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Abstract and keywords 14 

Citizen science programs, and particularly atlas schemes based on opportunistic biological 15 

records, are very important sources of data for species distribution models and 16 

conservation. Nevertheless, these data are prone to bias, particularly when they come from 17 

less popular or hard to detect/identify species, such as insects. With such biased data, it is 18 

important to evaluate the stability of the model predictions. In recent years, point process 19 

models (PPMs) have shown their strength as a unifying framework to fit presence-only 20 

species distribution models with many advantages in model implementation and 21 

interpretation; PPMs are closely connected to methods already in widespread use in ecology 22 

such as MaxEnt and to logistic regression and benefit from being more transparent about 23 

resource selection and absence handling. Moreover, there is a well-developed set of tools to 24 

fit these models and assess various features of the underlying model, including model 25 
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stability. However, such tools are currently unavailable when point process models are fitted 26 

with a lasso penalty, which has been shown to improve predictive performance. Based on 27 

the French citizen science program “Stag beetle Quest”, we propose new methods to assess 28 

model stability in this context. The ultimate goal was to develop a set of functions to analyze 29 

PPM models with lasso penalties fitted with presence-only data. To assess model stability, 30 

we randomly sampled different subsets of locations with varying size from the whole dataset 31 

and used the proposed tools to compare fitted intensities and model coefficients. All the 32 

developed measures are complementary and can be used to identify at what number of 33 

point locations the model stabilizes, which will be dependent on the dataset. Our work 34 

presents a new toolbox to explore questions around model stability based on the number of 35 

locations in the context of point process models with a lasso penalty and confirms once 36 

more the use of the point process modelling framework as a flexible and unifying framework 37 

to fit presence-only species distribution models. 38 

Key-words: Species distribution models; Point process models; LASSO; diagnostic tools; R 39 

functions; Lucanus cervus 40 

I. Main text 41 

1. Introduction 42 

To be able to estimate accurately the decline of biodiversity, we need to be equipped with 43 

reliable tools and methods allowing a good characterization of population trends. Methods 44 

should provide a picture of the distribution of species through space and time from data 45 

which represent a subsample of the true species populations. This is especially necessary for 46 
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organisms that are hard to detect in their environment, such as insects (Donaldson et al. 47 

2017; Leandro et al. 2017). 48 

Species distribution models (SDMs) have become important methods to inform policy 49 

makers and conservation practitioners about biodiversity trends. Mapping the patterns of 50 

biodiversity, SDMs can be used in land use planning, leading to prioritization of conservation 51 

strategies (Devictor et al., 2010; Guisan et al. 2013). They have also been put forward as 52 

pivotal tools for the appropriate evaluation of conservation status of insects (Diniz-Filho et 53 

al., 2010; Cardoso et al., 2011; Leandro et al., 2017). 54 

In order to fit a SDM, a substantial number of recorded locations is typically necessary. One 55 

source of data that can be used to fit an SDM is a list of locations found in biodiversity atlas 56 

schemes and citizen science programs, but such data involve the attendance of particular 57 

questions related to the observation process (Alabri, 2010; Isaac & Pockok, 2015; Powney & 58 

Isaac, 2015). Indeed, data can come in a number of formats, the two most common being: 59 

(1) presence-absence data, which implies a clear sampling protocol and a greater effort from 60 

the observer when cryptic species are considered and (2) presence-only data. Presence-only 61 

data are cheaper and consequently more widely available than presence-absence data. 62 

However, they are more prone to bias due to the way they are collected: presence-only data 63 

can be opportunistic observations whose distribution is highly correlated with the 64 

observation process (Warton et al. 2013; Guillera-Arroita, 2017). 65 

Let us put ourselves in the place of a practitioner wanting to model the distribution of a 66 

species whose observations come from citizen science with presence-only data. Let us say 67 

that the ecology of the species is relatively well known. First we have to address the 68 

question “Which is the best statistical framework to model my data?” This question has 69 
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been largely explored (Aguirre-Gutiérrez et al. 2013; Guillera-Arroita et al. 2015; Duque-Lazo 70 

et al. 2016) and in recent years, point process models (PPMs) have shown their strength as a 71 

unifying framework to fit presence-only species distribution models (SDMs) with many 72 

advantages in model implementation and interpretation, which can be obscured in popular 73 

software platforms such as MaxEnt (Renner et al. 2015; Stirling et al. 2016). Indeed, easy to 74 

use “click-button” platforms such as MaxEnt (Philips et al. 2017) and the Biomod R package 75 

(Thuiller et al. 2009) have been described as “black box techniques” because users can 76 

ignore the details and nuances of their models and default parameters (Renner & Warton 77 

2013; Ahmed et al. 2015; Philips et al, 2017).  Point process models, on the contrary, let the 78 

user have complete control over what its being modelled (Renner et al. 2015). In particular, 79 

PPMs provide clearer interpretations of the model output as an intensity of reported 80 

observations per unit area and as well as clarity regarding necessary choices to implement 81 

presence-only models such as the choice of quadrature points (also referred to as “pseudo-82 

absences” or “background points”). 83 

Then comes the crucial question “do I have enough data to model the distribution of the 84 

species?” (Virgili et al. 2018), a question that is not new and which can be translated into the 85 

important matter of “trust in models” or model accuracy and particularly in their specific 86 

contexts (Stockwell & Peterson 2002; Guillera-Arroita et al. 2015; Ross et al. 2015). When 87 

fitting a point process model, we estimate the intensity of species records as a function of 88 

the chosen environmental covariates. The stability of this intensity surface depends not only 89 

on the number of records, but also on the choice of covariates used to characterize it. 90 

