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Abstract

The GW approximation for electronic excitations is considered computationally hard be-
cause its CPU time scales as O(N4) with the number N of atoms in the unit cell. The
space time approach to this approximation scales, in principle, as O(N3), but for crystals it
is nearly impossible to exploit this feature because it requires too much computer memory.
Here we remove this memory bottleneck by restricting the screened Coulomb interaction
in the GW self-energy to its Nyquist content. This reduces both the needed memory and
the CPU time by several orders of magnitude, while keeping satisfactory agreement with
experimentally measured gaps. Our method allows exploiting the O(N3) scaling feature of
the GW space time approach with modest computational resources and it will facilitate the
computation of the fundamental gaps of organic semiconductors.

Keywords: Low scaling algorithm, GW approximation, Large unit cell semiconductors.

1. Introduction and Motivation

Kohn-Sham’s density functional theory (DFT) gives an adequate description of the
ground state of weakly correlated electronic systems, but it provides only a rough esti-
mate of their excited states. The latter can be treated by many body techniques, of which
Hedin’s GW approximation [1] is the first necessary step because it provides quasi electrons
and quasi holes with residual interactions. In the next step, one may then study excitonic
features by using the Bethe-Salpeter method [2, 3, 4]. In non magnetic semiconductors, the
GW approximation gives fairly accurate results [5, 6] for the transport gap that is closely
related to the open circuit voltage of photovoltaic cells [7].

The GW approximation and its success in describing the fundamental gaps of weakly
correlated semiconductors has been reviewed in great detail [8, 9, 10, 11]. While the method
is successful where it can be applied, it is also known to be computationally difficult for
semiconductors with a large number of atoms in their unit cell. This is because in most
implementations of the GW approximation the needed CPU scales rather steeply, as O(N4),
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with the number N of atoms in the unit cell which may lead to computations taking months
on a supercomputer [12].

The situation is more favorable in the ”space time approach” to the GW approxima-
tion [13, 14] where CPU time scales as O(N3) and there is also a promising stochastic
implementation of GW [15, 16], where the needed CPU time scales only linearly as O(N).
Unfortunately, this latter method has given no results, so far, for periodic systems that are
our focus here.

There are also methods where one parametrizes the response in an effective way [17,
18, 19], but in these computational approaches CPU time scales again as O(N4). The GW
method works fairly well for molecules [20, 21, 22, 23] we focus here on periodic bulk systems,
where the situation is much less satisfactory.

Because of its favorable O(N3) scaling, the space time method would be the natural
choice for semiconductors with hundreds of atoms in their unit cell, except that it suffers
from a ”memory bottleneck” because entire correlation functions must be written into the
computer memory at intermediate stages of the computation. A few years ago, Kaltak et
al. [24] and Liu et al. [25] made important progress by lowering the number of frequencies
in the imaginary time correlation functions. This reduced the needed memory enough for
the resulting code to run on special purpose computers.

The aim of the present paper is to show that the screened Coulomb interaction W that
enters the self-energy Σ = iGW of the GW approximation may be expanded in waves that
satisfy Nyquist’s condition in each of their three components, see Eq. (9) further below.
This reduces the needed memory by a factor of 26 = 64 and it also reduces the CPU time
of the construction of W by a factor of 83 = 512. These reductions of both memory and
CPU time by several orders of magnitude move the space time approach to GW from special
purpose machines to more widely available laptops and work stations. Our method should
also facilitate the study of organic semiconductors that have many atoms in their unit cell.

The remaining sections of this paper are organized as follows. In section 2 we introduce
a ”Nyquist approximation” to the GW equations. In section 3 we describe our algorithm. In
section 4 we test our method on a few semiconductors. Our conclusions are given in section
5.

2. Introducing Nyquist’s condition into the GW approximation

A density functional theory (DFT) computation [26, 27] of a periodic electronic system
provides, as output, dispersing bands E(p) and Kohn-Sham eigenstates ψEp (r), where p
ranges over a Brillouin zone of Bloch momenta. From the bands E(p) and the wave functions
ψEp (r) one may define a propagator of noninteracting electrons

Gp(r, r′, t) = −iθ(t)
∑

E(p)>0

ψEp (r)ψ∗Ep (r′)e−iE(p)t + iθ(−t)
∑

E(p)<0

ψEp (r)ψ∗Ep (r′)e−iE(p)t (1)

where r, r′ are points in a piece of periodic crystal and we use atomic units where ~ = 1.
The purpose of the GW approximation is to find the propagator of electrons that in-
teract with each other via the screened Coulomb interaction by using Dyson’s equation,
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Ginteracting = (G−1
non-interacting−Σ)−1. In the GW approach, one uses the noninteracting prop-

agator Gp(r, r′, t) to define a noninteracting density response function χ according to

χq(r, r′, t) = −2i
∑

p1−p2=q

Gp1
(r, r′, t)Gp2

(r′, r,−t) (2)

where the factor of 2 is from summing over spins in this non relativistic theory. From the
density reponse χ one computes the RPA (Random Phase Approximation) inverse dielec-
tric function 1

εq
and the correlated part of the screened Coulomb interaction. Because the

Coulomb interaction is diagonal in Fourier space, one switches from χq(r, r′, t) to χq(g,g′, ω)
where g,g′ are periodic waves in the unit cell. It is easier to find the inverse of a kernel in
the frequency domain, so one also switches to (imaginary) frequencies:(

1

εq

)
(g,g′, ω) =

1

δgg′ − V 1/2
q (g)χ(g,g′, ω)V

1/2
q (g′)

(3)

W c
q(g,g′, ω) = V 1/2

q (g)

