The theorem is thus proved.

Notice that from ( 25) and ( 27), we get the following approximation of φ by the real analytic functions A u :

(28) φ(λ) = v∈Ru(w) p v log Z v (λ) v∈Ru(w) p v |v| ± 2 log C n .
Recall that n is the length of the prefix u. This approximation is uniform on any compact set of λ's because C = e O(λ) .

6. Proof of Theorem 1.5

The condition (C1) in Theorem 1.5 implies the condition (H1) in Theorem 1.1. So, in order to apply Theorem 1.1 to prove Theorem 1.5, it suffices to compute the pressure function.

6.1. Computation of the pressure function. The observation stated in the following lemma will allow us to compute the pressure function. Lemma 6.1 (Bernoullicity). Let

f n (x) = x n g n (x n+1 , • • • , x n+p , • • • )
where g n is a Borel function taking values in {-1, 1}. Then f n 's are independent symmetric Bernoulli variables, in other words

∀(t 1 , • • • , t k ) ∈ R k , Ee t 1 f 1 +•••+tnfn = 1 2 n n k=1 (e t k + e -t k ).
Proof. First remark that for any r ∈ R, we have Ee x j r = 1 2 (e r + e -r ), which depends only on the absolute value of r. Write

Ee t 1 f 1 +•••+tnfn = E[e t 2 f 2 +•••+tnfn E e t 1 f 1 |x 2 , • • • , x n , • • • ].
Observe that x 1 is independent of x 2 , x 3 , • • • . By the above remark we have

E e t 1 f 1 |x 2 , • • • , x n , • • • = 1 2 (e t 1 + e -t 1 ),
because the conditional expectation is equal to the expectation with respect to x 1 with x 2 , x 3 , • • • being fixed. Thus, by induction, we get

Ee t 1 f 1 +•••+tnfn = 1 2 n n k=1 (e t k + e -t k ).
It follows that the pressure function φ is independent of the form of the functions g n 's. So, in the following, without of loss of generality we continue our discussion with g n (x n+1 , x n+2 , • • • ) = x n+1 . According to Theorem 1.1, the result on dim H(α) depends only on the function

φ(λ) = lim N →∞ 1 N log Ee λ N n=1 wnxnx n+1
provided that the limit exists. The limit does exist and is computable. Lemma 6.2 (Pressure function). Suppose that f n 's satisfy the assumption made in Lemma 6.1 and that w n 's take values v 0 , v 1 , • • • , v m such that the frequence p j defined by [START_REF] Birkhoff | Extensions of Jentzch's theorem[END_REF] exists for each j. Then Proof. Lemma 6.1 gives

(30) Ee λ N n=1 wnxnx n+1 = 2 -N N n=1
(e λwn + e -λwn ).

Then [START_REF] Feng | Ergodic limits on the conformal repellers[END_REF] follows immediately if we use the hypothesis on (w n ).

We would like to give another proof of [START_REF] Fan | On the frequency of partial quotients of regular continued fractions[END_REF]. One reason is to get rid of Lemma 6.1 which could be mysterious for some readers. The other reason is that this method will allow us to treat other cases.

Since the function N n=1 w n x n x n+1 is constant on cylinders of length N + 1, we have

Ee λ N n=1 wnxnx n+1 = 1 2 N +1 x 1 ,••• ,x N +1 ∈{-1,1}
e λ N n=1 wnxnx n+1 .

Let

A n = e λwn e -λwn e -λwn e λwn .

It is clear that

(31) Ee λ N n=1 wnxnx n+1 = 1 2 N +1 A 1 • • • A N S
where B S denotes the norm of a matrix B, the sum of all elements of B. Notice that all A n 's are of the form

A = a b b a (a, b ∈ R)
which commute with each other. Indeed, they can be simultaneously diagonalized as follows

(32) R -1 AR = D := a + b 0 0 a -b , where R = √ 2 2 1 -1 1 1 , R -1 = √ 2 2 1 1 -1 1 ,
which are independent of a and b. Apply [START_REF] Feng | Lyapunov exponents for products of matrices and multifractal analysis.I. Positive matrices[END_REF] to

A = A n (1 ≤ n ≤ N ) to get R -1 A n R = D n with
D n = e λwn + e -λwn e λwn -e -λwn .