Indeed, reducing the number of candidate variables helps to explain which biological factors 91 

are important in determining a species' distribution. For example, MAXENT software by 92 

default uses a Lasso penalty, which shrinks parameter estimates �� toward zero. While the 93 
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Lasso penalty is known to improve predictive performance and give numerical stability, the 94 

default penalty chosen by MAXENT software is ad hoc; the choice of the penalty criterion 95 

can have consequences in model interpretation, as reducing the number of candidate 96 

variables helps to explain which biological factors are important in determining a species' 97 

distribution, but some criteria impose larger penalties than others (i.e. BIC, MSI) (Renner, 98 

2013). 99 

In the point process framework, the ‘spatstat’ package (Baddeley & Turner, 2005; Baddeley 100 

et al., 2015) offers a number of tools to test model reliability, including significance levels for 101 

implemented variables and standard deviations of the predicted intensity. However, in 102 

spatstat, regularization tools aimed at boosting predictive performance through reducing 103 

model complexity, such as Lasso penalties, are not available. In the PPM-lasso framework of 104 

the ‘ppmlasso’ package, a number of Lasso-type penalties are included in order to shrink 105 

coefficients of point process models in a data-driven way, which tends to provide superior 106 

predictive performance to MAXENT (Renner & Warton, 2013). Nevertheless, there are no 107 

tools to explore model stability within the PPM-lasso framework. 108 

Our goal was to develop a toolbox analogous to that of the ‘spatstat’ package, therefore 109 

writing new functions to explore model stability for models fitted with the ppmlasso package 110 

that would expand the toolkit for practitioners and researchers who want to have more 111 

control over their models. Based on the French citizen science program “En quête d’insectes 112 

! Lucane cerf-volant” or “Stag beetle Quest”, we explored different methods to assess model 113 

stability (or the capacity to predict correctly all presence data) within the PPM perspective 114 

fitted with a lasso penalty and observer bias corrections. Thanks to the extensive dataset 115 

offered by this dynamic program, we used random subsets of increasing size to test the 116 
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stability of models fitted with varying numbers of points in order to determine whether the 117 

model fitted with all points could be considered to have stabilized. Such methods will 118 

contribute to an increase in the usage of SDM for a wider audience of practitioners as we 119 

provide a toolbox of different R functions which may be used to explore stability of models 120 

fitted with the ppmlasso package. We present a detailed tutorial as supplementary material 121 

demonstrating usage of these functions and interpretation of their output. By doing so, we 122 

also conducted an ecological analysis of the distribution of Lucanus cervus in France. 123 

2. Materials & Methods 124 

2.1 Data 125 

Species records were obtained from the Stag beetle Quest citizen science program launched 126 

in 2011 and managed by the Office for the Insects and their Environments (Opie) (Meriguet 127 

et al., 2012). The program is focused on the French distribution of Lucanus cervus (Linnaeus, 128 

1758) (Insecta, Coleoptera) and contains more than 16,000 records from 1905 onward. Data 129 

from before 2011 come from contributors who entered old records through the Stag beetle 130 

Quest online form. The database is composed of ~90 % presence-only data of which ~ 82 % 131 

of the records have a precise location.  132 

The data retained for the study correspond to a recent and highly active period of 133 

observation (from 2007 to 2017) (Fig. 1a), thereby reducing the temporal heterogeneity of 134 

the dataset. Only verified observations (photography-based validation made by experts) 135 

were used, leaving a total of 2576 point locations. 136 
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 137 

Figure 1. Point locations of the data used for the analysis. Map made by © OpenStreetMap 138 

contributors 139 

Saproxilic beetles are species which are involved in or dependent on wood decay; in some 140 

European forests, the Lucanidae family presents the highest percentage of indicator species 141 

for dead-wood amount and temperature (Lachat et al. 2012). Indeed, like other exothermic 142 

insects, their life traits and abundance is related to climatic variables; additionally, as adult 143 

activity has been considered as weather-dependent (Fremlin & Fremlin 2010), we 144 

hypothesized that their sightings (observations) would be as well.  Therefore, to model the 145 

distribution of Lucanus cervus, we used six environmental variables : 2 climate variables 146 

from WorldClim (Hijmans et al. 2005; Fick & Hijmans 2017) and four land use variables from 147 

the Corine Land Cover (2012) and Hilda databases (Fuch et al. 2013-2014-2015) (Table 1); 148 

Climatic variables were modelled with linear, interaction and quadratic terms,  while land 149 

use (defined as proportion of the landscape cover within grid cells) and observer bias 150 

variables were entered as linear terms leading to a total of 10 covariates.  151 



8 
 

Variables were chosen based on the literature (Thomaes et al. 2008; Hawes 2008; Irmler et 152 

al. 2010; Frank et al. 2017) and our expertise, and verified if in the suite of variables no two 153 

variables have a Pearson correlation R >= 0.7. Because presence-only data are prone to 154 

observer bias, in which the observed pattern of points reflects not only the distribution of 155 

the species but also the distribution of the observers, we added an “observer bias” variable. 156 

It is common to use distances to roads or to natural areas for this purpose (Renner et al. 157 

2015; Fisher-Phelps et al. 2017), nevertheless in our particular case, points seemed to be 158 

clustered around cities, which led us to include the natural logarithm of human population 159 

density as an observer bias variable, assuming that the species was reported more when 160 

human population density was higher. Therefore we included the human population variable 161 

from the SEDAC dataset (2016). All variables were available at 1 km x 1 km resolution (Table 162 

1). 163 

Table 1. Complete information of the environmental and bias variables included in the 164 

model. The climatic and human population variables’ resolutions are 30 arc-seconds 165 