[(
1

εq

)
(g,g′, ω)− δgg′

]
V 1/2
q (g′)

with Vq(g) = 4π
(q+g)2

and where the fraction in Eq. (3) denotes the inverse of a matrix. From

the DFT electron propagator Gp(r, r′, t) of noninteracting electrons and from the screened
Coulomb interaction W c

q transformed back into space time, one finally computes the GW
self-energy Σ = iGW and its average in the unperturbed states |pE >

ΣGW
p c (r, r′, t) = i

∑
p1+p2≡p

Gp1
(r, r′, t)W c

p2
(r, r′, t) (4)

δEGW
c (p, E) = ZpE < pE|ΣGW

p c (ω = Ep)|pE >

ZpE =
1

1−Re < pE|∂ΣGWp

∂ω
(ω = Ep)|pE >

see [8, 9, 10] for detailed derivations of these results. An exchange energy EGW
x and an

exchange correlation energy EDFT
x,c must also be taken into account

EGW
x (p, E) = < pE|ΣGW

p,x |pE > (5)

EDFT
x,c (p, E) = < pE|Vx,c|pE >

ΣGW
p,x (r, r′, t− t′) = i

∑
p1+q=p

Gp(r, r′, 0−)Vq(r, r′)δ(t− t′)

and, finally, the change δEGW (p) of the dispersion E(p), according to the GW approxima-
tion, is given by

δEGW (p, E) = EGW
x (p, E) + EGW

c (p, E)− EDFT
x,c (p, E) (6)
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where EDFT
x,c is subtracted to avoid including exchange and correlations twice. EGW

x (p, E),
the largest term in the last equation, represents the Hartree-Fock exchange energy and it
is partially compensated by the (negative) correlation energy EGW

c (p, E). The construc-
tion of the screened Coulomb interaction W that enters the self-energy Σ = iGW is the
computational bottleneck of the GW approximation referred to in the introduction.

2.1. The Nyquist condition in plane wave DFT codes

To reproduce music up to a frequency of 20000 Hz, one famously samples the signal
from the microphone 40000 times per second. From the perspective of the discrete Fourier
transform, a periodic signal F (n), with Nff equidistant data points in the time domain,

should only contain
Nff

2
modes in the frequency domain, or

F (n) =

Nff
4∑

k=−
Nff
4

f(k)e
(− 2πi

Nff
kn)
, (7)

with n = −Nff
2
..
Nff

2
. In DFT computations in a plane wave basis, the Kohn-Sham wave

functions ψEp (r) are spatially periodic in an extended crystal of Npp unit cells glued together
in each direction, with the boundaries of this crystal identified. The results of a DFT
computation are dispersing energy bands E(p) and associated Kohn-Sham wave functions
ψEp (r) = eip·rφEp (r), with eip·r a Bloch phase that is periodic in the extended crystal and
where the functions φEp (r) are expanded in terms of waves eig·r that are periodic over the
unit cell,

φEp (r) =
1√
Vuc

∑
g

ϕEp (g)eig·r, (8)

∫
uc

φ∗Ep (r)φE
′

p′ (r)dr = δp,p′δEE′ .

Here Vuc is the volume of the unit cell and the wave numbers g that occur in the DFT code
are limited, in each component, by Nyquist’s condition

−Ngg

4
≤ gi ≤

Ngg

4
, i = 1..3 (9)

In the plane wave DFT code ABINIT [28] that we use, one specifies a cutoff energy ecut and
ABINIT will choose a number of allowed modes Ngg in each direction of the unit cell and find,
using an algorithm that remains unpublished, the spectral data E(p), ϕEp (g) for bands that
oscillate increasingly in space. From its definition, the noninteracting electron propagator
in Eq. (1) satisfies the Nyquist condition in both g and g′ and, therefore, it contains 1

64
N3
gg

rather than N3
gg modes, and requires, correspondingly, a factor 1

64
less memory to store.
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2.2. A Nyquist approximation to the exchange energy

The Coulomb interaction V (r, r′) satisfies 4V (r, r′) = −4πδ(r − r′) where δ(r − r′) is
the identity for a given set of plane waves ei(q+G)r and with q the Bloch momentum

V (r, r′) =
∑
q

Vq(r, r′), Vq(r, r′) =
4π

Ω

∑
g

Vq,ge
i(q+g)(r−r′) (10)

Vq,g =
4π

(q + g)2
(11)

V (r, r′) in Eq. (10) contains all the wave numbers g that are compatible with the unit cell,
including wave numbers beyond the Nyquist condition. Let us now consider the error that
imposing Nyquist’s condition introduces in the GW exchange energy of Eq. (5). Using Eq.
(10) for the Coulomb interaction, the exchange interaction can be brought into the following
form

EGW
x (p0, E0) = < p0E0|ΣGW

p,x |p0E0 > (12)

= − 1

Ω

∑
q,g

4π

(q + g)2

∑
p1=p0−q

∑
E(p1)≤0

|
∫

Ω

< p0E0|ei(g+q)r|p1E1 > dr|2

where Ω stands for the volume of the extended crystal generated by gluing N3
pp unit cells

together. Imposing Nyquist’s condition (see Eq. (9)) on the wave number g in the Coulomb
interaction induces a relative error of

δx =
EGW
x (p0, E0)Nyquist−Coulomb − EGW

x (p0, E0)full−Coulomb
EGW
x (p0, E0)full−Coulomb

(13)

We considered this error for silicon (Si) with Ngg = {8, 12, 16} and found that δx is, re-
spectively, of order {10−3, 10−4, 10−5} and, therefore, sufficiently small to be ignored. To
understand this result, let us consider the Fourier transform of the overlaps of the KS waves
that occur in Eq. (12). They are of the form

