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Is my SDM good enough? Insights from a citizen science dataset in a Point Process Modeling framework
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Citizen science programs, and particularly atlas schemes based on opportunistic biological records, are very important sources of data for species distribution models and conservation. Nevertheless, these data are prone to bias, particularly when they come from less popular or hard to detect/identify species, such as insects. With such biased data, it is important to evaluate the stability of the model predictions. In recent years, point process models (PPMs) have shown their strength as a unifying framework to fit presence-only species distribution models with many advantages in model implementation and interpretation; PPMs are closely connected to methods already in widespread use in ecology such as MaxEnt and to logistic regression and benefit from being more transparent about resource selection and absence handling. Moreover, there is a well-developed set of tools to fit these models and assess various features of the underlying model, including model

Introduction

To be able to estimate accurately the decline of biodiversity, we need to be equipped with reliable tools and methods allowing a good characterization of population trends. Methods should provide a picture of the distribution of species through space and time from data which represent a subsample of the true species populations. This is especially necessary for organisms that are hard to detect in their environment, such as insects (Donaldson et al. 2017;[START_REF] Leandro | Bias and perspectives in insect conservation: A European scale analysis[END_REF].

Species distribution models (SDMs) have become important methods to inform policy makers and conservation practitioners about biodiversity trends. Mapping the patterns of biodiversity, SDMs can be used in land use planning, leading to prioritization of conservation strategies [START_REF] Devictor | Beyond scarcity: citizen science programmes as useful tools for conservation biogeography[END_REF]Guisan et al. 2013). They have also been put forward as pivotal tools for the appropriate evaluation of conservation status of insects [START_REF] Diniz-Filho | Defying the curse of ignorance: Perspectives in insect macroecology and conservation biogeography[END_REF][START_REF] Cardoso | The seven impediments in invertebrate conservation and how to overcome them[END_REF][START_REF] Leandro | Bias and perspectives in insect conservation: A European scale analysis[END_REF].

In order to fit a SDM, a substantial number of recorded locations is typically necessary. One source of data that can be used to fit an SDM is a list of locations found in biodiversity atlas schemes and citizen science programs, but such data involve the attendance of particular questions related to the observation process [START_REF] Alabri | Enhancing the Quality and Trust of Citizen Science Data[END_REF]Isaac & Pockok, 2015;[START_REF] Powney | Beyond maps: a review of the applications of biological records[END_REF]. Indeed, data can come in a number of formats, the two most common being:

(1) presence-absence data, which implies a clear sampling protocol and a greater effort from the observer when cryptic species are considered and (2) presence-only data. Presence-only data are cheaper and consequently more widely available than presence-absence data.

However, they are more prone to bias due to the way they are collected: presence-only data can be opportunistic observations whose distribution is highly correlated with the observation process [START_REF] Warton | Model-based control of observer bias for the analysis of presence-only data in ecology[END_REF][START_REF] Guillera-Arroita | Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities[END_REF].

Let us put ourselves in the place of a practitioner wanting to model the distribution of a species whose observations come from citizen science with presence-only data. Let us say that the ecology of the species is relatively well known. First we have to address the question "Which is the best statistical framework to model my data?" This question has been largely explored [START_REF] Aguirre-Gutiérrez | Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria -Dutch Hoverflies as a Case Study[END_REF][START_REF] Guillera-Arroita | Is my species distribution model fit for purpose? Matching data and models to applications[END_REF][START_REF] Duque-Lazo | Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia[END_REF]) and in recent years, point process models (PPMs) have shown their strength as a unifying framework to fit presence-only species distribution models (SDMs) with many advantages in model implementation and interpretation, which can be obscured in popular software platforms such as MaxEnt [START_REF] Renner | Point Process Models for Presence-Only Analysis[END_REF][START_REF] Stirling | Using verified species distribution models to inform the conservation of a rare marine species[END_REF]. Indeed, easy to use "click-button" platforms such as MaxEnt (Philips et al. 2017) and the Biomod R package [START_REF] Thuiller | BIOMOD -A platform for ensemble forecasting of species distributions[END_REF]) have been described as "black box techniques" because users can ignore the details and nuances of their models and default parameters (Renner & Warton 2013;[START_REF] Ahmed | Scientists and software-surveying the species distribution modelling community[END_REF]Philips et al, 2017). Point process models, on the contrary, let the user have complete control over what its being modelled [START_REF] Renner | Point Process Models for Presence-Only Analysis[END_REF]. In particular, PPMs provide clearer interpretations of the model output as an intensity of reported observations per unit area and as well as clarity regarding necessary choices to implement presence-only models such as the choice of quadrature points (also referred to as "pseudoabsences" or "background points").