(approximately 1 km at the equator). 166 

 Type Model form Covariate Source 

En
vi

ro
n

m
e

n
ta

l c
o

va
ri

at
e

s 

Climatic 

Linear, 

Quadratic 

Mean annual Temperature (Bio 1) 

Unit: Celsius degrees (°C) Bioclimatic variables from 

Worldclim (2017) 

Resolution ~1 km² 

Linear, 

Quadratic 

Mean annual Precipitation rate (Bio12) 

Unit: millimeter (mm) 

Interaction term Mean annual temperature * Mean annual precipitation 

rate 
 

Land Use 

Linear Percentage of broad-leaved forest cover in a 1km radius Corine Land Cover (2012) 

Resolution 1 km² 

 

Linear Percentage of coniferous forest cover in a 1km radius 

Linear Percentage of arable land cover in a 1km radius 

Linear Percentage of forest cover in the past (1910 and 1960) at 

1km radius 

Hilda database (2013) 

Resolution 1 km² 
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O

b
se

rv
er

 b
ia

s 
co

va
ri

at
e

 

Uneven 

sampling 

effort 

Linear 

Natural logarithm of the Human Population data 

CIESIN gridded 

population of the world 

SEDAC dataset (2016) 

Resolution ~1 km² 

 

 167 

168 
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2.2 SDM Framework 169 

The m = 2576 stag beetle locations, denoted by �, were modelled with a Poisson point 170 

process model. Under this model, we assume that the expected number of stag beetle 171 

presence reportings per unit area, called the intensity μ(s), varies spatially (therefore 172 

indexed by location s), according to environmental conditions x(s) and a term related to the 173 

observation process z(s). Ecologically speaking, this intensity is not a probability of 174 

occurrence but a measure proportional to the abundance per unit area for the considered 175 

species (Renner et al. 2015) throughout an area A. In our case, the intensity of points was 176 

fitted as a log-linear model of the predictors (Warton et al. 2013; Renner et al. 2015). Such 177 

predictors were split into two categories: environmental variables x(s) parameterized by � 178 

and the observer bias variable z(s) parameterized by gamma (γ) (eq. 1).  179 

Equation 1: ln �(
) = (
)�� + �(
)′� 180 

The parameters of the model are typically fitted via maximizing the log-likelihood expression 181 

below (eq. 2) (Cressie, 1993) which includes an intractable integral µA. 182 

Equation 2: �(�, �; �) = ∑ ���
���  �(
�) − μA, where μA= � �(
) �
� � A  183 

Because the integral µA is intractable, it must be approximated via numerical quadrature 184 

(eq. 3).  185 

Equation 3: μA ≈ ∑ !� �(
�)
�"#
���"$  186 

This is done by introducing a set of n quadrature points �% = {
�"$, … , 
�"#} throughout A 187 

along a regular grid and associating with the species locations � and the quadrature points 188 
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�% a set of quadrature weights ) = {!$, … , !�"#}, leading to the approximate likelihood 189 

below (eq. 4; Berman & Turner 1992).  190 

Equation 4: �(�, �; �) ≈ ∑ !�(*� ln(�"#
��� �(
�)) − �(
�))  191 

In equation 4, *� =  +(� ∊ {�,...,�})

./
;   in other words, *� is equal to 1 over the quadrature 192 

weight if 
� is one of the presence points and 0 if 
� is one of the quadrature points. 193 

Quadrature points were initially placed on a regular 1 km x 1 km grid. However, initial 194 

analysis of the data with the findres function of ppmlasso suggested that we did not need to 195 

fit models at such a fine resolution, as the maximized log-likelihood appeared to stabilize at 196 

a spatial resolution of 4 km x 4 km (see Appendix S1 in Supporting Information, Fig. S1.1), 197 

which we hereby used in all of our models in order to reduce the time and computer power 198 

needed to run the analysis, improving the efficiency of the analysis (Renner & Warton, 199 

2013).  200 

In our case, we used 10 covariates to model the observed pattern of stag beetle locations. 201 

With so many covariates, we run the risk of overfitting the model as some may not be 202 

informative of the distribution of the observed records. Therefore, we incorporated a lasso 203 

penalty (Tibshirani 1996), which shrinks coefficients toward zero and in some cases may set 204 

some coefficients to be exactly zero, effectively removing the associated covariates from the 205 

model (Renner et al., in press). We fitted regularization paths of 200 Poisson PPMs with 206 

increasing lasso penalties, and chose the model with the smallest model selection criterion, 207 

here BIC.  208 

Analyses were performed in R 4.0.2 (R Development Core Team 2020)  using the ‘ppmlasso’ 209 

package (Renner & Warton, 2013) and different R functions which were written to establish 210 
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intensity and coefficient measures. These functions are the stability assessment toolbox, 211 

hereafter referred to as “diagnostic tools”. Code, simulated data and a tutorial illustrating 212 

use of this code are provided in the supplementary material. 213 

2.3 Diagnostic tools 214 

We evaluated the alignment of the fitted model using all available points with models fitted 215 

to random subsets of the available points with varying size using the aforementioned 216 

diagnostic tools. In this way, we can assess the number of points required to ensure 217 

reasonable trust in the fitted models. Our main idea was to assess model stability and 218 

congruence in the ecological information inferred from the models. Therefore, 1000 219 

randomizations were run in R for each experiment for each number of subsampled points (N 220 

