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Abstract— High accuracy localization is easily obtained in an exterior context with GPS, but the development of indoor 

positioning systems remains a challenge. The GPS signals, by nature, cannot penetrate walls thus preventing this technology to 

provide any service indoor. This paper proposes a practical implementation of an accurate Indoor Positioning System based on 

Bluetooth Low Energy technology to ensure a low power, efficient and easy to setup infrastructure. It is available on any current 

Smartphone and requires no extra devices for the user. We use a fusion of the inertial sensors available on the device to output 

a precise and drift-free estimation of the user displacement, leverage this information with iBeacon radio signals used as 

anchors to readjust the path if needed and process all these inputs in a Particle Filter. We augmented the Fingerprinting-based 

likelihood calculation of the particles position ’s with a unique simulation of the particle ’s theoretical RSSI and also reduced the 

number of particles to better fit within the bounds of the computational capabilities of mobile devices. The experiment was 

conducted in a 400m2 open space and yielded positive results as a first attempt in accurate indoor localization and proved to be 

viable in an indoor context. 

Index Terms— Particle Filter, Optimization, Bluetooth Low Energy (BLE), Fingerprint recognition, Fusion Sensor, Indoor 

Position System (IPS) 

——————————   �   —————————— 

1 INTRODUCTION

he localization and tracking of moving objects or 
people has long been an interesting area of re-

search, but is also well addressed in the outdoor case 
with the Global Positioning System. However, GPS has 
exhibited limitations in indoor environments because 
of the absence of line of sight (NLOS) with satellites, 
and thus is still an on-going field of research. Many 
approaches have been envisioned from the early ages 
of indoor positioning systems with a wide variety of 
technologies and methods. Some tried the approach of 
acoustic systems [1] whereas others focused on infra-
red- [2] or ultrasound-based systems [3]. However, the 
technology that has contributed the most to indoor 
location systems is the radiofrequency (RF). Wi-Fi [4], 
[5], is the most popular approach of RF-based systems 
because it relies on the existing infrastructure of the 
localization area and can work on any existing mobile 
device, thus ensuring a large user-base. As an alterna-
tive to Wi-Fi-based systems, Bluetooth has also been 
tested [6] as the deployed infrastructure and ensured a 
better line of sight between the anchor nodes and the 
tracked device. Unfortunately the costs of setup and 
maintenance regarding accuracy and device power 
consumption concerns didn’t make it a reliable solu-
tion.  
When considering possible use-cases for indoor locali-
zation, perhaps the most obvious examples are people 

navigating shopping malls, convention centers, muse-
ums, etc. We cannot expect users to carry a specific 
device to provide them with localization; even a sim-
ple foot-mounted sensor would be an inconvenience. 
For that reason, high accuracy approaches such as 
ultra wide band (UWB) [7] or Radio Frequency Identi-
fication (RFID) [8] that require both a specific infra-
structure or a specific tag for localization cannot be 
applied in most user-driven contexts.  
If we focus on works that rely solely on mobile device 
capacities and pre-existing infrastructure, we can con-
sider light-based systems [9] that use the camera to 
detect the information transmitted by LEDs. However, 
those methods have two major constraints: First, the 
LEDs need to be installed beforehand, which means 
supplementary infrastructure costs. Second, constantly 
using the camera draws the battery faster than Blue-
tooth or Wi-Fi and would prevent the user from doing 
anything else with his/her phone than providing local-
ization. Other mobile-only systems like FM-based [10] 
or GSM-based [11] solutions were envisioned but 
could only provide room-level accuracy. Magnetic 
approaches were developed [12], only requiring the 
use of device sensors, but they only reached room level 
granularity [13], and required a very long training 
phase or were not viable in the long term. With re-
gards to accuracy, each has its own definition regard-
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ing “high” accuracy, but none were able to surpass the 
one-meter level without the use of external devices 
such as sensor extensions, or over-focused use of the 
mobile device. Since 2010 and the appearance of the 
Bluetooth 4.0 standard [14], also known as Bluetooth 
Smart or Bluetooth Low Energy (BLE), a new kind of 
RF-based indoor positioning system has emerged. This 
new technology has become very popular with the 
launch in 2013 of the iBeacon protocol which only 
broadcasts a unique identifier over BLE. Because BLE 
was designed as a low-cost and low-energy device, an 
infrastructure consisting entirely of these beacons can 
be deployed at a low cost, and provides a proper cov-
erage of the area, thus enabling new studies to be con-
ducted on high accuracy indoor positioning systems 
[15], [16]. 
 
Using only the inertial sensors of a mobile device to 
determine the position of the user with high accuracy 
is still a challenge and is known as “pedestrian dead 
reckoning (PDR).” This method estimates the distance 
and heading direction of the user, based on the accel-
erometer, gyroscope and magnetometer of the mobile 
device. Based on the assumption that PDR could give 
an accurate estimation of the trajectory of the mobile 
device, and therefore the user, researches have been 
attempting to fuse PDR with some, if not all, of the 
previously mentioned technologies in order to im-
prove both robustness and accuracy of the positioning 
system. PDR can estimate the path of a user but only 
over a short time interval; this is due to the drift effect 
which contains a double integration of acceleration 
and a single integration of the gyroscope. However, 
when fused with other methods PDR can increase the 
accuracy of indoor positioning systems.  
The rest of this paper is organized as follows: Section 2 
describes the related work that has been conducted 
over the past decade on indoor localization and section 
3 presents our proposed method. Section 4 explains the 
experimental setup and results and proposes a discus-
sion. Finally, section 5 concludes this paper and pre-
sents the future work we are planning, as well as some 
improvements that can be made based upon our pro-
posed approach. 

