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A LOCAL TO GLOBAL PRINCIPLE FOR HIGHER ZERO-CYCLES

JOHANN HAAS AND MORTEN LÜDERS

Abstract. We study a local to global principle for certain higher zero-cycles over global fields.
We thereby verify a conjecture of Colliot-Thélène for these cycles. Our main tool are the Kato
conjectures proved by Jannsen, Kerz and Saito. Our approach also allows to reprove the ramified
global class field theory of Kato and Saito. Finally, we apply the Kato conjectures to study
the p-adic cycle class map over henselian discrete valuation rings of mixed characteristic and to
deduce finiteness theorems for arithmetic schemes in low degree.
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1. Introduction

Let K be a number field, X a smooth projective geometrically integral variety over K and n
a positive integer. Let PK denote the set of places of K. The following conjecture was suggested
by Kato and Saito in [22, Sec. 7] and Colliot-Thélène in [4, Conj. 1.5(c)] (see also [7] for the
case of rational surfaces).

Conjecture 1.1. The complex

lim←−
n

A0(X)/n→
∏
v∈PK

lim←−
n

A0(XKv)/n→ Hom(Br(X)/Br(K),Q/Z)

is exact.

Conjecture 1.1 is known to hold if X is a curve and if the Tate-Shafarevich group of the
Jacobian of X does not contain a non-zero element which is infinitely divisible (see [32, Sec. 7],
[5, Sec. 3] and [42, Rem. 1.1(iv)] as well as Remark 5.8). For more details on this conjecture
and results for higher dimensional schemes we refer to [42] and [14].

In [5], Colliot-Thélène considers a slightly weaker conjecture on the image of the complex (1.1)
in étale cohomology. For our purposes we will generalize this conjecture to Bloch’s higher Chow
groups. In order to state the conjecture, we need to recall Saito’s exact sequence generalizing
the Tate-Poitou exact sequence (see Section 3) to schemes ([34]). For later purposes we state
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it in its most general form proven by Geisser and Schmidt ([12]). Let K be a global field. Let
S be a non-empty and possibly infinite set of prime divisors of K containing the archimedean
primes if K is a number field. Let OS be the ring of elements in K which are integers at all
primes p /∈ S. Let S = SpecOS and X a regular, flat and separated scheme of finite type of
relative dimension d over S. Let n be a positive integer invertible on S and let F be a locally
constant constructible sheaf of Z/nZ-modules on X . Let D(F) = Hom(F , µ⊗d+1

n ) be its dual.
For an abelian group A, let A∨ = Hom(A,Q/Z). Then there is an exact sequence

(1.1) . . .→ H i
ét(X ,F)→

∏′

v∈S
Ĥ i

ét(XKv ,F)→ H2d+2−i
ét,c (X, D(F))∨ → H i+1

ét (X ,F)→ . . .

Here the groups Ĥ i
ét(XKv ,F) are the modified cohomology groups defined in [34, Def. 1.6]. If

v is a non-archimedean place, then Ĥ i
ét(XKv ,F) := H i

ét(XKv ,F). If v is a complex place or if v

is a real place and n is prime to 2, then Ĥ i
ét(XKv ,F) = 0. Therefore if either K does not have

any real places or n is odd, then we also write H i
ét(XKv ,F) for Ĥ i

ét(XKv ,F). In the product
we restrict to classes which are almost everywhere unramified. In Definition 2.1 we define an

analogous restricted product of higher Chow groups
∏′

v∈S
CHi(XKva,Z/nZ) with coefficients

in the ring Z/nZ. For the definition and properties of higher Chow groups for varieties over a
field we refer to [2]. Let now S = PK , X = X be smooth projective over SpecK and F = µ⊗in .
By construction, cf. Remark 2.2, we then get a commutative diagram

(1.2) CHi(X, a,Z/nZ) //

��

∏′

v∈PK
CHi(XKv , a,Z/nZ)

��

H2i−a
ét (X,µ⊗in ) //

∏′

v∈PK
Ĥ2i−a

ét (XKv , µ
⊗i
n ) // H2d+2−2i+a

ét (X,µ⊗d+1−i
n )∨.

Here if v is a real place, then the étale cycle class map is defined to be the composition
CHi(XKv , a,Z/nZ) → H2i−a

ét (XKv , µ
⊗i
n ) → Ĥ2i−a

ét (XKv , µ
⊗i
n ). By composing the right vertical

and right horizontal map we get a map∏′

v∈PK

CHi(XKv , a,Z/nZ)→ H2d+2−2i+a
ét (X,µ⊗d+1−i

n )∨

and equivalently particular a pairing∏′

v∈PK

CHi(XKv , a,Z/nZ)×H2d+2−2i+a
ét (X,µ⊗d+1−i

n )→ Q/Z

both of which are zero on CHi(X, a,Z/nZ). The following conjecture is a version of the men-
tioned weaker conjecture of Coliot-Thélène extended to Bloch’s higher Chow groups:

Conjecture 1.2. (see [5, Conj. 2]) Let X/K be a smooth projective, geometrically integral,
variety over a global field K and n be prime to ch(K). Let d be the dimension of X, and

i ≥ 0 an integer. Let {zv}v∈PK ∈
∏′

v∈PK
CHi(XKv , a,Z/nZ) and suppose that every class

ξ ∈ H2d+2−2i+a
ét (X,µ⊗d+1−i

n ) is orthogonal to the family {zv}v∈PK . Then there exists a global

cycle zn ∈ CHi(X, a) such that for every place v the class of zn in Ĥ2i−a
ét (XKv , µ

⊗i
n ) coincides

with that of zv.

Furthermore, we can state the following conjecture analogous to Conjecture 1.1:

Conjecture 1.3. Let j = d+ 1− i. The complex

CHi(X, a,Z/nZ)→
∏′

v∈PK

CHi(XKva,Z/nZ)→ H2j+a
ét (X,µ⊗jn )∨

is exact.
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Let X and S be as above. In this case we define Bloch’s higher Chow groups (or motivic
cohomology) by taking the Zariski-hypercohomology of Bloch’s cycle complex zn(−, i) on X , see
[10, Sec. 3]. For S a semi-local Dedekind domain this coincides with taking the homology of
Bloch’s cycle complex due to the existence of a localisation sequence. For S a field this is due
to Bloch and for S semi-local this is shown by Levine in [27] (see also [10]). We introduce the
following notation:

X(CHd+1(X , a,Z/nZ)) := ker[CHd+1(X , a,Z/nZ)→
∏
v∈S

CHd+1(XKv , a,Z/nZ)]

and

X2d+2−a,d−1(X ) := ker[H2d+2−a
ét (X ,Z/nZ(d+ 1))→

∏
v∈S

Ĥ2d+2−a
ét (XKv ,Z/nZ(d+ 1))]

These groups define analogues of the Tate-Shavarevich group for Chow groups and étale coho-
mology.

Throughout the article we will often need the following condition:

Condition 1.4. Let Kv be a non-archimedean local field, V/Kv a smooth scheme.

(?) V is projective and admits a model over OKv whose special fiber is smooth except at
finitely many points, where it has ordinary quadratic singularities.

(??) V is projective and has strictly semistable reduction.

We are now able to state our main theorem:

Theorem 1.5 (Thm. 5.1). Let K be a global field, S a set of places of K and n ∈ N>1. Denote
by OS the ring of elements in K which are integers at all primes p /∈ S and let S = SpecOS.
Suppose that

(a) S is either semi-local or an open of Spec(OK).
(b) n is invertible on S.
(c) If K is a number field, S contains all archimedean places of K and either n is odd or K

has no real places.

