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. Combining the present work with the papers [1] and [8], we obtain the norm theorem for any type of quadratic forms in characteristic 2.

INTRODUCTION

Let F be an arbitrary field. Given a field extension K/F , a natural problem in the algebraic theory of quadratic forms consists of studying the behavior of F -quadratic forms after scalar extension to K. This problem first started by a result of Witt [START_REF] Witt | Verschiedene Bemerkungen zur Theorie der quadratischen Formen über einem Körper[END_REF] characterizing irreducible polynomials p in one variable for which a given anisotropic F -quadratic form becomes isotropic over F (p) (the function field of the affine hypersurface given by p = 0). Few years later, Knebusch studied the problem of metabolicity of F -bilinear forms over F (p), where p ∈ F [x 1 , . . . , x n ] is normed irreducible (normed means that the coefficient of the highest monomial occurring in p with respect to the lexicographical ordering is 1). To this end, he introduced in [START_REF] Knebusch | Specialization of quadratic and symmetric bilinear forms, and a norm theorem[END_REF], his specialization theory for quadratic and bilinear forms. As a consequence, he proved an important result known as the norm theorem [START_REF] Knebusch | Specialization of quadratic and symmetric bilinear forms, and a norm theorem[END_REF]Theorem 4.2]. The result states that, for a normed irreducible polynomial p ∈ F [x 1 , x 2 , . . . , x n ], an anisotropic bilinear form b over F becomes metabolic over F (p) if and only if p is a norm of b over F (x 1 , . . . , x n ), i.e., b is isometric to pb over F (x 1 , . . . , x n ).

Obviously, Knebusch's norm theorem cited before extends to quadratic forms in characteristic different from 2. Concerning quadratic forms in characteristic 2, we distinguish between three types: nonsingular forms, semisingular forms and totally singular forms (see Section 2). Baeza extended the norm theorem to nonsingular forms [START_REF] Baeza | The norm theorem for quadratic forms over a field of characteristic 2[END_REF]. His proof uses Knebusch's norm theorem for quadratic form in characteristic not 2 via a lifting argument from characteristic 2 to 0, which is based on the idea that any field of characteristic 2 can be viewed as the residue field of a complete discrete valued ring of characteristic 0. For the case of singular quadratic forms (i.e., semisingular or totally singular quadratic forms) in characteristic 2 the situation is more subtle. The main ingredient used in this case is the notion of quasi-hyperbolicity which is an extension of the notion of hyperbolicity. Recall that a singular form ϕ is quasi-hyperbolic if dim ϕ is even and i t (ϕ) ≥ dim ϕ/2, where i t (ϕ) is the total index of ϕ (see Section 2). Note that a restrictive notion of quasi-hyperbolicity (i.e., i t (ϕ) = dim ϕ/2) was first used by Laghribi, but it turns out that these two notions coincide over the field F (p) for which we are interested here (see Proposition 2.2(2.b)). Based on the notion of quasi-hyperbolicity, Laghribi [START_REF] Laghribi | The norm theorem for totally singular quadratic forms[END_REF] and independently Hoffmann [START_REF] Hoffmann | Diagonal forms of degree p in characteristic p, Algebraic and arithmetic theory of quadratic forms[END_REF] proved the norm theorem for totally singular quadratic forms. Later, Laghbribi and Mammone gave partial results on norm theorem for semisingular quadratic forms [START_REF] Laghribi | On the norm theorem for semisingular quadratic forms[END_REF]. More precisely, one of the result given by them asserts that whenever an anisotropic semisingular quadratic form ϕ has a normed irreducible polynomial p ∈ F [x 1 , . . . , x n ] as a norm, then it is quasi-hyperbolic over F (p). The reverse implication has also been proved in their paper for the special case when the polynomial p is given by a quadratic form which represents 1.

From now on we consider F to be a field of characteristic 2. The aim of this paper is the following result which completes the proof of the norm theorem for semisingular quadratic forms.

Theorem 1.1. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F , and let p ∈ F [x 1 , x 2 , . . . , x n ] be a normed irreducible polynomial and K = F (x 1 , x 2 , . . . , x n ). Then, the following two conditions are equivalent:

(1) ϕ is quasi-hyperbolic over F (p).

(2) p is a norm of ϕ K .

As we said before implication (2) ⇒ (1) has already been proved in [START_REF] Laghribi | On the norm theorem for semisingular quadratic forms[END_REF]. So we will focus on the proof of the implication (1) ⇒ (2) which will be done in two steps. First, we give the proof in the case of a normed irreducible polynomial in one variable. In this step we first prove the theorem for the polynomial x 2 n + d, and then generalize it to any one variable normed irreducible polynomial using Scharlau's transfer. In the second step, we will prove the theorem for a polynomial in more than one variable for which we will use an induction on the number of variables due to Knebusch. To proceed with the induction we will need the following proposition.

Proposition 1.2. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F , f ∈ F [x 1 , . . . , x n ] and K = F (x 1 , . . . , x n ). Let p be a normed irreducible polynomial which divides f with an odd power. If f is a norm of ϕ K , then p is also a norm of ϕ K .

For a general polynomial (not necessarily irreducible), we will use Theorem 1.1 to get the following norm criteria.