2 RELATED WORK 

 

In this section we will review the work on indoor local-
ization and focus more so on methodologies rather 
than on the technologies that were presented in the 
Introduction. 
In [17], indoor positioning approaches are briefly 
overviewed and classified in two categories:  model-
based and fingerprinting-based. We chose to add a 
third group termed “filter-based” which we believe to 
be important to mention when reviewing indoor posi-
tioning methods. 

2.1 Model-Based 

Model-Based approaches are mainly geometrical 

methods and use information such as distance, angle or 

time to process and estimate the position of the mobile 

node.  

In Time Of Arrival method, also called Time Of 
Flight, the propagation time of a signal (most often RF 
signal) is measured. Because the precise time of emis-
sion and the propagation speed of the signal are 
known, it is possible to calculate the distance between 
the emitter and the receiver. Afterward, with the calcu-
lated distance of three known emitters, a trilateration 
algorithm can be performed to estimate the position of 
the tracked node. One of the major drawbacks of this 
approach is that it requires a very fine synchronization 
between all the nodes of the deployed infrastructure 
and the receivers. Only nanosecond latency can cause 
an accuracy error of 0.3m when using RF. The speed of 
a radio-frequency wave is close to the speed of 
light, � = 3.0 × 10	m/s. Thus if 
� = 10�� s then 
� =� ∙ 
� = 3 × 10��m. Another restriction when using 
direct signal information is that it requires a perfect 
line of sight between the emitters and the receiver. 
Furthermore, the deployed infrastructure must be 
dense enough to properly cover the whole area. 

TDOA, Time Difference Of Arrival, is a slight vari-
ant of the TOA approach in that it only requires syn-
chronization between the emitters’ nodes but it re-
mains the same in the distance estimation from time 
and position estimation using Trilateration. Hence, the 
hardware used for the beacons require strong clock 
accuracy and precise synchronization throughout the 
network making the infrastructure cost not negligible. 

As mentioned in TOA and TDOA methods, the Tri-
lateration is often used in Indoor localization context 
because of its simplicity. In the two previous methods, 
the accuracy of the estimated distance from time can 
lead to a good positioning result but if the Trilateration 
is used and the distance is estimated based on another 
parameter it can rapidly become less attractive. This is 
the case in lot of indoor positioning systems relying on 
an existing Wi-Fi infrastructure and/or extended with 
Bluetooth Low Energy beacons. The parameter that 
has been used widely in those RF-based system is the 
received signal strength indicator (RSSI), and distance 
estimation can be obtained with the well-known log-
distance path model:  

 

RSSI = −10 ∙ � ∙ log � �
��� + !"  

 
Here, !" is the signal strength at the reference dis-

tance �# and � is the path loss exponent parameter, 

which usually varies between 2 in free space and 8 in a 

noisy environment. 

The intrinsic characteristics of RF signals are such 
that there is strong multi-path effect in indoor envi-
ronment, meaning the attenuation through obstacles 
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and human bodies make the received RSSI at a fixed 
position very erratic. If we take the example of a Blue-
tooth Low Energy beacon, emitting a 2.45GHz RF sig-
nal in free space with a -58dBm reference power at 1 
meter, a 4dBm differential at close range (received -
65dBm and -69dBm) means 1.3 m in distance estima-
tion error but is equal to almost 7m error at medium 
range (-80dBm and -84dBm) and up to 20m at long 
range (-88dBm and -92dBm). In an indoor context, 
using trilateration with RSSI in the case of an RF infra-
structure cannot achieve strong accuracy unless with 
high pre-processing to filter-out the unreliable data, 
thus reducing the real-time performance. 
Finally, one last model-based approach is to estimate 
the position of a mobile node in a wireless sensor net-
work, and is referred as the AOA, Angle of Arrival 
(also known as Triangulation). The calculation is very 
simple and the accuracy achieved is high but it re-
quires a specific hardware on the mobile node that 
capable of detecting the angle of arrival of the signal 
from specific hardware infrastructure. Once the angles $1 and $2 from two beacons are measured and the 
coordinates of those beacons (x1, y1) and (x2, y2) are 
known, it is possible to estimate the position with the 
simple formula: )* − +*. tan-$*. = ) − +. tan -$*.. As 
stated above, the hardware cost of this infrastructure 
would be non negligible and the hardware that detects 
the angle of arrival is not available in today’s 
Smartphones 

2.2 Fingerprinting-Based 

 
Fingerprinting-Based methods are divided in two 

steps commonly referred to as an off-line (or training) 
phase and an on-line (or localization) phase. In the 
former, a site survey is performed in which signal 
values are collected and stored in a database along 
with the coordinate position. The tuple signal-position 
is called a Fingerprint. In the latter, the signal values 
observed by the mobile node to track are compared 
with the ones in the database and the closest match is 
returned. The position of this Fingerprint is considered 
as the mobile node position. The great advantage of 
this approach relies in its simplicity, adaptability to 
different technologies and its accuracy that is better 
than model-based methods. Indeed, it is easy to con-
struct a database only made of Wi-Fi fingerprints as 
most indoor environments are already equipped with 
Wi-Fi access points, and line of sight is a non-issue; the 
challenge lies in the reinforcement of the fingerprint 
database with respect to the diversity of the finger-
prints contained within it. 

