Dietrich Foerster 
email: dietrich.foerster@u-bordeaux.fr
  
Saber Gueddida 
email: saber.gueddida@univ-lorraine.fr
  
A low resources space time approach to the GW approximation

Keywords: Low scaling algorithm, GW approximation, Large unit cell semiconductors

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction and Motivation

Kohn-Sham's density functional theory (DFT) gives an adequate description of the ground state of weakly correlated electronic systems, but it provides only a rough estimate of their excited states. The latter can be treated by many body techniques, of which Hedin's GW approximation [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electrongas problem[END_REF] is the first necessary step because it provides quasi electrons and quasi holes with residual interactions. In the next step, one may then study excitonic features by using the Bethe-Salpeter method [START_REF] Faber | Excited states properties of organic molecules: from density functional theory to the GW and bethe 2013;salpeter Green's function formalisms[END_REF][START_REF] Rangel | Low-lying excited states in crystalline perylene[END_REF][START_REF] Puschnig | Excited state properties of organic semiconductors: Breakdown of the Tamm-Dancoff approximation[END_REF]. In non magnetic semiconductors, the GW approximation gives fairly accurate results [START_REF] Jiang | GW with linearized augmented plane waves extended by high-energy local orbitals[END_REF][START_REF] Grumet | Beyond the quasiparticle approximation: Fully self-consistent GW calculations[END_REF] for the transport gap that is closely related to the open circuit voltage of photovoltaic cells [START_REF] Wurfel | Physics of Solar Cells: From Basic Principles to Advanced Concepts[END_REF].

The GW approximation and its success in describing the fundamental gaps of weakly correlated semiconductors has been reviewed in great detail [START_REF] Aryasetiawan | The GW method[END_REF][START_REF]Exchange and correlation in the electronic structure of solids, from silicon to cuprous oxide: GW approximation and beyond[END_REF][START_REF] Friedrich | Many-body perturbation theory: The GW approximation[END_REF][START_REF] Golze | The GW compendium: A practical guide to theoretical photoemission spectroscopy[END_REF]. While the method is successful where it can be applied, it is also known to be computationally difficult for semiconductors with a large number of atoms in their unit cell. This is because in most implementations of the GW approximation the needed CPU scales rather steeply, as O(N 4 ), with the number N of atoms in the unit cell which may lead to computations taking months on a supercomputer [START_REF] Yanagisawa | HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation[END_REF].

The situation is more favorable in the "space time approach" to the GW approximation [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF] where CPU time scales as O(N 3 ) and there is also a promising stochastic implementation of GW [START_REF] Neuhauser | Breaking the theoretical scaling limit for predicting quasiparticle energies: The stochastic GW approach[END_REF][START_REF] Vlcek | Stochastic GW calculations for molecules[END_REF], where the needed CPU time scales only linearly as O(N ). Unfortunately, this latter method has given no results, so far, for periodic systems that are our focus here.

There are also methods where one parametrizes the response in an effective way [START_REF] Pham | GW calculations using the spectral decomposition of the dielectric matrix: Verification, validation, and comparison of methods[END_REF][START_REF] Govoni | Large scale GW calculations[END_REF][START_REF] Umari | GW quasiparticle spectra from occupied states only[END_REF], but in these computational approaches CPU time scales again as O(N 4 ). The GW method works fairly well for molecules [START_REF] Foerster | Sanchez-Portal, An O(N3) implementation of hedin's GW approximation for molecules[END_REF][START_REF] Wilhelm | Toward GW calculations on thousands of atoms[END_REF][START_REF] Bruneval | molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF][START_REF] Van Setten | GW100: Benchmarking G0W0 for molecular systems[END_REF] we focus here on periodic bulk systems, where the situation is much less satisfactory.

Because of its favorable O(N 3 ) scaling, the space time method would be the natural choice for semiconductors with hundreds of atoms in their unit cell, except that it suffers from a "memory bottleneck" because entire correlation functions must be written into the computer memory at intermediate stages of the computation. A few years ago, Kaltak et al. [START_REF] Kaltak | Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si[END_REF] and Liu et al. [START_REF] Liu | Cubic scaling GW : Towards fast quasiparticle calculations[END_REF] made important progress by lowering the number of frequencies in the imaginary time correlation functions. This reduced the needed memory enough for the resulting code to run on special purpose computers.

The aim of the present paper is to show that the screened Coulomb interaction W that enters the self-energy Σ = iGW of the GW approximation may be expanded in waves that satisfy Nyquist's condition in each of their three components, see Eq. [START_REF]Exchange and correlation in the electronic structure of solids, from silicon to cuprous oxide: GW approximation and beyond[END_REF] further below. This reduces the needed memory by a factor of 2 6 = 64 and it also reduces the CPU time of the construction of W by a factor of 8 3 = 512. These reductions of both memory and CPU time by several orders of magnitude move the space time approach to GW from special purpose machines to more widely available laptops and work stations. Our method should also facilitate the study of organic semiconductors that have many atoms in their unit cell.

