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In this paper, we introduce the functional analysis method to investigate how betas change over time in the factor models. Based on the China A-share data, we drop the constant beta assumption in the CAPM and multi-factor models to estimate the time-varying betas directly from the functional data regression. The empirical results show that exposures to all risk factors have certain time-varying patterns in the Chinese A-share stock market.

Introduction

Based on the mean-variance model [START_REF] Markowitz | Portfolio selection[END_REF], [START_REF] Sharpe | Capital asset prices: A theory of market equilibrium under conditions of risk[END_REF], [START_REF] Lintner | The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets[END_REF], and [START_REF] Mossin | Equilibrium in a capital asset market[END_REF] introduce the capital asset pricing model (CAPM) and use the regression coefficient beta to measure exposure to market risk. Later, many scholars added firm-specific (unsystematic) risk factors to the CAPM, leading to the multi-factor models [START_REF] Fama | The cross-section of expected stock returns[END_REF], 1993, 2015;[START_REF] Carhart | On persistence in mutual fund performance[END_REF][START_REF] Acharya | Asset pricing with liquidity risk[END_REF].

However, most factor models are restricted by the constant beta assumption, and existing studies on timevarying beta are mainly based on the Kalman filter model [START_REF] Hameed | Time-varying factors and cross-autocorrelations in short-horizon stock returns[END_REF][START_REF] Zhou | Conditional market beta for reits: a comparison of modeling techniques[END_REF]. In this study, we propose a functional approach [START_REF] Ramsay | Functional data analysis[END_REF][START_REF] Horváth | Inference for functional data with applications volume 200[END_REF] to dynamic asset pricing models based on the CAPM, the Fama-French three-factor model, and the Fama-French five-factor model to explore the time variation of exposure to risk factors.

There is a long-standing discussion of the validity of these models and statistical testing in these models.

As beta is unobservable, the linear regression is used to estimate it. [START_REF] Jayasinghe | New estimates of time-varying currency betas: A trivariate bekk approach[END_REF] and [START_REF] Bu | Time-varying comovement and changes of comovement structure in the chinese stock market: A causal network method[END_REF] argue that an ordinary linear regression for constant betas may not be compatible with financial theory. Besides, it should be noted that the constant beta assumption assumes the stationarity of the data. construct functions, such as excess returns curves, to extract additional information between time t -1 and t. [START_REF] Ramsay | Functional data analysis[END_REF] and Ramsay & Silverman (2007) provide introduction to functional data analysis. Functional data analysis has been widely used in quantum mechanics, bioengineering, and other fields, but so far, it is rarely used in finance. [START_REF] Horváth | Inference for functional data with applications volume 200[END_REF] develop functional data analysis for time-series data. Based on this theory, [START_REF] Kokoszka | Functional dynamic factor model for intraday price curves[END_REF] introduce a functional regression to model asset pricing by transforming daily asset returns and the market factor into functions and constructing a functional factor model with both scalar and functional factors. However, [START_REF] Kokoszka | Functional dynamic factor model for intraday price curves[END_REF] employ the functional factor model with the constant beta assumption. Besides, [START_REF] Kokoszka | Dynamic functional regression with application to the cross-section of returns[END_REF] propose a statistical significance test for risk factors in a functional regression with functional cross-section returns and scalar risk factors. [START_REF] Horváth | Inference for functional data with applications volume 200[END_REF] and [START_REF] Cao | A study of data-driven momentum and disposition effects in the chinese stock market by functional data analysis[END_REF] decompose the cross-section returns using functional principal component analysis and find momentum and disposition effects in Chinas A-share market.

Motivated by the functional factor model in [START_REF] Kokoszka | Functional dynamic factor model for intraday price curves[END_REF][START_REF] Kokoszka | Dynamic functional regression with application to the cross-section of returns[END_REF], we introduce functional asset pricing models that can investigate how betas change over time. The main contribution of this study is that it allow time-varying betas in the functional asset pricing models. One advantage of a functional regression is that it will enable researchers to estimate functional coefficients. In contrast to [START_REF] Kokoszka | Dynamic functional regression with application to the cross-section of returns[END_REF], we use time-series data, and both excess returns and risk factors are functions of time t. Based on our proposed functional factor models, we can test the validity of factor models without the restriction of constant betas.