 
Much work has been done on Fingerprinting, and 

groups have tried to enhance it by combining multiple 
signal sources such as Wi-Fi, GSM, RFID or Bluetooth 
(and most recently Bluetooth Low Energy). Others 
experienced different methods to look for the best 
match in the database like the classic k-NN which 

retrieves the k nearest neighbors based on an Euclide-
an or Manhattan distance selection criterion, its variant 
the weighted k-NN or also a classifier like the Bayes’ 
classifier.  

 
However, the main drawback of this approach re-

lies in its off-line site survey and most of all, its 
maintenance, which can be overly expensive. Con-
structing a database by collecting data each one or two 
meters for accuracy sake in a static small room is easy 
and the radio-map will still be valid one week or one 
year after. But if we consider an exhibition mall that 
frequently hosts events over the course of a year, it is 
easily deducible that its configuration changes with 
every event. Generating the radio-map for such an 
environment is extremely time-consuming and costly. 
Moreover, every 2 to 3 events this radio-map will be-
come invalid and this work would have to be recon-
structed.  

 

Recent researchers have attempted to simulate the con-

struction of the radio map, however the resulting accura-

cy was suboptimal. Others tried to find a compromise by 

utilizing the on-line phase as a way to crowd source the 

radio-map. The results show room-level accuracy which 

is good for small contexts or narrow areas but not for 

large open indoor spaces. Moreover, there are no explicit 

measures about the time it takes to create the crowd-

sourced radio-map whereas it is the key component of the 

localization system. 

 
As for today, the classic radio-map creation in the 

training phase remains the most preferable way to 
achieve high accuracy in a Fingerprinting-based ap-
proach and hence our proposed method relies on it. 

 

2.3 Filter-Based 

 
Filter-Based methods rely on statistical computa-

tions that aim at estimating the true value state of an 
unknown variable, most often the hidden state of a 
Markov Chain, using only observed set of data de-
scribed by a mathematical model. These filters work in 
two phases, namely the prediction step and the update 
step. 
The Kalman filter, one of the most well-known algo-

rithms and linear quadratic estimation relies on the 

Bayesian inference to estimate unknown variables based 

on the prior knowledge of the variable and a measure-

ment set. It is widely used in robotics and aircraft naviga-

tion and guidance systems but requires only linear opera-

tors and there is a strong constraint on both noise covari-

ance matrices that must be precisely estimated. As stated 

above, the estimate of the true state at given time k is 

only a linear function of the true state at the previous time 

k-1 and can be written as follows: 
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 +/ = 0/. +/�� + 1/ . 2/ + 3/   

 
Here, Fk is the state transition model, Bk is the control-
input model applied to the control vector uk. Finally, 
wk is the noise associated with this transition from 
time k-1 to k and is most often drawn from a zero 
mean multivariate normal distribution with a covari-
ance Qk: 
 3/ = "-0, 5/.   

 
To this unknown state of variable at time k we can 
observe a variable zk that follows the given equation:  
 6/ = 7/ . +/ + )/  

 
Hk is called the observation model and vk the observa-
tion noise. The observation noise is a zero mean Gauss-
ian white noise with a covariance Rk:  
 8/ = "-0, 9/. 

 
During the Predict step, the Kalman filter calculates 
the ‘a priori’ state estimate :;k|k-1 and its accuracy, also 
called the ‘a priori’ error covariance matrix Pk|k-1. Dur-
ing the Update step the measurement pre-fit residual, 
its covariance, the optimal Kalman Gain, the ‘a poste-
riori’ state, its error covariance and the post-fit residual 
are calculated.  

To apply filter-based methods on RF-Based Indoor 
Localization Systems, we must find the relation that 
binds the observation set to the hidden state of the 
Markov model (i.e. the Hk matrix of the Kalman filter) 
and the relation between two iteration of the variable 
to estimate (i.e. the Fk matrix). As we rely on Bluetooth 
Low Energy Beacons, the main observable signal at 
our disposal is the RSSI received on mobile device, and 
the relation that links the RF signal to a distance (and 
therefore to the mobile device position) is the Log-
distance path model mentioned in section 2.1. This 
obviously is not a linear model thus the Kalman Filter 
cannot be used in this context. We could use the Ex-
tended Kalman Filter or the Unscented Kalman Filter 
but they are only first and second order estimations 
respectively. 

 
The Particle Filters, or Sequential Monte Carlo be-

long to the genetic type branch of Monte Carlo meth-
ods and handle non-linear system. Like the Kalman 
Filter, when using a Particle Filter we need to define 
the state transition equation f() as well as the observa-
tion equation g() but there are no requirements on 
their linearity.  The other parameters involved are only 
the set of state variable Xt, the state transition noise At, 
the set of measurements Yt, and the measurement 
noise Nt. In the Particle Filter, M samples (called parti-
cles) are initialized at time t=0 with an equal weight 

{3=->. =  �
?}>A�?  and a random state variable, then each 

of them is propagated through the state space accord-
ing to the state transition equation f() : 

 

{+B->.  =  C-+B��->. − DB->..} >A�? .  

 
After a new measurement has been observed, the par-
ticle set is updated, meaning the weight of each parti-
cle is calculated using the observation equation g() 
which is also called the “measurement likelihood func-
tion”.  