Corollary 1.3. Let ϕ be a nondefective semisingular quadratic form and q ∈ F [x 1 , . . . , x n ] such that q = cp 1 1 . . . p r r with c ∈ F * := F \ {0}, i ∈ N 0 and p i ∈ F [x 1 , . . . , x n ] normed irreducible polynomial for any 1 ≤ i ≤ r. Then, the following two conditions are equivalent:

(1) q is a norm of ϕ.

(2) c is a norm of ϕ and ϕ F (p i ) is quasi-hyperbolic when i is odd.

BACKGROUND

Recall that any quadratic form ϕ over F can be written up to isometry as follows:

(2.1) ϕ [a 1 , b 1 ] ⊥ [a 2 , b 2 ] ⊥ . . . ⊥ [a r , b r ] ⊥ c 1 ⊥ . . . ⊥ c s ,
where and ⊥ denotes the isometry and orthogonal sum of quadratic forms, and [a, b] (resp. a ) denotes the quadratic form ax 2 + xy + by 2 (resp. ax 2 ). Obviously, dim ϕ = 2r + s (the dimension of ϕ). The quadratic form c 1 ⊥ . . . ⊥ c s is unique up to isometry, we call it the quasilinear part of ϕ, and denote it by ql(ϕ). As in equation (2.1), the form ϕ is called:

• nonsingular (resp. singular) if s = 0 (resp. s > 0),

• totally singular if r = 0,

• semisingular if r > 0 and s > 0.

For a 1 , . . . , a n ∈ F , let a 1 , . . . , a n denote the totally singular quadratic form a 1 ⊥ . . . ⊥ a n . A quadratic form ϕ of underlying F -vector space V is called isotropic if there exists v ∈ V \ {0} such that ϕ(v) = 0, otherwise ϕ is called anisotropic.

For an integer n ≥ 0 and ϕ a quadratic form, we denote n × ϕ for the quadratic form ϕ ⊥ . . . ⊥ ϕ n times .

Recall that any quadratic form ϕ over F uniquely decomposes as follows:

ϕ ϕ an ⊥ i × [0, 0] ⊥ j × 0 ,
where ϕ an is an anisotropic quadratic form. We call ϕ an the anisotropic part of ϕ, and the integer i (resp. j) is called the Witt index (resp. the defect index) of ϕ. The integer i + j is called the total index of ϕ. We denote i, j and i + j by i W (ϕ), i d (ϕ) and i t (ϕ), respectively. The form ϕ is called nondefective if i d (ϕ) = 0.

Two quadratic forms ϕ 1 and ϕ 2 are called Witt-equivalent, denoted

ϕ 1 ∼ ϕ 2 , if there exists m, n ∈ N such that ϕ 1 ⊥ m × [0, 0] ϕ 2 ⊥ n × [0, 0]. A quadratic form (ϕ, V ) represents α ∈ F if there exists v ∈ V such that ϕ(v) = α.
We denote by D F (ϕ) the set of values in F * represented by ϕ.

We will need the following cancellation result: For q ∈ F [x 1 , x 2 , . . . , x n ] an irreducible polynomial, let F (q) be the field of fractions of the quotient ring F [x 1 , . . . , x n ]/(q(x 1 , . . . , x n )). We call it the function field of q.

A scalar α ∈ F * := F \ {0} is called a norm of ϕ if ϕ αϕ. For a field extension K/F and ϕ an F -quadratic form, let ϕ K denote the quadratic form ϕ ⊗ K.

For a 1 , . . . , a n ∈ F * , let a 1 , . . . , a n b be the diagonal bilinear form defined by:

((x 1 , . . . , x n ), (y 1 , . . . , y n )) → n i=1 a i x i y i .
Let W (F ) (resp. W q (F ) ) be the Witt ring of regular symmetric F -bilinear forms (resp. the Witt group of nonsingular F -quadratic forms). The group W q (F ) is endowed with a W (F )module structure as follows: To any regular symmetric F -bilinear form B on a vector space V and a nonsingular F -quadratic form ϕ on a vector space W , we associate a nonsingular quadratic form B ⊗ ϕ defined on V ⊗ F W by:

B ⊗ ϕ(v ⊗ w) = B(v, v)ϕ(w) for any (v, w) ∈ V × W
and whose polar form is B ⊗ B ϕ , where B ϕ is the polar form of ϕ.

All irreducible polynomials p ∈ F [x 1 , . . . , x n ] that we will deal with are inseparable, i.e., p ∈ F [x 2 1 , . . . , x 2 n ] as statement (2) of the following proposition asserts: Proposition 2.2. Let ϕ be a semisingular quadratic form over F .

(1) If ϕ is quasi-hyperbolic, then ql(ϕ) is also quasi-hyperbolic. (2) If ql(ϕ) is anisotropic and p ∈ F [x 1 , . . . , x n ] is irreducible such that ϕ F (p) is quasi- hyperbolic, then: (2.a) p is inseparable. (2.b) i d (ϕ F (p) ) = dim ql(ϕ) 2 and i W (ϕ F (p) ) = dim ϕ-dim ql(ϕ) 2 . (2.c) If p is normed, then p is a norm of ql(ϕ).
(2.d) If L is the subfield of F generated over F 2 by the coefficients of p, then any nonzero scalar of L is a norm of ql(ϕ).

Proof. Let R be a nonsingular quadratic form such that ϕ R ⊥ ql(ϕ).