F (g)E1p1E2p2
=

∫
Ω

< E1p1|ei(g+q)r|E2p2 > dr

and we may decompose F (g)E1p1E2p2
into Nyquist and non-Nyquist parts. To quantify the

non-Nyquist part in the amplitude F (g)E1p1E2p2
, we compute the fraction

error(E1p1E2p2) =

∑
non-Nyquistg |F (g)E1p1E2p2

|2∑
allg |F (g)E1p1E2p2

|2

For a 10 × 10 block of bands, we find, for a given pair of p1,p2 and for Ngg = {8, 12, 16},
averages of {5.5∗10−3, 1.4∗10−3, 5.6∗10−5}, so clearly the non-Nyquist part of such products
is small enough to lead to negligible changes in the exchange energy of Eq. (12). The
exchange energy in Eq. (12) is a sum over occupied states with energies limited by the
width of the valence bands and therefore it is plausible that the non-Nyquist part of the
products < p0E0|eig·r|p1E1 > is small enough to be neglected.
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2.3. A Nyquist approximation to the solution of the GW equations

Consider now Adler’s [29] expression for the density response at imaginary frequency iω

χ̃q(g,g′, iω) = − 1

Ω

∑
p1−p2≡q
E1,E2

(nE1 − nE2)
< E2p2|e−i(g+q)r|E1p1 >< E1p1|ei(g

′+q)r′|E2p2 >

iω − (E1(p1)− E2(p2))

(14)
This correlator depends, again, on the overlaps F (g)E1p1E2p2

, but unlike in the exchange
energy, here one of the energies E1,2 ranges over all the empty states and the situation is
therefore more complicated. For a given set of bands E1, E2, we expect the non-Nyquist
contribution to drop out with increasing Ngg, but unfortunately we have no estimate of
the non-Nyquist contribution at fixed Ngg. The inverse dielectric function 1

εq
depends on a

modified response χ1
q(g,g′, ω) according to

χ1
q(g,g′, ω) = V 1/2

q (g)χq(g,g′, ω)V 1/2
q (g′) with Vq(g) =

4π(1− δq,0δg,0)

(q + g)2
(15)(

1

εq

)
c

(g,g′, ω) =
1

δgg′ − χ1
q(g,g′, ω)

− δgg′

Finally the screened Coulomb interaction W c
q(g,g′, ω) enters in the correlated part of the

self-energy

W c
q(g,g′, ω) = V 1/2

q (g)

(
1

εq

)
c

(g,g′, ω)V 1/2
q (g) (16)

The matrix δgg′ − χ1(g,g′, ω) to be inverted naturally decomposes into four blocks with
respect to the Nyquist properties of g,g′ and we have found that the matrix norm of the
Nyquist-Nyquist block dominates. The increasing dominance, as Ngg grows, of the norm
of the Nyquist-Nyquist block (at fixed sub space dimension) of χ1

q, 1/ε and W c
q suggests

to retain only the Nyquist-Nyquist block in the computation. Because the error of this
approximation should disappear as the number of modes grows, we view our approximation
as a ”convergence accelerator” of the solution of the GW equations. Lacking a mathematical
proof that the non-Nyquist terms disappear with increasing Ngg, we simply impose this
condition and check whether it works.

3. The algorithm we used

Apart from using Nyquist’s sampling condition Eq. (9) in the construction of the screened
Coulomb interaction and apart from doing Fourier transformations in imaginary time dif-
ferently, our algorithm remains essentially that of Godby and collaborators [13, 14] who do
most of the computation for imaginary times and frequencies to avoid oscillations and to
provide computational stability. The propagator and the response in imaginary time read
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as

G+
p (r, r′, τ) = i

∑
E(p)<0

ψEp (r)ψ∗Ep (r′)eE(p)τ

G−p (r, r′, τ) = − i
∑

E(p)>0

ψEp (r)ψ∗Ep (r′)e−E(p)τ (17)

χq(r, r′, τ) = −2i
∑

p1−p2=q

G+
p1

(r, r′, τ)G−p2
(r′, r, τ)

Following again [13, 14], Fourier transformations between imaginary time and imaginary
frequency are defined according to

f(ω) = −i
∫ ∞
−∞

F (τ)e−iωτdτ , F (τ) =
i

2π

∫ ∞
−∞

f(ω)eiωτdω (18)

The guiding principle of our own algorithm, and where we differ from [13, 14], is to express
correlation functions in the smaller space of waves g,g′ that satisfy Nyquist’s condition.
Our starting point for the (periodic) electron propagator in the domain of waves g,g′ is,
therefore,

G+
p (g,g′, τ) = i

∑
E(p)<0

∑
g,g′

ϕEp (g)ϕ∗Ep (g′) eE(p)τ

G−p (g,g′, τ) = −i
∑

E(p)>0

∑
g,g′

ϕEp (g)ϕ∗Ep (g′)e−E(p)τ (19)

∑
g

ϕEp (g)ϕ∗E′p (g) = δEE′

Because coordinates r, r′ in real space are computationally expensive, they should occur
only when needed to compute products of correlation functions. This then leads, rather
naturally, to the following computational steps:

1. Import Kohn-Sham data {E(p), ϕEp (g)} and the crystal geometry for a semiconductor
from a DFT code such as ABINIT [28].