= 50, 100, 200, 500, 1000) (Fig. 2). By simulating a number of subsamples from the whole 221 

dataset available, we reproduced a general framework of ecological studies, where the 222 

observed dataset is a subset of the whole species pattern. The diagnostic tools we propose 223 

may be broadly divided into two categories: tools that measure stability of the fitted 224 

intensity surface �̂(
) and tools that measure alignment of the fitted coefficients �� and �1.  225 

Table 2: A short description of the supplied R functions to explore model stability, which are 226 

contained in the DiagnosticFunctions.R file supplied in the supplementary material. Full 227 

details of these functions and a demonstration of their usage appears in the RMarkdown 228 

tutorial in the supplementary material.  229 

Function Characteristic Description 

avg_mu_plot Intensity surface Produces a map of the average intensity for a 

given subset size 

compute_intensity Intensity surface Computes the raw and rescaled intensities for a 

matrix of fitted model coefficients 

Corr_plot Intensity surface Produces a trace plot of correlation coefficients 

between the intensity surfaces of the subset 
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models compared to the model fitted with all 

available points 

IMSE_plot Intensity surface Produces a trace plot of the integrated mean 

square error of the intensity surfaces of the 

subset models compared to the model fitted with 

all available points 

makeraster Intensity surface Creates a raster object of a mapped measure 

from one of the other functions, with an option 

to export as a .tif file 

quantilematch Intensity surface Produces a map of misalignment proportions of 

quantile-categorised intensity surfaces between 

the subset models of a given subset size and the 

model fitted with all available points 

sd_plot Intensity surface Produces a map of standard deviations of the 

intensity surface for a given subset size 

coef_plot Fitted 

coefficients 

Produces a trace plot of coefficient estimates 

across models of various subset sizes 

coef_se_plot Fitted 

coefficients 

Produces a trace plot of the standard deviation of 

the coefficient estimates across models of various 

subset sizes 

signcoefs Fitted 

coefficients 

Computes the number of positive, zero, and 

negative coefficient estimates for each covariate 

across all subset sizes 

signplot Fitted 

coefficients 

Produces a barplot of the estimated coefficient 

signs for a given covariate across all subset sizes 

ZeroEnvEffect Fitted 

coefficients 

Computes the number of fitted models of each 

subset size where all coefficients are shrunk to 0 

 230 
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 231 

Figure 2. The Lucanus PPM workflow for model simulation and diagnostic tools comparison. 232 

Diagnostic tools are functions included in the ppmlasso package for R. Vectors from 233 

freepik.com.  234 

2.3.1 Intensity measures 235 
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The first set of diagnostic tools assess stability of the fitted intensity surface �̂(
). As this 236 

intensity surface is typically the primary output of a species distribution model, knowing 237 

whether the model which produced it can be assumed to have stabilized is an important 238 

consideration. We do this by exploring trends in the intensity surface as subset size changes. 239 

Let �̂�,2(
) be the fitted intensity of the ith subset of size N at location s. As we will consider 240 

multiple subset sizes (N = {50, 100, 200, 500, 1000}), we would expect the range of these raw 241 

fitted intensities �̂�,2(
) to expand as subset size N increases. Consequently, we rescale 242 

these fitted intensities to achieve a common scale. Because these tools are used to assess 243 

stability of a model fitted with the full set of m species points, we will define the rescaled 244 

fitted intensity �̂�,2,�(
) to have the same scaling as the model which uses all m points as 245 

follows: 246 

Equation 5 : �̂�,2,�(
) =  �

2
�̂�,2(
) 247 

Here, we present five diagnostic measures of intensity surface stability which are in the 248 

DiagnosticFunctions.R file in the supplementary material: 249 

• Standard deviation of the Intensity. The fitted model produces an estimate of 250 

intensity at each species location in � and each quadrature point in �%. As each 251 

subset is randomly sampled, we can examine trends in the variation of intensity as 252 

subset size changes. We can thus calculate the standard deviation of the rescaled 253 

intensities �̂�,2,�(
) across all random subsets, and visualize them in a map produced 254 

by the function sd_plot. These standard deviations can be used to quantify the likely 255 

variation in intensity at each location s for a given subsample size.   256 

• Average rescaled intensity. We can calculate the average rescaled intensity 257 

�̂345,2,�(
) across all random subsets of size N. Mapping these can indicate when 258 
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the fitted intensity has stabilized. We provide a function avg_mu_plot in order to 259 

map the rescaled intensity across subsets. 260 

• IMSE. The integrated mean square error (IMSE) may be used to measure alignment 261 

between the fitted intensity surface using the full set of m points with the rescaled 262 

intensity of a subset. Because we expect the intensity surface to be right-skewed, we 263 

implement the IMSE as a sum of squared differences between the natural logarithm 264 

of the fitted rescaled intensities at the quadrature points, as follows: 265 

 266 

Equation 6: 6789(�̂�,2,�) =  ∑ (ln �̂:
;< − ln �̂�,2,�:
;<�"#
;��"$ )² 267 

The higher the IMSE, the greater the dissimilarity between the fitted intensity 268 

surfaces. Across subsets, this tool can also be used to inform about model stability. 269 

We would expect IMSE to decrease as subset size increases. We provide a function 270 

IMSE_plot to visualize the IMSE for each simulated subset and a trace plot of the 271 

mean across subsets. 272 

• Correlation. We can also measure alignment between the fitted intensity surface 273 

using the full set of m points with the rescaled intensity of a subset with a correlation 274 

measure, using either Pearson’s correlation coefficient or non-parametric 275 

alternatives such as Spearman’s rho or Kendall’s tau. Unlike IMSE, correlation 276 

measures are bound between -1 and 1, and this scale-free property allows judgment 277 

to be made about the raw correlation value in addition to relative comparisons 278 

across subset sizes. We provide a function Corr_plot to visualize the chosen 279 

correlation measure for each simulated subset and a trace plot of the mean across 280 

subsets. 281 
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• Quantile misalignment maps. While the previous tools are useful summaries of the 282 

overall alignment between the fitted intensities of the model using all the points 283 

