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Introduction

Additive manufacturing (AM) is a fast-growing method that consists of creating parts or objects from 3D model data, usually by successively adding material layer by layer [START_REF] Busachi | A review of Additive Manufacturing technology and Cost Estimation techniques for the defence sector[END_REF]. AM has earned considerable attention from industry, due to its ability to produce custom, complex and lightweight parts for industrial applications [START_REF] Seifi | Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification[END_REF]. It is expected that, using AM processes, companies will be able to fully produce essential parts on-demand, as they will be able to reduce the lead-time and the production costs [START_REF] Seifi | Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification[END_REF]. For manufacturing metal parts, laser powder bed fusion (L-PBF) is one the most used additive manufacturing technologies [START_REF] Marrey | A Framework for Optimizing Process Parameters in Powder Bed Fusion (PBF) Process Using Artificial Neural Network (ANN)[END_REF]. L-PBF allows manufacturing components with good mechanical properties and complex shapes with small resolution (± 0.02 mm), which allowed the L-PBF technology to find several applications in different areas such as aerospace, manufacturing, medical etc. [START_REF] Ngo | Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[END_REF]. However, the L-PBF process still suffers from some drawbacks, such as low reproducibility, porosity, and high residual stress, which are due to the process complexity that affects the part quality (more than 50 process parameters) [START_REF] Marrey | A Framework for Optimizing Process Parameters in Powder Bed Fusion (PBF) Process Using Artificial Neural Network (ANN)[END_REF].

To deal with the process variability and complexity, different monitoring techniques have been developed in order to improve the process reproducibility, and to ensure its reliability and quality [START_REF] Adam | Design for Additive Manufacturing-Element transitions and aggregated structures[END_REF]. These techniques allow a better understanding of the process through a systematic gathering and analysis of information. Generally, the monitoring techniques are based on consequent physical phenomena resulting from the laser beam interaction with the processed material. The phenomena are manifested as emissions that are either radiation, acoustic, or electromagnetic. Accordingly, being based on these emissions, the monitoring techniques can be divided into two main groups, which are optical and acoustical techniques [START_REF] Purtonen | Monitoring and Adaptive Control of Laser Processes[END_REF].

Optical monitoring methods

Optical methods are most frequently used for laser processing monitoring [START_REF] Purtonen | Monitoring and Adaptive Control of Laser Processes[END_REF]. Furumoto et al. [START_REF] Furumoto | Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera[END_REF] investigated the behavior of the consolidation phenomena of powder during the selective laser sintering (SLS) and selective laser melting (SLM) processes. To do so, the surface temperature of the powder mixture in metallic additive manufacturing during laser beam irradiation was measured by two-color pyrometer, and the powder consolidation mechanism was monitored using a high-speed video camera. Therefore, by correlating the consolidation phenomena to the surface temperature, a better monitoring of the consolidation behavior became possible. Caggiano et al. [START_REF] Caggiano | Machine learning-based image processing for on-line defect recognition in additive manufacturing[END_REF] characterized layer-wise images of the SLM process using a new machine learning model based on bi-stream Deep Convolutional Neural Network (DCNN), in order to identify defects induced by process nonconformities. The proposed approach was evaluated, and the results were good with an accuracy of 99.4% in SLM defective conditions recognition.

Renken et al. [START_REF] Renken | Development of an adaptive, self-learning control concept for an additive manufacturing process[END_REF] presented a closed-loop control approach for the L-PBF process. The approach integrates a RGB sensor into the optical path of the laser beam. The sensor gathers the data of different manufactured parts resulting from different process parameters. These data are fed to an adapted self-learning strategy that updates the process parameters in order to optimize the quality of the produced parts. Also, Okaro et al. [START_REF] Okaro | Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning[END_REF] introduced a new semi-supervised machine learning approach for automatic detection of faults in L-PBF products. The approach extracts key features from large sets of photodiode data using Randomized Singular Value Decomposition, then, a Gaussian Mixture Model is trained to recognize builds that had been identified as 'faulty'. In order to identify the quality level of the PFB process, Zhang et al. [START_REF] Zhang | Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring[END_REF] proposed an approach that consists at first of using a vision system with a high speed camera for process images acquisition, and extracting relevant features based on the AM process understanding. These features are then used as inputs for the Support Vector Machine (SVM) classifier, which allowed identifying the PFB process quality levels with an accuracy of 90.1%. Moreover, the raw acquired images were fed to a Convolutional Neural Network (CNN), and the PBF process quality level identification was slightly better with a 92.7% prediction accuracy.