Let X be regular, flat and projective of relative dimension d over S with smooth generic fiber X.
Then the following statements hold:

(1) There is an exact sequence

CHd+1(X , a,Z/nZ)→
∏′

v∈S
CHd+1(XKv , a,Z/nZ)→ Ha

ét(X,Z/nZ)∨

(2) For all a there is a natural surjection X(CHd+1(X , a,Z/nZ))→X2d+2−a,d+1
ét (X ).

(3) If K is a number field and condition (?) holds for XKv if v divides n, then the group
X(CHd+1(X , 1,Z/nZ)) is finite.

(4) If K is a function field of one variable over a finite field and n is invertible in K, then
X(CHd+1(X , a,Z/nZ)) is finite for arbitrary a.

Note that CHd+1(X, a) = 0 for a ≤ 0 by dimension reasons and that CHs(X, 2s − r) ∼=
Hr(X,Z(s)) for X smooth over a perfect field. Theorem 1.5(2) is related to a conjecture of

Bloch (see [3, Conj. 3.16]). It means that the Tate-Shafarevich group X2d+2−a,d−1
ét (X) is -

under the above assumptions - generated by algebraic cycles.

Corollary 1.6 (Cor. 5.5). Let the assumptions be as in Theorem 1.5. Let S = PK and therefore
X = X . Then the following statements hold:

(1) Conjecture 1.2 holds for i ≥ d+ 1 and all a.
(2) Conjecture 1.3 holds for i ≥ d+ 1 and all a.
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If a = 1, S = PK and X = X , then Theorem 1.5 recovers the unramified class field theory of
Bloch, Kato and Saito (see [1], [21, Thm. 3], [33, Sec. 5] and [20, Thm. 2.10]). For this note
that

CHd+1(X, 1) ∼= coker[
⊕

x∈Xd−1

KM
2 k(x)→

⊕
x∈Xd

KM
1 k(x)] =: SK1(X)

(see e.g. [29]). In Section 6 we extend this corollary to cover the ramified global class field
theory of Kato and Saito:

Theorem 1.7 (Thm. 6.4). Let K be a global field. Let n be invertible in K. If K is a number
field assume furthermore that either n is odd or that K has no real places. Let X be a smooth
projective scheme over Spec(K). Let D ⊂ X be an effective divisor on X and j : U ↪→ X be the
inclusion. Then there is an isomorphism

coker[Hd
Nis(X,KMd+1,X|D)/n→

∏′

v∈PK

Hd
Nis(XKv ,KMd+1,XKv |DKv

)/n]→ πab
1 (U)/n.

For the definition of the relative Milnor K-sheaves appearing in the cokernel on the left see
Definition 6.1.

In Section 7 we show the following theorem:

Theorem 1.8 (Thm. 7.2). Let A be a henselian discrete valuation ring of characteristic zero
with residue field of characteristic p and function field K. Let X be smooth and projective over
Spec(A). Let X1 denote the special and XK the generic fiber of X. Let d = dimX − 1 ≤ 2.
Then there is an isomorphism

CHd+1(X, 1,Z/prZ)→ H2d+1
ét (X, Tr(d+ 1)),

where Tr(d+ 1) are the p-adic étale Tate twists defined in [35].

The following corollary follows from [28, Prop. 1.4] and answers a question posed in loc. cit.,
p. 582.

Corollary 1.9. Let the situation be as in Theorem 1.8. Assume that A = W (k) for a finite
field k of characteristic p > d + 2. Let Xn denote the thickenings of the special fibre X1 and
KM∗,Xn be the improved Milnor K-sheaf on Xn defined in [23]. Then there is an isomorphism of
pro-abelian groups

CHd+1(X, 1,Z/prZ)→ ”limn”Hd(X1,KMd+1,Xn/p
r).

In Section 8 we show a finiteness theorem in low degree for higher Chow groups of schemes
over Dedekind domains. The idea of the proof can also be found in [11, Sec. 7.2].

We make a few remarks on the method and the outline of the article. The central method is
the comparison of the Zariski and the étale motivic cohomology of a regular scheme X over a
field or Dedekind domain by analysing the respective coniveau spectral sequences. The difference
between the two spectral sequences may in some cases be measured by the Kato complexes which
are the subject of the Kato conjectures. The Kato conjectures are a framework in which Kato
generalises the Brauer-Hasse-Noether exact sequence to higher dimensional arithmetic schemes.
To motivate these conjectures from the point of view of this article, we recall the Tate-Poitou
exact sequence in Section 3. This sequence combines class field theory and the Brauer-Hasse-
Noether exact sequence as well as Conjectures 1.1 and 1.3 in the zero dimensional case. The
Kato conjectures have now to a large extend been proved by Jannsen, Kerz and Saito. We recall
their results in Section 4. In Section 5 we apply these results and the above mentioned method
to Diagram (1.2) in order to prove Theorem 1.5. In Section 6 we reprove the ramified global
class field theory of Kato and Saito using the Kato conjectures. For this we use our method
of Section 5 and an idea of Kerz and Zhao in their approach to ramified class field theory over
local and finite fields. In Section 7 and 8 we apply what is known about the Kato conjectures
to obtain the above mentioned results which are independent of the results obtained before.
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2. Restricted products of Chow groups

We introduce restricted products of Chow groups over global fields. In the case of i = d + 1
and a = 1 these were studied in arithmetic class field theory by Bloch, Kato and Saito.

Definition 2.1. Let K be a global field, X/K a smooth projective geometrically integral variety,
n a positive integer prime to ch(K) and i, a ∈ N. Let OK be the ring of integers of K, and
S ⊂ Spec(OK) a dense open over which X has a smooth projective model X . Define∏′

v∈PK

CHi(XKv , a,Z/nZ) ⊂
∏
v∈PK

CHi(XKva,Z/nZ)

to be the subgroup of classes (αv)v∈PK satisfying the condition that

αv ∈ im(CHi(XOKv , a,Z/nZ)→ CHi(XKv , a,Z/nZ))

for almost all v ∈ S.

Remark 2.2.

(1) This definition does not depend on the choice of S nor on that of X by standard spreading-
out arguments.

(2) For a = 0, the restricted product of Chow groups agrees with the unrestricted product,
since the restriction map CHi(XOKv )→ CHi(XKv) is surjective. This does not hold for
higher Chow groups, which is why we need to introduce the restricted product of Chow
groups.

(3) Restricted products of étale cohomology groups are defined in an analogous manner. In
particular, the étale cycle class map restricts to a morphism∏′

v∈PK

CHi(XKv , a,Z/nZ)→
∏′

v∈PK

Ĥ2i−a
ét (XKv , µ

⊗i
n ).

(4) By spreading out cycles, one sees that the pullback map

CHi(X, a,Z/nZ)→
∏
v∈PK

CHi(XKv , a,Z/nZ)

factors over the inclusion of the restricted product.

In certain degrees, one can detect the restriced product fully on the level of étale cohomology:

Lemma 2.3. For i ≥ d+ 1, the diagram∏′

v∈PK
CHi(XKv , a,Z/nZ)

∏′

v∈PK
Ĥ2i−a

ét (XKv , µ
⊗i
n )

∏
v∈PK

CHi(XKv , a,Z/nZ)
∏

v∈PK
Ĥ2i−a

ét (XKv , µ
⊗i
n )

is a pullback square of abelian groups.