2. Find the uncorrelated (denoted hereafter “unc”) or Hartree-Fock (denoted hereafter
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“HF”) gap ∆HF from the exchange and exchange-correlation energies

δEGW
unc (p, E) = EGW

x (p, E)− EDFT
xc (p, E) (20)

EGW
x (p, E) = < pE|ΣGW

p,x |pE >

EDFT
xc (p, E) = < pE|V DFT

xc |pE >

EHF(p) = E(p) + δEGW
unc (p, E)

∆HF = min
p

{
Elumo

HF (p)
}
−max

p

{
Ehomo

HF (p)
}

3. Prepare nonuniform grids τ in imaginary time and in imaginary frequencies ω for stor-
ing the electron propagator and other correlation functions and find matrices M(ω, τ)
and M±±(ω, τ) that represent the Fourier transformations for the response and the
self-energy on these grids (further details will be given below).

4. Construct the electron propagator in wave form on the τ grid according to Eq. (19)
and transform the electronic propagator G±p into its ”dual” representation G±n that is
needed for fast convolutions in Bloch momenta

G±n (g,g′,τ) =
∑
p

e2πin·p/NppG±p (g,g′,τ)

5. Use G±n (g,g′, τ) to construct the noninteracting response χn(g,g′,τ)

G±n (g,g′, τ) two fold Fourier transformation−−−−−−−−−−−−−−−−−−−−−−−→ G±n (r, r′, τ) (21)

χn(r, r′,τ) = iG+
n (r, r′, τ)G−n (r, r′, τ)

χn(r, r′,τ) two fold Fourier transformation−−−−−−−−−−−−−−−−−−−−−−−→ χn(g,g′,τ)

and return from χn to χq

χq(g,g′,τ) =
1

N3
pp

∑
n

e−2πin·q/Nppχn(g,g′,τ) (22)

6. Find the Fourier image χq(g,g′,ω) = −i
∫∞
−∞ χq(g,g′, τ)eiωτdτ on the nonuniform ω

grid according to

χq(g,g′,ω) =
∑
τ≥0

M(ω, τ)χq(g,g′,τ) (23)

and construct the correlated part of the RPA dielectric function and of the screened
Coulomb interaction by inverting in the Nyquist subspace

1

εq
(g,g′,ω)c =

1

δgg′ − V 1/2
q,g χq(g,g′,ω)V

1/2
q,g′

− δgg′ (24)
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7. Fourier transform 1
εq

(g,g′,ω)c → 1
εq

(g,g′,τ)c via

1

εq
(g,g′,τ)c =

i

2π

∫ ∞
−∞

1

εq
(g,g′,ω)ce

iωτdω (25)

'
∑
ω≥0

M−1
pseudo(τ, ω)

1

εq
(g,g′,ω)c

whereM−1
pseudo(τ, ω) is a suitably defined pseudo inverse of the (forward) matrixM(ω, τ)

in Eq. (23). Use 1
εq

to construct the screened Coulomb interaction W c first for Bloch

momenta q and then in the space n that is ”conjugate” to q:

W c
q(g,g′, τ) = V 1/2

q (g)
1

εq
(g,g′, τ)cV

1/2
q (g′) (26)

W c
n(g,g′, τ) =

∑
q

e2πin·q/NppW c
q(g,g′, τ)

8. Construct the self-energy correction for a set of bands near the Fermi energy(
Gn(g,g′, τ)

Wn(g,g′,τ)

)
two fold Fourier transformation−−−−−−−−−−−−−−−−−−−−−−−→

(
Gn(r, r′, τ)

Wn(r, r′, τ)

)
(27)

Σn(r, r′, τ) = iGn(r, r′, τ)Wn(r, r′, τ)

return to Bloch space :

Σp(r, r′,τ) =
1

N3
pp

∑
n

e−2πinq/NppΣn(r, r′,τ)

find the self energies for some bands :

ΣpE(τ) =

∫
Ω

ψ∗Ep(r)Σp(r, r′,τ)ψEp(r′)drdr′

9. Construct ΣpE(ω) = −i
∫∞
−∞ΣpE(τ)eiωτdτ in a notation with ω, τ ≥ 0 using(

Σ+(ω)
Σ−(ω)

)
=

∑
τ∈grid, τ≥0

(
M++(ω, τ) M+−(ω, τ)
M−+(ω, τ) M−−(ω, τ)

)(
Σ+(τ)
Σ−(τ)

)
(28)

with matrices M±±(ω, τ) that were precomputed at the beginning.

10. Do a Pade analytic continuation to real frequencies and compute the correlated part
of the GW self energies according to Eq. (4)

ΣpE(ω) → ΣpE(E(p)), ZpE =

(
1−Re∂Σp

∂ω

)−1

ω=E(p)

(29)
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Find the GW gap according to

∆GW = ∆HF +
[
ZpEΣc

pE(p, E)
]

lumo
−
[
ZpEΣc

pE(p, E)
]

homo
(30)

Below we provide details on the above computational steps.

3.1. Construction of grids in imaginary time and frequency

In imaginary time, the electron propagator Gp(r, r′, τ) is a sum of rapidly decaying
exponentials in τ with little structure. Adler’s exact expression of the response function
χq(r, r′, t) in Eq. (14) is again a sum of decaying exponentials, and it follows from their
spectral representations that the screened Coulomb interaction Wq(r, r′, t) and the self-
energy ΣGW

p (r, r′, t) are also of this form. Therefore we construct appropriate nonuniform
finite grids, both in imaginary time and in imaginary frequencies, in a construction that
may be similar to that of Kaltak et al. [24]. To find a nonuniform grid in τ over the interval
(0, τmax) we impose that the grid points be uniformly spaced near τ = 0 and that they should
expand exponentially for growing τ . We used the grid points