The rest of this paper is organized as follows: Section 2 introduces functional factor models. Section 3 discusses the estimation of the time-varying beta and the construction of confidence bands. We discuss our data in Section 4 and investigate the time variation of betas in Section 5. Section 6 summarises the application of functional factor models to the Chinese stock market.

Conventional and Functional Factor Models

Conventional factor models

For any security or portfolio, the conventional CAPM1 is given by the linear regression

R t = α + β 1 R M,t + ε t , ( 1 
)
where R t is the excess returns on any security or portfolio at time t2 ; R M,t is the excess returns on market portfolio according to the modern portfolio theory.

The CAPM has been extended to the three-factor model [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF])

R t = α + β 1 R M,t + β 2 SM B t + β 3 HM L t + ε t , (2) 
where SM B t is the difference between returns on a value-weighted portfolio of small stocks and that of big stocks. HM L t is the difference of returns for high and low book-to-market ratio.

The five-factor model [START_REF] Fama | A five-factor asset pricing model[END_REF])

R t = α + β 1 R M,t + β 2 SM B t + β 3 HM L t + β 4 RM W t + β 5 CM A t + ε t , (3) 
where RM W t is the difference of returns for robust and weak operating profit and CM A t is the difference of returns for conservative and aggressive investment.

Functional factor models

Now we introduce functional factor models. Along the lines of the conventional factor model, the functional CAPM 3 is defined as

R i (t) = α(t) + β(t)R M (t) + ε i (t), (4) 
where R i (t) is the functional time-series excess returns on portfolio over time t 4 ; R M (t) is the functional time-series market factor over time t.

The functional three-factor model is

R i (t) = α(t) + β 1 (t)R M (t) + β 2 (t)SM B i (t) + β 3 (t)HM L i (t) + ε i (t), (5) 
where SM B i (t) is the functional time-series size factor, and HM L i (t) is the functional time-series value factor.

Similarly, the functional five-factor model is

R i (t) = α(t) + β 1 (t)R M (t) + β 2 (t)SM B i (t) + β 3 (t)HM L i (t) + β 4 (t)RM W i (t) + β 5 (t)CM A i (t) + ε i (t), ( 6 
)
where RM W i (t) is the functional time-series profitability factor, and CM A i (t) is the functional time-series investment factor.

Methodology

In this section, we discuss statistical inference for time-varying beta. The general functional factor regression can be expressed as

R i (t) = m ∑ j=1 β j (t)F i,j (t) + ε i (t), or R(t) = β(t)F (t) + ε(t), ( 7 
)
3 Similar to the conventional factor models, for any security or portfolio i, the functional CAPM can be expressed as

R i (t) = α(t) + β(t)R M (t) + ε i (t)
. 4 We consider the excess returns of stock or portfolio i as a function of time t (t = 1, 2, . . . , 264), i.e., R i (t).
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where β(t) = (β 1 (t), . . . , β m (t)) and F (t) = (F 1 (t), . . . , F m (t)) contains all functional time-series factors.

Equation ( 7) is a standard general linear model, we can estimate β(t) by the standard least squares criterion.

We extend the method to minimize the residual sum of squares in the functional regression case. The least squares function, as a function of β(t), in our model is

LMSSE(β) = ∫ [R(t) -β(t)F (t)] ′ [R(t) -β(t)F (t)]dt.
The functional excess returns R i (t) is expressed as

R i (t) = K ∑ k=1 c i,k ϕ k (t) = C ′ i Φ(t).
where Φ(t) are the basis function vector.

Similarly, we assume that

β j (t) = Kj ∑ k=1 b j,k ψ j,k (t) = b ′ j ψ j (t), ( 8 
)
where b j is the coefficient vector for functional beta β j (t) and ψ j (t) is the vector of Fourier basis functions.