Then comes the crucial question "do I have enough data to model the distribution of the species?" [START_REF] Virgili | How many sightings to model rare marine species distributions[END_REF], a question that is not new and which can be translated into the important matter of "trust in models" or model accuracy and particularly in their specific contexts [START_REF] Stockwell | Effects of sample size on accuracy of species distribution models[END_REF][START_REF] Guillera-Arroita | Is my species distribution model fit for purpose? Matching data and models to applications[END_REF][START_REF] Ross | The influence of data resolution on predicted distribution and estimates of extent of current protection of three "listed" deepsea habitats[END_REF]. When fitting a point process model, we estimate the intensity of species records as a function of the chosen environmental covariates. The stability of this intensity surface depends not only on the number of records, but also on the choice of covariates used to characterize it. Indeed, reducing the number of candidate variables helps to explain which biological factors are important in determining a species' distribution. For example, MAXENT software by default uses a Lasso penalty, which shrinks parameter estimates toward zero. While the Lasso penalty is known to improve predictive performance and give numerical stability, the default penalty chosen by MAXENT software is ad hoc; the choice of the penalty criterion can have consequences in model interpretation, as reducing the number of candidate variables helps to explain which biological factors are important in determining a species' distribution, but some criteria impose larger penalties than others (i.e. BIC, MSI) [START_REF] Renner | Advances inPresence-Only Methodsin Ecology[END_REF].

In the point process framework, the 'spatstat' package [START_REF] Baddeley | Spatstat: an R package for analyzing spatial point patterns[END_REF][START_REF] Baddeley | Spatial point patterns: methodology and applications with R[END_REF] offers a number of tools to test model reliability, including significance levels for implemented variables and standard deviations of the predicted intensity. However, in spatstat, regularization tools aimed at boosting predictive performance through reducing model complexity, such as Lasso penalties, are not available. In the PPM-lasso framework of the 'ppmlasso' package, a number of Lasso-type penalties are included in order to shrink coefficients of point process models in a data-driven way, which tends to provide superior predictive performance to MAXENT (Renner & Warton, 2013). Nevertheless, there are no tools to explore model stability within the PPM-lasso framework.

Our goal was to develop a toolbox analogous to that of the 'spatstat' package, therefore writing new functions to explore model stability for models fitted with the ppmlasso package that would expand the toolkit for practitioners and researchers who want to have more control over their models. Based on the French citizen science program "En quête d'insectes ! Lucane cerf-volant" or "Stag beetle Quest", we explored different methods to assess model stability (or the capacity to predict correctly all presence data) within the PPM perspective fitted with a lasso penalty and observer bias corrections. Thanks to the extensive dataset offered by this dynamic program, we used random subsets of increasing size to test the stability of models fitted with varying numbers of points in order to determine whether the model fitted with all points could be considered to have stabilized. Such methods will contribute to an increase in the usage of SDM for a wider audience of practitioners as we provide a toolbox of different R functions which may be used to explore stability of models fitted with the ppmlasso package. We present a detailed tutorial as supplementary material demonstrating usage of these functions and interpretation of their output. By doing so, we also conducted an ecological analysis of the distribution of Lucanus cervus in France.

Materials & Methods

Data

Species records were obtained from the Stag beetle Quest citizen science program launched in 2011 and managed by the Office for the Insects and their Environments (Opie) [START_REF] Meriguet | Enquête d'insecte : le Lucane cerf-volant -Bilan 2011 et perspectives[END_REF]. The program is focused on the French distribution of Lucanus cervus (Linnaeus, 1758) (Insecta, Coleoptera) and contains more than 16,000 records from 1905 onward. Data from before 2011 come from contributors who entered old records through the Stag beetle Quest online form. The database is composed of ~90 % presence-only data of which ~ 82 % of the records have a precise location.

The data retained for the study correspond to a recent and highly active period of observation (from 2007 to 2017) (Fig. 1a), thereby reducing the temporal heterogeneity of the dataset. Only verified observations (photography-based validation made by experts) were used, leaving a total of 2576 point locations. for dead-wood amount and temperature [START_REF] Lachat | Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests[END_REF]. Indeed, like other exothermic insects, their life traits and abundance is related to climatic variables; additionally, as adult activity has been considered as weather-dependent [START_REF] Fremlin | Weather-dependence of Lucanus cervus L.(Coleoptera: Scarabaeoidea: Lucanidae) activity in a Colchester urban area[END_REF], we hypothesized that their sightings (observations) would be as well. Therefore, to model the distribution of Lucanus cervus, we used six environmental variables : 2 climate variables from WorldClim [START_REF] Hijmans | Very high resolution interpolated climate surfaces for global land areas[END_REF][START_REF] Fick | Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas[END_REF]) and four land use variables from the Corine Land Cover (2012) and Hilda databases (Fuch et al. 2013(Fuch et al. -2014(Fuch et al. -2015) ) (Table 1); Climatic variables were modelled with linear, interaction and quadratic terms, while land use (defined as proportion of the landscape cover within grid cells) and observer bias variables were entered as linear terms leading to a total of 10 covariates.