In several previous works, the fusion of inertial sensors 

like the accelerometer and gyroscope of an external de-

vice [18] combined with other observations like Wifi 

signals [18], [19], ultrasounds or infrared [20] have been 

tested using the particle filter. These solutions, however, 

only resulted in medium to low accuracy while requiring 

the processing of several thousands of particles, most 

often in large buildings with few-to-no open spaces or 

requiring extra devices to lower the number of particle 

used. [18], [21] addressed the question of the particle 

number by proposing a graphed-based solution in order 

to reduce the degree of freedom the user can move thanks 

to the map information. This led to some improvements 

in the calculation process, reducing the number of parti-

cles by a factor of 10 but achieving the same accuracy, at 

the cost of constraining the user movements. That con-

straint was not such a problem in their experiment as they 

were testing the model in a building mostly made of 

corridors but this solution could not be applied in an open 

space. 

3 PROPOSED APPROACH 

In this section we will explain the unitary models used 
as part of the fusion particle filter implementation: The 
inertial model - also called Pedestrian Dead Reckoning 
(PDR) - The Fingerprinting radio map constructed 
with Bluetooth Low Energy beacons and its associated 
weighted k-nearest neighbor algorithm and finally 
how they fused together into a particle filter 
 

3.1 Inertial Model 

 
In this experiment, we aim at providing a mobile 

indoor positioning solution that does not require any 
other external or wearable device other than the bea-
con infrastructure to provide more information to the 
system. For this reason, we are going to use the inertial 
sensors present in all Smartphones currently available, 
which are a 3-axis accelerometer that measures the 
accelerations that affect the device, a 3-axis Gyroscope 
that measure the relative orientation of the user and a 
3-axis Magnetometer that determines the heading of 
the device towards the True or Magnetic North. 

To estimate a distance spanned by the user from 
device-based measurements, we must doubly-
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integrate the accelerations that device senses, which is 
drift-prone in medium-to-long time intervals. This is a 
result of several factors: device sensitivity, noise in-
duced by the user due to moving the device, and the 
double integration required to transform acceleration 
into position. To avoid the cumulative error that could 
arise and ruin the accuracy of the system, we combine 
this measurement with the gyroscope measurements 
and the magnetometer. The latter senses the magnetic 
fields and is thus very sensitive to other magnetic 
sources around it which could cause interference. We 
use this sensor first to initialize the orientation of the 
device and secondly to correct the drift caused by the 
double integration of the gyroscope readings to deter-
mine accurately the heading of the mobile device. 

We can formulate the position of the user at time t 
with the following equation: 

 

E+B = +B�� + �B ∗ �GHθB + 8B)B = )B�� + �B ∗ H*�θB + 8B   (1) 

 

Here, �B is the distance travelled between time t-1 and 

t, JB the orientation of the user between time t-1 and t 

and 8B a Gaussian white noise with zero mean and 

known standard deviation.  

Unlike most of the related work related to PDR, we do 
not rely on step detection to estimate the distance be-
cause in the case of a hand-held device, the step detec-
tion would fail with the lack of significant accelera-
tions peaks. Moreover each person is unique and has a 
different step stride that would need to be either esti-
mated, or calculated with another filter like the Kal-
man Filter, which would ultimately add unnecessary 
processing overhead. We would rather use the double 
integration method and use BLE information to reset 
the drift caused by this method as the device is an-
chored.  Furthermore, we can strongly assume the 
mobile device is placed under a Bluetooth beacon. 

 

3.2 Bluetooth Low Energy Model 

 
As in all traditional Fingerprinting-based systems, 

a radio map is created. Here we propose to associate 
the Cartesian coordinates of the location fingerprint 
with an array filled with Θ vectors of N RSSI values 
corresponding to the N beacons deployed in the area. 
The number Θ here is used to inject diversity into the 
database and thus compensate for the multipath effects 
of the RF signal. Indeed in an indoor environment the 
signal coming from a given beacon should flow all 
across the area and hit the mobile device in a line of 
sight manner (LOS). But as a radio frequency signal 
bounces on obstacles, it can reach the same mobile 
devices after a random number of bounces and with an 
attenuated RSSI. In a similar way, a signal flowing 
through something as common as a human body will 
reach the mobile device attenuated by several dB. The 

diversity introduced in the database is made by col-
lecting the N RSSI values of the beacons with Θ differ-
ent orientations. 

Once the database is created, the online phase con-
sists of a real time observation of the radio environ-
ment and a comparison over the training set. We apply 
a K nearest neighbors algorithm based on a simple 
Euclidean distance to find the best location fingerprint 
(LF):  

 

K2�L =  M∑ -9OOPQL − 9OOPQ.RSQA� , * ∈ [1. . V]  (2) 

 
In this equation, M represents the number of entries in 
the database.  

In case of a missing 9OOPQ or 9OOPQL  value, due to in-
frastructure noise during either the radio-map con-
struction or the on-line phase, we decided to consider 
such a missing value as the sensitivity limit of the 
Bluetooth chip used in the Smartphone. Most Blue-
tooth chips of current Smartphones have sensitivity 
approaching -100dB, which is why we choose a limit of 
-99dB (see section 4 for further explanation). 

 

3.3 Fusion Particle Filter 

 
We break up our particle filter into one initializa-

tion step and four loop steps that are Prediction, Cor-
rection, Re-Sampling and Estimation. 