(�̂(
)) with the rescaled intensities of the models fitted to the subsets (�̂�,2,�(
)), 284 

they do not indicate where the intensity surfaces differ (Pontius and Millones 2011). 285 

We provide a function quantilematch that produces a map of quantile misalignment 286 

between the models that use random subsets and the model that uses the full data. 287 

With this function, the user can supply the desired quantile cutoffs to determine the 288 

ordered categories. For example, if the quantiles argument is left at the default of 289 

(0.2, 0.4, 0.6, 0.8), locations are placed into one of five categories (corresponding to 290 

quantile ranges 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1) based on both the fitted 291 

intensities �̂(
) of the model using all available points as well as the fitted intensities 292 

�̂�,2,�(
) of the models using random subsets. By quantifying the proportion of 293 

differences in categories for each location, the quantilematch function therefore 294 

highlights regions where the relative fitted intensities tend to differ between the 295 

models fitted to random subsets and the model fitted with all of the data points. 296 

2.3.2 Fitted coefficient measures 297 

Ecologists interested in exploring the effects of the environmental covariates x and the 298 

observer bias covariates z on the fitted model can explore all covariate effects included 299 

in the model. Consequently, we present two tools to measure the stability of the 300 

coefficient estimates �� and >? for the environmental parameters β and the observer 301 

parameters γ. Let @A;,�,2  and �1B,�,2 be the jth environmental and kth observer bias 302 

coefficient estimates of the model fitted to the ith subset of size N.  Tools that may be 303 

used to explore stability in the coefficient estimates are as follows: 304 
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• Coefficient estimate variability. As each subset is randomly sampled, we can 305 

examine trends in the variation of coefficient estimates as subset size changes. We 306 

can thus calculate the standard deviation of the coefficient estimates @A;,�,2  and �1B,�,2 307 

across all random subsets. We have provided a function coef_plot which constructs a 308 

scatterplot of the fitted estimates of a given coefficient across all simulated 309 

subsamples, along with a trace plot of the mean. In addition to the plot, it outputs 310 

the mean and standard deviation of the coefficient estimates for each subset size. 311 

This diagnostic tool can not only inform about model stability through its dispersion, 312 

but also highlight the effect of the different variables on the intensity. This second 313 

point can be of major importance for the ecological interpretation of results. Thus, 314 

we added the function coef_se_plot which displays empirical standard errors of 315 

coefficient estimates along with a trace plot of the standard deviation of the fitted 316 

parameter estimates @A;,�,2  and �1B,�,2  for each subset size across all environmental 317 

and observer bias parameters. 318 

• Signs of coefficient estimates. The sign of a coefficient estimate indicates whether it 319 

has a positive, neutral, or negative effect on the predicted species distribution, 320 

providing insight for ecologists. Consequently, exploring trends in the signs of the 321 

fitted coefficients can provide insight into the level of agreement in terms of 322 

ecological information. Across subsets, we can compute the proportion of fitted 323 

coefficients that have the same sign as the model which uses all m points and thus 324 

inform about model stability.  We have provided a function signcoefs which outputs 325 

an array which counts the number of negative, zero, and positive signs for each 326 

subset size and coefficient and a function signplot to visualize bar plots of the sign of 327 



19 
 

the fitted parameter estimates @A;,�,2  and �1B,�,2 for each subset size across all 328 

environmental and observer bias parameters.  329 

3. Results 330 

Full results of the Lucanus analysis are presented below and the supplementary material; we 331 

also provide a simulated dataset and stability screening results for this dataset in a separate 332 

tutorial. 333 

3.1 Predicted intensity, IMSE and misalignment 334 

As we modelled the intensity of the stag beetle across 1000 random subsets of points for 335 

different subset sizes, we compared the average intensity of each subset and the fitted 336 

intensity for the PPM which uses all 2576 points. As some fitted intensities are very low, we 337 

truncate intensities below 10-5 (1.5% of predicted intensities). By mapping the average 338 

rescaled intensity for each subset size (avg_mu_plot function), we note that a pattern 339 

appears to stabilize from N = 500 points (Fig. 3a). These maps provide point estimates of the 340 

intensity, but we can also assess variability by examining maps of standard deviations of the 341 

rescaled fitted intensities (sd_plot function; see Appendix S1 in Supporting information, Fig. 342 

S1.2). Moreover, taken one by one, visualization of intensities for models above 500 points 343 

were more consistent that those under 500. Indeed, for instance models based on subsets of 344 

50 points appeared more variable between them than those using subsets of 500 points 345 

(Supporting information, Fig. S1.3). 346 

Such differences were also visible by plotting the average Pearson correlation (Corr_plot 347 

function) between each subset’s log intensity and the whole model with all available points 348 

was moderately good at 200 points (R ≥0.7) and nearly perfect (R ≥0.97) for models beyond 349 

500 points (Fig. 3b). Furthermore, correlation between subsampled models and the whole 350 
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model was greater when the subset contained more than 100 points and consistently above 351 

0.9 with 500 points or more (99.4% of correlations greater than 0.9 when N=500). 352 