Variables were chosen based on the literature [START_REF] Thomaes | Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus)[END_REF][START_REF] Hawes | The stag beetle Lucanus cervus (Linnaeus, 1758) (Coleoptera: Lucanidae): a mark-release-recapture study undertaken in one United Kingdom residential garden IN Revue d'écologie[END_REF][START_REF] Irmler | Species richness of saproxylic beetles in woodlands is affected by dispersion ability of species, age and stand size[END_REF][START_REF] Frank | Land use affects dung beetle communities and their ecosystem service in forests and grasslands[END_REF]) and our expertise, and verified if in the suite of variables no two variables have a Pearson correlation R >= 0.7. Because presence-only data are prone to observer bias, in which the observed pattern of points reflects not only the distribution of the species but also the distribution of the observers, we added an "observer bias" variable.

It is common to use distances to roads or to natural areas for this purpose [START_REF] Renner | Point Process Models for Presence-Only Analysis[END_REF][START_REF] Fisher-Phelps | Protecting bias: Across time and ecology, open-source bat locality data are heavily biased by distance to protected area[END_REF], nevertheless in our particular case, points seemed to be clustered around cities, which led us to include the natural logarithm of human population density as an observer bias variable, assuming that the species was reported more when human population density was higher. Therefore we included the human population variable from the SEDAC dataset (2016). All variables were available at 1 km x 1 km resolution (Table 1). 

SDM Framework

The m = 2576 stag beetle locations, denoted by , were modelled with a Poisson point process model. Under this model, we assume that the expected number of stag beetle presence reportings per unit area, called the intensity μ(s), varies spatially (therefore indexed by location s), according to environmental conditions x(s) and a term related to the observation process z(s). Ecologically speaking, this intensity is not a probability of occurrence but a measure proportional to the abundance per unit area for the considered species [START_REF] Renner | Point Process Models for Presence-Only Analysis[END_REF] throughout an area A. In our case, the intensity of points was fitted as a log-linear model of the predictors [START_REF] Warton | Model-based control of observer bias for the analysis of presence-only data in ecology[END_REF][START_REF] Renner | Point Process Models for Presence-Only Analysis[END_REF]. Such predictors were split into two categories: environmental variables x(s) parameterized by and the observer bias variable z(s) parameterized by gamma (γ) (eq. 1). Equation 1:

ln ( ) = ( ) + ( )′
The parameters of the model are typically fitted via maximizing the log-likelihood expression below (eq. 2) [START_REF] Cressie | Statistics for Spatial Data[END_REF] which includes an intractable integral µ A .

Equation 2: ( , ; ) = ∑ ( ) -μ A , where μ A = ( )

A

Because the integral µ A is intractable, it must be approximated via numerical quadrature (eq. 3).

Equation 3:

μ A ≈ ∑ ! ( ) "# "$
This is done by introducing a set of n quadrature points % = { "$ , … , "# } throughout A along a regular grid and associating with the species locations and the quadrature points % a set of quadrature weights ) = {! $ , … , ! "# }, leading to the approximate likelihood below (eq. 4; [START_REF] Berman | Approximating point process likelihoods with GLIM[END_REF].

Equation 4: ( , ; ) ≈ ∑ ! (* ln( "# ( )) -( ))
In equation 4, * = +( ∊ { ,..., })
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; in other words, * is equal to 1 over the quadrature weight if is one of the presence points and 0 if is one of the quadrature points.

Quadrature points were initially placed on a regular 1 km x 1 km grid. However, initial analysis of the data with the findres function of ppmlasso suggested that we did not need to fit models at such a fine resolution, as the maximized log-likelihood appeared to stabilize at a spatial resolution of 4 km x 4 km (see Appendix S1 in Supporting Information, Fig. S1.1), which we hereby used in all of our models in order to reduce the time and computer power needed to run the analysis, improving the efficiency of the analysis (Renner & Warton, 2013).

In our case, we used 10 covariates to model the observed pattern of stag beetle locations.

With so many covariates, we run the risk of overfitting the model as some may not be informative of the distribution of the observed records. Therefore, we incorporated a lasso penalty [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], which shrinks coefficients toward zero and in some cases may set some coefficients to be exactly zero, effectively removing the associated covariates from the model (Renner et al., in press). We fitted regularization paths of 200 Poisson PPMs with increasing lasso penalties, and chose the model with the smallest model selection criterion, here BIC.

Analyses were performed in R 4.0.2 (R Development Core Team 2020) using the 'ppmlasso' package (Renner & Warton, 2013) and different R functions which were written to establish intensity and coefficient measures. These functions are the stability assessment toolbox, hereafter referred to as "diagnostic tools". Code, simulated data and a tutorial illustrating use of this code are provided in the supplementary material.

Diagnostic tools

We evaluated the alignment of the fitted model using all available points with models fitted to random subsets of the available points with varying size using the aforementioned diagnostic tools. In this way, we can assess the number of points required to ensure reasonable trust in the fitted models. Our main idea was to assess model stability and congruence in the ecological information inferred from the models. Therefore, 1000 randomizations were run in R for each experiment for each number of subsampled points (N = 50, 100, 200, 500, 1000) (Fig. 2). By simulating a number of subsamples from the whole dataset available, we reproduced a general framework of ecological studies, where the observed dataset is a subset of the whole species pattern. The diagnostic tools we propose may be broadly divided into two categories: tools that measure stability of the fitted intensity surface ( ) and tools that measure alignment of the fitted coefficients and 1.