In order to avoid injecting a bias we choose an ini-
tial uniform sampling of the particles across the state 
space, but such a method would slow down conver-
gence. Because we can have an a priori estimation of 
the mobile device position on the state space with the 
Beacons radio frames we decided to sample all the 
particles following a Gaussian distribution over this 
first estimated position. Two cases arise for this setup: 
The first corresponds to when the mobile device is 
right under a Beacon, and in this case we ‘anchor’ it by 
setting its position to the beacon’s location. In the sec-
ond case, when no strong signal has been detected, we 
set the mobile device’s position to an initial Finger-
printing estimation. 

We then predict the user location based on the 
inertial measurements sensed by the Smartphones. 
Each particle’s position is updated using (1) where 8B 
is random for each one of them. 

Correction is what comes after with the likelihood 
calculation of the particle’s position given the 
observations made by the Smartphones and the 
Bluetooth Low Energy Fingerprinting database. The 
following algorithm describes the calculation that is 
performed for each particle p ∈ [1. . !]:  
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For each visible APn, n∈ [1..N] 
 For each close LFj, j∈ [1. . X] 
  Calculate �YZ[

\]^ = -_``abc[
de^ � ZS.

��=∗f#g -�bc[
de^ . 

 End For. 

 Calculate �YZ[ = �
h ∑ �YZ[

\]^hiA� . 

 Calculate 9OOPj =  −10 ∗ �YZ[ ∗ logk�YZ[
j l + !". 

End For. 

 

We now have a set of simulated RSSI for each parti-

cle that we can compare to the observed set. The 

Euclidean distance K2�j is calculated between the 

observed set and the simulated set which yields the 

new weight for the particle: 

 

 3Bj = 3B��j ∗ �
mnop.  (3) 

Finally, all the weights are normalized following:  

 

3Bjqqqq = rsp∑ rspcptu . (4) 

 

Before the estimation takes place, we need to identi-

fy the number of particles that genuinely participate 

in the position estimation based on their weights. If 

too many particles have a negligible weight the 

filter is considered as degenerating and a 

resampling must be done. Indeed, because this pro-

cess is recursive, after multiple iterations some 

weight may become unimportant and can cause a 

severe lack of diversity resulting in only few parti-

cles with high weight. The key indicator of this 

phenomenon is the effective sample size that we 

calculate as follows:  

 

"vCCB = �
∑ rsp

wqqqqqqcptu
.  (5) 

 

Whenever this value falls below a threshold NTh the 

weak particles are removed and the strong ones are 

duplicated. For this process we construct the cumu-

lative probability array of the particles, sample ran-

domly P new particles from [0..1] Into a second 

array, and for each value from this array, find the 

corresponding particle in the cumulated probability 

array and set the weight of all the new particles to 

3Bj =  �
Z.  

At the end of the process the mobile device’s posi-

tion is estimated simply with:  

 

 OB = x+B)B = ∑ OBjZjA� ∗ 3Bjqqqq  (6) 

 

Here, St is the state of the mobile device at time t 

and OBj the state of particle ‘p’ at time t represented 

by:  

 

OBj = y+Bj)Bj
  (7) 

 

3Bjqqqq represents the normalized weight of particle ‘p’ 
 

4 EXPERIMENTAL SETUP AND 

RESULTS 

 

4.1 Setup 

The experimental area is represented in Figure 1 
with dimensions of 23m by 18m, which represents 
more than 400m2 of complete open space with no walls 
inside to make the system benefit from tunnel effects 
that allows it to reduce the degree of freedom the user 
can move. On the other hand the intrinsic configura-
tion of the environment is multipath prone, so the tests 
will reflect the performance in a noisy environment. 
Moreover as we will see in the results the noise was 
also brought by some of the 6 beacons that compose 
the BLE infrastructure. 
Figure 2 represents a beacon from Kontakt.io that 
compose the BLE infrastructure and their disposition is 
shown in blue on Figure 1 
 

 

Fig. 1. Test Area 
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Fig. 2. Beacon Kontakt.io 

The software was developed on IOS (version 8) 
and the Smartphone used throughout the experiment 
was an iPhone 6+.  The mobile application looks for the 
beacons associated with the current environment using 
Kontakt.io web services, which ensures a quick and 
simple deployment and app configuration for addi-
tional places. For the entirety of the experiment, the 
Smartphone is considered to be hand-held and other 
orientations are currently a work in progress to further 
improve the robustness and usability of the system. 

The Particle Filter outputs estimated position at a 
configurable frequency selected to 1Hz here and the 
number of particles selected is 100. The value of K in 
the Fingerprinting Model is commonly selected as the 
square root of the number of fingerprints. Considering 
about 45 Location Fingerprint, each with 8 measure-
ments corresponding to 8 different orientations, we 
chose a value of 5 for K that is little less than the exact 
square root because of the low density of the LF consti-
tuting the radio map. 

4.2 Teoretical Analysis 

In this section, we discuss the time complexity of the 
proposed algorithm. Let us first express some basic 
variable definitions. 
• S is the test Area in m2 (414m2 in this experiment) 
• LF is the maximum number of Location Finger-

prints (45 in this experiment). This value is related 
to the test area and should be equal to z ∗ ��, �� ∈]0. .1] 

• N is the maximum number of Access Points (6 in 
this experiment). This value is also dependant on 
the test area and is equal to z ∗ �R, �R ∈]0. .1] D�� �R < �� 

• M is the maximum number of database finger-
prints (360 in this experiment). Each LF has been 
measured 8 times corresponding to 8 different 
heading orientations such as Nort, North-East, 
East, South-East, South, South-West, West and 
North-West. This value is also dependant on the 
test area and is equal to z ∗ �|, �| = 8 ∗ �� 

• K is the value for the K-NN algorithm (5 in this 
experiment). This value should usually be chosen 
as the closest integer to √�0 

• P is the maximum number of particles for the 
Particle Filter algorithm (100 in this experiment). 
This value is one of the set-by-design variables of 
our proposed approach. 