These results were confirmed by the log IMSE of each model across subsets (IMSE_plot 353 

function; Fig. 3c). Indeed, we can see how the average log IMSE by subset significantly 354 

decreases, from around 10.7 at 50 and 100 points to 6.1 at 1000 points. Indeed, pairwise 355 

comparisons of IMSE are all significantly different at the 0.1% level (t-test). However, we 356 

noticed that the lasso penalty shrank most of the coefficients  to zero in models with 200 357 

points or less, leading to greater differences which lead to high IMSE. 358 

 359 

Figure 3. (a) Average rescaled intensity for each subset size (avg_mu_plot function; N = 50, 360 

100, 200, 500 or 1000 points) and the intensity of the whole model with the 2576 stag beetle 361 

observations. Maps can be used for graphical comparison. (b) Pearson correlation between 362 
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the natural logarithm of the fitted intensity surface from the model using all 2576 points and 363 

the rescaled intensity surface from the models using random subsets; the dotted line shows 364 

the below which the correlation is considered as low (R >= 0.7) (Corr_plot function). (c) A 365 

logarithmic transformation of the integrated mean squared error (IMSE) for each simulation 366 

depending on the subset of given points (yellow) (IMSE_plot function).  367 

Furthermore, regarding the quantile matching (quantilematch function), we observed that 368 

the level of misalignment is initially very high, because most of the models for subset sizes N 369 

= 50 and N = 100 set all coefficients to 0 (Fig. 4). Once we reach a subset size of N = 500, the 370 

level of misalignment is much lower. Even at N = 1000, however, there are certain regions 371 

where there is relatively high misalignment. Therefore, the interpretation of the intensity 372 

surfaces should be more prudent in such areas. 373 

374 
Figure 4. Maps of the proportion of subsets which place the locations into different 375 

categories defined by the quantiles 0.2, 0.4, 0.6, and 0.8 than the model using all available 376 

points (quantilematch function), for each subset size (50, 100, 200, 500 and 1000 points). 377 

The intensity surface (μ̂) of the model using the all N = 2576 available points is graphically 378 

illustrated next to the 1000 points misalignment map in order to show the areas were the 379 

interpretation must be nuanced, particularly the southwest of France and in the east, near 380 

the Swiss border. 381 
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 382 

3.2 Covariate effects (β0 dispersion and ecological agreement) 383 

The plots of the fitted coefficients (coef_plot function) likewise suggest that the model 384 

stabilizes when the subset size reaches 500, as the mean values of @A;,�,2 appeared to 385 

converge to the values @A; obtained from fitting a model to the full set of 2576 points and the 386 

variation in @A;,�,2 likewise appeared to decrease with increasing subset size (Supporting 387 

information, Figure S1.4). Indeed, the standard deviation of coefficient estimates @A  388 

consistently decreased when the number of points increased beyond 200 (coef_sd_plot 389 

function; Fig. 5a). This result can be seen as congruent with the measures of intensity from 390 

Section 3.1, which suggested the stability of models with a number of points of 500 or more. 391 
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 392 

Figure 5: (a) Trace plot of the standard deviation of the fitted parameter estimates @A;,�,2  and �1B,�,2  393 

for each subset size across all environmental and observer bias parameters (coef_sd_plot funtion. (b) 394 

Bar plots of the sign of the fitted parameter estimates @A;,�,2  for each subset size across all 395 

environmental and observer bias parameters (signplot function). 396 

It may seem counterintuitive that the average standard deviation, in some cases, increases 397 

from N=50 to N=200 and then decreases (Fig. 5a). As many of the coefficient estimates are 398 

set to 0 for models of subset size N= 50, this has the effect of decreasing the standard 399 
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deviation across all simulations. Those coefficients which are non-zero tend to have a large 400 

spread, as shown in the graph with a large range of values for @A;,�,C% (Supporting information, 401 

Figure S1.3). In other words, there is a strong pull toward 0 for N= 50 (as shown in the 402 

analysis of coefficient signs in the next subsection), but those coefficients which are not set 403 

to 0 tend to be more variable. As subset size increases, the range of the fitted coefficients 404 

tends to decrease, but as fewer coefficients are set to 0, the overall standard deviation may 405 

be higher across all 1000 simulated subsets for N= 100 and N= 200. Once the subset size 406 

reaches 500, however, the range becomes small enough that the overall standard deviation 407 

starts to decrease, despite very few coefficients being set to 0.  408 

The sign of the fitted coefficients @A  (signplot function) informed us about the contribution of 409 

each environmental variable to the potential distribution of the Stag beetle in France (Fig. 410 

5b; Supporting information, Figure S1.4). Mean annual temperature and mean annual 411 

precipitation rate, the percentage of forest cover in the past and the current presence of 412 

broad-leaved forest and the natural logarithm of the human population were positively 413 

associated with the presence of the species. On the other hand, the percentage of arable 414 

land and coniferous forest as the quadratic term of the temperature and the interaction 415 

term of climatic variables, were negatively associated with Lucanus presence. The sign of the 416 

fitted coefficient estimate �1 (log of the human population variable) were always 100 % 417 

positive, whatever the subset size (Supporting information, Figure S1.5). 418 

Hence, we looked at the agreement between the signs of @A  and �1 across subset models, as 419 

shown in Figure 5b, with the signs of the coefficients from the model using all the available 420 

data. For the temperature or ancient forest variables, for instance, even if the coefficients 421 

were shrunk to zero in many cases (particularly models with less than 200 points) the sign 422 
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was always positive when it was non-zero. Coefficients of the other variables fluctuate from 423 

positive to negative signs, particularly for models with 200 points or less. For example, the 424 

estimated coefficients for precipitation or the interaction term were equally negative and 425 

positive until models with 500 points or more. Therefore, getting sign congruency is a sign of 426 

model stability. Nevertheless, we got a clear sign tendency with 200 points and more. 427 