τn = A sinh
n · dτ
A

, n = 0..M (31)

with the parameter A fixed by requiring τM to coincide with τmax, where M of the order of
20 gives sufficient accuracy. Near n = 0 the grid remains uniform with τn = n · dτ +O(n3).
Except for a scale factor, we used the same grid in imaginary frequency as in imaginary time

ωn =
ωmax

τmax

τn, n = 0..M (32)

3.2. Choice of the extension (0, τmax), (0, ωmax) of the grids

We have found that ωmax = 200..250 ∗∆DFT where ∆DFT represents the gap according
to DFT is sufficient to represent a simplified response

χ0(τ) = e−2∆|τ |, χ0(ω) = −i
∫ ∞
−∞

χ0(τ)e−iωτdτ = − 4i∆

(2∆)2 + ω2
(33)

There is a uniform grid spacing dω = 4ωmax

Nff
associated with the interval (0, ωmax) where

Nff = 512 is a remnant of an earlier fft type method we developed before. To find the

interval (0, τmax) we used τmax =
Nffdτ

4
and the fft type relation dω ∗ dτ = 2π

Nff
.

3.3. Fourier transformations between time and frequency for the density response

Again, our technique may be similar to that of Kaltak et al. [24], but we were unable to
understand their work. The density response in the frequency domain is given by

χq(g,g′, ω) = −i
∫ ∞
−∞

χq(g,g′, t)e−iωτdτ (34)
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We now consider exponential functions F (t) = e−γ|t| on the grid {τn, n = 0..M} and their
Fourier images f(ω)

f(ω) = −i
∫ ∞
−∞

F (t)e−iωτdτ = − 2iγ

γ2 + ω2
(35)

On the τ grid, the space of functions is of dimensionM+1 and we span this space by functions
X(τ, k) = e−εk|τ |, where we used the frequencies from the frequency grid as exponents, but
shifted by εk = ωk + 2∆DFT , because the minimal exponent must be twice the gap:

X(τ, k) = e−εk|τ | ⇒ Y (ω, k) = − 2iεk
εk2 + ω2

(36)

So a set of M functions on the τ grid is transformed into a set of M functions Y (ω, k) =
− 2iεk
εk2+ω2 on the ω grid. Clearly there must exist a matrix, say M(ω, τ), that describes the

map between these two sets of functions

Y (ω, k) =
∑

τ∈grid, τ≥0

M(ω, τ)X(τ, k) (37)

Because both the response and the functions X(τ, k) are even in τ , we restrict ourselves
to the τ ≥ 0 part of the grid in the summation. The matrix M(ω, τ) is formally given by
M = Y X−1 but we expect the inverse of the matrix X to be singular because of linear
dependences among the functions in the τ domain. Searching for M(ω, τ) by minimizing a
suitably defined quadratic error, we are lead to the result

M(ω, τ) =
∑
k,τ ′

Y (ω, k) ∗X+(k, τ ′) ∗ (XX+)−1
τ ′,τpseudo

(38)

where we have replaced the inverse of the hermitian matrix A = XX+ by its ”pseudo
inverse” defined as follows

(A)−1
pseudo =

∑
λ>threshold

ZλZ
∗
λ

λ
(39)

AZλ = λZλ

The condition λ > threshold means that the matrix A(τ ′, τ) is inverted only in the space
spanned by eigenvectors corresponding to eigenvalues above a threshold adjusted to minimize
the error. We also need the inverse Fourier transform F (t) = i

2π

∫∞
−∞ f(ω)e−iωτdω for the

(inverse) dielectric function in imaginary time. This Fourier inverse should be represented by
M−1(τ, ω), but again we must replace the straight forward inverse by its pseudo inverse with
a suitable threshold. We tested the matrices M(ω, τ), M−1

pseudo(τ, ω) by comparing with the
exact result given by Adler and found, in the case of silicon, relative forward and backward
errors of ∼ 10−5..10−4 that are small enough for our purpose.
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3.4. Fourier transformations for the self-energy

According to Eq. (4) the self-energy Σ(τ) is discontinuous at τ = 0 and therefore
we parametrize both Σ(τ) and its Fourier image Σ(ω) = −i

∫∞
−∞Σ(τ)e−iωτdτ in terms of,

respectively, two functions Σ±(τ), Σ±(ω) at τ ≥ 0, ω ≥ 0 according to

Σ(τ) = θ(τ)Σ+(τ) + θ(−τ)Σ−(−τ)

Σ(ω) = θ(ω)Σ+(ω) + θ(−ω)Σ−(−ω)

The functions Σ±(ω) on the frequency grid are related to the functions Σ±(τ) on the τ grid
as (

Σ+(ω)
Σ−(ω)

)
=

∑
τ∈grid, τ≥0

(
M++(ω, τ) M+−(ω, τ)
M−+(ω, τ) M−−(ω, τ)

)(
Σ+(τ)
Σ−(τ)

)
For convenience, we place the Fermi energy at the homo level, so the functions Σ±(τ) decay
asymptotically at least as fast as e−cτ , with c = 2∆DFT , where ∆DFT denotes the DFT gap.
We therefore generate the space of functions Σ±(τ) as θ(τ)e−(c+ωk)t where we use the same
frequency grid {ωk, k = 0..M} as before. The construction is very similar to the one given for
the response functions. We estimated the precision of these Fourier matrices by comparing
with exact results for the self-energy for an artificial plasmon oscillator and found, in the
case of silicon, an error of ∼ 10−7 for a frequency ωplasmon = 10∆DFT

3.5. Fourier transformations of correlators between points in space and waves

These are Fourier transformations in d = 3 + 3 dimensions

χq(r, r′, ω) =
1

Ω

∑
g,g′

χq(g,g′, ω)eiq(r−r′)+i(gr−g′r′) (40)

χq(g,g′, ω) =
1

Ω

∫
tore

χq(r, r′, ω)e−iq(r−r′)−i(gr−g′r′)drdr′

and they must be adequately distributed over processors in a future parallel version of the
code.