Proof. Let S ⊂ Spec(OK) a dense open over which X has a smooth projective model X and
over which n is invertible. For a place v ∈ PK lying in S, consider the commutative diagram of
localization sequences

CHi(XOKv , a,Z/nZ) CHi(XKv , a,Z/nZ) CHi−1(Xkv , a− 1,Z/nZ)

H2i−a
ét (XOKv , µ

⊗i
n ) H2i−a

ét (XKv , µ
⊗i
n ) H2i−a−1

ét (Xkv , µ⊗i−1
n ).

The localization sequence for higher Chow groups is proved in [27, Thm. 1.7]. The localization
sequence for étale cohomology follows from the exact sequence for étale cohomology with support
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and absolute purity since Xkv is regular (see [9, Thm. 2.1.1]). Now by [25, Theorem 9.3] all
vertical morphisms are isomorphisms for a ≥ 0 and i ≥ d + 1. In particular, in this range an
element of CHi(XKv , a,Z/nZ) is unramified iff its image in H2i−a

ét (XKv , µ
⊗i
n ) is unramified. �

3. The Tate-Poitou exact sequence

We recall results of Tate and Poitou (see [38, Thm. 3.1]). These will be generalised in many
directions in higher dimension by the Kato conjectures, higher dimensional class field theory
and local to global principles for (higher) Chow groups.

We introduce the following notation: let K be a global field. Let S be a non-empty and
possibly infinite set of prime divisors of K containing the archimedean primes if K is a number
field. Let OS be the ring of elements in K which are integers at all primes p /∈ S. Let KS

denote the maximal extension of K in Ks that is ramified over K only at primes in S. Let
GS := Gal(KS/K). Let M be a finite GS-module of order n which is invertible on KS . Let
D(M) := Hom(M,Gm). For an abelian group A let A∨ := Hom(A,Q/Z).

Theorem 3.1. (1) For i ≥ 3 the natural map

H i(KS ,M)→
∏
v∈S

H i(Kv,M)

is an isomorphism.
(2) There is an exact nine-term sequence

0→ H0(KS ,M)→
∏′

v∈S
H0(Kv,M)→ H2(KS , D(M))∨ →

H1(KS ,M)
α1−→
∏′

v∈S
H1(Kv,M)

β1−→ H1(KS , D(M))∨ →

H2(KS ,M)
α2−→
∏′

v∈S
H2(Kv,M)

β2−→ H0(KS , D(M))∨ → 0

Here
∏′
v∈S denotes the restricted product with respect to the subgroups H i(OKv ,M). At the

archimedean places we assume the cohomology groups to be the completed cohomology groups
(see [37, Ch. VIII]). Note that the restricted product in the first line becomes a direct product
since H0(OKv ,M) → H0(Kv,M) is surjective and that the restricted product in the third line
becomes a direct sum since H2(OKv ,M) = 0.

For M = µn the exact sequence of Theorem 3.1(2) encodes fundamental theorems in algebraic
number theory. Let S = PK . Since H1(K,µn) ∼= K×/n and H1(K,Z/nZ) ∼= Gal(Kab/K)/n
one recovers the class field theory isomorphism

CK/n := coker[K×/n→
∏′

v∈P
K×v /n]

∼=−→ Gal(Kab/K)/n

from the second line since β1 is surjective by the density of the Frobenii. Since H2(K,µn) ∼=
Br(K)[n], the third line recovers, after passing to the direct limit, the Brauer-Hasse-Noether
exact sequence

0→ Br(K)→
⊕
v∈PK

Br(kv)→ Q/Z→ 0.

Noting that CHa(K, a) ∼= KM
a (K) (see [2, Thm. 6.1], [31, Thm. 4.9] and [39]) and applying

Hom( ,Q/Z) to the Brauer-Hasse-Noether sequence, these may be interpreted as results about
(higher) Chow groups. The second line then becomes

CK/n := coker[CH1(K, 1,Z/nZ)→
∏′

v∈P
CH1(Kv, 1,Z/nZ)]

∼=−→ Gal(Kab/K)/n
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asserting Conjecture 1.3 for Spec(K) and i = a = 1. The third line becomes

(3.1) lim←−
n

CH0(K)/n→ lim←−
n

∏′

v∈P
CH0(Kv)/n→ Hom(Br(K),Q/Z)

which asserts Conjecture 1.1 for Spec(K) for any global field K (see also [42, Rem. 1.1]). For
the latter statement one may also consider the Tate-Poitou exact sequence for M = Z/nZ. In
this case the first line becomes

0 // Z/nZ //

∼=
��

∏′

v∈PK
Z/nZ //

∼=
��

H2(K,µn)∨ = (Br(X)[n])∨

=

��

0 // H0(K,Z/n) //
∏′

v∈PK
H0(Kv,Z/nZ) // H2(K,µn)∨

and taking the projective limit over all n gives (3.1).

4. The Kato conjectures

In this section we state some facts about the Kato conjectures. These conjectures concern the
Kato complexes and generalise the Brauer-Hasse-Noether sequence (interpreted as a sequence
of étale cohomology groups) to arbitrary dimensional schemes.

4.1. Kato complexes and conjectures. We introduce the following notation for Kato com-
plexes:

Definition 4.1. (1) For X a scheme over a finite field or the ring of integers in a number
field or local field, we denote the complexes

...→
⊕
x∈Xa

Ha+1(k(x),Z/n(a))→ ...→
⊕

x∈Xa−1

Ha(k(x),Z/n(a− 1))→ ...

...→
⊕
x∈X1

H2(k(x),Z/n(1))→
⊕
x∈X0

H1(k(x),Z/n)

by KC(0)(X,Z/nZ). Here the term ⊕x∈XaHa+1(k(x),Z/n(a)) is placed in degree a. We
set

KH(0)
a (X,Z/nZ) := Ha(KC

(0)(X,Z/nZ)).

The groups Ha+1(k(x),Z/n(a)) are the étale cohomology groups of Speck(x) with coeffi-
cients in Z/n(a) := µ⊗an if n is invertible on X and Z/n(a) := WrΩ

a
X1,log[−a]⊕Z/m(a) if

n = mpr, (m, p) = 1, is not invertible on X and X is smooth over a field of characteristic
p.

(2) For X a scheme of finite type over a number field K or Kv, v ∈ PK , we denote the
complexes

...→
⊕
x∈Xa

Ha+2(k(x),Z/n(a+ 1))→ ...→
⊕

x∈Xa−1

Ha+1(k(x),Z/n(a))→ ...

...→
⊕
x∈X1

H3(k(x),Z/n(2))→
⊕
x∈X0

H2(k(x),Z/n(1))

by KC(1)(X,Z/nZ) and set

KH(1)
a (X,Z/nZ) := Ha(KC

(1)(X,Z/nZ)).

(3) Let K be a global field with ring of integers OK . Let U ⊂ SpecOK be a non-empty open
subscheme and X of finite type over U . Then there is a natural restriction map

KC(0)(X,Z/nZ)[1]→ KC(1)(XK ,Z/nZ)→ KC(1)(XKv ,Z/nZ).
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We define

KC(0)(X/U,Z/nZ) := cone[KC(0)(X,Z/nZ)[1]→
⊕
v∈

∑
U

KC(1)(XKv ,Z/nZ)],

where
∑

U denotes the set of places v ∈ PK which do not correspond to closed points of
U . We set

KH(0)
a (X/U,Z/nZ) := Ha(KC

(0)(X/U,Z/nZ)).