Table 2: Diagnostic tools are functions included in the ppmlasso package for R. Vectors from freepik.com.

Intensity measures

The first set of diagnostic tools assess stability of the fitted intensity surface ( ). As this intensity surface is typically the primary output of a species distribution model, knowing whether the model which produced it can be assumed to have stabilized is an important consideration. We do this by exploring trends in the intensity surface as subset size changes.

Let ̂ ,2 ( ) be the fitted intensity of the ith subset of size N at location s. As we will consider multiple subset sizes (N = {50, 100, 200, 500, 1000}), we would expect the range of these raw fitted intensities ̂ ,2 ( ) to expand as subset size N increases. Consequently, we rescale these fitted intensities to achieve a common scale. Because these tools are used to assess stability of a model fitted with the full set of m species points, we will define the rescaled fitted intensity ̂ ,2, ( ) to have the same scaling as the model which uses all m points as follows:

Equation 5 : ̂ ,2, ( ) = 2 ̂ ,2 ( )
Here, we present five diagnostic measures of intensity surface stability which are in the DiagnosticFunctions.R file in the supplementary material:

• Standard deviation of the Intensity. The fitted model produces an estimate of intensity at each species location in and each quadrature point in % . As each subset is randomly sampled, we can examine trends in the variation of intensity as subset size changes. We can thus calculate the standard deviation of the rescaled intensities ̂ ,2, ( ) across all random subsets, and visualize them in a map produced by the function sd_plot. These standard deviations can be used to quantify the likely variation in intensity at each location s for a given subsample size.

• Average rescaled intensity. We can calculate the average rescaled intensity 345,2, ( ) across all random subsets of size N. Mapping these can indicate when the fitted intensity has stabilized. We provide a function avg_mu_plot in order to map the rescaled intensity across subsets.

• IMSE. The integrated mean square error (IMSE) may be used to measure alignment between the fitted intensity surface using the full set of m points with the rescaled intensity of a subset. Because we expect the intensity surface to be right-skewed, we implement the IMSE as a sum of squared differences between the natural logarithm of the fitted rescaled intensities at the quadrature points, as follows:

Equation 6: 6789( ̂ ,2, ) = ∑ (ln : ; < -ln ̂ ,2, : ; < "# ; "$
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The higher the IMSE, the greater the dissimilarity between the fitted intensity surfaces. Across subsets, this tool can also be used to inform about model stability.

We would expect IMSE to decrease as subset size increases. We provide a function IMSE_plot to visualize the IMSE for each simulated subset and a trace plot of the mean across subsets.

• Correlation. We can also measure alignment between the fitted intensity surface using the full set of m points with the rescaled intensity of a subset with a correlation measure, using either Pearson's correlation coefficient or non-parametric alternatives such as Spearman's rho or Kendall's tau. Unlike IMSE, correlation measures are bound between -1 and 1, and this scale-free property allows judgment to be made about the raw correlation value in addition to relative comparisons across subset sizes. We provide a function Corr_plot to visualize the chosen correlation measure for each simulated subset and a trace plot of the mean across subsets.

• Quantile misalignment maps. While the previous tools are useful summaries of the overall alignment between the fitted intensities of the model using all the points ( ( )) with the rescaled intensities of the models fitted to the subsets ( ̂ ,2, ( )), they do not indicate where the intensity surfaces differ [START_REF] Pontius | Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment[END_REF].

We provide a function quantilematch that produces a map of quantile misalignment between the models that use random subsets and the model that uses the full data.

With this function, the user can supply the desired quantile cutoffs to determine the ordered categories. For example, if the quantiles argument is left at the default of (0.2, 0.4, 0.6, 0.8), locations are placed into one of five categories (corresponding to quantile ranges 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1) based on both the fitted intensities ( ) of the model using all available points as well as the fitted intensities ̂ ,2, ( ) of the models using random subsets. By quantifying the proportion of differences in categories for each location, the quantilematch function therefore highlights regions where the relative fitted intensities tend to differ between the models fitted to random subsets and the model fitted with all of the data points.

Fitted coefficient measures

Ecologists interested in exploring the effects of the environmental covariates x and the observer bias covariates z on the fitted model can explore all covariate effects included in the model. Consequently, we present two tools to measure the stability of the coefficient estimates and > ? for the environmental parameters β and the observer parameters γ. Let @ A ;, ,2 and 1 B, ,2 be the jth environmental and kth observer bias coefficient estimates of the model fitted to the ith subset of size N. Tools that may be used to explore stability in the coefficient estimates are as follows:

• Coefficient estimate variability. As each subset is randomly sampled, we can examine trends in the variation of coefficient estimates as subset size changes. We can thus calculate the standard deviation of the coefficient estimates @ A ;, ,2 and 1 B, ,2 across all random subsets. We have provided a function coef_plot which constructs a scatterplot of the fitted estimates of a given coefficient across all simulated subsamples, along with a trace plot of the mean. In addition to the plot, it outputs the mean and standard deviation of the coefficient estimates for each subset size.