Then A 1 • • • A n = RD 1 • • • D N R -1 . Notice that R u v R -1 = 1 2 u + v u -v u -v u + v
and the sum of entries of the last matrix equals to 2u. Then

A 1 • • • A n S = 2 N n=1
(e λwn + e -λwn ).

This, together with [START_REF] Fan | On Khintchine exponents and Lyapunov exponents of continued fractions[END_REF], leads to (30). p j v 2 j e 2λv j (e 2λv j + 1) 2 > 0.

Then, for any α ∈ (ψ (-∞), ψ (+∞)), there exists a unique λ α such that ψ (λ α ) = α, i.e. m j=0 p j v j e λαv j -e -λαv j e λαv j + e -λαv j = α.

So, ψ * (α) = αλ α -ψ(λ α ), which gives the formula dim E(α) = 1 log 2 m j=0 p j log(e λαv j + e -λαv j ) -λ α v j e λαv j -e -λαv j e λαv j + e -λαv j .

6.3. Gibbs measures are Markovian measures. In the case

f n (x n , x n+1 ) = w n x n x n+1 ,
we can directly prove Theorem 1.5 without using Theorem 1.1. Because we can directly construct the Gibbs measures as inhomogeneous Markov measures and compute their dimensions without using Lemma 2.9.

Consider the stochastic matrix

P n = 1 e λwn + e -λwn
e λwn e -λwn e -λwn e λwn .

We denote it by (p

(n) i,j ). It is clear that ( 1 2 , 1 2 
) is a left invariant probability vector of all P n . Let us define the inhomogeneous Markov measure µ λ by

µ λ ([x 0 x 1 • • • x n ]) = 1 2 p (0) x 0 ,x 1 • • • p (n-1)
x n-1 ,xn . In other words, [START_REF] Feng | Lyapunov exponents for products of matrices and multifractal analysis[END_REF] µ

λ ([x 0 x 1 • • • x n ]) = 1 2Z n (λ) exp λ n-1 k=0 w k x k x k+1 ,
where Z n (λ) = n-1 k=0 (e λw k + e -λw k ). Lemma 6.3 (Law of large numbers). For every n ≥ 0 we have

x n x n+1 dµ λ (x) =
e λwn -e -λwn e λwn + e -λwn .

For µ λ -almost all x we have (34) lim

N →∞ 1 N N -1 n=0 w n x n x n+1 = m j=0
p j v j e λv j -e -λv j e λv j + e -λv j .

Proof. By the definition of µ λ we have

x n x n+1 dµ λ (x) = x 0 ,x 1 ,••• ,x n+1 x n x n+1 • 1 2 p (0) x 0 ,x 1 • • • p (n) xn,x n+1 . Since i p (k) 
i,j = 1, we have

x n x n+1 dµ λ (x) = 1 2
xn,x n+1

x n x n+1 p (n) xn,x n+1 = e λwn -e -λwn e λwn + e -λwn where the last equality follows from the definition of P n . Let Y n = x n x n+1 . Similar computation shows that Y n -E µ λ Y n are orthogonal. Then [START_REF] Feng | Lyapunov spectrum of asymptotically sub-additive potentials[END_REF] follows from the Menshov theorem (see [START_REF] Kac | A gap theorem[END_REF]) and the Kronecker lemma (see [START_REF] Shiryaev | Probability[END_REF]). Lemma 6.4 (Dimensions of Markov-Gibbs measures). For any real number λ, the Hausdorff dimension of the Markov-Gibbs measure µ λ defined by ( 33) is equal to

dim µ λ = 1 log 2 m j=0
p j log(e λv j + e -λv j ) -λv j e λv j -e -λv j e λv j + e -λv j .