The remaining sections of this paper are organized as follows. In section 2 we introduce a "Nyquist approximation" to the GW equations. In section 3 we describe our algorithm. In section 4 we test our method on a few semiconductors. Our conclusions are given in section 5.

Introducing Nyquist's condition into the GW approximation

A density functional theory (DFT) computation [START_REF] Martin | Electronic structure: basic theory and practical methods[END_REF][START_REF] Martin | Interacting electrons, Theory and Computational Approaches[END_REF] of a periodic electronic system provides, as output, dispersing bands E(p) and Kohn-Sham eigenstates ψ E p (r), where p ranges over a Brillouin zone of Bloch momenta. From the bands E(p) and the wave functions ψ E p (r) one may define a propagator of noninteracting electrons

G p (r, r , t) = -iθ(t) E(p)>0 ψ E p (r)ψ * E p (r )e -iE(p)t + iθ(-t) E(p)<0 ψ E p (r)ψ * E p (r )e -iE(p)t (1)
where r, r are points in a piece of periodic crystal and we use atomic units where = 1.

The purpose of the GW approximation is to find the propagator of electrons that interact with each other via the screened Coulomb interaction by using Dyson's equation,

G interacting = (G -1 non-interacting -Σ) -1 .
In the GW approach, one uses the noninteracting propagator G p (r, r , t) to define a noninteracting density response function χ according to

χ q (r, r , t) = -2i p 1 -p 2 =q G p 1 (r, r , t)G p 2 (r , r, -t) (2) 
where the factor of 2 is from summing over spins in this non relativistic theory. From the density reponse χ one computes the RPA (Random Phase Approximation) inverse dielectric function 1 εq and the correlated part of the screened Coulomb interaction. Because the Coulomb interaction is diagonal in Fourier space, one switches from χ q (r, r , t) to χ q (g, g , ω) where g, g are periodic waves in the unit cell. It is easier to find the inverse of a kernel in the frequency domain, so one also switches to (imaginary) frequencies:

1 ε q (g, g , ω) = 1 δ gg -V 1/2 q (g)χ(g, g , ω)V 1/2 q (g ) (3) 
W c q (g, g , ω) = V 1/2 q (g) 1 ε q (g, g , ω) -δ gg V 1/2 q (g ) with V q (g) = 4π
(q+g) 2 and where the fraction in Eq. ( 3) denotes the inverse of a matrix. From the DFT electron propagator G p (r, r , t) of noninteracting electrons and from the screened Coulomb interaction W c q transformed back into space time, one finally computes the GW self-energy Σ = iGW and its average in the unperturbed states |pE > [START_REF] Aryasetiawan | The GW method[END_REF][START_REF]Exchange and correlation in the electronic structure of solids, from silicon to cuprous oxide: GW approximation and beyond[END_REF][START_REF] Friedrich | Many-body perturbation theory: The GW approximation[END_REF] for detailed derivations of these results. An exchange energy E GW x and an exchange correlation energy E DF T x,c must also be taken into account

Σ GW p c (r, r , t) = i p 1 +p 2 ≡p G p 1 (r, r , t)W c p 2 (r, r , t) (4) 
δE GW c (p, E) = Z pE < pE|Σ GW p c (ω = E p )|pE > Z pE = 1 1 -Re < pE| ∂Σ GW p ∂ω (ω = E p )|pE > see
E GW x (p, E) = < pE|Σ GW p,x |pE > (5) 
E DF T x,c (p, E) = < pE|V x,c |pE > Σ GW p,x (r, r , t -t ) = i p 1 +q=p G p (r, r , 0 -)V q (r, r )δ(t -t )
and, finally, the change δE GW (p) of the dispersion E(p), according to the GW approximation, is given by

δE GW (p, E) = E GW x (p, E) + E GW c (p, E) -E DF T x,c (p, E) (6) 
where

E DF T x,c
is subtracted to avoid including exchange and correlations twice. E GW x (p, E), the largest term in the last equation, represents the Hartree-Fock exchange energy and it is partially compensated by the (negative) correlation energy E GW c (p, E). The construction of the screened Coulomb interaction W that enters the self-energy Σ = iGW is the computational bottleneck of the GW approximation referred to in the introduction.

The Nyquist condition in plane wave DFT codes

To reproduce music up to a frequency of 20000 Hz, one famously samples the signal from the microphone 40000 times per second. From the perspective of the discrete Fourier transform, a periodic signal F (n), with N f f equidistant data points in the time domain, should only contain

N f f
2 modes in the frequency domain, or

F (n) = N f f 4 k=- N f f 4 f (k)e (-2πi N f f kn) , (7) 
with n = -

N f f 2 .. N f f 2 .
In DFT computations in a plane wave basis, the Kohn-Sham wave functions ψ E p (r) are spatially periodic in an extended crystal of N pp unit cells glued together in each direction, with the boundaries of this crystal identified. The results of a DFT computation are dispersing energy bands E(p) and associated Kohn-Sham wave functions

ψ E p (r) = e ip•r φ E p (r)
, with e ip•r a Bloch phase that is periodic in the extended crystal and where the functions φ E p (r) are expanded in terms of waves e ig•r that are periodic over the unit cell,