In order to investigate the influence of SLM process parameters on the porosity development in AlSi10Mg alloy builds, Read et al. [START_REF] Read | Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[END_REF] put in place a Design of Experiments (DoE) that allowed having a statistical model that expresses the porosity in terms of these parameters. This statistical model allowed identifying the parameters that have the major influence on the porosity development. A genetic algorithm was used afterwards to define the optimal parameters values that minimize the porosity in the SLM builds. Imani et al. [START_REF] Imani | Layerwise In-Process Quality Monitoring in Laser Powder Bed Fusion[END_REF] investigated the L-PBF process conditions on the porosity development in Titanium alloy (Ti-6Al4V) parts. By varying the process parameters and by using X-ray computed tomography (XCT) images, the authors were able to quantify the number, size, and location of pores as a function of L-PBF process parameters. Using machine learning tools, the authors were also able to identify the process conditions that are likely to cause porosity with a statistical fidelity over 80% (F-score).

By using a high-speed digital camera, Zhang et al. [START_REF] Zhang | In-Process monitoring of porosity during laser additive manufacturing process[END_REF] developed a deep-learning-based method for porosity monitoring in laser additive manufacturing process. The authors designed a Convolutional Neural Network (CNN) that learns features from melt-pool data and allows predicting the porosity attributes in deposited specimens during laser additive manufacturing. A deep learning-based approach was developed by Yang et al. [START_REF] Yang | Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing[END_REF] to investigate how the melt pool can be characterized in real-time for feedback control. A CNN was trained using 2763 melt pool images captured from a laser melting powder fusion and tested using another 2926 images. The proposed approach provided a faster detection of anomalies in melt pool formation compared to tradition methods (from 9.72 s to 0.99 s), as it showed good prediction performance with a classification accuracy of 91%. Another CNN-based approach that learns from layer wise powder bed images was proposed for autonomous detection and classification of anomalies related to interactions between the recoater blade, and the powder bed in L-PBF process [START_REF] Scime | A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process[END_REF]. This approach was tested on different materials, and it did show better performance when compared to other machine learning classifiers such as a Bag of Words (Bow) algorithm, and an AlexNet CNN model.

Acoustical monitoring methods

Acoustic sensors were also explored for laser processing monitoring. Rieder et al. [START_REF] Rieder | On-and offline ultrasonic characterization of components built by SLM additive manufacturing[END_REF] investigated the influence of the SLM process parameter 'laser power' on the quality of the manufactured components by resorting to an A-scans-based monitoring approach. The approach consists of collecting A-scans data during the manufacturing process, then to investigate the relationship between the buildup parameters and the acquired ultrasonic signals in order extract information about the dynamics of the layer build-up, the interface coupling, the local material properties, the formation of porosity, and distortions due to thermally induced residual stresses. Also, Slotwinski et al. [START_REF] Slotwinski | Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control[END_REF] presented different measurement techniques for determining the porosity of SLM products, including an ultrasonic-based monitoring technique that links the ultrasonic velocity and the degree of the product's porosity. This technique was able to detect small absolute changes (~0.5 %) in porosity, which makes it suitable for SLM quality monitoring.

Zhu et al. [START_REF]Advances in Energy Science and Equipment Engineering II[END_REF] studied the acoustic signal generated during the SLM process by correlating it to the laser frequency, the laser power, and the laser scanning speed. A good mapping between acoustic signals and laser parameters has been found. This sets a good foundation for monitoring the process by acoustic signal, which allows improving the part quality during the powder-based laser sintering and melting processes. Another study [START_REF] Koester | In-situ acoustic signature monitoring in additive manufacturing processes[END_REF] emphasized the correlation between acoustic signals and the process noise. This correlation made it possible to identify different part anomalies such as cracks, solidification, keyhole collapse, and the process anomalies such as heat source/surface interaction, mechanical raster or bearing noise, particle impacts, etc.