3.6. Fourier transformations between Bloch momenta and cell indices

The equations for the density response (Eqs. (2)) and the self-energy (Eq. (4)) contain
convolutions that are done by switching from Bloch momenta −→p to cell indices −→n . Consider
Eq. (4) for the self-energy. By defining ”dual” quantities that are labelled by cell indices −→n

Σn(r, r′,τ) =
∑
p

e2πin·p/NppΣp(r, r′,τ), Gn(r, r′,τ) =
∑
p

e2πin·p/NppGp(r, r′,τ) (41)

we find

Σn(r, r′,τ) = iGn(r, r′, t)Wn(r, r′, t) (42)

Σp(r, r′,τ) =
1

N3
pp

∑
n

e−2πin·p/NppΣn(r, r′,τ)
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This amounts to a fast convolution in Bloch momenta in Eq. (4).

3.7. Pade analytic continuation

In step 9, we obtain ΣpE on a nonuniform grid on the imaginary frequency axis. This is
represented in Pade fashion via

ΣpE(iω) =
∑ c

(k)
pE

iω − zk
=

PN(iω)

QN+1(iω)
(43)

where PN and QN+1 are polynomials of, respectively, degree N and N + 1. The Thiele type
continued fraction representation for ΣpE(iω) is analytically continued by replacing iω → ω
in ΣpE [30].

4. Testing the method on some semiconductors

To test our Nyquist approximation, we use Eq. (30) to compute the gaps of a few simple
semiconductors such as silicon, diamond, a cubic phase of boron nitrate and of crystals of
acetylene. In principle, a GW computation should include an infinite number of bands up
to the ionization threshold and this is obviously unfeasible. To solve this difficulty in the
space time approach, Godby and collaborators replaced DFT electron propagators near the
ionization threshold by propagators of free electrons [14]. A large number of increasingly
accurate extrapolation schemes have been developed since within various O(N4) algorithms
[31, 32]. Here we simply follow [33] and extrapolate the gap from data for two or three data
points for large numbers of bands n to n =∞ by using the representations

∆GW (n) = a0 +
a1

n
or ∆GW (n) = a0 +

a1

n
+
a2

n2
(44)

4.1. Some technical details

Computations for small systems such as silicon were done on an old laptop with 8 Gbyte
of memory while for larger systems we used a single core of a somewhat obsolete workstation.
To save memory, we used a periodic crystal with only Npp = 3 unit cells glued together.
That such small systems are large enough to represent infinite crystals was discovered by
[13, 14] and rationalized later in more detail [34]. Like Kaltak et al. [24] and Liu et al. [25]
we use time and frequency grids with 20 grid points to represent correlators, although 10
grid points were also used for exploratory computations. The correlators that we must deal
with satisfy hermiticity and time reversal relations that read, respectively, in the case of the
electron propagator

G∗n(g′,g, τ) = −G−n(g,g′, τ) (45)

Gn(g,g′, τ) = −G∗n(−g,−g′, τ)

The above symmetry relations are useful because they reduce the needed memory by a factor
of 4.
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Figure 1: Computed gap (in eV) of silicon (1.422 eV, 1.21 eV, and 1.20 eV corresponding to 26, 97, and 168
bands with red dots representing the raw data) versus the inverse of the number of bands.

4.2. Computational results

We begin with silicon, see figure 1 where we find ∆GW = 1.18 eV and 1.19 eV by extrapo-
lationg, respectively, two and three data points. The close agreement with the experimental
gap of 1.17 eV for silicon [35] may be a coincidence. In the perturbative approach, we use
the GW correlation energy only at ω = Ehomo, Elumo, but it is instructive to examine the
global behavior of the GW correlation energy ΣpE(ω) Eq. (29) before and after analytic
continuation, see figure 2. The figure 2 (right panel) shows half parabolas in the imaginary
part of the self-energy below and above the fermi energy (at zero) because we switch from
the lower to the upper imaginary axis at this point. Therefore the imaginary part of the
self-energy is seen to vanish quadratically at the Fermi energy, as it should. Our results for
the self-energy at imaginary and real frequencies resemble those of Godby and coworkers
[13, 14].

To judge the convergence of our results with respect to the number of gridpoints, we
recomputed the gap of silicon for Ngg = 16 with gridpoints M = {10, 15, 20, 25} and obtained
the gaps of {1.17, 1.18, 1.23, 1.20}. Although we consider twenty gridpoints sufficient for our
computations, this suggests the choice of the gridpoints should be variationally optimized.

For the diamond phase of carbon, see figure 3, we obtain a gap of 5.7 eV by interpolating
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Figure 2: The self-energy of the homo level vs real (right panel) and imaginary (left panel) frequency.

linearly in 1/n, which is reasonably close to the experimental gap of 5.8 eV [35].

Figure 3: Computed gap (in eV) of diamond (5.15, 5.60, 5.63 eV corresponding to 113, 323, 528 bands (red
dots)) versus the inverse of the number of bands.

For Boron Nitride, we consider only the cubic or Zinkblende phase. Our data extrapolate
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to a gap of 6.5 eV while the experimental gap is 6.4 eV [35]

Figure 4: Computed gap (in eV) of cubic Boron nitride (6.24 eV, 6.38 eV, and 6.46 eV corresponding to
282, 443 and 1117 bands, red dots) versus the inverse of the number of bands.