Proof. From the definition (33) of µ λ , we have

log µ λ ([x 0 x 1 • • • x n ]) log 2 -n = log 2 Z n (λ) n - λ log 2 • n n-1 k=0 w k x k x k+1 + o(1).
Then by Lemma 6.3, µ λ -a.e. we have

D(µ λ , x) = 1 log 2 m j=0
p j log(e λv j + e -λv j ) -λ log 2 m j=0 p j v j e λv j -e -λv j e λv j + e -λv j .

7. Proof of Theorem 1.6

In the case of Möbius weights w n = µ(n), by Lemma 6.2 we have

ψ(λ) = f 0 log 2 + (1 -f 0 ) log(e λ + e -λ ) where 1 -f 0 = 6 π 2 , because it is well known that lim N →∞ 1 N N n=1 µ(n) = 0, lim N →∞ 1 N N n=1 |µ(n)| = 6 π 2 
(see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], Theorem 3.8 and Theorem 3.10). For α ∈ (-6/π 2 , 6/π 2 ) we can solve the equation ψ (λ) = α, i.e.

6

π 2

e λ -e -λ e λ + e -λ = α.

Indeed, let α = α 6/π 2 ∈ (0, 1). Then we get the solution λ α :

e λα = 1 + α 1 -α , i.e. λ α = 1 2 log 1 + α 1 -α . Then -ψ * (α) = ψ(λ α ) -αλ α = f 0 log 2 + (1 -f 0 ) log 1 + α 1 -α + 1 -α 1 + α - α 2 log 1 + α 1 -α . Notice that 2 log 1 + α 1 -α + 1 -α 1 + α = log 1 + α 1 -α + 1 -α 1 + α + 2 = log 4 (1 + α )(1 -α ) .
So, letting p = (1 + α )/2 and p = (1 -α )/2, we get

-ψ * (α) = f 0 log 2 + 1 -f 0 2 log 4 (1 + α )(1 -α ) -(1 -f 0 ) α 2 log 1 + α 1 -α = f 0 log 2 -(1 -f 0 ) 1 2 log(pp ) -(1 -f 0 ) α 2 log(p/p ) = f 0 log 2 -(1 -f 0 ) 1 + α 2 log p + 1 -α 2 log p = f 0 log 2 + (1 -f 0 )H(p).
So, by Theorem 1.5, we get dim

F (α) = 1 - 6 π 2 + 6 π 2 log 2 H 1 2 + π 2 12 α .
The above proof, without any change, actually proves the the following more general result.

Theorem 7.1. Assume that (w n ) is a sequence taking -1, 0, 1 as values and having f 0 as the frequency of 0's. For any α ∈

(-(1 -f 0 ), 1 -f 0 ), we have dim F (α) = f 0 + 1 -f 0 log 2 H 1 2 + α 2(1 -f 0 ) , where 
F (α) = x ∈ {-1, 1} N : lim N →∞ 1 N N n=1 w n x n x n+1 = α .

Final remarks

R.1. We can consider complex valued or vector valued functions f n . Assume that f n 's take values in R d . Then we have to change the definition of Z n (λ) as follows

Z n (λ) = E exp λ • n-1 k=0 f k (x k , x k+1 , . . . ) , (λ ∈ R d )
where λ • a denotes the inner product in R d . R.2. Theorem 1.1 is not applicable to the case