Ye et al. [START_REF] Ye | Defect detection in selective laser melting technology by acoustic signals with deep belief networks[END_REF] proposed an approach to detect SLM parts defects. This approach consists of gathering acoustical signals by using a microphone, and classifying the different defects using a framework based on deep belief network (DBN). The experimental results showed the strong relationship between acoustical signals and tracks formation, which makes this approach practical for SLM quality monitoring. Moreover, the DBN classifier was able to reach high defect detection rate without resorting to feature extractions or signal preprocessing. Eschner et al. [START_REF] Eschner | Development of an acoustic process monitoring system for selective laser melting (SLM)[END_REF] developed an acoustic process monitoring system to distinguish different SLM process qualities. The most promising structure-borne sound concept was adopted and tested at first. Then cubes with different process qualities were produced according to a Design of Experiments (DoE) with specific process parameters. The acoustical data were transformed to the frequency domain via Fast Fourier transform (FFT), and then fed to an artificial neural network classifier. The proposed artificial neural network was able to classify the different cubes density (porosity) with a F1-score higher than 90%. A new in-situ real time quality monitoring method that combines acoustic emission and reinforcement learning was proposed by Wasmer et al. [START_REF] Wasmer | In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach[END_REF]. This method uses a fiber Bragg grating (FBG) sensor to collect acoustic data during a real manufacturing process, then it classifies the manufactured parts into poor, medium, and high quality in terms of porosity. The quality classification was performed on stainless steel 316L cubical specimens with a confidence level between 74% and 82%.

The short review above discussed different quality monitoring techniques for additive manufacturing laser processes. Most of these techniques aim to extract representative features of the observed phenomena from the gathered data (either optical or acoustical), using machine learning frameworks, or more specifically deep learning frameworks. These frameworks allow a better-quality monitoring of the process by linking the monitored data to an appropriate quality measure. Therefore, in this paper, an optical monitoring approach is developed for the evaluation of the quality of L-PBF process, and that by linking optical signals to the manufactured part density. Since these signals correspond to the different manufactured layers, the aim of the proposed approach can also be seen as to how to predict a global characteristic (final part density) from a local characteristic (layer's signal). To do so, relevant statistical features are extracted from optical data at first, and then they are fed to machine learning classifiers to identify the quality of the different manufactured parts. The approach is compared afterwards to deep learning frameworks that try to perform the quality classification from raw optical signals. This comparison indicates if the human knowledge (statistical features extraction) is important or not. The comparison is illustrated in Figure 1. In the following, section 2 defines the quality measure adopted in this work, as it presents the experimental setup and the followed Design of Experiment to manufacture the different parts. Section 3 depicts the proposed quality monitoring approach by applying it with two different machine learning classifiers. The proposed deep learning framework is presented in section 4. The different results are discussed in section 5, and finally a conclusion is given.

Instrumentation and Experiment

In this section, the quality measure is defined at first, then, the followed Design of Experiments and the monitoring setup are depicted, and finally, the quality measurement technique used is presented.

Definition of quality measure

According to the international standard ISO 9001:2015, "industrial products and their manufacturing processes must be designed to meet customer expectations through the specific engineering specifications of critical product characteristics" [START_REF] Sanchez-Marquez | Diagnosis of quality management systems using data analytics -A case study in the manufacturing sector[END_REF]. Therefore, it is required to define an appropriate quality measure specific to the manufactured products and their manufacturing process. Accordingly, for laser additive manufacturing processes, it is essential to assess the quality of a layerwise produced part. Spierings et al. [START_REF] Spierings | Comparison of density measurement techniques for additive manufactured metallic parts[END_REF] categorized the quality measures of a layer-wise produced part into three main topics:

-Mechanical parameters (density, mechanical strength, elongation to rupture, fatigue strength) -Surface quality -Dimensional accuracy Additionally, for all powder-based processes (L-PBF, SLS, etc.), it is almost impossible to produce parts with no internal pores. These pores are linked directly to the process parameters. The porosity affects the mechanical strength, fatigue strength and the elongation to rupture [START_REF] Spierings | Comparison of density measurement techniques for additive manufactured metallic parts[END_REF]. For that reason, a manufactured part should be sufficiently dense in order to avoid its failure during service [START_REF] Slotwinski | Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control[END_REF].