Remark 4.2. In [20], Kato constructs the above complexes in greater generality. Let X be an
excellent scheme, n ∈ Z − {0}, q, i ∈ Z and assume that in the case q = i + 1, for any prime
divisor p of n and for any x ∈ X0 such that char(k(x)) = p, we have [k(x) : k(x)p] ≥ pi. Then
there are complexes

Cin(X) : ...→
⊕
x∈Xa

H i+a+1(k(x),Z/n(i+ a))→ ...→
⊕
x∈X1

H i+2(k(x),Z/n(i+ 1))

→
⊕
x∈X0

H i+1(k(x),Z/n(i))

Again the term ⊕x∈XaH i+a+1(k(x),Z/n(i+a)) is placed in degree a and the homology of Cin(X)

in degree a is denoted by KH
(i)
a (X,Z/nZ).

It is shown in [19], that these complexes coincide up to sign with the complexes arising from
the appropriate homology theories via the niveau spectral sequence.

Definition 4.1(3) is introduced in [25, p. 124] as a variant of the above complexes.

Note that if X is of finite type over the ring of integers OKv in a local field Kv, then by
definition there is an exact triangle

KC(0)(X,Z/nZ)[1]→ KC(1)(XKv ,Z/nZ)
∂−→ KC(0)(Xv,Z/nZ)→ KC(0)(X,Z/nZ)

which induces an exact sequence of homology groups
(4.1)

..→ KH
(0)
a+1(X,Z/nZ)→ KH(1)

a (XKv ,Z/nZ)→ KH(0)
a (Xv,Z/nZ)→ KH(0)

a (X,Z/nZ)→ ..

Let us state Kato’s conjectures for the above complexes.

Conjecture 4.3. ([20, Conj. 0.3]) Let X be a proper and smooth scheme over a finite field.
Then

KH(0)
a (X,Z/nZ) = 0 for a > 0.

Conjecture 4.4. ([20, Conj. 5.1]) Let X be a regular scheme proper and flat over Spec(OK),
where OK is the ring of integers in a local field. Then

KH(0)
a (X,Z/nZ) = 0 for a ≥ 0.

Conjecture 4.5. ([20, Conj. 0.4]) Let X be a proper and smooth scheme over a global field K.
Then the map

KH(1)
a (X,Z/nZ)

∼=−→
⊕
v∈PK

KH(1)
a (XKv ,Z/nZ)

is an isomorphism for a > 0 and the sequence

0→ KH
(1)
0 (X,Z/nZ)→

⊕
v∈PK

KH
(1)
0 (XKv ,Z/nZ)→ Z/nZ→ 0

is exact.

Conjecture 4.6. ([20, Conj. 0.5]) Let X be a regular scheme proper and flat with smooth
generic fiber over a non-empty open subscheme U ⊂ Spec(OK), where OK is the ring of integers
in a global field. Then

KH(0)
a (X/U,Z/nZ) = 0 for a ≥ 0.
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We add the following conjecture to the list:

Conjecture 4.7. Let OS be a regular semilocal subring of a global field K. Let S = SpecOS.
Let X be a regular scheme proper and flat over S with smooth generic fiber X. Let

KC(0)(X/S,Z/nZ) = coker[KC(0)(X ,Z/nZ)[1]→
⊕
v∈

∑
S

KC(1)(XKv ,Z/nZ)],

where
∑

S denotes the set of places v ∈ PK which do not correspond to closed points of S. Then

KH(0)
a (X/S,Z/nZ) = 0 for a > 0.

The following is known about these conjectures:

Theorem 4.8. ([25, Thm. 8.1]) Conjecture 4.3 holds if n is invertible on X. If n is not
invertible on X, then it holds for a ≤ 4.

Theorem 4.9. ([25, Thm. 8.1]) Conjecture 4.4 holds if n is invertible on X.

Theorem 4.10. ([15, Thm. 0.9], [25, Thm. 8.3]) Conjecture 4.5 holds if n is invertible on X.

Theorem 4.11. ([25, Thm. 8.4]) Conjecture 4.6 holds if n is invertible on U .

Theorem 4.12. Conjecture 4.7 holds if n is invertible on S.

Proof. The proof is analogous to the proof of Theorem 4.11 in loc. cit.. In fact,

KH(1)
a (X,Z/nZ) ∼= KH(0)

a (X/S,Z/nZ)

since by Theorem 4.9 and (4.1) there is an isomorphism

KH(1)
a (XKv ,Z/nZ)

δ−→ KH(0)
a (Xv,Z/nZ)

for v ∈ S. �

4.2. Applications. We now introduce the central method of this article which is the comparison
of the Zariski and the étale motivic cohomology of a regular scheme X over a field or Dedekind
domain by analysing and comparing the respective coniveau spectral sequences. The difference
may in some cases be measured by the Kato conjectures. This allows in some cases to use
the finiteness of étale cohomology and the vanishing of the Kato homology to deduce finiteness
results for Chow groups.

Lemma 4.13. Let X be a regular irreducible scheme. Let A be a locally constant constructible
sheaf such that the stalks are n-torsion abelian groups with n invertible on X. Then the coniveau
spectral sequence for étale cohomology

Ep,q1 (X,A) =
⊕
x∈Xp

Hp+q
x (Xét, A)⇒ Hp+q

ét (X,A)

converges and ⊕
x∈Xp

Hp+q
x (X,A) ∼=

⊕
x∈Xp

Hq−p
ét (x,A(−p)).

Here A(i) := A⊗ µ⊗in .

Proof. The existence of the spectral sequence is shown in this generality, in fact only assuming
that X is equidimensional and noetherian, in [6]. The second statement follows from Gabber’s
absolute purity theorem (see [9]) since X is regular. �

Lemma 4.14. ([11, Prop. 2.1]) Let X be essentially of finite type over a Dedekind domain S.
Then the spectral sequence

CHEp,q1 (X, r) =
⊕
x∈Xp

CHr−p(x,−p− q)⇒ CHr(X,−p− q)

converges.
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Recall the following theorem of Voevodsky:

Theorem 4.15. (Beilinson-Lichtenbaum conjecture, see [41]) Let X be a smooth scheme over
a field k and let n be invertible on X. Then the étale cycle map

ρr,2r−sX : CHr(X, 2r − s,Z/nZ)→ Hs
ét(X,Z/nZ(r))

is an isomorphism for s ≤ r.
We will need the following general lemma which was originally observed by Jannsen and Saito

for schemes over finite fields in [16, Lem. 6.2].

Lemma 4.16. Let X be a regular scheme of relative dimension d over the spectrum of a field
S = Spec(K) or a Dedekind scheme S = Spec(O). Let n be invertible on S. For a field k let
cdn(k) denote the Z/nZ-cohomological dimension of k. Then the following statements hold:

(1) ([40, Thm. 8]) Let S = Spec(K) be a field and X := X . Assume that c = cdn(K) − 1.
Then the sequence

...→ KH
(c)
q−c+2(X,Z/nZ)→ CHd+c(X, q,Z/nZ)→ H

2(d+c)−q
ét (X,Z/nZ(d+ c))

→ KH
(c)
q−c+1(X,Z/nZ)→ CHd+c(X, q − 1,Z/nZ)→ ...