The time complexity is, in the worst-case scenario, 
the combined time complexity of the init step and the 
four run steps: Initialization, Prediction, Correction, 
Re-Sampling, Estimation. At start, the algorithm scans 
for every Access Points in range, N in the worst case, 
and if no access point can be designated as an anchor, 
a Fingerprint estimation is performed. The complexity 
for the scan is as Θ-". and the complexity for the Fin-
gerprinting estimation is Θ-V ∗ -X + "... Thus, the 
time complexity for the initialization step is  �aSa� = Θ-". +  ΘkV ∗ -X + ".l �aSa� = Θ-z ∗ �R. + Θk�� ∗ z ∗ √z + �� ∗ zRl �aSa� = Θ-zR., 3*�ℎ �� = �� ∗ �| D�� �� = �R ∗ �| 
 

The Prediction step has a complexity of: �Z_m� = Θ-! ∗ X. = Θ-! ∗ Mz. 
The Correction step simulates for every particle the 

RSSI at the particles’s position given the Access Points 
in range and the K nearest Fingerprints of the particle’s 
position. In the worst-case this results in a time com-
plexity of: ���__ = Θ-P ∗ N ∗ K. = Θ-P ∗ M�� ∗ z ∗ �R ∗ z. ���__ = Θ-! ∗ z ∗ √z. 

During resampling, the creation of the cumulative 
probability array has a complexity of Θ-!., the creation 
of the index array in the worst case needs to go 
through both arrays and thus the time complexity is as Θ-!R. and finally the creation of the new particle array 
is as Θ-!.. This results in a Resampling time complexi-
ty of: �_m`Y?Z = Θ-!. + Θ-!R. + Θ-!. = Θ-!R. 

The estimations process is as equation (6) states the 
sum of the weighted particles positions. �m`� = Θ-!. 

To sum this up, the total worst-case complexity of 
this algorithm is composed of the partial worst-case 
complexities and is: ���� = �aSa� + �Z_m� + ���__ + �_m`Y?Z + �m`� ���� = Θ-zR. + Θk! ∗ √zl + Θk! ∗ z ∗ √zl + Θ-!R.+ Θ-!. 

As we stated in this research, the aim was to keep a 
Particle number as small as possible and as such a fix 
number. As the experimental area grows, the term that 
remains dominant is the initialization complexity Θ-zR. and in a run condition where there is no need to 
re-initialize the algorithm, the final complexity is Θk! ∗ √zl + Θk! ∗ z ∗ √zl + Θ-!R. + Θ-!.. In practice, 
this complexity is even further reduced as Θ-!R. is 
only present when resampling which is not the nomi-
nal case.  

Moreover, as the proposed approached aimed at 
providing a mobile only solution, the number of bea-
cons that can be scanned by a Smartphone at any time 
is really small. Indeed, as a design, the beacons are 
chosen to be one for 100 square meters and the effec-
tive line of sight of the beacon radio message doesn’t 
exceed few tens of meters in range. Thus said, the 
number of concurrent beacons scanned won’t exceed 
10 even if the test area covers thousands of square 
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meters which implies that the complexity will be not 
more than Θk! ∗ √zl =  Θ-√z. as P becomes negligible 
in front of S. 

 

4.3 Results 

Fig. 3. Path loss model of beacon 1 

Fig. 4. Path loss model of beacon 2 

Fig. 5. Path loss model of beacon 3 

Fig. 6. Path loss model of beacon 4 

Fig. 7 Path loss model of beacon 5 

Fig. 8 Path loss model of beacon 6 
 

As we can see from Fig. 3 to 8, the propagation of the 
beacon’s radio signal across the test area follows nicely 
the path loss model with a path loss coefficient n close 
to 2.2, which defines a quasi-clear propagation. None-
theless, two beacons outstand from this model as one 
completely ignores it and the other follows it with a 
high spread. The reason for this behavior is easily 
explainable by the infrastructure of the beacons. In-
deed the two-centermost beacons are not placed in the 
same orientation as the others, causing significant 
perturbations. 

 

 

Fig. 9. Trajectories of True and Estimated path of the proposed 

approach 

From Fig. 9 we can see that our method of particle filter 

aided by inertial measurements and enhanced with a BLE 

infrastructure can accurately position a mobile device in a 

wide-open space with as little as 100 particles and as few 

as 1 fingerprint for 10m2. Our anchor system also helps in 

staying close to the true path by readjusting the estima-

tion as we see it on Fig. 9 near the beacons positions. 

“The tests were performed in this open-space area were 

allowed by the direction of the company this experiment 

was conducted by, and as a confidential R&D study, this 

was the only available test area at our disposal. Moreover, 

this space was used as a workplace for other employees 

and the degree of freedom that was given to us to test the 

proposed approach, without disturbing the ongoing work 

of everyone else, was hence limited”. 

The method used to estimate the error of our proposed 

Indoor localization system is the root mean square error 

or RMSE which was computed over all the iterations of 

the particle filter when a comparison to a true position 

was available.  The accuracy of our system is 1.4m in this 

experiment 
 

5 CONCLUSION AND FUTURE WORK 

  
 

Throughout this experiment, we proved that a high ac-

curacy indoor localization system is feasible only relying 
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on a Smartphone capability and with a simple and cost-

efficient deployment of a Beacon infrastructure. 