Accordingly, and due to the useful process information it can provide, the density of the part (hence porosity) is defined as a quality measure in this article.

Experimental setup

Typically, the process parameters are optimized towards minimization of porosity to build parts with good mechanical properties. Therefore, in order to define a proper Design of Experiments (DoE), the process parameters that affect the density of the part need to be identified at first, then, a significant variation range should be assigned to each of these parameters.

Several studies were conducted to assess the effects of the L-PBF processing parameters on part density. It has been shown that a part porosity is correlated to the energy density (E), which is expressed in terms of the laser power (P), the scan speed (V), the hatch spacing (H), and the layer thickness (L) as shown in Equation ( 1) [START_REF] Tang | Prediction of lack-of-fusion porosity for powder bed fusion[END_REF]. Also, the optimal variation ranges that allow producing good quality parts were investigated by Eschner et al. [START_REF] Ye | Defect detection in selective laser melting technology by acoustic signals with deep belief networks[END_REF].

1 Accordingly, in this work, the L-PBF process parameters were intentionally tuned in order to manufacture 316 L stainless steel cubes with different densities, using the setup depicted in Figure 2. The laser power was varied between 80 Watt and 180 Watt, the scan speed between 200 mm/s and 1000 mm/s, the hatch spacing was 40µm and 50µm, and the layer thickness was fixed at 40µm, see Table 1. This DoE has allowed the testing of 18 configurations. Two cubes of 123 layers were then produced for each configuration. During the manufacturing of these cubes, the "Kleiber KGA 740-LO" pyrometer was used to record a corresponding signal for each layer. Pyrometers are well suited for monitoring the L-PBF process, since they allow recording and analyzing temperatures in a simple way, and without being in direct contact with the object being measured [START_REF] Everton | Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing[END_REF]. In particular, the "Kleiber KGA 740-LO" pyrometer has previously been used for monitoring the L-PBF process to record thermal emissions occurring at the melt pool [START_REF] Forien | Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography[END_REF]. Similarly, the signals in this work represent the recorded emissions occurring at the infrared wavelength range from the process zone. 

Quality measurement

The Archimedes' method is used to measure the density (considered as quality measure) of the manufactured parts. This method is selected due to its easy, fast, and economic use compared to the "Micrograph of a cross-section" method and to the "X-ray scanning" method [START_REF] Spierings | Comparison of density measurement techniques for additive manufactured metallic parts[END_REF]. In this study, every cube was measured 5 times in order to take into account the measurement uncertainties. Table 2 presents the different measured densities of the 36 manufactured cubes. After manufacturing the cubical specimens according to the DoE, and after gathering the pyrometer data of every layer, the next section presents the L-PBF quality monitoring approach that links the optical data to the density of the manufactured parts.

Statistical Feature-based Approach for Quality Classification of L-PBF Parts.

In this section a new quality monitoring approach for the L-PBF process is introduced. The approach aims to identify the density of a part's layer based on its optical signal. To do so, relevant statistical features are extracted from each raw signal, then they are fed to a machine learning classifier in order to create a model for density prediction. In this approach two classifiers are optimized and tested, which are support vector machine (SVM) and multi-layer perceptron (MLP). The prediction accuracies of these two classifiers are compared in order to identify which one allows a better density prediction. Figure 3 gives a comprehensive description of the proposed approach. 

Data set Preparation

The first step of the proposed approach consists of generating a dataset from the gathered optical data, where each row represents the extracted features from a raw signal. To do so, the following tasks are performed:

-Selection and extraction of the statistical features -Labeling the data -Splitting the data into training, validation, and test sets