(4.2)

is exact.
(2) Let S = Spec(O) be of dimension 1. Assume that c = cdn(K)− 2 and c = cdn(k(x))− 1

for x ∈ S(0). Then the sequence

...→ KH
(c)
q−c+2(X ,Z/nZ)→ CHd+1+c(X , q,Z/nZ)→ H

2(d+1+c)−q
ét (X ,Z/nZ(d+ 1 + c))

→ KH
(c)
q−c+1(X ,Z/nZ)→ CHd+1+c(X , q − 1,Z/nZ)→ ...

(4.3)

is exact.

Proof. For the proof of (1) we refer to loc. cit.. The proof of (2) is analogous. In both cases
one uses Theorem 4.15 to identify the spectral sequences of Lemma 4.13 and Lemma 4.14 in the
range below the Kato complexes. �

Remark 4.17. The cohomological dimension of a local field is 2 (see e.g. [13, Exp. 10, Thm.
2.1]). The cohomological dimension of a global field k is 2 in the following cases: (a) k is a
number field and n is odd. (b) k is a number field and does not have any real places. (c) k is
a function field of one variable over a finite field and n is prime to ch(k). This follows from
Theorem 3.1(1). In all of these cases c = 1.

We can determine the higher Chow groups of schemes over local fields appearing in the local
to global principle of Theorem 1.5 (see also [11, Sec. 5.2]).

Proposition 4.18. Let Kv be a non-archimedean local field with residue field kv of characteristic
p. Let XKv be a quasi-projective scheme over Kv. Let d = dimXKv . Let (n, p) = 1. Then the
groups CHd+1(XKv , q,Z/nZ) are finite for all q.

Proof. Let X be a model of XKv over OKv with special fiber Xkv . Consider the exact localization
sequence

...→ CHd(Xkv , q,Z/nZ)→ CHd+1(X, q,Z/nZ)→ CHd+1(XKv , q,Z/nZ)→

CHd(Xkv , q − 1,Z/nZ)→ ...

from [27, Thm. 1.7]. By [25, Cor. 9.4] the groups CHd(Xkv , q,Z/nZ) and CHd+1(XKv , q,Z/nZ)
are finite. This implies the proposition. �

Lemma 4.19. Let X be of finite type over a number field K. Let v be an infinite place of K
and n odd or v complex. Then the complex

KC(1)(XKv ,Z/nZ)

is zero.
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d+ 2 Hd+2(k(η),Λ(d+ 1)) //
⊕
x∈X1

Hd+1(k(x),Λ(d)) // ... //
⊕
x∈Xd

H2(k(x),Λ(1)) //

d+ 1 Hd+1(k(η),Λ(d+ 1)) //
⊕
x∈X1

Hd(k(x),Λ(d)) // ... //
⊕
x∈Xd

H1(k(x),Λ(1)) //

... ...

1 ...

0

0 1 ... d

Figure 1. Table of E1
p,q(X,Λ(j)) for X/S of relative dimension d, j = d+ 1 and

Λ := Z/nZ.

Proof. All the groups Ha+1(k(x),Z/n(a)) appearing in the complex KC(1)(XKv ,Z/nZ) are zero.
If v is a complex place, then its cohomological dimension is zero and the groupsHa+1(k(x),Z/n(a))
vanish for all n. If v is a real place, then the groups Ha+1(k(x),Z/n(a)) are 2-groups and vanish
for all n prime to 2. �

Lemma 4.20. Let Kv be a non-archimedean local field with residue field kv of characteristic p.
Let XKv be a proper smooth scheme over Kv. Let d = dimXKv . Then the following statements
hold:

(1) If n is prime to p, then the groups

KH(1)
a (XKv ,Z/nZ)

are finite.
(2) If XKv satisfies condition (?), then the groups

KH(1)
a (XKv ,Z/pnZ)

are finite for a ≤ 2. Furthermore, KH
(1)
1 (XKv ,Z/pnZ) = 0.

(3) If d = 2 and XKv satisfies condition (??), then the groups

KH(1)
a (XKv ,Z/pnZ)

are finite for a ≤ 2 (and hence for all a).

Proof. (1) This follows from the exact sequence (4.1) and Theorems 4.8 and 4.9.
(2) By Lemma 4.16 there is an exact sequence

...→ H2d
ét (XKv ,Z/pnZ(d+ 1))→ KH

(1)
2 (XKv ,Z/pnZ)→ CHd+1(XKv , 1,Z/pnZ)

∼=−→ H2d+1
ét (XKv ,Z/pnZ(d+ 1))→ KH

(1)
1 (XKv ,Z/pnZ)→ CHd+1(XKv , 0,Z/pnZ) = 0

The isomorphism is shown in [18, Thm. 6] assuming condition (?). The finiteness of the étale
cohomology groups for schemes over local fields (for a proof see [8, p. 773]) therefore implies
the statement. Furthermore, since CHd+1(XKv , 0,Z/pnZ) = 0 for dimension reasons, the group

KH
(1)
1 (XKv ,Z/pnZ) = 0.

(3) Fix a strictly semistable model of XKv and denote the configuration complex of the special
fiber Xv of XKv by ΓXv . Together with the Bloch-Kato conjecture, [25, Lemma 7.6] gives a short
exact sequence

0→ KH
(1)
a+1(XKv ,Qp/Zp)/pn → KH(1)

a (XKv ,Z/pnZ)→ KH(1)
a (XKv ,Qp/Zp)[pn]→ 0

where the left group vanishes for a ≥ 2 by dimension reasons. Furthermore [17, Thm. 1.4] and
[17, Thm. 1.6] yield isomorphisms

KH(1)
a (XKv ,Qp/Zp) ∼= KH(0)

a (Xv,Qp/Zp) ∼= Ha(ΓXv ,Qp/Zp)
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which imply the finiteness results as the configuration complex of the special fiber ΓXv (see [17,
p. 483]) is a finite simplicial complex. �

Remark 4.21. For a regular and projective scheme X over a finite field of characteristic p it
is shown in [16] that the Kato conjecture holds with Z/pr-coefficients for a ≤ 4, i.e.

KHa(X,Z/pr) =

{
Z/pr for a = 0
0 otherwise.

In [17, Sec. C], Jannsen and Saito define a suitable homology theory with Z/pr-coefficients for
a scheme X over a discrete valuation ring A using p-adic étale Tate twists:

KHa(X/S,Z/pr(−1)) := H−a(Xet, Rf
!Z/pr(1)S)

with S = Spec(A) and

Z/pr(1)S := cone(Rj∗(Z/pr(1)η)→ i∗(Z/pr)s[−1])[−1].

Unfortunately this theory cannot be used as in the approach of [25, Sec. 3 (3.11)] to show a
Lefschetz theorem implying that KHa(X/S,Z/pr) = 0 for a ≤ 4 since there is no appropriate
base change and and Artin vanishing for p-adic étale Tate twists. We are therefore obliged to
use Lemma 4.20(2) which is implied by class field theory.

5. Main theorem: a local to global principle

In this section we prove our our main Theorem 1.5.

Theorem 5.1. Let K be a global field, S a set of places of K and n ∈ N>1. Denote by OS the
ring of elements in K which are integers at all primes p /∈ S and let S = SpecOS. Suppose that

(a) S is either semi-local or an open of Spec(OK).
(b) n is invertible on S.
(c) If K is a number field, S contains all archimedean places of K and either n is odd or K

has no real places.