The proposed approach as we just saw, allows a real 

time Indoor Positioning System to be ran on any 

Smartphone available on the market and without the need 

for a 4G cellular connection which would be impossible 

to ensure in a place such as a Convention Center. Finally, 

we are able to provide this solution, and have it run on 

any Smartphones thanks to the reduced time complexity 

of the proposed approach. 

Indeed, we managed such a solution to be viable by 

leveraging the Fingerprinting algorithm with a Fusion of 

Motion sensors from the Smartphone and a Particle Filter 

Algorithm of our own that reduced the run complexity of 

the process from  Θ-zR. that can become rapidly huge in 

wider areas, to Θ-√z.. 

There are a lot of reflections on our system that could 

lead to accuracy improvements. The most recent work in 

progress is in regards to mobile device orientation, which 

could provide a better estimation of the travelled distance 

between iterations. The ‘anchor’ system also could be 

improved as we can observe on the first iterations on Fig. 

9; the readjustment was along the X-axis whereas the 

movement was along the Y-axis. The two aforemen-

tioned beacons at the center of the area that are not well 

placed and inject too much noise in the system could also 

be removed, gaining 1/3 less infrastructure cost as a side 

effect. The map information of the building could also be 

used even if in the case of such an open space it would 

not greatly improve the performance of the system. How-

ever, as we transition from one open space to another, or 

when the user enters different rooms, walls and doors 

will give information on path that otherwise couldn’t be 

inferred. 

The main disadvantage of the proposed solution still 

remains the initial procedure to build the radio map that 

is used in the Fingerprinting algorithm. Such a procedure 

requires a manual construction of the map by scanning in 

every 8 directions for each Location Fingerprint LF of the 

test Area. 

This drawback is to be addressed in future work where 

we plan to simulate the initial radio-map to get rid of the 

manual process and then correct it with all the data col-

lected during run time by the Smartphones. Indeed, the 

Feature of gathering the data and sending it to a dedicated 

server afterwards for analytics is already implemented in 

the mobile application. 

Finally, the overall system that is currently only run-

ning on a Smartphone could benefit from server-sided 

work to analyze the entire inputs and outputs that several 

devices processes in order to find corrections to apply to 

the initial radio-map for instance or the most frequent 

path. 

The described system is an intelligent fusion of a parti-

cle filter, motion sensors and a fingerprint radio map that 

enables precise real time location in a wide indoor area, 

but the expected performances are however limited by 

the following factors. The granularity of the constructed 

radio map and its accuracy mostly depend on the com-

prehensiveness of the gathered data and the situation 

during measurement. Indeed, a measurement in an empty 

space would not reflect exactly a crowded environment. 

This is however the main purpose of this study, to lev-

erage the fingerprint by reducing the impact of the inac-

curacy of a radio map with motion sensors and a particle 

filter fusion. In this situation the main limitation is the 

said motion sensors and the distance estimation as the 

mobile device can be held in a multitude of positions 

often changing orientation by being used and stowed 

regularly by the user. 

The impact of this parameter is taken into account in 

this paper as a white noise injected in the inertial model 

and is further used by the particle filter. In fact, the cru-

cial point is the deviation that this white noise can cause. 

But at the same time, it is also feeding the particle filter 

with a wider diversity of particles positions which is also 

an important criterion for this filter.  

As a last limitation, the overall performance can be 

achieved after everything is processed and movements 

are being computed which bring us to the case of a user 

only using the system sporadically. In this situation the 

performance would be limited by the precision of the 

radio map enhanced by the anchor feature and would be 

tightly linked to the quality of the signals received from 

the beacons.  

All in all, the random parameters in use in our system 

are tied to the inertial model and we manage to somehow 

reduce the importance of this limitation by having the 

particle filter as the last layer that handles it as well as the 

variability of the received signals from the beacons. 

 

 

ACKNOWLEDGEMENT 

This work has been conducted as part of a Research 

& Development project at Business & Decision compa-

ny headquarters in Paris, France, and in partnership 

with The ‘Ecole Internationale des Sciences du 

Traitement de l’Information’ (EISTI) 

REFERENCES 

[1] N. Priyantha, A. Chakraborty and H. Balakrishnan, "The 

Cricket location-support system", in international conference 

on Mobile computing and networking, 2000, pp. 32-43. 

 

[2] R. Want, A. Hopper, V. Falcão and J. Gibbons, "The active 

badge location system", ACM Transactions on Information 

Systems, vol. 10, no. 1, pp. 91-102, 1992. 

 

[3] A. Ward, A. Jones and A. Hopper, "A new location technique 

for the active office", IEEE Personal Communications, vol. 4, 



10  

 

no. 5, pp. 42-47, 1997. 

 

[4] P. Bahl and V. Padmanabhan, "RADAR: An in-building RF-

based user location and tracking system", in INFOCOM 2000. 

Nineteenth Annual Joint Conference of the IEEE Computer 

and Communications Societies. Proceedings. IEEE, Vol. 2, Tel 

Aviv, 2000, pp. 775-784. 

 

[5] M. Youssef and A. Agrawala, "Continuous space estimation 

for WLAN location determination systems", in Computer 

Communications and Networks, 2004. ICCCN 2004. Proceed-

ings. 13th International Conference on, Chicago, IL, USA, 

2004, pp. 161-166. 