φ E p (r) = 1 √ V uc g ϕ E p (g)e ig•r , (8) 
uc φ * E p (r)φ E p (r)dr = δ p,p δ EE .
Here V uc is the volume of the unit cell and the wave numbers g that occur in the DFT code are limited, in each component, by Nyquist's condition

- N gg 4 ≤ g i ≤ N gg 4 , i = 1..3 (9) 
In the plane wave DFT code ABINIT [START_REF] Gonze | The abinitproject: Impact, environment and recent developments[END_REF] that we use, one specifies a cutoff energy e cut and ABINIT will choose a number of allowed modes N gg in each direction of the unit cell and find, using an algorithm that remains unpublished, the spectral data E(p), ϕ E p (g) for bands that oscillate increasingly in space. From its definition, the noninteracting electron propagator in Eq. ( 1) satisfies the Nyquist condition in both g and g and, therefore, it contains 1 64 N 3 gg rather than N 3 gg modes, and requires, correspondingly, a factor 1 64 less memory to store.

A Nyquist approximation to the exchange energy

The Coulomb interaction V (r, r ) satisfies V (r, r ) = -4πδ(r -r ) where δ(r -r ) is the identity for a given set of plane waves e i(q+G)r and with q the Bloch momentum

V (r, r ) = q V q (r, r ), V q (r, r ) = 4π Ω g V q,g e i(q+g)(r-r ) (10) V q,g = 4π (q + g) 2 (11) 
V (r, r ) in Eq. ( 10) contains all the wave numbers g that are compatible with the unit cell, including wave numbers beyond the Nyquist condition. Let us now consider the error that imposing Nyquist's condition introduces in the GW exchange energy of Eq. ( 5). Using Eq. ( 10) for the Coulomb interaction, the exchange interaction can be brought into the following form

E GW x (p 0 , E 0 ) = < p 0 E 0 |Σ GW p,x |p 0 E 0 > (12) = - 1 Ω q,g 4π (q + g) 2 p 1 =p 0 -q E(p 1 )≤0 | Ω < p 0 E 0 |e i(g+q)r |p 1 E 1 > dr| 2
where Ω stands for the volume of the extended crystal generated by gluing N 3 pp unit cells together. Imposing Nyquist's condition (see Eq. ( 9)) on the wave number g in the Coulomb interaction induces a relative error of

δ x = E GW x (p 0 , E 0 ) N yquist-Coulomb -E GW x (p 0 , E 0 ) f ull-Coulomb E GW x (p 0 , E 0 ) f ull-Coulomb (13) 
We considered this error for silicon (Si) with N gg = {8, 12, 16} and found that δ x is, respectively, of order {10 -3 , 10 -4 , 10 -5 } and, therefore, sufficiently small to be ignored. To understand this result, let us consider the Fourier transform of the overlaps of the KS waves that occur in Eq. [START_REF] Yanagisawa | HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation[END_REF]. They are of the form

F (g) E 1 p 1 E 2 p 2 = Ω < E 1 p 1 |e i(g+q)r |E 2 p 2 > dr
and we may decompose F (g) E 1 p 1 E 2 p 2 into Nyquist and non-Nyquist parts. To quantify the non-Nyquist part in the amplitude F (g) E 1 p 1 E 2 p 2 , we compute the fraction

error(E 1 p 1 E 2 p 2 ) = non-Nyquistg |F (g) E 1 p 1 E 2 p 2 | 2 allg |F (g) E 1 p 1 E 2 p 2 | 2
For a 10 × 10 block of bands, we find, for a given pair of p 1 , p 2 and for N gg = {8, 12, 16}, averages of {5.5 * 10 -3 , 1.4 * 10 -3 , 5.6 * 10 -5 }, so clearly the non-Nyquist part of such products is small enough to lead to negligible changes in the exchange energy of Eq. ( 12). The exchange energy in Eq. ( 12) is a sum over occupied states with energies limited by the width of the valence bands and therefore it is plausible that the non-Nyquist part of the products < p 0 E 0 |e ig•r |p 1 E 1 > is small enough to be neglected.

A Nyquist approximation to the solution of the GW equations

Consider now Adler's [START_REF] Adler | Quantum theory of the dielectric constant in real solids[END_REF] expression for the density response at imaginary frequency iω

χ q (g, g , iω) = - 1 Ω p 1 -p 2 ≡q E 1 ,E 2 (n E 1 -n E 2 ) < E 2 p 2 |e -i(g+q)r |E 1 p 1 >< E 1 p 1 |e i(g +q)r |E 2 p 2 > iω -(E 1 (p 1 ) -E 2 (p 2 )) (14) 
This correlator depends, again, on the overlaps F (g) E 1 p 1 E 2 p 2 , but unlike in the exchange energy, here one of the energies E 1,2 ranges over all the empty states and the situation is therefore more complicated. For a given set of bands E 1 , E 2 , we expect the non-Nyquist contribution to drop out with increasing N gg , but unfortunately we have no estimate of the non-Nyquist contribution at fixed N gg . The inverse dielectric function 1 εq depends on a modified response χ 1 q (g, g , ω) according to