f n (x n , x n+1 , • • • ) = w n x n x 2n .
Because, although the condition (H1) is satisfied (see Lemma 6.2), but the condition (H2) is not satisfied. New ideas are needed to study this case. The special case where w n = 1 for all n was treated in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF][START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF]. The more general case f n (x) = f (x n , x 2n ) was studied in [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] and the method of [START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF] could be used to treat a general (w n ) which takes a finite number of values and admits frequencies for all possible values. See [START_REF] Fan | Multifractal analysis of some multiple ergodic averages in linear cookie-cutter dynamical systems[END_REF][START_REF] Liao | Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents[END_REF][START_REF] Peres | Dimensions of some fractals defined via the semigroup generated by 2 and 3[END_REF][START_REF] Wu | Multifractal analysis of some nonconventional ergodic averages[END_REF] for related works. A form of non-linear thermodynamic formalism based on solutions to a nonlinear equation was useful for such a problem [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF][START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF][START_REF] Fan | Multifractal analysis of some multiple ergodic averages[END_REF]. The idea comes from Kenyon, Peres and Solomyak [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF]. Pollicott [START_REF] Pollicott | A Nonlinear Transfer Operator Theorem[END_REF] considered a more general setting of nonlinear transfer operator. For a nonlinear Perron-Frobenius theory, see [START_REF] Lemmens | Nonlinear Perron-Frobenius Theory[END_REF]. R.3. If f n (x n , x n+1 , • • • ) is of the form w n f (x n , x n+1 ) where f : S × S → R is an arbitrary function, we can apply Theorem 1.1 to this case. But we have to make sure that the limit defining φ exists. Better is to ensure the differentiability of φ. However both are questionable and works are to be done for a given weight (w n ), except for the dynamically produced weights considered in Theorem 1.2, Theorem 1.3 and Theorem 1.4.

Problem 1. Find conditions on (w n ) and on f such that φ is well defined and differentiable.

In the following, we discuss some sub-problems. R.4. A very special case of Problem 1 is as follows. Problem 2. Suppose that w n is the Möbius function µ(n) and f : {0, 1} × {0, 1} → {0, 1} is defined by f (x, y) = xy. Is φ well defined and differentiable? We emphasize that it is {0, 1} but not {-1, 1}. If we would like to work with {-1, 1}, the problem arises for f (x, y) = axy + bx + cy (a, b, c being constants).

Here is an idea to attack such a problem, which was used for proving Theorem 1.2 and Lemma 6.2. Assume f n (x n , x n+1 , • • • ) = w n f (x n , x n+1 ) where f : S × S → R and (w n ) are given. For any λ ∈ R, define an S × S-matrix A n := A n (λ) := e λwnf (i,j) (i,j)∈S×S .

By the same argument as in the proof of [START_REF] Fan | On Khintchine exponents and Lyapunov exponents of continued fractions[END_REF], we can obtain [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic system[END_REF] Z n (λ) = Ee λ N n=1 wnf (xn,x n+1 ) = 1 q N +1 A 1 • • • A N where B denotes the sum of all elements of a matrix B. So, we are led to prove the existence of the following Lyapunov exponent [START_REF] Furstenberg | Recurrence in Ergodic Theory and Combinatorial Number Theory[END_REF] L(λ) = lim

N →∞ 1 N log A 1 • • • A N .
Notice that L(λ) is nothing but ψ(λ), if the limit in [START_REF] Furstenberg | Recurrence in Ergodic Theory and Combinatorial Number Theory[END_REF] exists.

Remark that for the case concerned by Problem 2, the matrix A n (λ) takes a simple form A n (λ) = 1 1 1 e λ µ(n) . R.5. Keep the same notation as in R.4. Replace (w n ) by a sequence of independent and identically distributed random variables (ω n ) taking a finite number of values. By Theorem 1.2, L(λ) is analytic. The method presented by Pollicott in [START_REF] Pollicott | Maximal Lyapunov exponents for random matrix products[END_REF] can be used to numerically compute L(λ). R.6. If (w n ) is a primitive substitutive sequence, we have proved that L(λ) is well defined and is analytic (Theorem 1.3).

Problem 3.