The statistical features are validated at the end of the approach based on how the assessment of the prediction accuracy is. In the following, Table 3 lists the different statistical features selected for the proposed monitoring approach: With 36 cubes, each of which consists of 123 layers, a dataset of 4402 instances and 10 features was generated. Also, to complete the dataset, the datapoints are labeled. To do so, it is necessary to define the different density classes. As there is no uniform standard in the industry from which class boundaries can be derived [START_REF] Eschner | Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions[END_REF], care has been taken to ensure that the resulting classes are as balanced as possible. A balanced dataset of 3 density classes (low, medium, and high) was therefore generated in this study, which means that each class consists of 12 cubes. Hence, as shown in Figure 4, all cubical specimens with densities higher than 98.15% are considered as high-quality products (Class 1), while the ones with a density lower 96.13% are consider as low-quality products (Class 3), which leaves the parts with a density between 96.13% and 98.15% as the cubes of medium-quality (Class 2). Once complete, the dataset is normalized and then randomly split into:

-Training set (50%): 6 cubes are randomly chosen from each class -Validation set (25%): 3 cubes are randomly chosen from each class -Test set (25%): 3 cubes are randomly chosen from each class Table 4 presents the density class of each part, as it shows in which set it does belong to. In the following, two machine learning classifiers are applied in order to train a density classification model.

Density classification with support vector machine

Support vector machines (SVMs) are defined as supervised machine learning algorithms for binary classification [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF]. separates the two classes, then to attempt to make correct predictions on novel data. Still, SVMs can be used for multi-classification by training as many SVM models as the number of the classes' combinations. In this study, having three classes results in having three combinations. Thus, three SVM models are trained and optimized.

To optimize the performance of SVMs, a genetic algorithm was developed in order to identify the best hyperparameters that allow maximizing the prediction performance of the SVM. The hyperparameters of the SVM are:

-Kernel used for non-linearly separation -Kernel parameters -Regularization parameter "C" that controls the trade-off between achieving a low error on the training data and maximizing the width of the margin Additionally, the genetic algorithm used to tune the hyperparameters of SVM, was applied with the following parameters:

-Crossover: uniform -Selection: tournament selection -Mutation: random resetting -Fitness: prediction accuracy of SVM on the validation set

The optimal hyperparameters resulting from the application of the genetic algorithm on the three SVM models are given in Table 5. The multi-classification using the three trained SVM models is depicted as illustrated in Figure 5. The multi-classification by SVM was applied on the whole dataset in order to predict the different density classes. Table 6 presents the different accuracies, where the overall accuracy represents the prediction accuracy of the entire dataset. 

Accuracy on training set

Accuracy on validation set

Accuracy on test set

Overall accuracy

93.78% 99.09% 90.07% 94.18%

The SVM show a very good performance in learning from the statistical features, with a prediction accuracy above 93%. Also, the generalization ability of SVM is good, as the accuracies on the validation set and the test set are 99% and 90%, respectively. These results show that there is a significant correlation between the density and the optical signals.

Density classification with multilayer perceptron

A multilayer perceptron (MLP) is a type of artificial neural networks organized in several layers in which information flows from the input layer to the output layer [START_REF] Qi | Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives[END_REF]. Each layer is made up of a variable number of neurons, the neurons of the output layer being the outputs of the overall system.

In MLP, all neurons have connections between them, and these connections are identified by associated weights. MLP models operate similarly to SVMs, where the input is transformed using a non-linear transformation. However, unlike SVMs that perform binary classifications, MLP structures allow performing multi-classification tasks, i.e., only one structure is trained and optimized. In the following, the MLP hyperparameters and their variation ranges are identified, then a suitable optimization method is selected.

Generally, the first hyperparameters that define an MLP are the number of hidden layers, and the number of nodes in each hidden layer. It is commonly known that there are no general rules that allow defining these two hyperparameters, still, some rules-of-thumb are defined empirically. Among these rules-of-thumb, the one most commonly relied on is "the optimal nodes of a hidden layer is usually between the size of the input and size of the output layers" [START_REF] Sheela | Review on Methods to Fix Number of Hidden Neurons in Neural Networks[END_REF]. Moreover, the batch normalization is also tested in order to see if this regularization technique is relevant. The batch size is here varied between 32 and 512, and the number of epochs is fixed at 200 with a defined early stopping that interrupts the training phase once the validation accuracy stagnates. Also, the Adam optimizer is used, as it combines the advantages of AdaGrad in dealing with sparse gradients, and the ability of RMSProp in dealing with non-stationary objectives [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]. Finally, the Relu function that accelerates the convergence of an artificial neural network is used as an activation function [START_REF] Forien | Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography[END_REF], and the He-Normal as a weight initializer. Based on this knowledge the hyperparameters and their variation ranges are identified as summarized in Table 7. Adam To define an optimal MLP artificial neural network, a grid search is performed testing all the different combinations of these hyperparameters (8190 combinations). This grid search allowed identifying an optimal MLP artificial neural network with the following characteristics:

-Hidden layers = 2 -Nodes of hidden layer 1 = 8 -Nodes of hidden layer 2 = 5 -Batch normalization = On -Batch size = 128

This MLP structure allowed getting the following results, see Table 8. The MLP also shows a very good performance in density prediction, with an overall accuracy slightly better compared to SVM. These results prove how the density is well correlated to the optical signals, as they validate the selected statistical features, and their ability in predicting the different density classes. In the following, the application of deep learning frameworks for density prediction is presented in section 4, and further discussions and analysis of the results are conducted in section 5.

Deep Learning Approach for Quality Classification of L-PBF Parts Based on Raw Signals

The aim of this section is to investigate a deep learning approach for L-PBF process quality monitoring. The main objective of the approach is the prediction of the density of the manufactured parts from the raw optical signals. A multilayer perceptron (MLP) and one dimensional convolutional neural network (1D-CNN) are tested in this article. The prediction performance of these two types of artificial neural networks are compared to the results of the quality monitoring approach defined in section 3. This comparison allows assessing the relevance of the identified statistical features, hence, assessing the relevance of the expert knowledge. Figure 6 gives a global illustration of the deep learning approach for density classification. Deep Neural Networks (DNNs) have been used during the last decade in many fields for pattern recognition and classification tasks by processing different types of data, such as images, or sequential data like text and audio [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. Still, one of the most challenging problems in data mining is Time Series Classification (TSC) [START_REF] Esling | Time-series data mining[END_REF]. A TSC problem is defined as any classification problem that handles data registered according to a notion of ordering [START_REF] Gamboa | Deep Learning for Time-Series Analysis[END_REF]. Therefore, signal classification is regarded as a TSC problem. To deal with TSC problems, many algorithms have been proposed, such as the traditional Nearest Neighbors coupled with the Dynamic Time Wrapping Distance (NN-DTW) [START_REF] Bagnall | The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[END_REF], or ensemble methods that include many classifiers like SVM and Decision Trees (DT) [START_REF] Bagnall | Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles[END_REF]. Remarkably, DNNs have not been used a lot to deal with TSC problems [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF]. Nevertheless, some works have been conducted in order to define the most suitable type of DNNs for Time Series Classification by studying different datasets [START_REF] Fawaz | Deep learning for time series classification: a review[END_REF], [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF]. The CNN performances in TSC problems did outperform other DNNs such MLP and RNNs (Recurrent Neural Networks). In particular, 1D-CNNs have been used for TSC problems, and the results were promising [START_REF] Sadouk | CNN Approaches for Time Series Classification[END_REF], [START_REF]Convolutional neural networks for time series classification[END_REF]. Accordingly, to classify the part density from optical signals, 1D-CNNs are tested in this article, as well as MLPs due to their easy implementation.

Having signals with different lengths, a linear interpolation was performed in order to up-sample all the optical signals. This interpolation allowed having a dataset of 4402 observations and 500000 columns, where each one of these columns represents a timestep. Also, in order to verify if the interpolation has an impact on the prediction performance, the approach defined in section 3 was applied to these interpolated signals. The results are given in Table 9. The results show that even if the signals are interpolated, density classification is possible with prediction accuracies similar to the results found in section 3. It can be concluded that the upsampling does not affect the link between the optical signal and the part density.

The interpolated signals were fed in to MLPs models with bottleneck layers, where the hidden layers were varied between three, four, five, and six, and the nodes were either, 50, 100, 200, or 500. The different MLP structures were trained using the Relu activation function, the ADAM optimizer, and the He-normal weights initializer. Testing all these MLP structures allowed getting the following density prediction accuracies, see Figure 7 and Figure 8. These results show that the MLP structures tested in this work are unable to predict well the different density classes, where the best structure allowed having an overall accuracy of 82.96% and a generalization accuracy of 71.96% calculated as average of the validation accuracy and test accuracy.