Since our method was motivated by the need to predict transport gaps in organic semi-
conductors, we also considered crystals of acetylene [36, 37] although we are lacking exper-
imental data to compare with. By extrapolating linearly, we found a transport gap of 6.4
eV.

4.3. Growth of CPU time with system size

It is encouraging that sequential computations for silicon at Ngg = 8 take only about 10
seconds on a PC. Although our work station needs about a day for computing the gap for
crystals of acetylene at Ngg = 28 when using a single core, this should reduce to roughly an
hour with computations done in parallel by all of its cores.

Let N = (Ngg
2

+ 1)3 be the dimension of the correlation matrices that depend on g,g′.
The operations in the algorithm that scale as N3 are the inversion for finding 1

ε
in Eq. (15)

and the construction of the electron propagator in Eq. (19). The remaining operations, such
as forming the self-energy and doing Fourier transforms of correlation functions from waves
g,g′ to space points r, r′ scale as N2, apart from logarithmic corrections.

To find how the needed CPU time grows with the number of atoms, one may construct
artificial unit cells that contain multiple copies of the true unit cell of a crystal and observe

16



Figure 5: Computed gap (in eV) of acetylene crystals (6.27, 6.31, 6.33 eV corresponding to 925, 1050, 1345
bands (red dots)) versus the inverse of the number of bands.

how the time for computations grows with the number of atoms in it. Here we use a
technically simpler method where we keep the unit cell, but vary the number of waves Ngg

and find an exponent x
CPU time ∼ Nx

gg

In a second step we observe that the number of modes needed in a plane wave DFT com-
putation for a material with n atoms in the unit cell is about Ngg ∼ 10 n1/3 and we could

have put approximately n ∼ N3
gg

1000
atoms in this unit cell. We conclude that CPU time grows

with the number of atoms as
CPU time ∼ nx/3

To find the exponent x of growth of CPU time with Ngg, we compute the gap of cubic Boron
nitride for Ngg = {12, 16, 20, 24, 28}. Figure 6 gives the logarithm of the CPU time as a
function of the logarithm of Ngg and from the slope we find x

3
= 2.35. This shows that for

the systems we considered, the computational cost of the operations that scale as N3 is still
small, although for very large systems their cost will dominate.

We found that the O(N4) GW code of abinit has a runtime comparable to our code for a
small system with Ngg = 8. As its run time scales as N4 or, equivalently as N12

gg , this leads,
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at Ngg = 28, to an estimated run time larger by a factor of (28
8

)4.95 ∼ 500 than that of our
code, turning a day into a year, when computing on a single core.

Figure 6: Plot of log(CPUTotal) vs log(Ngg) to identify the scaling exponent x in the relation CPUTotal

∼ Nggx. The figure also gives the CPU times for setting up the propagator and for finding the inverse
dielectric function that should both scale as Ngg9.

5. Conclusions

We considered the O(N3) space time approach to GW by Godby and collaborators and
the memory bottleneck that still remained after significant progress made by Kaltak et al.
[24] and Liu et al. [25]. We found that restricting the density response and the screened
Coulomb interaction to their Nyquist subspace reduces memory and CPU time by several
orders of magnitudes, while keeping satisfactory agreement with the experimental data. Our
”Nyquist approximation” allows using the space time approach to GW on widely available
laptops and workstations and special purpose computers are no longer needed.

Here we presented a ”proof of principle” of our method. A parallel implementation of our
algorithm is planned to allow predictions for organic semiconductors and other challenging
materials where the O(N3) scaling of the space time approach is crucial.

The important reduction in CPU time and memory that we found might also facilitate
computations in extensions of the GW approximation that include spin [38] or external
electrodes [39]. Here we considered GW as applied to data imported from DFT computations
that use pseudo potentials and we did not consider the more precise DFT method developed
by Bloechl and his collaborators [40, 41].
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[6] M. Grumet, P. Liu, M. Kaltak, J. c. v. Klimeš, G. Kresse, Beyond the quasiparticle approximation: Fully
self-consistent GW calculations, Phys. Rev. B 98 (2018) 155143. doi:10.1103/PhysRevB.98.155143.
URL https://link.aps.org/doi/10.1103/PhysRevB.98.155143

[7] P. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2nd Edition, 2009.
[8] F. Aryasetiawan, O. Gunnarsson, The GW method, Rep. Prog. Phys. 61 (3) (1998) 237–312.

doi:10.1088/0034-4885/61/3/002.
[9] F. Bruneval, Exchange and correlation in the electronic structure of solids, from silicon to cuprous

oxide: GW approximation and beyond, Ph.D. thesis, Ecole Polytechnique.
[10] C. Friedrich, A. Schindlmayr, Many-body perturbation theory: The GW approximation, Condensed

Matter Physics, Matter and Materials 32.
[11] D. Golze, M. Dvorak, P. Rinke, The GW compendium: A practical guide to theoretical photoemission

spectroscopy, Front. Chem. 7 (2019) 377. doi:10.3389/fchem.2019.00377.
URL https://www.frontiersin.org/article/10.3389/fchem.2019.00377

[12] S. Yanagisawa, Y. Morikawa, A. Schindlmayr, HOMO band dispersion of crystalline rubrene: Ef-
fects of self-energy corrections within the GW approximation, Phys. Rev. B 88 (2013) 115438.
doi:10.1103/PhysRevB.88.115438.
URL https://link.aps.org/doi/10.1103/PhysRevB.88.115438