χ 1 q (g, g , ω) = V 1/2 q (g)χ q (g, g , ω)V 1/2 q (g ) with V q (g) = 4π(1 -δ q,0 δ g,0 ) (q + g) 2 (15) 1 ε q c (g, g , ω) = 1 δ gg -χ 1 q (g, g , ω) -δ gg
Finally the screened Coulomb interaction W c q (g, g , ω) enters in the correlated part of the self-energy

W c q (g, g , ω) = V 1/2 q (g) 1 ε q c (g, g , ω)V 1/2 q (g) (16) 
The matrix δ gg -χ 1 (g, g , ω) to be inverted naturally decomposes into four blocks with respect to the Nyquist properties of g, g and we have found that the matrix norm of the Nyquist-Nyquist block dominates. The increasing dominance, as N gg grows, of the norm of the Nyquist-Nyquist block (at fixed sub space dimension) of χ 1 q , 1/ε and W c q suggests to retain only the Nyquist-Nyquist block in the computation. Because the error of this approximation should disappear as the number of modes grows, we view our approximation as a "convergence accelerator" of the solution of the GW equations. Lacking a mathematical proof that the non-Nyquist terms disappear with increasing N gg , we simply impose this condition and check whether it works.

The algorithm we used

Apart from using Nyquist's sampling condition Eq. ( 9) in the construction of the screened Coulomb interaction and apart from doing Fourier transformations in imaginary time differently, our algorithm remains essentially that of Godby and collaborators [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF] who do most of the computation for imaginary times and frequencies to avoid oscillations and to provide computational stability. The propagator and the response in imaginary time read as

G + p (r, r , τ ) = i E(p)<0 ψ E p (r)ψ * E p (r )e E(p)τ G - p (r, r , τ ) = -i E(p)>0 ψ E p (r)ψ * E p (r )e -E(p)τ (17) 
χ q (r, r , τ ) = -2i p 1 -p 2 =q G + p 1 (r, r , τ )G - p 2 (r , r, τ )
Following again [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF], Fourier transformations between imaginary time and imaginary frequency are defined according to

f (ω) = -i ∞ -∞ F (τ )e -iωτ dτ , F (τ ) = i 2π ∞ -∞ f (ω)e iωτ dω (18) 
The guiding principle of our own algorithm, and where we differ from [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF], is to express correlation functions in the smaller space of waves g, g that satisfy Nyquist's condition.

Our starting point for the (periodic) electron propagator in the domain of waves g, g is, therefore,

G + p (g, g , τ ) = i E(p)<0 g,g ϕ E p (g)ϕ * E p (g ) e E(p)τ G - p (g, g , τ ) = -i E(p)>0 g,g ϕ E p (g)ϕ * E p (g )e -E(p)τ ( 19 
) g ϕ E p (g)ϕ * E p (g) = δ EE
Because coordinates r, r in real space are computationally expensive, they should occur only when needed to compute products of correlation functions. This then leads, rather naturally, to the following computational steps:

1. Import Kohn-Sham data {E(p), ϕ E p (g)} and the crystal geometry for a semiconductor from a DFT code such as ABINIT [START_REF] Gonze | The abinitproject: Impact, environment and recent developments[END_REF]. 2. Find the uncorrelated (denoted hereafter "unc") or Hartree-Fock (denoted hereafter "HF") gap ∆ HF from the exchange and exchange-correlation energies

δE GW unc (p, E) = E GW x (p, E) -E DF T xc (p, E) (20) 
E GW x (p, E) = < pE|Σ GW p,x |pE > E DF T xc (p, E) = < pE|V DF T xc |pE > E HF (p) = E(p) + δE GW unc (p, E) ∆ HF = min p E lumo HF (p) -max p E homo HF (p)
3. Prepare nonuniform grids τ in imaginary time and in imaginary frequencies ω for storing the electron propagator and other correlation functions and find matrices M (ω, τ ) and M ±± (ω, τ ) that represent the Fourier transformations for the response and the self-energy on these grids (further details will be given below). 4. Construct the electron propagator in wave form on the τ grid according to Eq. [START_REF] Umari | GW quasiparticle spectra from occupied states only[END_REF] and transform the electronic propagator G ± p into its "dual" representation G ± n that is needed for fast convolutions in Bloch momenta

G ± n (g, g ,τ ) = p e 2πin•p/Npp G ± p (g, g ,τ )
5. Use G ± n (g, g , τ ) to construct the noninteracting response χ n (g, g ,τ ) G ± n (g, g , τ ) two fold Fourier transformation -----------------------→ G ± n (r, r , τ ) (21)

χ n (r, r ,τ ) = iG + n (r, r , τ )G - n (r, r , τ )
χ n (r, r ,τ ) two fold Fourier transformation -----------------------→ χ n (g, g ,τ ) and return from χ n to χ q χ q (g, g ,τ

) = 1 N 3 pp n e -2πin•q/Npp χ n (g, g ,τ ) (22) 
6. Find the Fourier image χ q (g, g ,ω) = -i ∞ -∞ χ q (g, g , τ )e iωτ dτ on the nonuniform ω grid according to χ q (g, g ,ω)