An alternative attempt was conducted using 1D-CNNs in order to predict the density classes from the raw signals. Two deep learning architectures derived from AlexNet and VGG models were tested and evaluated. The deep learning architectures were defined as shown in Figure 9. The architectures were then trained by varying the number of filters between 8 and 32, the strides between 1 and 4, and the filter size between 2x1 and 5x1. Additionally, the Relu activation function, the ADAM optimizer, and the He-normal weights initializer were used to train the networks. The best out of all these networks is depicted in Figure 10. Compared to MLP models, 1D-CNNs showed better prediction performances. The model illustrated in Figure 10 was able to identify the different density classes with an accuracy of 94.88% on the training set, and with accuracies of 88.54% and 81.24% on the validation set and the test set, respectively. Still, these results are inferior to the ones found in section 3, which emphasize the importance of the expert knowledge in data preprocessing and assisting the machine learning methods for a better model performance. For further analysis, the next section discusses the different results of section 3 and section 4.

Discussions and Conclusion

In this section, the results of the different approaches for density prediction are analyzed and discussed. Table 10 summarizes the results of the L-PBF quality monitoring approach based on the statistical features, and the results of the deep learning approach based on raw data. Then, different conclusions are derived from this. Therefore, by analyzing the results, the following conclusions can be made:

-The identified statistical features are validated due to their ability in allowing the prediction of the three density/quality classes of the L-PBF parts with an accuracy over 90%, which proves the strong link between the optical signals of layers and the density of the final part. -The machine learning classifiers, MLP and SVM, could be recommended for use in the statistical features-based approach, as they both showed similar predictive performance on either the training data or the test data. -The generalization performances of the statistical features-based approach did outperform the deep learning framework in predicting the different density classes. -Compared to the proposed statistical-based approach, the 1D-CNN is a time and resource consuming method, either for training the model or predicting novel data.

These results prove that even if the prediction performances of the different deep learning methods are quite fascinating, the human knowledge is still very relevant, especially if it is combined with suitable machine learning techniques. Also, being a fast response approach, the statistical featurebased approach can be used in the L-PBF process as an in-process quality monitoring technique by predicting the density of a layer from its optical signal, which can allow improving the process efficiency, and quality, e.g., predicting the density class of the final product in the early stages of the manufacturing process would make it possible to prevent costly end-of-line quality assurance.

To conclude, in this article, several L-PBF quality monitoring approach were introduced and compared. The approaches are based on gathering representative optical data using a pyrometer type Kleiber KGA 740-LO. On the one hand, statistical features were extracted from these monitored data, then they were fed to a machine learning classifier in order to identify if a manufactured part is of a low, medium, or high quality, and that by predicting its density. The approach was tested on 316L stainless steel cubical specimens manufactured with different process parameters. The results showed good density prediction performance, achieving accuracies over 90%. On the other hand, the results of the proposed approach were compared to a deep learning approach predicting the part density from the raw signals. This comparison emphasized the relevance of the expert knowledge and its role in assisting the machine learning methods to be faster and more accurate. by defining the statistical features. 
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 1 Figure 1: Optical quality monitoring approaches for L-PBF process.
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 3 Figure 3: Statistical feature-based approach for quality classification of L-PBF parts.
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 4 Figure 4: Labels of the manufactured cubes.
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 5 Figure 5: Multi-classification by SVM.
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 7 Figure 7: Overall accuracies of the tested MLPs structures based on interpolated raw signals.
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 10 Figure 10: Optimal 1D-CNN model.