This diagnostic tool can not only inform about model stability through its dispersion, but also highlight the effect of the different variables on the intensity. This second point can be of major importance for the ecological interpretation of results. Thus, we added the function coef_se_plot which displays empirical standard errors of coefficient estimates along with a trace plot of the standard deviation of the fitted parameter estimates @ A ;, ,2 and 1 B, ,2 for each subset size across all environmental and observer bias parameters.

• Signs of coefficient estimates. The sign of a coefficient estimate indicates whether it has a positive, neutral, or negative effect on the predicted species distribution, providing insight for ecologists. Consequently, exploring trends in the signs of the fitted coefficients can provide insight into the level of agreement in terms of ecological information. Across subsets, we can compute the proportion of fitted coefficients that have the same sign as the model which uses all m points and thus inform about model stability. We have provided a function signcoefs which outputs an array which counts the number of negative, zero, and positive signs for each subset size and coefficient and a function signplot to visualize bar plots of the sign of the fitted parameter estimates @ A ;, ,2 and 1 B, ,2 for each subset size across all environmental and observer bias parameters.

Results

Full results of the Lucanus analysis are presented below and the supplementary material; we also provide a simulated dataset and stability screening results for this dataset in a separate tutorial.

Predicted intensity, IMSE and misalignment

As we modelled the intensity of the stag beetle across 1000 random subsets of points for different subset sizes, we compared the average intensity of each subset and the fitted intensity for the PPM which uses all 2576 points. As some fitted intensities are very low, we truncate intensities below 10 -5 (1.5% of predicted intensities). By mapping the average rescaled intensity for each subset size (avg_mu_plot function), we note that a pattern appears to stabilize from N = 500 points (Fig. 3a). These maps provide point estimates of the intensity, but we can also assess variability by examining maps of standard deviations of the rescaled fitted intensities (sd_plot function; see Appendix S1 in Supporting information, Fig.

S1.2)

. Moreover, taken one by one, visualization of intensities for models above 500 points were more consistent that those under 500. Indeed, for instance models based on subsets of 50 points appeared more variable between them than those using subsets of 500 points (Supporting information, Fig. S1.3).

Such differences were also visible by plotting the average Pearson correlation (Corr_plot function) between each subset's log intensity and the whole model with all available points was moderately good at 200 points (R ≥0.7) and nearly perfect (R ≥0.97) for models beyond 500 points (Fig. 3b). Furthermore, correlation between subsampled models and the whole 20 model was greater when the subset contained more than 100 points and consistently above 0.9 with 500 points or more (99.4% of correlations greater than 0.9 when N=500).

These results were confirmed by the log IMSE of each model across subsets (IMSE_plot function; Fig. 3c). Indeed, we can see how the average log IMSE by subset significantly decreases, from around 10.7 at 50 and 100 points to 6.1 at 1000 points. Indeed, pairwise comparisons of IMSE are all significantly different at the 0.1% level (t-test). However, we noticed that the lasso penalty shrank most of the coefficients to zero in models with 200 points or less, leading to greater differences which lead to high IMSE. Furthermore, regarding the quantile matching (quantilematch function), we observed that the level of misalignment is initially very high, because most of the models for subset sizes N = 50 and N = 100 set all coefficients to 0 (Fig. 4). Once we reach a subset size of N = 500, the level of misalignment is much lower. Even at N = 1000, however, there are certain regions where there is relatively high misalignment. Therefore, the interpretation of the intensity surfaces should be more prudent in such areas. The intensity surface (μ) of the model using the all N = 2576 available points is graphically illustrated next to the 1000 points misalignment map in order to show the areas were the interpretation must be nuanced, particularly the southwest of France and in the east, near the Swiss border.

Covariate effects (β0 dispersion and ecological agreement)

The plots of the fitted coefficients (coef_plot function) likewise suggest that the model stabilizes when the subset size reaches 500, as the mean values of @ A ;, ,2 appeared to converge to the values @ A ; obtained from fitting a model to the full set of 2576 points and the variation in @ A ;, ,2 likewise appeared to decrease with increasing subset size (Supporting information, Figure S1.4). Indeed, the standard deviation of coefficient estimates @ A consistently decreased when the number of points increased beyond 200 (coef_sd_plot function; Fig. 5a). This result can be seen as congruent with the measures of intensity from Section 3.1, which suggested the stability of models with a number of points of 500 or more. Bar plots of the sign of the fitted parameter estimates @ A ;, ,2 for each subset size across all environmental and observer bias parameters (signplot function).