 

[6] L. Pei, R. Chen, J. Liu, T. Tenhunen, H. Kuusniemi and Y. 

Chen, "Inquiry-based bluetooth indoor positioning via rssi 

probability distributions", in Advances in Satellite and Space 

Communications (SPACOMM), 2010 Second International 

Conference on, Athens, Greece, 2010, pp. 151-156. 

 

[7] C. Zhang, M. Kuhn, B. Merkl, A.E. Fathy and M. Mahfouz, 

"Accurate UWB indoor localization system utilizing time dif-

ference of arrival approach", in Radio and Wireless Symposi-

um, 2006 IEEE, San Diego, CA, USA, 2006, pp. 515-518. 

 

[8] L. Ni, Y. Liu, Y. Lau and A. Patil, "LANDMARC: Indoor 

Location Sensing Using Active RFID", Wireless Networks, 

vol. 10, no. 6, pp. 701-710, 2004. 

 

[9] M. Azizyan, I. Constandache and R. Choudhury, "Surround-

Sense: mobile phone localization via ambience fingerprint-

ing", in international conference on Mobile computing and 

networking, Beijing, China, 2009, pp. 261-272. 

 

[10] Y. Chen, D. Lymberopoulos, J. Liu and B. Priyantha, "FM-

based indoor localization", in international conference on 

Mobile systems, applications, and services, Low Wood Bay, 

Lake District, UK, 2012, pp. 169-182. 

 

[11] M. Beigl, S. Intille, J. Rekimoto and H. Tokuda, "Accurate 

GSM indoor localization", in International Conference on 

Ubiquitous Computing, Tokyo, Japan, 2005, p. 903. 

 

[12] G. Berkovich, "Accurate and reliable real-time indoor posi-

tioning on commercial smartphones", in Indoor Positioning 

and Indoor Navigation (IPIN), 2014 International Conference 

on, Busan, South Korea, 2014, pp. 670-677. 

 

[13] D. Vandermeulen, C. Vercauteren and M. Weyn, "Indoor 

localization using a magnetic flux density map of a building", 

in The Third International Conference on Ambient Compu-

ting, Applications, Services and Technologies, Porto, Portu-

gal, 2013, pp. 42-49. 

 

[14] R. Heydon, Bluetooth low energy: the developer's handbook. 

Upper Saddle River N.J.: Prentice Hall, 2013. 

 

[15] R. Faragher and R. Harle, "Location Fingerprinting With 

Bluetooth Low Energy Beacons", IEEE Journal on Selected 

Areas in Communications, vol. 33, no. 11, pp. 2418-2428, 

2015. 

 

[16] P. Martin, B. Ho, N. Grupen, S. Muñoz and M. Srivastava, 

"An iBeacon primer for indoor localization: demo abstract", 

in Proceedings of the 1st ACM Conference on Embedded 

Systems for Energy-Efficient Buildings, Memphis, Tennessee, 

USA, 2014, pp. 190-191. 

 

[17] H. Zou, X. Lu, H. Jiang and L. Xie, "A Fast and Precise Indoor 

Localization Algorithm Based on an Online Sequential Ex-

treme Learning Machine", Sensors, vol. 15, no. 1, pp. 1804-

1824, 2015. 

 

[18] O. Woodman and R. Harle, "Pedestrian localisation for in-

door environments", in UbiComp '08 Proceedings of the 10th 

international conference on Ubiquitous computing, Seoul, 

Korea, 2008, pp. 114-123. 

 

[19] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu and F. Zhao, "A relia-

ble and accurate indoor localization method using phone in-

ertial sensors", in UbiComp '12 Proceedings of the 2012 ACM 

Conference on Ubiquitous Computing, Pittsburgh, Pennsyl-

vania, USA, 2012, pp. 421-430. 

 

[20] N. Davies, E.D. Mynatt and I. Siio, "Particle filters for location 

estimation in ubiquitous computing: A case study", in 6th In-

ternational Conference, Nottingham, UK, September 7-10, 

2004. Proceedings, Nottingham, UK, 2004, pp. 88-106. 

 

[21] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl and E. Stein-

bach, "Graph-based data fusion of pedometer and WiFi 

measurements for mobile indoor positioning", in UbiComp 

'14 Proceedings of the 2014 ACM International Joint Confer-

ence on Pervasive and Ubiquitous Computing, Seattle, Wash-

ington, USA, 2017, pp. 147-158. 

 

 

Clément Lamoureux Engineer: He completed 
his engineering degree in electronics and com-
puter science for embedded systems in 2015. He 
is still employed in the company where he did his 
master’s degree internship and is working on 

multiple innovation and iot projects for this company’s clients.  
 

 

 
 

Rachid Chelouah research director: He com-
pleted first his engineering degree in network and 
telecommunication in 1988, the PhD degree in 
computer science and optimization from the Uni-
versity of Cergy, in 1999 and the Doctorate of 
Sciences (Habilitation) in the decision aid from the 
University of Cergy, in 2014. From 1999 to 2001, 

He was first, Project Manager in IT Companies before joining 
Dassault System as research engineer. In end of 2001 he integrat-
ed EIVD, high engineering school in Switzerland for 5 years as 
associate professor. Since 2006 he joined the EISTI to become 
head of the IT department in 2006, and he was named research 
director in 2014. His main research interests are data science 



AUTHOR ET AL.:  TITLE 11 

 

methods and their applications in various fields of IT engineering, 
Security, Communication, Internet of things. 