(1) We have i d (ϕ) = i d (ql(ϕ)) by the uniqueness of the quasilinear part. Suppose that ϕ is quasi-hyperbolic. Then i

t (ϕ) = i W (ϕ) + i d (ϕ) ≥ dim ϕ 2 . Hence, dim ϕ 2 ≤ dim R 2 + i d (ϕ) because i W (ϕ) ≤ dim R 2 . Consequently, dim ql(ϕ) 2 ≤ i d (ϕ).
(2) Suppose that ql(ϕ) is anisotropic and ϕ F (p) is quasi-hyperbolic. By previous statement, ql(ϕ) F (p) is quasi-hyperbolic. By [5, Theorem 6.10] and [8, Theorem 1.1], the polynomial p is inseparable, it is a norm of ql(ϕ) when p is normed, and

i d (ql(ϕ) F (p) ) = dim ql(ϕ) 2 . Now, the condition dim ϕ 2 ≤ i W (ϕ F (p) ) + i d (ϕ F (p) ) = i W (ϕ F (p) ) + dim ql(ϕ) 2 , implies that i W (ϕ F (p) ) ≥ dim R 2 . Consequently, i W (ϕ F (p) ) = dim ϕ-dim ql(ϕ) 2
. Hence, the statements (2.a), (2.b) and (2.c).

Statement (2.d) is proved in [5, Theorem 6.7].
We will now give some results on transfer that will play a crucial role in our proofs. Let K/F be a finite field extension and s : K → F be a nonzero F -linear map. For a quadratic form q on a K-vector space V , we associate s * (q) an F -quadratic form on V , viewed as an F -vector space, defined as follows:

s * (q)(v) = s(q(v)) for all v ∈ V.
Similarly if b is a bilinear form on a K-vector space V , we associate s * (b) an F -bilinear form on V defined as follows:

s * (b)(v, w) = s(b(v, w)) for all v, w ∈ V.
Note that dim s * (q) = [K : F ] dim q, and s * (q 1 ⊥ q 2 ) s * (q 1 ) ⊥ s * (q 2 ) for any two Kquadratic (or K-bilinear) forms q 1 and q 2 . Moreover, if q is a nonsingular (resp. totally singular) quadratic form, then the form s * (q) is also a nonsingular (resp. totally singular) quadratic form. We also have s * (b) regular if b is a regular bilinear form.

Another important result that we will use in the proofs is the Frobenius reciprocity which is given by the following proposition. Proposition 2.3. ([3, Proposition 20.2] Frobenius Reciprocity) Suppose that K/F is a finite extension and s : K → F is a nonzero F -linear map. Let q (resp. b) be a nonsingular quadratic form over F (resp. symmetric bilinear form over K). Then, there exists an isometry

s * (b ⊗ q K ) s * (b) ⊗ q.
The Frobenius reciprocity also exists when b is defined over F and q is defined over K. For more details we refer to [START_REF] Elman | The algebraic and geometric theory of quadratic forms[END_REF]Section 20].

We recall a well known result on transfer: Proposition 2.4. ([3, Lemmas 20.9, 20.12]) Let K = F (α) be a simple extension of F of degree m. Let s : K → F be the F -linear map given by s(1) = 1 and s(α i ) = 0 for all 1 ≤ i ≤ m -1. Then, we have in W (F ):

s * ( 1 b ) = 1 b if m is odd, 1, N K/F (α) b if m is even. s * ( α b ) = N K/F (α) b if m is odd, 0 if m is
even, where N K/F is the norm map of the extension K/F . Corollary 2.5. We keep the same notations and hypotheses as in Proposition 2.4. For any nonsingular F -quadratic form R, we have in W q (F ):

s * (R) = R if m is odd, 1, N K/F (α) b ⊗ R if m is even. s * (αR) = N K/F (α) b ⊗ R if m is odd, 0 if m is even.
Proof. We combine the Frobenius reciprocity with Proposition 2.4 and the facts that R

1 b ⊗ R and αR α b ⊗ R.
We will also need the following computation for totally singular forms:

Lemma 2.6. Let d ∈ F \ F 2 , K = F ( √ d
) and ψ a totally singular F -quadratic form. For the F -linear map s : F ( √ d) → F given by 1 → 1 and √ d → 0, we have:

s * (ψ) 1, d ⊗ ψ and s * ( √ dψ) 2 dim ψ × 0 . Proof. Since K 2 = F 2 + dF 2 ⊂ F , it follows that s(D K ( √ dψ)) = {0}, which means that s * ( √ dψ) 2 dim ψ × 0 and s * (ψ) ψ ⊥ dψ. 3. PROOF OF THEOREM 1.1 IN THE CASE OF p = x 2 n + d
The starting point of our investigation on the norm theorem is the following result:

Proposition 3.1. ([9, Proposition 2.7]) Let ϕ be a semisingular F -quadratic form and d ∈ F \ F 2 such that i W (ϕ F ( √ d) ) = dim ϕ-dim ql(ϕ) 2
. Then, there exists a nonsingular

F -quadratic form R such that ϕ ∼ R ⊥ ql(ϕ) and x 2 + d is a norm of R over F (x).
From this proposition we will derive the following corollary and then prove the same result for any extension of the form