Hence, the estimation of β j (t) can be based on the estimation of coefficient vector b j .

To express the model in a consistent form, we define

B = (b ′ 1 , b ′ 2 , . . . , b ′ m )
and

Ψ(t) =      ψ 1 (t) • • • 0 . . . . . . . . . 0 • • • ψ m (t)      .
Thus the functional factor model can be rewritten as

R(t) = BΨ(t)F (t) + ε(t),
we minimize

LMSSE(β) = ∫ [R(t) -BΨ(t)F (t)] ′ [R(t) -BΨ(t)F (t)]dt = ∫ R ′ (t)R(t) -2F ′ (t)Ψ ′ (t)B ′ R(t) + F ′ (t)Ψ ′ (t)B ′ BΨ(t)F (t)dt.
Minimizing LMSSE(β) is equivalent, according to equation ( 8), to minimize with respect of the coefficient matrix. We find that the coefficient matrix B is the solution of

B ∫ F ′ (t)Ψ ′ (t)Ψ(t)F (t)dt = ∫ F ′ (t)Ψ ′ (t)R(t)dt.
Hence, we need to estimate the coefficient matrix B, and get estimate for β(t).

Next, we construct confidence bands. The construction of the confidence bands requires the variance and covariance of the estimated coefficient matrix B.

The estimated coefficient matrix is

B = (∫ F ′ (t)Ψ ′ (t)Ψ(t)F (t)dt ) -1 ∫ F ′ (t)Ψ ′ (t)R(t)dt = (∫ F ′ (t)Ψ ′ (t)Ψ(t)F (t)dt ) -1 ∫ F ′ (t)Ψ ′ (t)CΦ(t)dt.
Hence we get 5 vec( B) =

(∫ F ′ (t)Ψ ′ (t)Ψ(t)F (t)dt ) -1 ∫ Φ ′ (t) ⊗ F ′ (t)Ψ ′ (t)dtvec(C).
Let S ψ be the linear mapping that maps the excess returns R into the coefficient matrix C, i.e. C = RS ψ .

Then

vec(C) = (S ′ ψ (t) ⊗ I)vec(R).
The variance of R is given by

var(vec(R)) = Σ ε ⊗ I,
where Σ ε is the variance-covariance matrix of the error vectors. Then the variance of estimated coefficient matrix B is

var(vec( B)) = A(S ′ ψ (t) ⊗ I)Σ ε ⊗ I(S ′ ψ (t) ⊗ I) ′ A ′ , where A = (∫ F ′ (t)Ψ ′ (t)Ψ(t)F (t)dt ) -1 ∫ Φ ′ (t) ⊗ F ′ (t)Ψ ′ (t)dt.
Hence, we have the variance of the estimated coefficient matrix B, and therefore we can construct confidence bands for the time-varying betas.

Data

In this study, we investigate functional factor models in the Chinese stock market. We select all A shares We construct 25 (or 100) value-weighted portfolios as observations, and the different observations correspond to different excess returns (dependent variable) and the same risk factors (independent variables).

(
5 The Vec-operator: vec(A) = (a 11 , a 21 , . . . , a m1 , . . . , a 1n , a 2n , . . . , amn) ′ , where

A =         a 11 • • • a 1n a 21 • • • a 2n . . . . . . . . . a m1 • • • amn         .
The Kronecker product ⊗ of A m×n and B p×q is the mn × pq matrix and defined as follows:

A ⊗ B =         a 11 B • • • a 1n B a 21 B • • • a 2n B . . . . . . . . . a m1 B • • • amnB         .
We sort all A-shares by market value (size factor) and divide them into five (or ten) groups. Then, we sort the stocks in each group by the book-to-market ratio and divide them into five (or ten) subgroups. Finally, we get 25 Size-B/M portfolios (or 100 Size-B/M portfolios). The excess returns on value-weighted portfolios are defined by

R i,t = ∑ k mv i k,t ∑ k mv i k,t r i k,t , i = 1, 2, . . . , 25 t = 1, 2, . . . , 264 or R i,t = ∑ k mv i k,t ∑ k mv i k,t r i k,t , i = 1, 2, . . . , 100 t = 1, 2, . . . , 264,
where R i,t is the excess returns on portfolio i at time t, r i k,t is the excess returns on stock k at time t in the ith portfolio and mv i k,t is the market value of stock k.