It may seem counterintuitive that the average standard deviation, in some cases, increases from N=50 to N=200 and then decreases (Fig. 5a). As many of the coefficient estimates are set to 0 for models of subset size N= 50, this has the effect of decreasing the standard deviation across all simulations. Those coefficients which are non-zero tend to have a large spread, as shown in the graph with a large range of values for @ A ;, ,C% (Supporting information, Figure S1.3). In other words, there is a strong pull toward 0 for N= 50 (as shown in the analysis of coefficient signs in the next subsection), but those coefficients which are not set to 0 tend to be more variable. As subset size increases, the range of the fitted coefficients tends to decrease, but as fewer coefficients are set to 0, the overall standard deviation may be higher across all 1000 simulated subsets for N= 100 and N= 200. Once the subset size reaches 500, however, the range becomes small enough that the overall standard deviation starts to decrease, despite very few coefficients being set to 0.

The sign of the fitted coefficients @ A (signplot function) informed us about the contribution of each environmental variable to the potential distribution of the Stag beetle in France (Fig. 5b; Supporting information, Figure S1.4). Mean annual temperature and mean annual precipitation rate, the percentage of forest cover in the past and the current presence of broad-leaved forest and the natural logarithm of the human population were positively associated with the presence of the species. On the other hand, the percentage of arable land and coniferous forest as the quadratic term of the temperature and the interaction term of climatic variables, were negatively associated with Lucanus presence. The sign of the fitted coefficient estimate 1 (log of the human population variable) were always 100 % positive, whatever the subset size (Supporting information, Figure S1.5).

Hence, we looked at the agreement between the signs of @ A and 1 across subset models, as shown in Figure 5b, with the signs of the coefficients from the model using all the available data. For the temperature or ancient forest variables, for instance, even if the coefficients were shrunk to zero in many cases (particularly models with less than 200 points) the sign was always positive when it was non-zero. Coefficients of the other variables fluctuate from positive to negative signs, particularly for models with 200 points or less. For example, the estimated coefficients for precipitation or the interaction term were equally negative and positive until models with 500 points or more. Therefore, getting sign congruency is a sign of model stability. Nevertheless, we got a clear sign tendency with 200 points and more.

The tools are therefore congruent in their conclusions: to model the stag beetle distribution at the French mainland scale and with the given choice of variables and lasso penalty criterion, 500 points are needed to get stabilized models, and consequently in our point of view, also trustworthy conclusions. With a different choice of variables, the number of points necessary for reliable conclusions may differ -in general, the more variables included in the model, the more variation is expected in the fitted intensity surfaces, requiring larger numbers of points to stabilize. Regardless, the tools presented here can be tailored to different spatial scales and choices of variables to investigate model stability.

Discussion

Assessing PPM stabilization

By departing from our particular data and environmental context, we were able to explore the question of "at what point do my models stabilize?". Our suite of diagnostic tools provides a way to assess the stability of the model in its particular context. Hence, this methodology could be used in order to verify how stable a Poisson point process model fitted with a lasso-type penalty is. Moreover, if the models stabilize at a relatively low number of points, it might mean that the dataset could be divided into shorter periods and used for species distribution analysis across time. For instance, in our case, 500 points seem enough to have a reasonably trustworthy model of the stag beetle. We could have potentially split the dataset in two and see the differences in the distribution between 2007-2012 and 2012-2017, but in our case temporal heterogeneity of the records did not permit this. Participation in the Stag beetle Quest significantly increased in 2015, and since the average number of records per year is 1000, this implies that a future comparison of models for different time periods could be possible.

As these diagnostic tools rely on exploring stability across different subset sizes, it is important to consider which subset sizes to specify in the simulations. In our context, we fitted models using 10 covariates with over 2500 point locations. We considered subset sizes ranging from N = 50 to N = 1000, thus representing between about 2% and 40% of the total number of points. Indeed, allowing the maximum subset size to be too large could give a false impression of stability due to the fact that there are fewer possible subsets and an increasing number of shared records across subsets. For instance, if we allow the subset size to be 80% of the number of available records, different subsets are guaranteed to share at least 60% of the records in common. As a general recommendation, we advise practitioners to consider subsets ranging in size from a minimum greater than the number of covariates and a maximum less than half of the total number of available records, though this may be quite limiting for data sets with few available records relative to the number of covariates.

While there are certainly other ways to create subsamples aside from sampling at uniform from the available points (i.e half split or block-crossed validation [START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF], which are certainly preferable for validating models to independent data), such schemes do not seem appropriate for our work. In our model, we also include a term related to sampling bias, and incorporating different subsampling schemes could make it difficult to disentangle effects of the environment from effects of this sampling bias. In this work we want to call attention to the fact that any given set of observed points represents some (likely biased) subsample of the true point pattern, and by sampling randomly, we thereby preserve any underlying bias patterns of the observed data set. Without direct information regarding sampling effort, creating random subsamples from the observed data set thus mimics the setting in which the observed point pattern is some random subsample of the true point pattern.