Table 1 :

 1 Parameter set for Design of Experiments.

	Parameter		Values	
	Laser power (P)	80 W	130 W	180 W
	Scan speed (V)	200 mm/s	400 mm/s	1000 mm/s
	Hatch spacing (H)	40 µm	50 µm	-
	Layer thickness (L)	40 µm	-	-

Table 2 :

 2 Design of Experiments.

	Configuration	Laser power (P)	Scan speed (V)	Hatch spacing (H)	Layer thickness (L)	Density part 1	Density part 2
	1	80W	200 mm/s	40µm	40µm	97.83%	97.78%
	2	80W	400 mm/s	40µm	40µm	95.89%	95.46%
	3	80W	1000 mm/s	40µm	40µm	94.58%	95.73%
	4	130W	200 mm/s	40µm	40µm	98.76%	98.88%
	5	130W	400 mm/s	40µm	40µm	98.33%	98.75%
	6	130W	1000 mm/s	40µm	40µm	96.68%	96.35%
	7	180W	200 mm/s	40µm	40µm	95.09%	93.61%
	8	180W	400 mm/s	40µm	40µm	98.55%	99.03%
	9	180W	1000 mm/s	40µm	40µm	98.13%	98.00%
	10	80W	200 mm/s	50µm	40µm	97.65%	97.76%
	11	80W	400 mm/s	50µm	40µm	95.28%	95.38%
	12	80W	1000 mm/s	50µm	40µm	95.80%	95.90%
	13	130W	200 mm/s	50µm	40µm	98.55%	98.56%
	14	130W	400 mm/s	50µm	40µm	98.01%	98.20%
	15	130W	1000 mm/s	50µm	40µm	95.62%	95.56%
	16	180W	200 mm/s	50µm	40µm	98.16%	97.14%
	17	180W	400 mm/s	50µm	40µm	98.56%	98.61%
	18	180W	1000 mm/s	50µm	40µm	97.77%	97.88%

Table 3 :

 3 List of extracted statistical features.

Table 4 :

 4 Class and set of every manufactured cube.

	Configuration	Density part 1	Class	Set	Density part 2	Class	Set
	1	97.83%	2	Test	97.78%	2	Validation
	2	95.89%	3	Test	95.46%	3	Training
	3	94.58%	3	Test	95.73%	3	Training
	4	98.76%	1	Training	98.88%	1	Test
	5	98.33%	1	Training	98.75%	1	Test
	6	96.68%	2	Training	96.35%	2	Validation
	7	95.09%	3	Training	93.61%	3	Test
	8	98.55%	1	Training	99.03%	1	Validation
	9	98.13%	2	Validation	98.00%	2	Training
	10	97.65%	2	Training	97.76%	2	Test
	11	95.28%	3	Training	95.38%	3	Training
	12	95.80%	3	Validation	95.90%	3	Validation
	13	98.55%	1	Validation	98.56%	1	Validation
	14	98.01%	2	Training	98.20%	1	Training
	15	95.62%	3	Validation	95.56%	3	Training
	16	98.16%	1	Test	97.14%	2	Training
	17	98.56%	1	Training	98.61%	1	Training
	18	97.77%	2	Test	97.88%	2	Training

Table 5 :

 5 Optimal hyperparameters of the SVM.

	SVM model	Kernel	Gamma	C	Accuracy of validation set
	Class1 vs Class2	RBF	0.07	79	99.18%
	Class1 vs Class3	RBF	1.851	983	100.00%
	Class2 vs Class3	RBF	5.651	16	99.45%

Table 6 :

 6 Prediction accuracy of SVM.

Table 7 :

 7 MLP hyperparameters to tune.

	Hyperparameter	Variation range
	Hidden layers	1-3
	Nodes	3-11
	Batch size	{32,64,128,256,512}
	Batch normalization	{On,Off}
	Epochs	200 -with early stopping-
	Weight initiliazer	He-normal
	Activation function	Relu
	Optimizer	

Table 8 :

 8 Prediction accuracy of MLP.

	Accuracy on	Accuracy on validation	Accuracy on	Overall
	training set	set	test set	accuracy
	93.46%	98.36%	91.98%	94.32%

Table 9 :

 9 Prediction accuracy of SVM and MLP from interpolated raw signals.

	Classifier	Accuracy on training set	Accuracy on validation set	Accuracy on test set	Overall Accuracy
	SVM	93.88%	99.55%	89.80%	94.27%
	MLP	93.92%	98.36%	91.35%	94.39%

Table 10 :

 10 Summary of the two proposed approaches using statistical features and raw data.
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To further explore its potential, the statistical feature-based approach should be tested on a larger dataset, and on parts with more complex geometries. This will further improve the robustness of the approach as it will allow a better monitoring of the L-PBF process.
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