Independent variables: risk factors

For each group (25 or 100 portfolios), we apply the same (25 or 100) risk factors (market factor, size factor, value factor, profitability factor and investment factor) constructed following [START_REF] Fama | A five-factor asset pricing model[END_REF].

Transform the discrete data to functional data

Next, we build functional data for time-series excess returns and risk factors. We map the time-series data {R i,t } 264 t=1 into functions to get the functional data {R i (t), 0 ≤ t ≤ 1}, and R i (t) can be expressed by the basis expansion

R i (t) = K ∑ k=1 c i,k ϕ k (t) = C ′ i Φ(t),
where Φ(t) is the vector of basis functions, and C i is a coefficient vector in the basis function expansion.

The general functional factor model is

R i (t) = m ∑ j=1 β j (t)F i,j (t) + ε i (t), i = 1, 2, . . . , 25 or R i (t) = m ∑ j=1 β j (t)F i,j (t) + ε i (t), i = 1, 2, . . . , 100,
where F i,j (t) denotes the functional risk factor vector.

In practice, two types of basis functions are used. The Fourier basis functions are suitable for periodic observations. The spline basis functions can be used for non-periodic observations. We choose the Fourier basis functions because we argue that both excess returns and risk factors show periodicity in the long run. 

Functional Factor Models

In this section, we investigate the time-varying betas in the Chinese stock market. First, we construct 25 (or 100) Size-B/M portfolios for all A-shares and obtain the value-weighted excess returns. 7 Then, we employ the functional factor models with 25 (or 100) Size-B/M portfolios with time-varying betas (see equations ( 9) and ( 10)). As mentioned earlier, one advantage of functional factor models is that we can relax the constant beta assumption. Another advantage is that for every risk factor, in functional factor models, we obtain the conjoint β j (t) of all portfolios, which exhibits common exposure of all A-shares to each risk factor. In Section 5.2, we show that using different portfolio constructions has little influence on the time-dependent betas.

The least squares fitting criterion with 25 (or 100) portfolios is:

min {βj (t)} m j=1 25 ∑ i=1 ∫ 1 0   R i (t) - m ∑ j=1 β j (t)F i,j (t)   2 dt (9) or min {βj (t)} m j=1 100 ∑ i=1 ∫ 1 0   R i (t) - m ∑ j=1 β j (t)F i,j (t)   2 dt.
(10)

Time-varying betas

With the functional excess returns on 25 (or 100) Size-B/M portfolios and functional time-series risk factors, we can employ the functional CAPM, functional three-factor model, and functional five-factor model.

Figure 6 -11 show the time-varying betas, where the solid line displays the estimated β j (t) and the dashed lines 7 We use excess returns on portfolios instead of individual stocks because there is a lack of data on individual stocks on some trading days due to suspension and other reasons. This does not affect much on the excess returns of portfolios.