F ( 2 n √ d). Corollary 3.2. If ϕ is a semisingular F -quadratic form and d ∈ F \F 2 such that i W (ϕ F ( √ d) ) = dim ϕ-dim ql(ϕ) 2 , then x 2 + d is a norm of ϕ ⊥ dql(ϕ) over F (x). Proof. Suppose that i W (ϕ F ( √ d) ) = dim ϕ-dim ql(ϕ) 2
. From Proposition 3.1, we have ϕ ∼ R ⊥ ql(ϕ), where R is a nonsingular form over F which admits x 2 + d as a norm. Thus, we have

ϕ ⊥ dql(ϕ) ∼ R ⊥ ql(ϕ) ⊥ dql(ϕ) and R (x 2 +d)R. Since ql(ϕ) ⊥ dql(ϕ) 1, d ⊗ql(ϕ) and x 2 + d is a norm of 1, d , it follows that x 2 + d is also a norm of ql(ϕ) ⊥ dql(ϕ).
Therefore, ϕ ⊥ dql(ϕ) ∼ (x 2 + d)(ϕ ⊥ dql(ϕ)). Since the dimension of left and right hand sides are the same, it follows from Proposition 2.1(1) that ϕ ⊥ dql(ϕ)

(x 2 + d)(ϕ ⊥ dql(ϕ)). Proposition 3.3. Let ϕ be a semisingular F -quadratic form and d ∈ F such that x 2 n + d is irreducible over F and i W (ϕ F ( 2 n √ d) ) = dim ϕ-dim ql(ϕ) 2 . Then, x 2 n + d is a norm of ϕ ⊥ dql(ϕ) over F (x).
Proof. We proceed by induction on n. For n = 1 the proposition is nothing but the previous corollary.

Suppose n ≥ 2, and the proposition is true for n -1.

Let L = F ( √ d) and ϕ R ⊥ ql(ϕ) be a semisingular F -quadratic form such that i W (ϕ F ( 2 n √ d) ) = dim ϕ-dim ql(ϕ)

2

. We consider ϕ over

the field L. Since F ( 2 n √ d) = L 2 n-1 √ d and i W (R ⊥ ql(ϕ)) L 2 n-1 √ √ d = dim ϕ -dim ql(ϕ) 2 ,
it follows from induction hypothesis that we get over L(x)

(3.1) ϕ ⊥ √ dql(ϕ) (x 2 n-1 + √ d)(ϕ ⊥ √ dql(ϕ)). Note that L(x) = F (x)(x 2 n-1 + √ d)
. Now, to descent the previous isometry to F (x) we will use Scharlau's transfer and Frobenius reciprocity for the F (x)-linear map s : L(x) → F (x) given by:

1 → 1 and x 2 n-1 + √ d → 0.
Using the isometry of totally singular forms 1,

√ d 1, x 2 n-1 + √ d , it follows that ql(ϕ) ⊥ √ dql(ϕ) ql(ϕ) ⊥ (x 2 n-1 + √ d)ql(ϕ).
Hence, equation (3.1) becomes

(3.2) R ⊥ ql(ϕ) ⊥ (x 2 n-1 + √ d)ql(ϕ) (x 2 n-1 + √ d)R ⊥ ql(ϕ) ⊥ (x 2 n-1 + √ d)ql(ϕ).
Moreover, as 

N L(x)/F (x) (x 2 n-1 + √ d) = x 2 n + d,
s * (R) ∼ 1, x 2 n + d b ⊗ R, s * ( x 2 n-1 + √ d b ⊗ R) ∼ 0, s * (ql(ϕ)) ql(ϕ) ⊥ (x 2 n + d)ql(ϕ), s * ((x 2 n-1 + √ d)ql(ϕ)) 2 dim ql(ϕ) × 0 .
Now by applying s * to equation (3.2), we get

R ⊥ (x 2 n + d)R ⊥ 1, x 2 n + d ⊗ ql(ϕ) ⊥ 2 dim ql(ϕ) × 0 ∼ 1, x 2 n + d ⊗ ql(ϕ) ⊥ 2 dim ql(ϕ) × 0 .
Cancelling the form 2 dim ql(ϕ) × 0 (Proposition 2.1) and adding (x

2 n + d)R to the equation yields R ⊥ ql(ϕ) ⊥ (x 2 n + d)ql(ϕ) ∼ (x 2 n + d)R ⊥ ql(ϕ) ⊥ (x 2 n + d)ql(ϕ). Since ql(ϕ) ⊥ (x 2 n + d)ql(ϕ) ql(ϕ) ⊥ dql(ϕ) (because 1, x 2 n + d 1, d
), and the forms on both sides have the same dimension, we deduce

ϕ ⊥ dql(ϕ) (x 2 n + d)R ⊥ ql(ϕ) ⊥ dql(ϕ). Since x 2 n + d is a norm of ql(ϕ) ⊥ dql(ϕ), we get ϕ ⊥ dql(ϕ) (x 2 n + d)(ϕ ⊥ dql(ϕ)), as desired.
We obtain the following proposition which is a particular case of the implication (1) =⇒ (2) of Theorem 1.1. Proposition 3.4. Let p = x 2 n + d ∈ F [x] be an irreducible polynomial and ϕ a nondefective semisingular quadratic form over F which is quasi-hyperbolic over F (p). Then, p is a norm of ϕ over F (x).