= τ ≥0 M (ω, τ )χ q (g, g ,τ ) (23) 
and construct the correlated part of the RPA dielectric function and of the screened Coulomb interaction by inverting in the Nyquist subspace 1 ε q (g, g ,ω) c = 1

δ gg -V 1/2 q,g χ q (g, g ,ω)V 1/2 q,g -δ gg (24) 
7. Fourier transform 1 εq (g, g ,ω) c → 1 εq (g, g ,τ ) c via 1 ε q (g, g ,τ

) c = i 2π ∞ -∞ 1 ε q (g, g ,ω) c e iωτ dω ( 25 
) ω≥0 M -1 pseudo (τ, ω) 1 ε q (g, g ,ω) c
where M -1 pseudo (τ, ω) is a suitably defined pseudo inverse of the (forward) matrix M (ω, τ ) in Eq. ( 23). Use 1 εq to construct the screened Coulomb interaction W c first for Bloch momenta q and then in the space n that is "conjugate" to q:

W c q (g, g , τ ) = V 1/2 q (g) 1 ε q (g, g , τ ) c V 1/2 q (g ) (26) 
W c n (g, g , τ ) = q e 2πin•q/Npp W c q (g, g , τ )

8. Construct the self-energy correction for a set of bands near the Fermi energy

G n (g, g , τ ) W n (g, g ,τ ) two fold Fourier transformation -----------------------→ G n (r, r , τ ) W n (r, r , τ ) (27) 
Σ n (r, r , τ ) = iG n (r, r , τ )W n (r, r , τ ) return to Bloch space :

Σ p (r, r ,τ ) = 1 N 3
pp n e -2πinq/Npp Σ n (r, r ,τ )

find the self energies for some bands :

Σ pE (τ ) = Ω ψ * Ep (r)Σ p (r, r ,τ )ψ Ep (r )drdr 9. Construct Σ pE (ω) = -i ∞ -∞ Σ pE (τ )e iωτ dτ in a notation with ω, τ ≥ 0 using Σ + (ω) Σ -(ω) = τ ∈grid, τ ≥0 M ++ (ω, τ ) M +-(ω, τ ) M -+ (ω, τ ) M --(ω, τ ) Σ + (τ ) Σ -(τ ) (28) 
with matrices M ±± (ω, τ ) that were precomputed at the beginning. 10. Do a Pade analytic continuation to real frequencies and compute the correlated part of the GW self energies according to Eq. ( 4)

Σ pE (ω) → Σ pE (E(p)), Z pE = 1 -Re ∂Σ p ∂ω -1 ω=E(p) (29) 
Find the GW gap according to

∆ GW = ∆ HF + Z pE Σ c pE (p, E) lumo -Z pE Σ c pE (p, E) homo (30) 
Below we provide details on the above computational steps.

Construction of grids in imaginary time and frequency

In imaginary time, the electron propagator G p (r, r , τ ) is a sum of rapidly decaying exponentials in τ with little structure. Adler's exact expression of the response function χ q (r, r , t) in Eq. ( 14) is again a sum of decaying exponentials, and it follows from their spectral representations that the screened Coulomb interaction W q (r, r , t) and the selfenergy Σ GW p (r, r , t) are also of this form. Therefore we construct appropriate nonuniform finite grids, both in imaginary time and in imaginary frequencies, in a construction that may be similar to that of Kaltak et al. [START_REF] Kaltak | Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si[END_REF]. To find a nonuniform grid in τ over the interval (0, τ max ) we impose that the grid points be uniformly spaced near τ = 0 and that they should expand exponentially for growing τ . We used the grid points

τ n = A sinh n • dτ A , n = 0..M (31) 
with the parameter A fixed by requiring τ M to coincide with τ max , where M of the order of 20 gives sufficient accuracy. Near n = 0 the grid remains uniform with τ n = n • dτ + O(n 3 ). Except for a scale factor, we used the same grid in imaginary frequency as in imaginary time

ω n = ω max τ max τ n , n = 0..M (32) 
3.2. Choice of the extension (0, τ max ), (0, ω max ) of the grids We have found that ω max = 200..250 * ∆ DF T where ∆ DF T represents the gap according to DFT is sufficient to represent a simplified response

χ 0 (τ ) = e -2∆|τ | , χ 0 (ω) = -i ∞ -∞ χ 0 (τ )e -iωτ dτ = - 4i∆ (2∆) 2 + ω 2 (33) 
There is a uniform grid spacing dω = 4ωmax N f f associated with the interval (0, ω max ) where N f f = 512 is a remnant of an earlier fft type method we developed before. To find the interval (0, τ max ) we used τ max = N f f dτ 4

and the fft type relation dω * dτ = 2π N f f .