indicate the 95% confidence bands for β j (t). Table 1 and 2 report the regression details for the functional factor models, specifically the coefficient vectors b j for each β j (t)). To compare the empirical results of functional factor models with benchmark, we implement conventional asset pricing models with constant parameters (see equations ( 1)-( 3)) for average excess returns of 25 (or 100) Size-B/M portfolios, and the results are shown in Table 3. Chinese stock market. [START_REF] Li | The impact of china's stock market reforms on its international stock market linkages[END_REF] shows that China's stock market reforms, such as the non-tradable reform, will influence the stock market performance. Before 2005, there were two kinds of shares in Chinese listed companies: tradable and non-tradable shares. Non-tradable shares were dominant, which seriously hindered the circulation of listed companies' shares, so the size effect of the listed company was hardly reflected in the price. After the non-tradable share reform, the securities market has become more market-oriented, and small-scale companies have gradually shown higher excess returns. (c) Exposure to the value factor is positive only from 2011 to 2016, so the value factor had a positive effect on A shares only for a short period (from 2011 to 2016). Looking back to the history of the Chinese stock market, exposure to the value factor is related to the performance of the stock market [START_REF] Fama | Multifactor explanations of asset pricing anomalies[END_REF]. The Chinese stock market is much more complicated and turbulent before 2011, as it has a large or small bear and bull markets. In the two years after the non-tradable share reform, the Shanghai Composite Index multiplied from 1258. show that the value factor has a positive effect from 2011 to 2016. As with the size factor, the value factor has a positive effect in a stable period. (d) Exposure to the profitability factor is almost always negative in the whole sample period, and reached its minimum after the financial crisis. Valuation theory says that the company's profitability is usually positively related to expected returns [START_REF] Haugen | Commonality in the determinants of expected stock returns[END_REF][START_REF] Fama | Profitability, investment and average returns[END_REF]. Nevertheless, portfolios have negative exposure to the profitability factor in the Chinese stock market;

that is, most portfolios do not have high excess returns compared with a robust-profitability portfolio. (e)

Exposure to the investment factor gradually changed from negative to positive after the non-tradable share reform in China. However, during the financial crisis, exposure to the investment factor reached its maximum and began to decline due to stock market turbulence. Note: The number in parenthesis is the t-statistic.

The robustness of the results

Different portfolio constructions

To investigate whether different portfolio constructions with all A shares affect the time variation of betas, we perform functional factor models with 25 (or 100) Size-OP portfolios (OP represents operating 

Different basis functions

To check whether the choice of basis functions will affect the time-varying betas, we apply the spline basis functions to our functional factor models with 25 (or 100) Size-B/M portfolios and get the similar time-variations in betas over time (see Figure 18 -23).
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 11234 Figure 1 -5 illustrate the raw data for the factors and functional factors.
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 5 Figure 5: The investment factor in the Chinese stock market (January 1997 -December 2018). The left panel shows raw data of the investment factor, and the right panel shows the functional investment factor.
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 667 Figure 6 (Figure 7) reveals the time dependence of risk exposure to the market factor. We can see that our portfolios have positive exposure to the market factor in the Chinese stock market, which means that the market factor always has a positive effect on the returns of A-shares. From 1997 to 2003, exposure to the market factor is increasing. The Chinese stock market was volatile during the 1990s. In January 1996, the Shanghai Composite Index closed at 537.35, the index went up rapidly and closed at 1393.75 in April 1997. After the enactment of the securities law in 1997, the index dropped nearly 22% to close at 1090.09 in February 1999. In the two years since then, the index went to 2218.03 in June 2001 and then dropped again. The turbulence of China's stock market raises the market risk in the 1990s. During 2005-2006, the Chinese government implemented the non-tradable share reform to improve the governance of listed state-owned enterprises and solve the conflict of interest problem of shareholders in the A-share market. As the Chinese stock market matures, exposure to the market factor will gradually decline. This situation continued until the financial crisis broke out. As Schlueter & Sievers (2014) point out, business risks have an impact on the market beta, and the market beta increased again after the financial crisis broke out. After several ups and downs in the stock market, an increasing number of investors are choosing value investing, and exposure to market risk is no longer as high as it was earlier.
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 1011 Figure 10: Time-varying beta of the functional 5-factor model with 25 Size-B/M portfolios
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 1213141516 Figure 12: Time-varying beta of the functional CAPM with 25 Size-OP portfolios
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 1819202122 Figure 18: Time-varying beta (spline basis functions) of the functional CAPM with 25 Size-B/M portfolios
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  Figure A.26: Time-varying beta of the functional 3-factor model with 25 Size-Inv portfolios

  except stocks denoted ST and *ST 6 ) returns with monthly frequency from the China Stock Market &

	Accounting Research Database (CSMAR) and all risk factors data with monthly frequency from the China
	Asset Management Research Center. The data period is from January 1997 to December 2018 (264 months).