[13] M. M. Rieger, L. Steinbeck, I. White, H. Rojas, R. Godby, The GW space-time method
for the self-energy of large systems, Comput. Phys. Commun. 117 (3) (1999) 211 – 228.
doi:https://doi.org/10.1016/S0010-4655(98)00174-X.
URL http://www.sciencedirect.com/science/article/pii/S001046559800174X

[14] L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I. White, R. Godby, Enhancements to the GW space-
time method, Comput. Phys. Commun. 125 (1) (2000) 105 – 118. doi:https://doi.org/10.1016/S0010-
4655(99)00466-X.
URL http://www.sciencedirect.com/science/article/pii/S001046559900466X

[15] D. Neuhauser, Y. Gao, C. Arntsen, C. Karshenas, E. Rabani, R. Baer, Breaking the theoretical scaling
limit for predicting quasiparticle energies: The stochastic GW approach, Phys. Rev. Lett. 113 (2014)
076402. doi:10.1103/PhysRevLett.113.076402.
URL https://link.aps.org/doi/10.1103/PhysRevLett.113.076402

[16] V. Vlcek, E. Rabani, D. Neuhauser, R. Baer, Stochastic GW calculations for molecules, J. Chem.
Theory Comput. 13 (10) (2017) 4997–5003. doi:10.1021/acs.jctc.7b00770.
URL https://doi.org/10.1021/acs.jctc.7b00770

[17] T. A. Pham, H.-V. Nguyen, D. Rocca, G. Galli, GW calculations using the spectral decomposition
of the dielectric matrix: Verification, validation, and comparison of methods, Phys. Rev. B 87 (2013)
155148. doi:10.1103/PhysRevB.87.155148.
URL https://link.aps.org/doi/10.1103/PhysRevB.87.155148

[18] M. Govoni, G. Galli, Large scale GW calculations, J. Chem. Theory Comput. 11 (6) (2015) 2680–2696.
doi:10.1021/ct500958p.
URL https://doi.org/10.1021/ct500958p

[19] P. Umari, G. Stenuit, S. Baroni, GW quasiparticle spectra from occupied states only, Phys. Rev. B 81
(2010) 115104. doi:10.1103/PhysRevB.81.115104.
URL https://link.aps.org/doi/10.1103/PhysRevB.81.115104

[20] D. Foerster, P. Koval, D. Sanchez-Portal, An O(N3) implementation of hedin’s GW approximation for
molecules, J. Chem. Phys. 135 (7) (2011) 074105. doi:10.1063/1.3624731.
URL https://doi.org/10.1063/1.3624731

[21] J. Wilhelm, D. Golze, L. Talirz, J. Hutter, C. A. Pignedoli, Toward GW calculations on thousands of
atoms, J. Phys. Chem. Lett. 9 (2) (2018) 306–312. doi:10.1021/acs.jpclett.7b02740.
URL https://doi.org/10.1021/acs.jpclett.7b02740

[22] F. Bruneval, T. Rangel, S. M. Hamed, M. Shao, C. Yang, J. B. Neaton, molgw 1: Many-body pertur-
bation theory software for atoms, molecules, and clusters, Comput. Phys. Commun. 208 (2016) 149 –
161. doi:https://doi.org/10.1016/j.cpc.2016.06.019.

20



URL http://www.sciencedirect.com/science/article/pii/S0010465516301990

[23] M. J. van Setten, F. Caruso, S. Sharifzadeh, X. Ren, M. Scheffler, F. Liu, J. Lischner, L. Lin,
J. R. Deslippe, S. G. Louie, C. Yang, F. Weigend, J. B. Neaton, F. Evers, P. Rinke, GW100:
Benchmarking G0W0 for molecular systems, J. Chem. Theo. Comput. 11 (12) (2015) 5665–5687.
doi:10.1021/acs.jctc.5b00453.
URL https://doi.org/10.1021/acs.jctc.5b00453
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M. Coté, S. Cottenier, J. Denier, G. Geneste, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D. R.
Hamann, G. Hautier, X. He, N. Helbig, N. Holzwarth, Y. Jia, F. Jollet, W. Lafargue-Dit-Hauret,
K. Lejaeghere, M. A. Marques, A. Martin, C. Martins, H. P. Miranda, F. Naccarato, K. Persson,
G. Petretto, V. Planes, Y. Pouillon, S. Prokhorenko, F. Ricci, G.-M. Rignanese, A. H. Romero, M. M.
Schmitt, M. Torrent, M. J. van Setten, B. van Troeye, M. J. Verstraete, G. Zérah, J. W. Zwanziger,
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[36] R. K. McMullan, Å. Kvick, P. Popelier, Structures of cubic and orthorhombic phases of
acetylene by single-crystal neutron diffraction, Acta Cryst. Section B 48 (5) (1992) 726–731.
doi:10.1107/S0108768192004774.
URL https://doi.org/10.1107/S0108768192004774

[37] C. H. Patterson, Excited states of molecular and crystalline acetylene: application of TDHF and BSE
via density fitting methods, Mol. Phys. 0 (0) (2020) 1–9. doi:10.1080/00268976.2020.1792568.
URL https://doi.org/10.1080/00268976.2020.1792568

21



[38] F. Aryasetiawan, S. Biermann, Generalized hedin’s equations for quantum many-body systems with
spin-dependent interactions, Phys. Rev. Lett. 100 (2008) 116402. doi:10.1103/PhysRevLett.100.116402.
URL https://link.aps.org/doi/10.1103/PhysRevLett.100.116402

[39] K. S. Thygesen, A. Rubio, Nonequilibrium GW approach to quantum transport in nano-scale contacts,
J. Chem. Phys. 126 (9) (2007) 091101. doi:10.1063/1.2565690.
URL https://doi.org/10.1063/1.2565690
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