Proof. Without loss of generality, we may suppose that ϕ is anisotropic. Suppose that ϕ = R ⊥ ql(ϕ) is quasi-hyperbolic over F (p). In particular, by Proposition 2.2( 1 

(ϕ F (p) ) = dim ϕ-dim ql(ϕ) 2 . Hence, Proposition 3.3 implies that R ⊥ ql(ϕ) ⊥ dql(ϕ) p(R ⊥ ql(ϕ) ⊥ dql(ϕ)).
Consequently, we have

R ⊥ ql(ϕ) ⊥ dim ql(ϕ) × 0 p(R ⊥ ql(ϕ)) ⊥ dim ql(ϕ) × 0 .
Cancelling the form dim ql(ϕ) × 0 yields R ⊥ ql(ϕ) p(R ⊥ ql(ϕ)).

PROOF OF THEOREM 1.1 IN ONE VARIABLE

We will now prove Theorem 1.1 in this section in the case where the polynomial p is in one variable.

Theorem 4.1. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F , and let p ∈ F [x] be a normed irreducible polynomial. If ϕ is quasi-hyperbolic over F (p), then p is a norm of ϕ F (x) .

Let ϕ and p be as in Theorem 4.1. Since ϕ is quasi-hyperbolic over F (p), we get by Proposition 2.2 that p is inseparable and ql(ϕ) is quasi-hyperbolic over F (p).

Obviously, p = q(x 2 m ) for some q(x) ∈ F [x] irreducible and separable and some m ≥ 1. Let us write F (p) = F (α), where α is a root of p(x) in an algebraic extension of F . Let n = deg q, β = α 2 m and S = F (β) which is a separable extension of F . Clearly, S(x) = F (x)(x 2 m + β) and q(x 2 m + y) ∈ F (x)[y] is the minimal polynomial of x 2 m + β over F (x).

Let s : S(x) → F (x) be the F (x)-linear map given by:

1 → 1 and (x 2 m + β) i → 0
for all 1 ≤ i ≤ deg q -1. We prove the following result: Proposition 4.2. We keep the same notations as before. For any nonsingular F -quadratic form R, we have in W q (F (x)):

s * (R) = R if deg q is odd, 1, p b ⊗ R if deg q is even. s * ((x 2 m + β)R) = pR if deg q is odd, 0 if deg q is even. Proof. Since q(x 2 m + y) ∈ F (x)[y] is the minimal polynomial of x 2 m + β over S(x), it follows that N S(x)/F (x) (x 2 m + β) = q(x 2 m ) = p.
Then, the proposition follows from Corollary 2.5.

For the case of totally singular forms we give the following proposition:

Proposition 4.3. We keep the same notations as before. For any totally singular quadratic form over F having p as a norm, we have

s * (ψ) ψ ⊥ (n -1) dim ψ × 0 . Proof. Put q(x) = a 0 + a 1 x + • • • + a n-1 x n-1 + x n . Let δ ∈ F and u = 0 + 1 (x 2 m + β) + • • • + n-1 (x 2 m + β) n-1 ∈ S(x) = F (x)(x 2 m + β),
where i ∈ F (x). We have

s * ( δ )(u) = s δ( 2 0 + 2 1 (x 2 m + β) 2 + • • • + 2 n-1 (x 2 m + β) 2(n-1) ) . Since q(x 2 m + y) ∈ F (x)[y] is the minimal polynomial of x 2 m + β over F (x), it is clear that (x 2 m + β) k ∈ 0≤i≤n-1 L(x 2 m + β) i for any k ≥ 0, where L = F 2 [a 0 , • • • , a n-1 , x 2 m
], and thus

s x 2 m + β) k ∈ L for any k ≥ 0. Consequently, s * ( δ )(u) = δ 2 0 + δ 2 1 c 1 + • • • + δ 2 n-1 c n-1 for suitable c 1 , . . . , c n-1 ∈ L. So in terms of isometry it means that s * ( δ ) δ 1, c 1 , . . . , c n-1 .
Now write ψ δ 1 , . . . , δ r and using the fact that transfer is compatible with the orthogonal sum, we get s * (ψ) ψ ⊥ c 1 ψ ⊥ . . . ⊥ c n-1 ψ. Now statement (2.d) of Proposition 2.2 implies that c i ψ ψ as p and x 2 m are norms of ψ. Hence, we get s * (ψ) ψ ⊥ (n -1) dim ψ× 0 .

Proof of Theorem 4.1. We keep the same notations and hypotheses as before. We may suppose that ϕ is anisotropic. Note that ql(ϕ) stays anisotropic over S as the extension S/F is separable [START_REF] Laghribi | The norm theorem for totally singular quadratic forms[END_REF]Lemma 2.8]. Extending ϕ to S and using the uniqueness of the quasilinear part, there exists a nonsingular form R 0 over S such that ϕ S R 0 ⊥ ql(ϕ) S ⊥ i × [0, 0] and R 0 ⊥ ql(ϕ) S = (ϕ S ) an . Since ϕ is quasi-hyperbolic over F (p) = F (α), it follows that (ϕ S ) an is quasi-hyperbolic over F (α). Also, F (α) = S(α) and α is purely inseparable over S with minimal polynomial x 2 m + β. Thus, x 2 m + β is a norm of (ϕ S ) an (we use Proposition 3.4 if (ϕ S ) an is semisingular, and Proposition 2.2(2.c) if (ϕ S ) an is totally singular). Since ϕ S ∼ (ϕ S ) an , it follows that (4.1) ϕ (x 2 m + β)ϕ over S(x).