We also want to highlight that the criterion we used to select the optimal lasso penalty was the BIC. As we have seen that stability is greatly influenced by the proportion of models for which the coefficients are set to 0, the choice of the criterion for the lasso penalty will also impact the model complexity and hence the number of points necessary for the models to adequately stabilize. If we had instead chosen the AIC, which tends to choose lower penalties than the BIC, model stabilization might have been achieved with smaller subset sizes. Consequently, the effect of criterion choice for the lasso penalty on model stability is a potential area of future research.

If after using these tools, the model does not appear to have adequately stabilized, we recommend results be interpreted with corresponding caution, particularly when the model may be used to inform management or conservation actions. Greater model stability could be achieved by considering a smaller set of covariates, acknowledging that this would lead to less sophisticated ecological understanding of the species distribution and the environmental factors that drive it.

It is important to note that the tools presented in this paper require an adequate number of points in the original pattern to create reasonably-sized subsets. When presence records are rare (around the same number as the number of modelled covariates), it is impractical to produce subsets to assess model stability as there is an increased risk of model convergence problems when fitting models with small numbers of points. However, the spirit of this paper is to explore questions related to the amount of trust that can be placed in a fitted model, and a model fitted using a small number of records is unlikely to be very informative or reliable.

Our approach exploits already existent tools in the ppmlasso package and can therefore be already used. In principle, these tools could also be adapted for use with models fitted using other software platforms, such as spatstat. However, these functions were specifically built to extract information from objects with a ppmlasso class, so adaptation of the functions to objects with other classes may be challenging. Moreover, spatstat provides its own functions to assess model stability. Our functions explore model stability through subsetting largely due to the fact that classical statistical estimators such as standard errors are not available when fitting models with a lasso penalty, and the ppmlasso package is specifically designed for the setting of our paper in fitting species distribution models with lasso penalties.

This data-driven scrutiny of sample size and model stability is more tailored to analysis of different data sets than ad hoc rules for choosing the number of points to model a certain species. Moreover, it helps us explore trust in the conclusions from the fitted model, particularly for those who use SDMs to inform decisions for conservation.

Ecological insight

Lucanus cervus is a saproxylophagous beetle of conservation interest at the European scale (cited in the 3 rd appendix of the Berne convention of 1979 and the 2 nd appendix of the Habitat Directive of 1992), that is, subservient to dead or decaying wood; it is observable near old trees, in forest but also in wooded and urban areas. It is a relatively common species in France, and more largely in Europe [START_REF] Paulian | Faune des Coléoptères de France[END_REF][START_REF] Bensettiti | Connaissance et gestion des habitats et des espèces d'intérêt communautaire[END_REF].

Using the SDM framework to have ecological insight about the distribution pattern of stag beetles, we observed that climate variables dominated the spatial characterization of the species, particularly the annual temperature (with @ A coefficients furthest from 0). This was not a surprise as adults' activity is considered weather-dependent, particularly to conditions of temperature and humidity [START_REF] Fremlin | Weather-dependence of Lucanus cervus L.(Coleoptera: Scarabaeoidea: Lucanidae) activity in a Colchester urban area[END_REF][START_REF] Lachat | Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests[END_REF]. Indeed, the whole model (Supporting information, Figure S1.2) shows that the species drastically rarifies in mountainous regions where temperatures are lower and humidity higher (massif of the Cevennes, the Pyrenees and the Alps). As the overall alignment between the fitted intensities of the models above 500 points is high (less than 20 % misalignment; fig. 4) in the mountainous areas, we can validate that Lucanus cervus sightings are weather related.

Land use plays a significant but secondary role. The extent of agriculture, an environmental variable previously thought to be unfavorable for the species was useful. The influence of broad-leaved vs coniferous forests became unambiguous (respectively positive and negative) above 50 points, which may be due to the mixture of trees in forests and the way in which Corine Land cover classifies landscape features (through a visual interpretation of satellite images) at small scale.

The abundance of ancient forest was positively associated and plays a significant role in the Lucanus distribution among the land use variables. Perhaps it is due to the selection of local broad-leaved oaks and beeches [START_REF] Bazire | La forêt en France -Les études de la documentation française[END_REF] and availability of dead wood in such plots of old forest. The influence of this variable confirms the influence of the landscape matrix and its history in the current distribution of the stag beetle, as old-growth deciduous forests favor the presence of this saproxylophagous species; it also underlines the inertia of forest systems and should warn us about the potential consequences of the large domination of coniferous plantations occurring for the last 70 years in France [START_REF] Bazire | La forêt en France -Les études de la documentation française[END_REF][START_REF] Boutefeu | L'aménagement forestier en France : à la recherche d'une gestion durable à travers l'histoire[END_REF].