Table 1 :

 1 Coefficient matrix B with 25 value-weight Size-B/M portfolios

		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0685	-0.0401 -0.0119 0.0229	-0.0269
	Market factor	15.1877	0.9243 -1.2103 0.1693	-1.0153 0.2010
	Functional Three-factor Model			
	α	0.0123	0.0439 -0.0091 0.0363	-0.0105
	Market factor	15.9079	2.0642 -1.3010 -1.0733 -1.3455
	Size factor	2.8540	-5.8313 1.6908 -0.2215	1.6446
	Value factor	-4.7360 -3.3843 3.0480 -0.0041 -2.7960 0.2048
	Functional Five-factor Model			
	α	0.0734	0.0624 -0.0734 0.1012	0.1463
	Market factor	15.6311	2.1801	0.1384 -0.7365	0.1415
	Size factor	-3.1744 -1.2970 9.2743 -1.5089 -10.5884
	Value factor	-2.9267 -5.4290 7.3809 -1.0726 -13.0348
	Profitability factor -13.1955 6.4993	5.0407	0.3500	-1.9246
	Investment factor	-8.5420 -0.1847 -5.7555 0.3540	14.6527 0.2165

Table 2 :

 2 Coefficient matrix B with 100 value-weight Size-B/M portfolios

		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0740	-0.0438 -0.0120 0.0277	-0.0274
	Market factor	15.4739	0.8829 -1.3317 0.1187	-1.0494 0.1928
	Functional Three-factor Model			
	α	0.0082	0.0426 -0.0072 0.0376	-0.0112
	Market factor	16.1191	1.9201 -1.3112 -1.0403 -1.3865
	Size factor	3.6129	-5.8935 1.4474 -0.1743	1.7797
	Value factor	-4.3223 -3.0301 2.3910 -0.4082 -2.5844 0.2003
	Functional Five-factor Model			
	α	0.0750	0.0580 -0.0796 0.1058	0.1497
	Market factor	15.7536	1.9901	0.2493 -0.6252 -0.2562
	Size factor	-3.1156 -0.6659 9.7549 -1.7854 -10.5950
	Value factor	-2.6380 -4.9560 7.0438 -1.6655 -13.2370
	Profitability factor -14.3465 6.5660	6.0725	0.7583	-1.5171
	Investment factor	-8.9860 -0.9261 -5.5226 1.2188	15.2399 0.2084

Table 3 :

 3 Conventional factor models for average excess returns of 25 or 100 Size-B/M portfolios

		α	β 1	β 2	β 3	β 4	β 5	R 2
	CAPM						
	25 portfolios 0.0098 0.1393					0.0173
		(1.75) (2.15)				
	100 portfolios 0.0103 0.1464					0.0183
		(1.79) (2.21 )				
	Three-factor Model					
	25 portfoios	0.0100 0.1429 0.0037 -0.2304			0.0254
		(1.73) (2.16)	(0.03)	(-1.42)		
	100 portfolios 0.0104 0.1496 0.0080 -0.2293			0.0260
		(1.76) (2.21)	(0.06)	(-1.38)		
	Five-factor Model					
	25 portfoios	0.0123 0.1347 -0.2868 -0.4182 -0.1303 0.3743 0.0386
		(2.05) (1.87) (-1.16) (-2.14) (-0.49) (1.36)
	100 portfolio 0.0129 0.1399 -0.3055 -0.4269 -0.1481 0.3899 0.0403

(2.10) (1.90) (-1.21) (-2.14) (-0.54)

(1.39) 

Table 4 :