Let X be regular, flat and projective of relative dimension d over S with smooth generic fiber X.
Then the following statements hold:

(1) There is an exact sequence

CHd+1(X , a,Z/nZ)→
∏′

v∈S
CHd+1(XKv , a,Z/nZ)→ Ha

ét(X,Z/nZ)∨

(2) For all a there is a natural surjection X(CHd+1(X , a,Z/nZ))→X2d+2−a,d+1
ét (X ).

(3) If K is a number field and condition (?) holds for XKv if v divides n, then the group
X(CHd+1(X , 1,Z/nZ)) is finite.

(4) If K is a function field of one variable over a finite field and n is invertible in K, then
X(CHd+1(X , a,Z/nZ)) is finite for arbitrary a.

Proof. If dim(S) = 1, consider the following commutative diagram:

KH
(0)
a+2(X/S,Z/nZ)

∏
v∈SKH

(1)
a+1(XKv ,Z/nZ)

CHd+1(X , a,Z/nZ)
∏′

v∈S
CHd+1(XKv , a,Z/nZ)

H2d+2−a
ét (X ,Z/nZ(d+ 1))

∏′

v∈S
H2d+2−a

ét (XKv ,Z/nZ(d+ 1))

KH
(0)
a+1(X/S,ZnZ)

∏
v∈SKH

(1)
a (XKv ,Z/nZ)

∼=

α

∼=



A LOCAL TO GLOBAL PRINCIPLE 13

The isomorphisms in the first and the last row follow from Theorem 4.11 and 4.12. The collumns
are exact by Lemma 4.16 and by the assumptions on K and n. The only place where this is not

immediate is
∏′

v∈S
H2d+2−a

ét (XKv ,Z/nZ(d+ 1)). However, let∏
v

av ∈ ker[
∏′

v∈S
H2d+2−a

ét (XKv ,Z/nZ(d+ 1))→
∏
v∈S

KH(1)
a (XKv ,Z/nZ)].

Then if av ∈ H2d+2−a
ét (XOKv ,Z/nZ(d + 1)) for a place v at which X has good reduction and

where n is invertible, then av comes from an element of CHd+1(XOKv , a,Z/nZ). This follows
from the commutative diagram

CHd+1(XOKv , a,Z/nZ) CHd+1(XKv , a,Z/nZ)

H
2(d+1)−a
ét (XOKv ,Z/nZ(d+ 1)) H

2(d+1)−a
ét (XKv ,Z/nZ(d+ 1))

∼=

(see Lemma 2.3). The third row is part of the generalisation of Saito’s Poitou-Tate exact
sequence

H2d+2−a
ét (X ,Z/nZ(d+ 1))→

∏′

v∈S
H2d+2−a

ét (XKv ,Z/nZ(d+ 1))→ Ha
ét(X ,Z/nZ)∨ → . . .

by Geisser and Schmidt (see [12]). The two middle rows also fit into the commutative diagram

X(CHd+1(X , a,Z/nZ)) CHd+1(X , a,Z/nZ)
∏′

v∈S
CHd+1(XKv , a,Z/nZ)

X2d+2−a,d−1
ét (X ) H2d+2−a

ét (X ,Z/nZ(d+ 1))
∏′

v∈S
H2d+2−a

ét (XKv ,Z/nZ(d+ 1)).

α

The statements (1) and (2) now follow from a diagram chase.
For the case of S = PK , i.e. S = SpecK and dimS = 0, note first that all relevant groups

vanish for a = 0, so assume a ≥ 1. The proof then procedes in the same way, except that we
start with the commutative diagram

KH
(1)
a+1(X,Z/nZ)

��

∼= //
∏
v∈PK KH

(1)
a+1(XKv ,Z/nZ)

��

CHd+1(X, a,Z/nZ)
α //

��

∏′

v∈PK
CHd+1(XKv , a,Z/nZ)

��

H2d+2−a
ét (X,Z/nZ(d+ 1))

��

//
∏′

v∈PK
H2d+2−a

ét (XKv ,Z/nZ(d+ 1))

��

KH
(1)
a (X,Z/nZ)

∼= //
∏
v∈PK KH

(1)
a (XKv ,Z/nZ).

For (3) and (4) note first that the products
∏′
v∈PK KH

(1)
a+1(XKv ,Z/nZ) and

∏′
v∈PK KH

(1)
a (XKv ,Z/nZ)

are products of finitely many groups since almost all XKv have good reduction. The statements

now follow from Lemma 4.20 and the fact that X2d+2−a,d−1
ét (X) is finite. The latter follows

from [34] (see also [12, Thm. A]). �

Remark 5.2. An argument similar to the one in the above proof may already be found in [20,
Sec. 4].



14 JOHANN HAAS AND MORTEN LÜDERS

Remark 5.3. Inspecting the diagrams in the proof one finds an isomorphism between the kernel
of

X(CHd+1(X , a,Z/nZ))→X2d+2−a,d+1
ét (X )

and the cokernel of∏′

v∈S
CHd+1(XKv , a+ 1,Z/nZ)→ ker

(
Ha+1

ét (X , µ⊗jn )∨ → H2d+2−a
ét (XKv ,Z/nZ(d+ 1))

)
.

One might hence suspect that they fit together into a natural long exact sequence

. . .→
∏′

v∈S
CHd+1(XKv , a+ 1,Z/nZ)→ Ha+1

ét (X , µ⊗jn )∨ → CHd+1(X , a,Z/nZ)→ . . .

but there seems to be a non-trivial extension problem one needs to solve in oder to prove this.

Remark 5.4. For b ≥ d+ 2, a ≥ 0 and n odd, the map

X(CHb(X, a,Z/nZ))→X2b−a,d+1
ét (X)

is an isomorphism and the sequence

CHb(X, a,Z/nZ)→
∏′

v∈PK

CHb(X, a,Z/nZ)→ H2d+2−2b+a
ét (Xkv , µ

⊗d+1−b
n )∨

is exact. This follows from cohomological dimension.

Corollary 5.5. Let the assumptions be as in Theorem 1.5. Let S = PK and therefore X = X .
Then the following statements hold:

(1) Conjecture 1.2 holds for i ≥ d+ 1 and all a.
(2) Conjecture 1.3 holds for i ≥ d+ 1 and all a.

Proof. In fact, (1) is implied by (2), and (2) follows from 5.1 and Remark 5.4. �

Corollary 5.6. Let the notation be as in Corollary 5.5.

(1) If a = 1, then the map

C(X)/n := coker[CHd+1(X, 1,Z/nZ)→
∏′

v∈PK

CHd+1(XKv , 1,Z/nZ)]→ πab
1 (X)/n

is an isomorphism.
(2) Let a ≥ 2. The map

coker[CHd+1(X, a,Z/nZ)→
∏′

v∈PK

CHd+1(XKv , a,Z/nZ)]→ Ha
ét(X,Z/nZ)∨

is injective.

Proof. The injectivity follows in both cases from Theorem 5.1(1). The surjectivity of ρ in (1)
follows from Chebotarev density. A different way to deduce it from the Kato conjectures is the
following: consider the diagram with exact rows

H1(X,Z/nZ)∨ // H2d+2(X,µd+1
n ) //

∼=
��

∏′
H2d+2(X,µd+1

n ) //

∼=
��

H0(X,Z/nZ)∨

∼=

��

0 // KH
(1)
0 (X,Z/nZ) //

⊕
v∈PK

KH
(1)
0 (XKv ,Z/nZ) // Z/nZ // 0.