The tools are therefore congruent in their conclusions: to model the stag beetle distribution 428 

at the French mainland scale and with the given choice of variables and lasso penalty 429 

criterion, 500 points are needed to get stabilized models, and consequently in our point of 430 

view, also trustworthy conclusions. With a different choice of variables, the number of 431 

points necessary for reliable conclusions may differ – in general, the more variables included 432 

in the model, the more variation is expected in the fitted intensity surfaces, requiring larger 433 

numbers of points to stabilize. Regardless, the tools presented here can be tailored to 434 

different spatial scales and choices of variables to investigate model stability. 435 

4. Discussion 436 

4.1 Assessing PPM stabilization 437 

By departing from our particular data and environmental context, we were able to explore 438 

the question of “at what point do my models stabilize?”. Our suite of diagnostic tools 439 

provides a way to assess the stability of the model in its particular context. Hence, this 440 

methodology could be used in order to verify how stable a Poisson point process model 441 

fitted with a lasso-type penalty is. Moreover, if the models stabilize at a relatively low 442 

number of points, it might mean that the dataset could be divided into shorter periods and 443 

used for species distribution analysis across time. For instance, in our case, 500 points seem 444 

enough to have a reasonably trustworthy model of the stag beetle. We could have 445 
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potentially split the dataset in two and see the differences in the distribution between 2007-446 

2012 and 2012-2017, but in our case temporal heterogeneity of the records did not permit 447 

this. Participation in the Stag beetle Quest significantly increased in 2015, and since the 448 

average number of records per year is 1000, this implies that a future comparison of models 449 

for different time periods could be possible. 450 

As these diagnostic tools rely on exploring stability across different subset sizes, it is 451 

important to consider which subset sizes to specify in the simulations. In our context, we 452 

fitted models using 10 covariates with over 2500 point locations. We considered subset sizes 453 

ranging from N = 50 to N = 1000, thus representing between about 2% and 40% of the total 454 

number of points. Indeed, allowing the maximum subset size to be too large could give a 455 

false impression of stability due to the fact that there are fewer possible subsets and an 456 

increasing number of shared records across subsets. For instance, if we allow the subset size 457 

to be 80% of the number of available records, different subsets are guaranteed to share at 458 

least 60% of the records in common. As a general recommendation, we advise practitioners 459 

to consider subsets ranging in size from a minimum greater than the number of covariates 460 

and a maximum less than half of the total number of available records, though this may be 461 

quite limiting for data sets with few available records relative to the number of covariates. 462 

While there are certainly other ways to create subsamples aside from sampling at uniform 463 

from the available points (i.e half split or block-crossed validation (Roberts et al. 2017), 464 

which are certainly preferable for validating models to independent data), such schemes do 465 

not seem appropriate for our work. In our model, we also include a term related to sampling 466 

bias, and incorporating different subsampling schemes could make it difficult to disentangle 467 

effects of the environment from effects of this sampling bias. In this work we want to call 468 
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attention to the fact that any given set of observed points represents some (likely biased) 469 

subsample of the true point pattern, and by sampling randomly, we thereby preserve any 470 

underlying bias patterns of the observed data set. Without direct information regarding 471 

sampling effort, creating random subsamples from the observed data set thus mimics the 472 

setting in which the observed point pattern is some random subsample of the true point 473 

pattern. 474 

We also want to highlight that the criterion we used to select the optimal lasso penalty was 475 

the BIC. As we have seen that stability is greatly influenced by the proportion of models for 476 

which the coefficients are set to 0, the choice of the criterion for the lasso penalty will also 477 

impact the model complexity and hence the number of points necessary for the models to 478 

adequately stabilize. If we had instead chosen the AIC, which tends to choose lower 479 

penalties than the BIC, model stabilization might have been achieved with smaller subset 480 

sizes. Consequently, the effect of criterion choice for the lasso penalty on model stability is a 481 

potential area of future research.  482 

If after using these tools, the model does not appear to have adequately stabilized, we 483 

recommend results be interpreted with corresponding caution, particularly when the model 484 

may be used to inform management or conservation actions. Greater model stability could 485 

be achieved by considering a smaller set of covariates, acknowledging that this would lead to 486 

less sophisticated ecological understanding of the species distribution and the 487 

environmental factors that drive it. 488 

It is important to note that the tools presented in this paper require an adequate number of 489 

points in the original pattern to create reasonably-sized subsets. When presence records are 490 

rare (around the same number as the number of modelled covariates), it is impractical to 491 



28 
 

produce subsets to assess model stability as there is an increased risk of model convergence 492 

problems when fitting models with small numbers of points. However, the spirit of this 493 

paper is to explore questions related to the amount of trust that can be placed in a fitted 494 

model, and a model fitted using a small number of records is unlikely to be very informative 495 

or reliable. 496 

Our approach exploits already existent tools in the ppmlasso package and can therefore be 497 

already used. In principle, these tools could also be adapted for use with models fitted using 498 

other software platforms, such as spatstat. However, these functions were specifically built 499 

to extract information from objects with a ppmlasso class, so adaptation of the functions to 500 

objects with other classes may be challenging. Moreover, spatstat provides its own functions 501 

to assess model stability. Our functions explore model stability through subsetting largely 502 

due to the fact that classical statistical estimators such as standard errors are not available 503 

when fitting models with a lasso penalty, and the ppmlasso package is specifically designed 504 

for the setting of our paper in fitting species distribution models with lasso penalties. 505 