Fourier transformations between time and frequency for the density response

Again, our technique may be similar to that of Kaltak et al. [START_REF] Kaltak | Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si[END_REF], but we were unable to understand their work. The density response in the frequency domain is given by

χ q (g, g , ω) = -i ∞ -∞ χ q (g, g , t)e -iωτ dτ (34) 
We now consider exponential functions F (t) = e -γ|t| on the grid {τ n , n = 0..M } and their Fourier images f (ω)

f (ω) = -i ∞ -∞ F (t)e -iωτ dτ = - 2iγ γ 2 + ω 2 (35) 
On the τ grid, the space of functions is of dimension M +1 and we span this space by functions X(τ, k) = e -ε k |τ | , where we used the frequencies from the frequency grid as exponents, but shifted by ε k = ω k + 2∆ DF T , because the minimal exponent must be twice the gap:

X(τ, k) = e -ε k |τ | ⇒ Y (ω, k) = - 2iε k ε k 2 + ω 2 (36)
So a set of M functions on the τ grid is transformed into a set of M functions Y (ω, k) = -2iε k ε k 2 +ω 2 on the ω grid. Clearly there must exist a matrix, say M (ω, τ ), that describes the map between these two sets of functions

Y (ω, k) = τ ∈grid, τ ≥0 M (ω, τ )X(τ, k) (37) 
Because both the response and the functions X(τ, k) are even in τ , we restrict ourselves to the τ ≥ 0 part of the grid in the summation. The matrix M (ω, τ ) is formally given by M = Y X -1 but we expect the inverse of the matrix X to be singular because of linear dependences among the functions in the τ domain. Searching for M (ω, τ ) by minimizing a suitably defined quadratic error, we are lead to the result

M (ω, τ ) = k,τ Y (ω, k) * X + (k, τ ) * (XX + ) -1 τ ,τ pseudo (38) 
where we have replaced the inverse of the hermitian matrix A = XX + by its "pseudo inverse" defined as follows

(A) -1 pseudo = λ>threshold Z λ Z * λ λ (39) 
AZ λ = λZ λ

The condition λ > threshold means that the matrix A(τ , τ ) is inverted only in the space spanned by eigenvectors corresponding to eigenvalues above a threshold adjusted to minimize the error. We also need the inverse Fourier transform

F (t) = i 2π ∞ -∞ f (ω)e -iωτ
dω for the (inverse) dielectric function in imaginary time. This Fourier inverse should be represented by M -1 (τ, ω), but again we must replace the straight forward inverse by its pseudo inverse with a suitable threshold. We tested the matrices M (ω, τ ), M -1 pseudo (τ, ω) by comparing with the exact result given by Adler and found, in the case of silicon, relative forward and backward errors of ∼ 10 -5 ..10 -4 that are small enough for our purpose.

Fourier transformations for the self-energy

According to Eq. ( 4) the self-energy Σ(τ ) is discontinuous at τ = 0 and therefore we parametrize both Σ(τ ) and its Fourier image Σ(ω) = -i ∞ -∞ Σ(τ )e -iωτ dτ in terms of, respectively, two functions Σ ± (τ ), Σ ± (ω) at τ ≥ 0, ω ≥ 0 according to

Σ(τ ) = θ(τ )Σ + (τ ) + θ(-τ )Σ -(-τ ) Σ(ω) = θ(ω)Σ + (ω) + θ(-ω)Σ -(-ω)
The functions Σ ± (ω) on the frequency grid are related to the functions Σ ± (τ ) on the τ grid as

Σ + (ω) Σ -(ω) = τ ∈grid, τ ≥0 M ++ (ω, τ ) M +-(ω, τ ) M -+ (ω, τ ) M --(ω, τ ) Σ + (τ ) Σ -(τ )
For convenience, we place the Fermi energy at the homo level, so the functions Σ ± (τ ) decay asymptotically at least as fast as e -cτ , with c = 2∆ DF T , where ∆ DF T denotes the DFT gap. We therefore generate the space of functions Σ ± (τ ) as θ(τ )e -(c+ω k )t where we use the same frequency grid {ω k , k = 0..M } as before. The construction is very similar to the one given for the response functions. We estimated the precision of these Fourier matrices by comparing with exact results for the self-energy for an artificial plasmon oscillator and found, in the case of silicon, an error of ∼ 10 -7 for a frequency ω plasmon = 10∆ DF T

Fourier transformations of correlators between points in space and waves

These are Fourier transformations in d = 3 + 3 dimensions

χ q (r, r , ω) = 1 Ω g,g
χ q (g, g , ω)e iq(r-r )+i(gr-g r )

χ q (g, g , ω) = 1 Ω tore χ q (r, r , ω)e -iq(r-r )-i(gr-g r ) drdr and they must be adequately distributed over processors in a future parallel version of the code.

Fourier transformations between Bloch momenta and cell indices

The equations for the density response (Eqs. ( 2)) and the self-energy (Eq. ( 4)) contain convolutions that are done by switching from Bloch momenta -→ p to cell indices -→ n . Consider Eq. ( 4) for the self-energy. By defining "dual" quantities that are labelled by cell indices -→ n

Σ n (r, r ,τ ) = p e 2πin•p/Npp Σ p (r, r ,τ ), G n (r, r ,τ ) = p e 2πin•p/Npp G p (r, r ,τ ) (41) 
we find

Σ n (r, r ,τ ) = iG n (r, r , t)W n (r, r , t) (42) 
Σ p (r, r ,τ ) = 1 N 3 pp n e -2πin•p/Npp Σ n (r, r ,τ )
This amounts to a fast convolution in Bloch momenta in Eq. (4).