The exactness of the second row follows from Theorem 4.10 and the exactness of the first row
from Saito’s exact sequence 1.1. The vertical maps can be shown to be isomorphisms using the
spectral sequence of Lemma 4.13 or Lemma 4.16. The statement now follows from a diagram
chase. �
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Corollary 5.6(1) recovers the unramified class field theory of arithmetic schemes (see [33]). In
the next section we strenthen the above argument to also cover the ramified case.

Question 5.7. We would like to ask the following questions: can the group Ha
ét(X,Z/nZ)∨ be

interpreted as a higher homotopy group ”πa(X)/n” and can it be generated by algebraic cycles?
The second question can be made more precise: is the map

coker[CHd+1(X, a,Z/nZ)→
∏′

v∈PK

CHd+1(XKv , a,Z/nZ)]→ Ha
ét(X,Z/nZ)∨

surjective, i.e. an isomorphism? Furthermore, is

X(CHd+1(X, a,Z/nZ)) = 0?

Remark 5.8. For X a scheme of finite type over a number field K or Kv, v ∈ PK , we denote
the complexes

...→
⊕
x∈Xa

Ha+1(k(x),Z/nZ(a))→ ...→
⊕

x∈Xa−1

Ha(k(x),Z/nZ(a− 1))→ ...

...→
⊕
x∈X1

H2(k(x),Z/nZ(1))→
⊕
x∈X0

H1(k(x),Z/nZ)

by KC(0)(X,Z/nZ). Here the term ⊕x∈XaHa+1(k(x),Z/nZ(a)) is placed in degree a. We set

KH(0)
a (X,Z/nZ) := Ha(KC

(0)(X,Z/nZ)).

In the case of zero-cycles, i.e. the case i = d of Conjecture 1.1 and Conjecture 1.2, the
difference between étale and Zariski motivic cohomology is measured by KC(0)(X,Z/nZ) and one
additional row in the coniveau spectral sequence converging to étale cohomology. The approach
taken in the proof of Theorem 5.1 therefore only works in small dimensions.

As mentioned in the introduction, Conjecture 1.1 is known to hold if X is a curve and if
the Tate-Shafarevich group of the Jacobian of X does not contain a non-zero element which is
infinitely divisible (see [32, Sec. 7], [5, Sec. 3] and [42, Rem. 1.1(iv)]). We recall the argument
of [5, Sec. 3], where it is shown that a version of Conjecture 1.2 with Q`/Z`-coefficients holds
for such an X, using the above framework. Considering the map of coniveau spectral sequences

CHEp,q1 (X, d)→ét Ep,q1 (X,Z/`nZ(d))

gives the following commutative diagram with exact rows and collums:

0

��

0

��

CH1(X,Z/`nZ) //

��

∏
v∈PK

CH1(XKv ,Z/`nZ)

��

H2
ét(X,Z/`nZ(1))

��

//
∏

v∈PK
H2

ét(XKv ,Z/`nZ(1))

��

// H2
ét(X,µ

⊗1
`n )∨

KH
(0)
1 (X,Z/`nZ) //

��

⊕
v∈PK

KH
(0)
1 (XKv ,Z/`nZ)

��

0 0

Now KH
(0)
1 (X,Z/`nZ) ∼= Br(X)[`n] and KH

(0)
1 (X,Z/`nZ) ∼= Br(XKv)[`

n]. In fact, the col-

lumns also arise from the exact sequence of sheaves 0 → µ`n → O×X
·`n−−→ O×X → 0. In [5],
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Colliot-Thélène considers a family of cycles {zv} ∈
∏
v∈PK CH1(XKv) which is orthogonal to

every class ξ ∈ H2
ét(X,Q`/Z`(1)) under the pairing∏

v∈PK

CH1(XKv ,Z/`nZ)×H2
ét(X,Q`/Z`(1))→ Q`/Z`

and shows that its image in
∏
v∈PK H

2
ét(XKv ,Z/`nZ(1)), i.e. after passing to the limit over n

in the above diagram, is still in the image of H2
ét(X,Q`/Z`(1)) (see loc. cit., Prop. 3.1). The

assertion then follows from the fact that

ker[lim←−
`n

Br(X)[`n]→ lim←−
`n

Br(XKv)[`
n]] = 0

if the Tate-Shafarevich group of the Jacobian of X does not contain a non-zero element which
is infinitely divisible (see loc. cit., Lem. 3.6).

6. Ramified global class field theory of Kato-Saito

In this section we generalise Corollary 5.6 to the ramified case. This is very similar to the
treatment of class field theory over local and finite fields of Kerz and Zhao in [26].

In order to work with ramification one needs to use the relative Milnor K-sheaf. We adopt
the following definition of Kato and Saito (see [22, p. 256]):

Definition 6.1. Let X be a scheme and I ⊂ OX be a sheaf of ideals. We define

KM
q (OX , I) := ker(KM

q (OX)→ KM
q (OX/I)).

If I corresponds to a divisor D, then we write KM
q,X|D for KM

q (OX , I).

In order to relate Nisnevich to étale cohomology with modulus we need the following localized
Chern class map. This was studied by Sato in [36, Thm. 1.2, Cor. 4.6] for regular schemes over
a finite field.

Theorem 6.2. Let K be a local or global field. Let n be invertible in K. If K is a number
field assume furthermore that either n is odd or that K has no real places. Let X be a smooth
projective scheme of dimension d over Spec(K). Let D ⊂ X be an effective divisor on X and
j : U ↪→ X be the inclusion. Let x ∈ Xa. Then there exists a canonical surjective map

cld+1,loc
X,D,x,n : Ha

x(XNis,KMd+1,X|D)/n→ Ha+d+1
x (X, j!µ

⊗d+1
n )

called the localized Chern class map. Furthermore, if x ∈ Xd, then

cld+1,loc
X,D,x,n : Hd

x(XNis,KMd+1,X|D)/n→ H2d+1
x (X, j!µ

⊗d+1
n )

is an isomorphism.

Proof. The proof is analogous to the proof of [36, Thm. 1.2, Cor. 4.6]. The main difference is
that the cohomological dimension of the base field in loc. cit. is 1 and in our case 2. However,
by working with KMd+1,X|D and not KMd,X|D we again win one cohomological dimension.

Let us nevertheless give an indication of how the map is constructed. First we may replace X
by Xh

x . The construction works by induction on a. For a = 0 we have that X = x and D = 0,
and

clq,loc
x,0,x,n := hqx,n : KM

q (x)/n→ Hq(xét, µ
⊗q
n )

is the Galois symbol map. If a = 1, then X is the spectrum of a henselian discrete valuation
ring OF with function field F and generic point η. Then we get a commutative diagram with
exact rows

H0
x(XNis,KMq,X|D)/n

��

// KM
q,X|D(F )/n //

hqη,n
��

H1
x(XNis,KMq,X|D)/n

clq,locX,D,x,n
��

// 0

Hq
ét(X, j!µ

⊗q
n )