This data-driven scrutiny of sample size and model stability is more tailored to analysis of 506 

different data sets than ad hoc rules for choosing the number of points to model a certain 507 

species. Moreover, it helps us explore trust in the conclusions from the fitted model, 508 

particularly for those who use SDMs to inform decisions for conservation. 509 

4.2 Ecological insight 510 

Lucanus cervus is a saproxylophagous beetle of conservation interest at the European scale 511 

(cited in the 3rd appendix of the Berne convention of 1979 and the 2nd appendix of the 512 

Habitat Directive of 1992), that is, subservient to dead or decaying wood; it is observable 513 

near old trees, in forest but also in wooded and urban areas. It is a relatively common 514 
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species in France, and more largely in Europe (Paulian & Baraud, 1982; Bensettiti & 515 

Gaudillat, 2004).  516 

Using the SDM framework to have ecological insight about the distribution pattern of stag 517 

beetles, we observed that climate variables dominated the spatial characterization of the 518 

species, particularly the annual temperature (with @A  coefficients furthest from 0). This was 519 

not a surprise as adults’ activity is considered weather-dependent, particularly to conditions 520 

of temperature and humidity (Fremlin & Fremlin 2010; Lachat et al. 2012). Indeed, the whole 521 

model (Supporting information, Figure S1.2) shows that the species drastically rarifies in 522 

mountainous regions where temperatures are lower and humidity higher (massif of the 523 

Cevennes, the Pyrenees and the Alps). As the overall alignment between the fitted 524 

intensities of the models above 500 points is high (less than 20 % misalignment; fig. 4) in the 525 

mountainous areas, we can validate that Lucanus cervus sightings are weather related. 526 

Land use plays a significant but secondary role. The extent of agriculture, an environmental 527 

variable previously thought to be unfavorable for the species was useful. The influence of 528 

broad-leaved vs coniferous forests became unambiguous (respectively positive and negative) 529 

above 50 points, which may be due to the mixture of trees in forests and the way in which 530 

Corine Land cover classifies landscape features (through a visual interpretation of satellite 531 

images) at small scale. 532 

The abundance of ancient forest was positively associated and plays a significant role in the 533 

Lucanus distribution among the land use variables. Perhaps it is due to the selection of local 534 

broad-leaved oaks and beeches (Bazire & Gadant, 1991) and availability of dead wood in 535 

such plots of old forest. The influence of this variable confirms the influence of the landscape 536 

matrix and its history in the current distribution of the stag beetle, as old-growth deciduous 537 
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forests favor the presence of this saproxylophagous species; it also underlines the inertia of 538 

forest systems and should warn us about the potential consequences of the large 539 

domination of coniferous plantations occurring for the last 70 years in France (Bazire & 540 

Gadant, 1991; Boutefeu 2005).  541 

In France, broad-leaved forests are mainly in the plains or at medium altitude. Coniferous 542 

stands are mainly in mountainous areas, in the Landes highlands and in recent plantations in 543 

western France (Garnier et al., 2018). It is known that coniferous forests are not favorable 544 

for this species, even if some Lucanus can breed on Pinus spp and Thuja spp (Paulian & 545 

Baraud, 1982; Bensettiti & Gaudillat, 2004). The bar plots of the sign of the fitted parameter 546 

estimates showed us that above 500 points the sign is mainly negative. Ecologically, we 547 

expected a negative sign, and we only consistently see it from N = 200 onward, so models 548 

fitted with fewer than 100 points could have led to conclusions contradictory to ecological 549 

knowledge.  In interaction with other variables, such as the climatic ones, this can also 550 

explain the absence of Lucanus cervus in mountainous areas and could be therefore 551 

explored in future models. 552 

Complementary variables, such as biotic interactions with fungi in decaying wood or other 553 

invertebrate species, wood species selection for breeding or micro-climatic variables, which 554 

are important for invertebrate development and suggested as important for saproxilic 555 

beetles (Diniz-Filho et al., 2010; Quinto et al., 2015; Ulyshen et al., 2017; Garrick et al., 556 

2019), were not included as they were not available.  557 

The importance of the bias covariate (human population) was significant, showing once 558 

again the importance of variables that can correct for sampling bias to accurately model 559 

species distributions.  560 
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The conclusions inferred from a fitted SDM may be incomplete from an ecological point of 561 

view or even inaccurate at small scales. Here we want to underline the important role of 562 

experts of the target species and the fact that models approximate a complex reality and 563 

should be used with parsimony and caution, especially in conservation contexts. 564 

Furthermore, we encourage practitioners to always keep in mind the areas where categories 565 

of intensity are most likely to differ between the models fitted to random subsets and the 566 

model fitted with all available points (misalignment map). In our case, precautions must be 567 

taken before interpreting the whole model in the south-west of France (west part of the 568 

Landes highlands) and in particular in the east near the border with Switzerland (Massif du 569 

Jura), even though in this second area we had some observations (fig. 1). 570 

5. Conclusion 571 

PPMs not only offer a unifying framework to fit presence-only species distribution models 572 

with many advantages in model implementation and interpretation, but also possess a 573 

number of ready-to-use diagnostic tools that can inform about model consistency and 574 

stability. Without any rule of thumb or an obscure single metric, the number of needed 575 

points in a particular environmental and spatial context to achieve model stability can be 576 

explored from perspectives relating to both the fitted intensity surface and the fitted model 577 

coefficients. All of the diagnostic tools are congruent and can be used for any kind of point 578 

process model. Above all, we recommend collaboration between species experts and 579 

researchers in ecology and statistics to build realistic, field-informed, trustworthy models 580 

and test them before applying them. Thanks to the diagnostic tools offered by PPMs, a 581 

constructive step-by-step process may allow us to rapidly increase our knowledge of species 582 

distributions, even for the less studied ones.  583 
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