 4 Coefficient matrix B with 25 value-weight Size-OP portfolios

		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0678	-0.0420 -0.0140 0.0228	-0.0252
	Market factor	15.2627	0.9248 -1.1516 0.2109	-1.0291 0.2042
	Functional Three-factor Model			
	α	0.0092	0.0444 -0.0138 0.0382	-0.0075
	Market factor	15.9265	2.0043 -1.2286 -1.0055 -1.3308
	Size factor	3.1283	-5.7862 1.6948 -0.3718	1.5159
	Value factor	-4.3647 -3.4515 3.1996 -0.0853 -2.6831 0.2118
	Functional Five-factor Model			
	α	0.0711	0.0624 -0.0801 0.1040	0.1474
	Market factor	15.6219	2.0435	0.2878 -0.6781	0.2499
	Size factor	-3.0152 -1.2114 9.4331 -1.8720 -10.4542
	Value factor	-2.6679 -5.2267 7.4475 -1.1088 -13.0541
	Profitability factor -13.5796 5.8189	5.5413	0.2759	-1.3543
	Investment factor	-8.7690 -0.9937 -5.3378 0.5203	14.9002 0.2198

Table 5 :

 5 Coefficient matrix B with 100 value-weight Size-OP portfolios

		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0736	-0.0455 -0.0144 0.0267	-0.0277
	Market factor	15.4866	0.8723 -1.2587 0.2236	-1.0637 0.1937
	Functional Three-factor Model			
	α	0.0078	0.0418 -0.0125 0.0374	-0.0111
	Market factor	16.1095	1.8975 -1.2486 -0.9398 -1.3731
	Size factor	3.7256	-5.7859 1.5571 -0.3005	1.7158
	Value factor	-4.2848 -3.1898 2.6713 -0.3640 -2.6040 0.2014
	Functional Five-factor Model			
	α	0.0730	0.0576 -0.0842 0.1062	0.1467
	Market factor	15.7804	1.8600	0.3746 -0.5502	0.3354
	Size factor	-2.7861 -0.7330 9.7748 -2.1016 -10.3958
	Value factor	-2.6966 -4.7765 7.0515 -1.5304 -13.2967
	Profitability factor -14.1769 5.6757	6.2191	0.5276	-0.9772
	Investment factor	-8.9708 -1.7240 -5.2188 1.1588	15.4871 0.2092

Table 6 :

 6 Coefficient matrix B (spline basis functions) with 25 value-weight Size-B/M portfolios

		b 1	b 2	b 3	b 4	b 5	b 6	R 2
	Functional CAPM					
	α	0.0074	0.0053 -0.0017 0.0073	0.0175 -0.0188
	Market factor	0.5677	1.0909	0.9992	0.9388	0.7503	0.6912 0.2026
	Functional Three-factor Model				
	α	-0.0014 0.0123 -0.0007 -0.0002 0.0042 -0.0089
	Market factor	0.5608	1.1433	1.2964	0.6867	0.9753	0.5919
	Size factor	0.8273 -0.6921 -0.2639 0.6278	0.2292	0.9116
	Value factor	-1.6176 0.4515 -1.1202 -0.1381 0.2876 -0.3911 0.2091
	Functional Five-factor Model				
	α	0.0461 -0.0002 0.0077	0.0224 -0.0282 0.0166
	Market factor	1.1001	1.2460	1.2580	0.6529	0.9480	0.8391
	Size factor	-1.5973 1.5512 -1.3016 -1.5454 1.6946 -1.1246
	Value factor	-2.8261 1.6284 -1.8645 -0.7818 1.9748 -1.2830
	Profitability factor -0.6250 0.6402 -0.5931 -1.9200 -0.3618 -1.5356
	Investment factor	1.3075 -2.5841 0.6985	0.7380 -2.1196 0.4238 0.2170

Table 7 :