In France, broad-leaved forests are mainly in the plains or at medium altitude. Coniferous stands are mainly in mountainous areas, in the Landes highlands and in recent plantations in western France [START_REF] Garnier | La forêt française -État des lieux et évolutions récentes -Panorama des résultats de l'inventaire forestier[END_REF]. It is known that coniferous forests are not favorable for this species, even if some Lucanus can breed on Pinus spp and Thuja spp [START_REF] Paulian | Faune des Coléoptères de France[END_REF][START_REF] Bensettiti | Connaissance et gestion des habitats et des espèces d'intérêt communautaire[END_REF]. The bar plots of the sign of the fitted parameter estimates showed us that above 500 points the sign is mainly negative. Ecologically, we expected a negative sign, and we only consistently see it from N = 200 onward, so models fitted with fewer than 100 points could have led to conclusions contradictory to ecological knowledge. In interaction with other variables, such as the climatic ones, this can also explain the absence of Lucanus cervus in mountainous areas and could be therefore explored in future models.

Complementary variables, such as biotic interactions with fungi in decaying wood or other invertebrate species, wood species selection for breeding or micro-climatic variables, which are important for invertebrate development and suggested as important for saproxilic beetles [START_REF] Diniz-Filho | Defying the curse of ignorance: Perspectives in insect macroecology and conservation biogeography[END_REF][START_REF] Quinto | Association patterns in saproxylic insect networks in three Iberian Mediterranean woodlands and their resistance to microhabitat loss[END_REF][START_REF] Ulyshen | Insights into the ecology, genetics and distribution of Lucanus elaphus Fabricius (Coleoptera: Lucanidae), North America's giant stag beetle[END_REF][START_REF] Garrick | Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA[END_REF], were not included as they were not available.

The importance of the bias covariate (human population) was significant, showing once again the importance of variables that can correct for sampling bias to accurately model species distributions.

The conclusions inferred from a fitted SDM may be incomplete from an ecological point of view or even inaccurate at small scales. Here we want to underline the important role of experts of the target species and the fact that models approximate a complex reality and should be used with parsimony and caution, especially in conservation contexts.

Furthermore, we encourage practitioners to always keep in mind the areas where categories of intensity are most likely to differ between the models fitted to random subsets and the model fitted with all available points (misalignment map). In our case, precautions must be taken before interpreting the whole model in the south-west of France (west part of the Landes highlands) and in particular in the east near the border with Switzerland (Massif du Jura), even though in this second area we had some observations (fig. 1).

Conclusion

PPMs not only offer a unifying framework to fit presence-only species distribution models with many advantages in model implementation and interpretation, but also possess a number of ready-to-use diagnostic tools that can inform about model consistency and stability. Without any rule of thumb or an obscure single metric, the number of needed points in a particular environmental and spatial context to achieve model stability can be explored from perspectives relating to both the fitted intensity surface and the fitted model coefficients. All of the diagnostic tools are congruent and can be used for any kind of point process model. Above all, we recommend collaboration between species experts and researchers in ecology and statistics to build realistic, field-informed, trustworthy models and test them before applying them. Thanks to the diagnostic tools offered by PPMs, a constructive step-by-step process may allow us to rapidly increase our knowledge of species distributions, even for the less studied ones.

Figure 1 .

 1 Figure 1. Point locations of the data used for the analysis. Map made by © OpenStreetMap contributors

  Figure 2. The Lucanus PPM workflow for model simulation and diagnostic tools comparison.

Figure 3 .

 3 Figure 3. (a) Average rescaled intensity for each subset size (avg_mu_plot function; N = 50, 100, 200, 500 or 1000 points) and the intensity of the whole model with the 2576 stag beetle observations. Maps can be used for graphical comparison. (b) Pearson correlation between

Figure 4 .

 4 Figure 4. Maps of the proportion of subsets which place the locations into different categories defined by the quantiles 0.2, 0.4, 0.6, and 0.8 than the model using all available points (quantilematch function), for each subset size (50, 100, 200, 500 and 1000 points).

Figure 5 :

 5 Figure 5: (a) Trace plot of the standard deviation of the fitted parameter estimates @ A ;, ,2 and 1 B, ,2 for each subset size across all environmental and observer bias parameters (coef_sd_plot funtion. (b)

Table 1 .

 1 Complete information of the environmental and bias variables included in the

	model. The climatic and human population variables' resolutions are 30 arc-seconds
	(approximately 1 km at the equator).

Type Model form Covariate Source Environmental covariates

  

			Linear		CIESIN gridded
	Observer bias covariate	Uneven sampling effort		Natural logarithm of the Human Population data	population of the world SEDAC dataset (2016) Resolution ~1 km²
	167			
			Linear,	Mean annual Temperature (Bio 1)
			Quadratic	Unit: Celsius degrees (°C)	Bioclimatic variables from
		Climatic	Linear,	Mean annual Precipitation rate (Bio12)	Worldclim (2017)
			Quadratic	Unit: millimeter (mm)
					Resolution ~1 km²
			Interaction term Mean annual temperature * Mean annual precipitation
				rate
			Linear	Percentage of broad-leaved forest cover in a 1km radius	Corine Land Cover (2012)
			Linear	Percentage of coniferous forest cover in a 1km radius	Resolution 1 km²
		Land Use	Linear	Percentage of arable land cover in a 1km radius
			Linear	Percentage of forest cover in the past (1910 and 1960) at	Hilda database (2013)
				1km radius	Resolution 1 km²
					10
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