Suppose that (w n ) is a primitive substitutive sequence. Then L(λ) differentiable, by Theorem 1.3. Is it possible to get a closed form for L(λ)? How about Thue-Morse sequence or other specific sequences? R.7. Following Katznelson and Weiss [START_REF] Katznelson | A simple proof of some ergodic theorems[END_REF], Furman ([35], Theorem 1) proved that on any uniquely ergodic system (Ω, Θ), there exist continuous subadditive cocyles (f n ) such that the limit of n -1 f n (ω) does not exist for some ω. Our pressures considered in Theorem 1.3 are defined by the limit for special cycles. By Theorem 1.3, the limit defining the pressure does exist under the condition that f depends only on a finite number of coordinates.

Problem 4. Can we drop this condition of dependence on finite coordinates but we assume that f is of bounded variation? for different weights (w n ). Three questions are associated: does the limit exist? is the limit differentiable as a function of λ? is it possible to compute the limit? Addendum B. Bárány, M. Rams and R. X. Shi have obtained some results similar to Theorem 1.2 and Theorem 1.5 with a different approach, which will be presented in a forthcoming paper.

2. 1 .

 1 Fundamental inequalities. For m ≤ n, denote P m,n (x) := P n (x) P m (x) ; Z m,n (λ) := EP λ m,n (x).

3 . 2 3. 1 .

 321 Stationary weights: Proof of Theorem 1.Proof of Theorem 1.2. Assume that ω = (ω n ) takes values in an interval I ⊂ R. Let Ω = I N and let Θ denote the shift map on Ω so that Θ n ω = (ω n+k ) k≥0 . To express clearly the dependence on ω, denote by µ (ω)

5 .

 5 Minimal and uniquely ergodic weights: Proof of Theorem 1.4

5. 1 .

 1 Minimal and uniquely ergodic sequences. Let A be a finite set, called alphabet.Elements of A are called letters. A word of A is an element x = x 0 x 1 • • • x n-1 of A n ,where n is called the length of x, and is denoted by |x|. The length of the empty-word ∅ is 0. LetA + = ∪ ∞ n=1 A n and A * = A + ∪ {∅}. Sequences in A N are called infinite words.With concatenation, A * becomes a monoid. Let B be another alphabet. By concatenation, every map ϕ : A → B + induces a map ϕ : A * → B * , and a map from A N into A N , which is still denoted by ϕ.A substitution is a triple (ζ, A, α) where A is an alphabet, ζ : A → A + is a map and α ∈ A, such that (S1) the first letter of ζ(α) is α; (S2) lim n→∞ |ζ n (α)| = ∞. The limit u ζ := lim n→∞ ζ n (α) ∈ A N exists, and it is characterized by ζ(u ζ ) = u ζ (i.e. u ζ is a fixed point of ζ) and the first letter of u ζ is α. If ϕ : A → B where B is another alphabet. We define w ζ = ϕ(u ζ ). Such a sequence is called a substitutive sequence.

5 . 2 .

 52 0110100110010110100101101001011001101001 • • • If we take the prefix u = 0, then we get the following decomposition 011 01 0 011 0 01 011 01 0 01 011 01 0 01 011 0 011 01 0 01 • • • It is known that there are no cubes in (t n ). It is easy to see that R 0 ((t n )) = {0, 01, 011}. If we take the prefix u = 01, then we get the following decomposition 011 010 0110 01 011 010 01 011 010 01 0110 011 010 01 • • • In this case we have R 01 ((t n )) = {01, 010, 011, 0110}. Proof of Theorem 1.4.
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  j log(e λv j + e -λv j ) -log 2.

6. 2 .p j v j e 2λv j -1 e 2λv j + 1 p

 21 Proof of Theorem 1.5. By Lemma 6.2, we have ψ(λ) = m j=0 p j log(e λv j + e -λv j ). According to Theorem 1.1, we have to compute the conjugate function ψ * . By simple calculations we get that ψ (λ) = m j=0 p j v j e λv j -e -λv j e λv j + e -λv j = m j=0 j |v j |, ψ (-∞) = -m j=0 p j |v j |, ψ (λ) = 4 m j=0

Finally, let us repeat that we are interested in