 7 Coefficient matrix B (spline basis functions) with 100 value-weight Size-B/M portfolios

		b 1	b 2	b 3	b 4	b 5	b 6	R 2
	Functional CAPM					
	α	0.0077	0.0064 -0.0026 0.0084	0.0183 -0.0201
	Market factor	0.5745	1.0878	1.0332	0.9571	0.7752	0.6608 0.1945
	Functional Three-factor Model				
	α	-0.0022 0.0126 -0.0016 -0.0003 0.0036 -0.0092
	Market factor	0.5815	1.1453	1.2923	0.7120	1.0085	0.5651
	Size factor	0.8920 -0.6781 -0.1944 0.7049	0.2698	0.9260
	Value factor	-1.4723 0.2911 -0.8936 -0.1848 0.3226 -0.4313 0.2009
	Functional Five-factor Model				
	α	0.0451	0.0001	0.0069	0.0241 -0.0288 0.0181
	Market factor	1.1796	1.2406	1.2485	0.6757	1.0042	0.6777
	Size factor	-1.4882 1.6048 -1.2293 -1.6750 1.7826 -1.1386
	Value factor	-2.7466 1.5203 -1.6826 -0.8719 1.9236 -1.1834
	Profitability factor -0.3337 0.6114 -0.6997 -2.0699 -0.1731 -1.8778
	Investment factor	1.5188 -2.6415 0.5369	0.8588 -1.9869 0.1285 0.2090

Table A .

 A 8: Coefficient matrix B with 25 value-weight Size-Inv portfolios

		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0801	-0.0443 -0.0146 0.0196	-0.0263
	Market factor	15.2965	1.0508 -1.3031 0.0925	-0.9896 0.2080
	Functional Three-factor Model			
	α	0.0290	0.0338 -0.0161 0.0346	-0.0150
	Market factor	15.9649	2.2212 -1.4356 -1.0749 -1.3346
	Size factor	2.8167	-5.5896 1.8389 -0.3275	1.8716
	Value factor	-4.2286 -4.0609 2.9558	0.3259	-2.6180 0.2154
	Functional Five-factor Model			
	α	0.0860	0.0554 -0.0758 0.0960	0.1440
	Market factor	15.7517	2.2476	0.0879 -0.7704	0.2078
	Size factor	-2.7254 -1.8044 8.9829 -1.2806 -10.5627
	Value factor	-2.4465 -6.0799 6.8165 -0.6723 -12.9895
	Profitability factor -12.4034 5.9513	4.7625	0.4820	-2.1523
	Investment factor	-8.1057	0.1966 -5.4027 0.0222	14.5346 0.2231
	Table A.9: Coefficient matrix B with 100 value-weight Size-Inv portfolios
		b 1	b 2	b 3	b 4	b 5	R 2
	Functional CAPM				
	α	0.0782	-0.0474 -0.0155 0.0260	-0.0281
	Market factor	15.4862	0.9980 -1.3236 0.1262	-0.9734 0.1962
	Functional Three-factor Model			
	α	0.0144	0.0354 -0.0136 0.0358	-0.0133
	Market factor	16.0898	2.0172 -1.3053 -0.9860 -1.2866
	Size factor	3.6786	-5.6800 1.5478 -0.2042	1.7981
	Value factor	-4.0751 -3.3008 2.2550 -0.2346 -2.5596 0.2037
	Functional Five-factor Model			
	α	0.0806	0.0534 -0.0839 0.1026	0.1509
	Market factor	15.7404	1.9822	0.3208 -0.5988	0.4205
	Size factor	-2.9324 -0.9960 9.6985 -1.6874 -10.8225
	Value factor	-2.4168 -5.1033 6.6233 -1.4078 -13.4735
	Profitability factor -14.2424 5.8592	5.9251	0.6462	-1.5528
	Investment factor	-8.8781 -1.0287 -5.4331 0.8587	15.4496 0.2117

For any security or portfolio i, the conventional CAPM can be expressed asR i t = α i + β i R M,t + ε i t ,for the sake of simplicity, we omit the superscript i.

In this study, we choose monthly data from January 1997 to December 2018 (264 months), so t = 1, 2, . . . , 264.

In the Chinese stock market, stocks indicated with ST and *ST represent listed companies in deficit for two consecutive fiscal years, respectively. Both types of companies face the risk of delisting.