In particular, ql(ϕ) S(x) (x 2 m + β)ql(ϕ) S(x) . To descent the equation (4.1) over F (x), we will use Scharlau's transfer related to the F (x)-linear map s : F (x)(x 2 m + β) → F (x) given by:

1 → 1 and (x 2 m + β) i → 0 for all 1 ≤ i ≤ n -1. We recall the previous calculations (Propositions 4.2 and 4.3):

s * (R S(x) ) ∼ R if n is odd, 1, p b ⊗ R if n is even. s * ((x 2 m + β)R S(x) ) ∼ pR if n is odd, 0 if n is even. s * (ql(ϕ) S(x) ) ql(ϕ) ⊥ (n -1) dim ql(ϕ) × 0 ,
Assume that n is odd. Applying the transfer map s * to the equation (4.1), we obtain:

(4.2) R ⊥ ql(ϕ) ⊥ (n -1) dim ql(ϕ) × 0 ∼ pR ⊥ ql(ϕ) ⊥ (n -1) dim ql(ϕ)× 0 .
Likewise when n is even, we apply the transfer map s * to the equation (4.1) to get:

(4.3) 1, p b ⊗ R ⊥ ql(ϕ) ⊥ (n -1) dim ql(ϕ) × 0 ∼ ql(ϕ) ⊥ (n -1) dim ql(ϕ)× 0 .
Note that adding pR to both sides of the equation (4.3) gives us the equation (4.2). Now cancelling the form (n -1) dim ql(ϕ) × 0 in the equation (4.2) (Proposition 2.1(2)), and using the fact that ql(ϕ) pql(ϕ) because ql(ϕ) F (p) is quasi-hyperbolic (Proposition 2.2(2.c)), we get ϕ pϕ over F (x).

PROOF OF PROPOSITION 1.2

For the proof of Proposition 1.2, we need some preparatory results. First, we mention a lemma to be used in Step 1 below. Lemma 5.1. ([9, Lemma 2.4]) Let p ∈ F [x 1 , . . . , x n ] be an irreducible polynomial, and let ϕ R ⊥ ql(ϕ) be an anisotropic quadratic form such that dim R > 0 and R F (p) is not hyperbolic. Then, p stays irreducible over F (ϕ).

5.1. Some results on places. Let K and L be fields. We take L ∞ = L ∪ {∞} with the rules:

x + ∞ = ∞ for x ∈ L, x∞ = ∞ for x ∈ L * , 1 ∞ = 0, 1 0 = ∞, ∞∞ = ∞,
and ∞ + ∞, 0 × ∞ are not defined. A place from K to L is a "homomorphism" λ : K → L ∞ satisfying: λ(x + y) = λ(x) + λ(y) and λ(xy) = λ(x)λ(y), whenever the right hand sides are defined (we admit the trivial places K → L).

If K and L are extensions of F and λ(x) = x for all x ∈ F , then we say that λ is an F -place. One attaches to λ its ring R λ := {x ∈ K | λ(x) = ∞}. This is a valuation ring whose field of fractions is K and maximal ideal is

m λ = {x ∈ K | λ(x) = 0}.
Clearly, the residue field R λ /m λ can be identified with a subfield of L. We refer to [10, Appendix, Chapter 3] and [START_REF] Bourbaki | Eléments de mathématiques, Algèbre commutative. Chapitres[END_REF] for an overview on places and their connection with valuations.

A result that we will use in the sequel is due to Knebusch. Using this result we prove a substitution principle for semisingular quadratic forms:

Proposition 5.3. Let ϕ be a nondefective semisingular form over F , and let p ∈ F [x 1 , . . . , x n ] be a norm of ϕ. Let c 1 , . . . , c k ∈ F be such that the polynomial q := p(c 1 , . . . , c k , x k+1 , . . . , x n ) is nonzero, 1 ≤ k ≤ n. Then, q is a norm of ϕ over F (x k+1 , . . . , x n ).

Proof. We give the proof for k = 1 and the rest follows by an obvious induction. Let ϕ be a nondefective semisingular form over F and p ∈ F [x 1 , . . . , x n ] be a norm of ϕ. Let c 1 ∈ F be such that q 1 := p(c 1 , x 2 , . . . , x n ) is nonzero.

Consider K = F (x 1 , . . . , x n ) and L = F (x 2 , . . . , x n ) (read L = F if n = 1)
. We fix the F -place λ : K → L ∞ given by: x 1 → c 1 and x i → x i for all 2 ≤ i ≤ n. Let M and N be free R λ -module of rank dim ϕ, and equipped with R λ -quadratic forms

Q and Q such that Q ϕ ⊗ R λ and Q pϕ ⊗ R λ . Since ql(ϕ) is anisotropic over L (because ϕ is nondefective) and R λ /m λ is a subfield of L, it follows that Q ⊗ R λ /m λ and Q ⊗ R λ /m λ are non-degenerate. Moreover Q K pQ K because ϕ K pϕ K . Hence, Lemma 5.2 implies that Q ⊗ R λ /m λ Q ⊗ R λ /m λ .
Extending scalars to L, we get ϕ L qϕ L , as desired. 5.2. Proof of Proposition 1.2. Let ϕ R ⊥ ql(ϕ) be a nondefective semisingular quadratic form over F . Let f ∈ F [x 1 , . . . , x n ] be a norm of ϕ and p a normed irreducible polynomial that divides f with an odd power. We want to prove that p is a norm of ϕ. Without loss of generality, we may suppose that ϕ is anisotropic and p 2 does not divide f , i.e., f = pg where p does not divide g. We proceed by induction on n.