Pade analytic continuation

In step 9, we obtain Σ pE on a nonuniform grid on the imaginary frequency axis. This is represented in Pade fashion via

Σ pE (iω) = c (k) pE iω -z k = P N (iω) Q N +1 (iω) (43) 
where P N and Q N +1 are polynomials of, respectively, degree N and N + 1. The Thiele type continued fraction representation for Σ pE (iω) is analytically continued by replacing iω → ω in Σ pE [START_REF] Vidberg | Solving the eliashberg equations by means of n-point padé approximants[END_REF].

Testing the method on some semiconductors

To test our Nyquist approximation, we use Eq. ( 30) to compute the gaps of a few simple semiconductors such as silicon, diamond, a cubic phase of boron nitrate and of crystals of acetylene. In principle, a GW computation should include an infinite number of bands up to the ionization threshold and this is obviously unfeasible. To solve this difficulty in the space time approach, Godby and collaborators replaced DFT electron propagators near the ionization threshold by propagators of free electrons [START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF]. A large number of increasingly accurate extrapolation schemes have been developed since within various O(N 4 ) algorithms [START_REF] Bruneval | Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems[END_REF][START_REF] Weiwei | Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions[END_REF]. Here we simply follow [START_REF] Liu | Cubic scaling GW : Towards fast quasiparticle calculations[END_REF] and extrapolate the gap from data for two or three data points for large numbers of bands n to n = ∞ by using the representations

∆ GW (n) = a 0 + a 1 n or ∆ GW (n) = a 0 + a 1 n + a 2 n 2 (44) 

Some technical details

Computations for small systems such as silicon were done on an old laptop with 8 Gbyte of memory while for larger systems we used a single core of a somewhat obsolete workstation. To save memory, we used a periodic crystal with only N pp = 3 unit cells glued together. That such small systems are large enough to represent infinite crystals was discovered by [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF] and rationalized later in more detail [START_REF] Schindlmayr | Decay properties of the one-particle Green function in real space and imaginary time[END_REF]. Like Kaltak et al. [START_REF] Kaltak | Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si[END_REF] and Liu et al. [START_REF] Liu | Cubic scaling GW : Towards fast quasiparticle calculations[END_REF] we use time and frequency grids with 20 grid points to represent correlators, although 10 grid points were also used for exploratory computations. The correlators that we must deal with satisfy hermiticity and time reversal relations that read, respectively, in the case of the electron propagator

G * n (g , g, τ ) = -G -n (g, g , τ ) (45) G n (g, g , τ ) = -G * n (-g, -g , τ )
The above symmetry relations are useful because they reduce the needed memory by a factor of 4. 

Computational results

We begin with silicon, see figure 1 where we find ∆ GW = 1.18 eV and 1.19 eV by extrapolationg, respectively, two and three data points. The close agreement with the experimental gap of 1.17 eV for silicon [START_REF] Michael | Handbook Series on Semiconductor Parameters[END_REF] may be a coincidence. In the perturbative approach, we use the GW correlation energy only at ω = E homo , E lumo , but it is instructive to examine the global behavior of the GW correlation energy Σ pE (ω) Eq. ( 29) before and after analytic continuation, see figure 2. The figure 2 (right panel) shows half parabolas in the imaginary part of the self-energy below and above the fermi energy (at zero) because we switch from the lower to the upper imaginary axis at this point. Therefore the imaginary part of the self-energy is seen to vanish quadratically at the Fermi energy, as it should. Our results for the self-energy at imaginary and real frequencies resemble those of Godby and coworkers [START_REF] Rieger | The GW space-time method for the self-energy of large systems[END_REF][START_REF] Steinbeck | Enhancements to the GW spacetime method[END_REF].

To judge the convergence of our results with respect to the number of gridpoints, we recomputed the gap of silicon for N gg = 16 with gridpoints M = {10, 15, 20, 25} and obtained the gaps of {1.17, 1.18, 1.23, 1.20}. Although we consider twenty gridpoints sufficient for our computations, this suggests the choice of the gridpoints should be variationally optimized.

For the diamond phase of carbon, see figure 3, we obtain a gap of 5.7 eV by interpolating linearly in 1/n, which is reasonably close to the experimental gap of 5.8 eV [START_REF] Michael | Handbook Series on Semiconductor Parameters[END_REF]. For Boron Nitride, we consider only the cubic or Zinkblende phase. Our data extrapolate to a gap of 6.5 eV while the experimental gap is 6.4 eV [START_REF] Michael | Handbook Series on Semiconductor Parameters[END_REF] Figure 4: Computed gap (in eV) of cubic Boron nitride (6.24 eV, 6.38 eV, and 6.46 eV corresponding to 282, 443 and 1117 bands, red dots) versus the inverse of the number of bands.

Since our method was motivated by the need to predict transport gaps in organic semiconductors, we also considered crystals of acetylene [START_REF] Mcmullan | Structures of cubic and orthorhombic phases of acetylene by single-crystal neutron diffraction[END_REF][START_REF] Patterson | Excited states of molecular and crystalline acetylene: application of TDHF and BSE via density fitting methods[END_REF] although we are lacking experimental data to compare with. By extrapolating linearly, we found a transport gap of 6.4 eV.

Growth of CPU time with system size

It is encouraging that sequential computations for silicon at N gg = 8 take only about 10 seconds on a PC. Although our work station needs about a day for computing the gap for crystals of acetylene at N gg = 28 when using a single core, this should reduce to roughly an hour with computations done in parallel by all of its cores.

Let N = ( Ngg 2 + 1) 3 be the dimension of the correlation matrices that depend on g, g . The operations in the algorithm that scale as N 3 are the inversion for finding 1 ε in Eq. ( 15) and the construction of the electron propagator in Eq. [START_REF] Umari | GW quasiparticle spectra from occupied states only[END_REF]. The remaining operations, such as forming the self-energy and doing Fourier transforms of correlation functions from waves g, g to space points r, r scale as N 2 , apart from logarithmic corrections.

To find how the needed CPU time grows with the number of atoms, one may construct artificial unit cells that contain multiple copies of the true unit cell of a crystal and observe To find the exponent x of growth of CPU time with N gg , we compute the gap of cubic Boron nitride for N gg = {12, 16, 20, 24, 28}. Figure 6 gives the logarithm of the CPU time as a function of the logarithm of N gg and from the slope we find x 3 = 2.35. This shows that for the systems we considered, the computational cost of the operations that scale as N 3 is still small, although for very large systems their cost will dominate.

We found that the O(N 4 ) GW code of abinit has a runtime comparable to our code for a small system with N gg = 8. As its run time scales as N 4 or, equivalently as N 12 gg , this leads, at N gg = 28, to an estimated run time larger by a factor of ( 28 8 ) 4.95 ∼ 500 than that of our code, turning a day into a year, when computing on a single core. 

Conclusions

We considered the O(N 3 ) space time approach to GW by Godby and collaborators and the memory bottleneck that still remained after significant progress made by Kaltak et al. [START_REF] Kaltak | Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si[END_REF] and Liu et al. [START_REF] Liu | Cubic scaling GW : Towards fast quasiparticle calculations[END_REF]. We found that restricting the density response and the screened Coulomb interaction to their Nyquist subspace reduces memory and CPU time by several orders of magnitudes, while keeping satisfactory agreement with the experimental data. Our "Nyquist approximation" allows using the space time approach to GW on widely available laptops and workstations and special purpose computers are no longer needed.

Here we presented a "proof of principle" of our method. A parallel implementation of our algorithm is planned to allow predictions for organic semiconductors and other challenging materials where the O(N 3 ) scaling of the space time approach is crucial.

The important reduction in CPU time and memory that we found might also facilitate computations in extensions of the GW approximation that include spin [START_REF] Aryasetiawan | Generalized hedin's equations for quantum many-body systems with spin-dependent interactions[END_REF] or external electrodes [START_REF] Thygesen | Nonequilibrium GW approach to quantum transport in nano-scale contacts[END_REF]. Here we considered GW as applied to data imported from DFT computations that use pseudo potentials and we did not consider the more precise DFT method developed by Bloechl and his collaborators [START_REF] Lebègue | Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH[END_REF][START_REF] Shishkin | Implementation and performance of the frequency-dependent GW method within the paw framework[END_REF].
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 1 Figure 1: Computed gap (in eV) of silicon (1.422 eV, 1.21 eV, and 1.20 eV corresponding to 26, 97, and 168 bands with red dots representing the raw data) versus the inverse of the number of bands.

Figure 2 :

 2 Figure 2: The self-energy of the homo level vs real (right panel) and imaginary (left panel) frequency.
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 3 Figure 3: Computed gap (in eV) of diamond (5.15, 5.60, 5.63 eV corresponding to 113, 323, 528 bands (red dots)) versus the inverse of the number of bands.

Figure 5 :

 5 Figure 5: Computed gap (in eV) of acetylene crystals (6.27, 6.31, 6.33 eV corresponding to 925, 1050, 1345 bands (red dots)) versus the inverse of the number of bands.

3 gg

 3 how the time for computations grows with the number of atoms in it. Here we use a technically simpler method where we keep the unit cell, but vary the number of waves N gg and find an exponent x CP U time ∼ N x ggIn a second step we observe that the number of modes needed in a plane wave DFT computation for a material with n atoms in the unit cell is about N gg ∼ 10 n 1/3 and we could have put approximately n ∼ N 1000 atoms in this unit cell. We conclude that CPU time grows with the number of atoms as CP U time ∼ n x/3

Figure 6 :

 6 Figure 6: Plot of log(CP U T otal ) vs log(Ngg) to identify the scaling exponent x in the relation CPU T otal ∼ Ngg x . The figure also gives the CPU times for setting up the propagator and for finding the inverse dielectric function that should both scale as Ngg 9 .
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