Step 1. The case n = 1. We will follow some arguments used in the proofs of [ . Let us write S = c 1 , . . . , c s . It suffices to prove that the elements c 1 , . . . , c s , pc 1 , . . . , pc s are F (x) 2linearly independent by [START_REF] Laghribi | On splitting of totally singular quadratic forms[END_REF]Lemma 2.1]. In fact, let q 1 , . . . , q s , q 1 , . . . , q s ∈ F (x), not all zero, be such that (5.1)

s i=1 c i q 2 i + p s i=1 c i q i 2 = 0.
We may suppose that q 1 , . . . , q s , q 1 , . . . , q s ∈ F [x] and p does not divide all of them. We extend equation (5.1) to F (p) to get s i=1 c i q2 i = 0 ∈ F (p). Since S F (p) is anisotropic, it follows that q i = r i p for some r i ∈ F [x] (1 ≤ i ≤ s). We substitute q i = r i p in equation (5.1), we simplify by p and extend to F (p) to get s i=1 c i q i 2 = 0 ∈ F (p). Again, the anisotropy of S F (p) implies that p divides q 1 , . . . , q s , a contradiction to the choice of q 1 , . . . , q s , q 1 , . . . , q s . Hence the claim.

Claim 2. i W (ϕ F (p) ) ≥ 1.
Let us assume that i W (ϕ F (p) ) = 0 and let r = dim R. The previous claim gives us the isometry pgϕ R ⊥ S ⊥ pS over F (x).

Without loss of generality, we assume that 1 ∈ D F (ϕ) and thus f ∈ D F (x) (ϕ). Hence, there exists u

∈ F [x] r , v, v ∈ F [x] s and q ∈ F [x] such that (5.2) pgq 2 = R(u) + S(v) + pS(v ).
We may suppose that q and the polynomials composing u, v and v are coprime. We extend equation (5. In particular, we can say that ql(ϕ) represents gq 2 + pl over F [x]. We have ql(ϕ) pgql(ϕ), therefore pgql(ϕ) represents gq 2 + pl over F [x], i.e.,

(5.3) gq 2 + pl = pgS(q 1 ) + p 2 gS(q 2 ) for some q 1 , q 2 ∈ F [x] s . We extend equation (5.3) to F (p) to get g q2 = 0, i.e., q = pq for some q ∈ F [x]. We substitute this in equation (5.2), simplify by p and extend to F (p) to get S(v ) = 0. Since S is anisotropic over F (p), we get v = pv 1 for some v 1 ∈ F [x] s . This is a contradiction to the hypothesis that q and the polynomials composing u, v and v are coprime. Thus, our assumption that i W (ϕ

F (p) ) = 0 is wrong. We now have i W ϕ F (p) ≥ 1. Claim 3. i W ϕ F (p) = dim R 2 .
To prove the claim we proceed by induction on dim R. If dim R = 2, then we are done by Claim 2. Suppose that dim R > 2 and the claim is true for any nondefective semisingular form ϕ that has f as a norm and whose regular part is of dimension 

< dim R. Let L = F (ϕ) and put ϕ L R ⊥ i × H ⊥ ql(ϕ), where i = i W (ϕ L ). We treat two cases: (a) If R F (p) is hyperbolic, then i W (ϕ F (p) ) = dim R 2 ,
((R ⊥ ql(ϕ)) L(p) ) = dim R 2 .
Hence, we get i

W (ϕ L(p) ) = dim R 2 . Moreover, the extension F (p)(ϕ)/F (p) is purely transcen- dental since i W (ϕ F (p) ) ≥ 1 (Claim 2). As L(p) = F (p)(ϕ), we conclude from i W (ϕ L(p) ) = dim R 2 that i W (ϕ F (p) ) = dim R 2 , as desired. In conclusion of Step 1, we got ql(ϕ) F (p) quasi-hyperbolic and i W (ϕ F (p) ) = dim R
2 , which implies that ϕ F (p) is quasi-hyperbolic. By Theorem 4.1, we conclude that p is a norm of ϕ.

Step 2. Suppose n ≥ 2 and the proposition is true for n-1. We will use an induction argument due to Knebusch [START_REF] Knebusch | Specialization of quadratic and symmetric bilinear forms, and a norm theorem[END_REF]. Set x = (x 2 , . . . , x n ), x = (x 1 , x ) and L = F (x 2 , . . . , x n ). Let r be the degree of p considered as a polynomial in L[x 1 ] and ζ ∈ F [x 2 , . . . , x n ] be the highest coefficient of p ∈ L[x 1 ].

(1) Suppose that F is infinite:

• If r = 0, i.e., p is a constant polynomial in L[x 1 ]. We write f = p(x )g(x) ∈ F (x 1 , . . . , x n ). Since p 2 does not divide f , then p does not divide all coefficients of g ∈ L[x 1 ]. Since F is infinite, there exists c ∈ F such that p(x ) does not divide g(c, x ) in F [x ]. By Proposition 5.3, p(x )g(c, x ) is a norm ϕ L . By induction hypothesis p(x ) is a norm of ϕ L , and thus it is also a norm of ϕ K . • If r > 0. Let p = ζ -1 p which is a normed polynomial in L[x 1 ]. We will first verify that p 2 does not divide f . Assume that p 2 |f , then p |ζg and thus p|ζ 2 g. This is not possible since p is an irreducible polynomial which does not divide g. Hence, p 2 f . We have ϕ f ϕ pgϕ ζ -1 p gϕ. Using Step 1, we get ϕ L(x 1 ) p ϕ L(x 1 ) , i.e., pϕ L(x 1 ) ζϕ L(x 1 ) .

We claim that ζ is a norm of ϕ L . Let us take h any normed irreducible divisor of ζ in F [x 2 , . . . , x n ] with odd power, say ζ = hζ . Since p is irreducible, the polynomial h does not divide all coefficients of p ∈ L[x 1 ]. Since F is infinite, there exists c ∈ F such that h does not divide p(c, x ). By Proposition 5.3, we have the isometry p(c, x )ϕ L ζϕ L . Hence, ζp(c, x ) is a norm of ϕ L , and by induction hypothesis h is a norm of ϕ L . Since ζ is normed and any normed irreducible factor of it is a norm of ϕ L , we deduce that ζ is a norm of ϕ L , and thus p is a norm of ϕ L(x 1 ) .

(2) Suppose that F is finite. We change F by F (t) for some variable t over F . Hence, over F (t) we are in condition (1), and thus p is a norm of ϕ F (t)(x 1 ,...,xn) . Now applying Proposition 5.3 and substituting t = 0, we get ϕ pϕ over F (x 1 , . . . , x n ). 

Lemma 5 . 2 . [ 6 ,

 526 Lemma 2.8] Let M and N be free quadratic modules over R λ such that M/m λ M and N/m λ N are non-degenerate. Assume that N ⊗K M ⊗K. Then, N/m λ N M/m λ M .

  2) to F (p) to get R(ū) + S(v) = 0. Using i W (ϕ F (p) ) = 0 and anisotropy of S, it follows that u = pu 1 and v = pv 1 for some u 1 ∈ F [x] r and v 1 ∈ F [x] s . Substituting u = pu 1 and v = pv 1 in equation (5.2) and simplifying by p, we get S(v ) = gq 2 + pl for some l ∈ F [x].

6 .

 6 PROOF OF THEOREM 1.1 IN MANY VARIABLES Let p ∈ F [x 1 , x 2 , . . . , x n ] be a normed irreducible polynomial, L = F (x 2 , . . . , x n ) and let ζ be the highest coefficient of p considered as a polynomial of L[x 1 ]. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F which is quasi-hyperbolic over F (p) = L(p). By Theorem 4.1 the polynomial ζ -1 p ∈ L[x 1 ] is a norm of ϕ L(x 1 ), or, equivalently ζp is a norm of ϕ L(x 1 ) . By Proposition 1.2, p is a norm of ϕ.Conversely, if p is a norm of ϕ, then ϕ F (p) is quasi-hyperbolic by [9, Theorem 1.1].

  ⊥ s × 0 for some integer s ≥ 0 and ϕ 1 , ϕ 2 nondefective. Then ϕ 1 ϕ 2 .

	Proposition 2.1. ([6, Proposition 1.2] for (1), [4, Lemma 2.6] for (2)) Let ϕ 1 , ϕ 2 be two qua-
	dratic forms (possibly singular). Suppose that one of the following conditions holds:
	(1) ϕ 1 ⊥ ψ ϕ 2 ⊥ ψ for some nonsingular form ψ,
	(2) ϕ 1 ⊥ s × 0	ϕ 2

  it follows from Corollary 2.5 and Lemma 2.6

  ) ql(ϕ) is quasihyperbolic over F (p). By statement (2.c) of Proposition 2.2, ql(ϕ) pql(ϕ) over F (x).Moreover, by statement (2.d) of Proposition 2.2, we get ql(ϕ) dql(ϕ). Thus ql(ϕ) ⊥ dql(ϕ) ql(ϕ) ⊥ ql(ϕ) ql(ϕ) ⊥ dim ql(ϕ) × 0 .

	By statement (2.b) of Proposition 2.2, we get i W

  9, Lemma 2.3, Theorem 1.1]. Since f is a norm of ϕ, we have R ⊥ ql(ϕ) pg(R ⊥ ql(ϕ)). By the uniqueness of the quasilinear part, we have ql(ϕ) pg(ql(ϕ)). By [8, Proposition 1.2], we get ql(ϕ) pql(ϕ), and thus ql(ϕ) F (p) is quasi-hyperbolic. Claim 1. ql(ϕ F (x) ) S F (x) ⊥ pS F (x) for a suitable subform S of ql(ϕ).

	By [7, Lemma 2.1], there exists a subform S of ql(ϕ) such that (ql(ϕ) F (p) ) an	S F (p)

  and we are done. (b) If R F (p) is not hyperbolic. Lemma 5.1 implies that p remains irreducible over L. Since f

L is also a norm of R ⊥ ql(ϕ) L , it follows by induction hypothesis that i W

&
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