∂ // Hq
ét(η, µ

⊗d
n ) // Hq+1

x (Xét, j!µ
⊗q
n ) // 0
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in which the left vertical and the upper left horizontal maps zero if D 6= 0 by [36, Lem. 2.1]

and otherwise the Galois symbol. The dotted map clq,loc
X,D,x,n is induced by the other two vertical

maps. If a ≥ 2, then clq,loc
X,D,x,n is induced by the diagram⊕

y∈Xa−2

Ha−2
y (XNis,KMq,X|D)/n

clq,locX,D,y,n

��

//
⊕

y∈Xa−1

Ha−1
y (XNis,KMq,X|D)/n // //

clq,locX,D,y,n

��

Ha
x(XNis,KMq,X|D)/n

clq,locX,D,x,n

��

// 0

⊕
y∈Xa−2

Hq+a−2
y (Xét, j!µ

⊗q
n ) //

⊕
y∈Xa−1

Hq+a−1
y (Xét, j!µ

⊗q
n ) // Hq+a

x (Xét, j!µ
⊗q
n )

The injectivity and surjectivity of cld+1,loc
X,D,x,n now follow as in the proof of loc. cit. using the above

remarks on cohomological dimension. �

We need the following proposition:

Proposition 6.3. Let K be a local or global field. Let n be invertible in K. If K is a number
field assume furthermore that either n is odd or that K has no real places. Let X be a smooth
projective scheme over Spec(K). Let D ⊂ X be an effective divisor on X and j : U ↪→ X be the
inclusion. Let

Ep,q1 (X,A) =
⊕

x∈X(p)

Hp+q
x (Xét, A)⇒ Hp+q

ét (X,A)

be the coniveau spectral sequence of Lemma 4.13. Then

E•,d+2
1 (X, j!µ

⊗d+1
n ) ∼= E•,d+2

1 (X,µ⊗d+1
n ).

In particular for X proper and smooth over a number field the map

KH(1)
a (X, j!µ

⊗d+1
n )

∼=−→
⊕
v∈PK

KH(1)
a (XKv , j!µ

⊗d+1
n )

is an isomorphism for a > 0. Here

KH(1)
a (X, j!µ

⊗d+1
n ) := E•,d+2

1 (X, j!µ
⊗d+1
n )

and

KH(1)
a (XKv , j!µ

⊗d+1
n ) := E•,d+2

1 (XKv , j!µ
⊗d+1
n ).

In the latter case we let j denote the inclusion DKv ↪→ XKv .

Proof. The proof is identical to the proof of [26, Prop. 2.2.1]. �

Theorem 6.4. Let K be a global field. Let n be invertible in K. If K is a number field assume
furthermore that either n is odd or that K has no real places. Let X be a smooth projective
scheme over Spec(K). Let D ⊂ X be an effective divisor on X and j : U ↪→ X be the inclusion.
Then there is an isomorphism

coker[Hd
Nis(X,KMd+1,X|D)/n→

∏′

v∈PK

Hd
Nis(XKv ,KMd+1,XKv |DKv

)/n]→ πab
1 (U)/n.

Proof. There is a commutative diagram with exact rows⊕
x∈X1

Hd−1
x (XNis,KMd+1,X|D)/n

����

//
⊕
x∈X0

Hd
x(XNis,KMd+1,X|D)/n // //

∼=
��

Hd
Nis(X,KMd+1,X|D)/n

∼=

��⊕
x∈X1

H2d
x (Xét, j!µ

⊗d+1
n )

∂ //
⊕
x∈X0

H2d+1
x (Xét, j!µ

⊗d+1
n ) // coker∂.
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The upper exact row comes from the spectral sequence

Ep,q1 (X,KMd+1,X|D) =
⊕
x∈Xp

Hp+q
x (X,KMd+1,X|D)⇒ Hp+q(X,KMd+1,X|D)

and the fact that Ep,q1 (X,KMd+1,X|D) = 0 for q > d by Nisnevich cohomological dimension. The

commutativity follows from the construction of the local Chern class map. By Theorem 6.2 the
middle vertical map is an isomorphism and the left vertical map is surjective. This implies that
the right vertical map is an isomorphism. The niveau spectral sequence

Ep,q1 (X, j!µ
⊗d+1
n ) =

⊕
x∈Xp

Hp+q
x (X, j!µ

⊗d+1
n )⇒ Hp+q(X, j!µ

⊗d+1
n ),

in which coker∂ ∼= Ed,d+1
2 , and the same argument for the XKv therefore implies that there is a

commutative diagram with exact rows and collums

KH
(1)
2 (X, j!µ

⊗d+1
n )

∏
v∈PK KH

(1)
2 (XKv , j!µ

⊗d+1
n )

Hd
Nis(X,KMd+1,X|D)/n

∏′

v∈PK
Hd

Nis(XKv ,KMd+1,XKv |DKv
)/n

H2d+1
ét (X, j!µ

⊗d+1
n ))

∏′

v∈PK
H2d+1

ét (XKv , j!µ
⊗d+1
n )) πab

1 (U)/n

KH
(1)
1 (X, j!µ

⊗d+1
n )

∏
v∈PK KH

(1)
1 (XKv , j!µ

⊗d+1
n ).

∼=

α

∼=

The isomorphisms in the first and last row follow from Proposition 6.3. The theorem now follows
from a diagram chase. �

Passing to the direct limit over all D, we obtain a description of Gal(F̄ /F )ab, where F is the
function field of X. This recovers the following theorem of Kato and Saito:

Theorem 6.5. ([22, Thm. 9.1]) Let X be a projective integral scheme over Z of dimension
d + 1 with function field F . Assume for simplicity that F contains a totally imaginary field if
ch(F ) = 0. Then there is an isomorphism

lim←−
n,D

Hd+1
Nis (X,KMd+1,X|D)/n→ Gal(F̄ /F )ab.

In fact, it can be shown that taking the inverse limit over the direct sum of the local terms
(modulo relations) appearing in the expression of Hd+1

Nis (X,KMd+1,X|D)/n via the coniveau spectral

sequence, is isomorphic to the cokernel defined using the restricted product in Theorem 6.4.

7. The p-adic cycle class map

In this section let A be a henselian discrete valuation ring of characteristic zero with residue
field of characteristic p and function field K. Let X be smooth and projective of relative
dimension d over Spec(A). Let Xn denote the thickenings of the special X1. Let XK denote the
generic fiber of X. In [24, Sec. 10], Kerz, Esnault and Wittenberg state the following conjecture:

Conjecture 7.1. Assume the Gersten conjecture for the Milnor K-sheaf KMn,X . Then the re-
striction map

res : CHd(X)/pr → ”limn”Hd(X1,KMd,Xn/p
r)

is an isomorphism.
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The following theorem and its corollary (i.e. Corollary 1.9 in the introduction) give some
evidence for this conjecture.

Theorem 7.2. Let d = dimX − 1 ≤ 2. Then there is an isomorphism

CHd+1(X, 1,Z/prZ)→ H2d+1
ét (X, Tr(d+ 1)).

Here Tr(d+ 1) are the p-adic étale Tate twists defined in [35].

Proof. We use the homology theory defined in Remark 4.21 and consider the associated spectral
sequence

Eu,v1 =
⊕
x∈Xu

Hv−u(x,Z/prZ(d+ 1− u))⇒ Hu+v
ét (X, Tr(d+ 1)).

The case d = 1 is clear. Let us therefore assume that d = 2. Then

E2,3
2 = CHd+1(X, 1,Z/prZ).

We therefore need to show that E•,42 = 0. By [19, Thm. 4.10.2], the complex E•,41 coincides up
to sign with the relevant complex defined by Kato. Consider the localization sequence (4.1)

KH
(0)
a+1(X1,Z/prZ)→ KH

(0)
a+1(X,Z/prZ)→ KH(1)

a (XK ,Z/prZ)

for the homology theory. The group KH
(0)
a+1(X1,Z/prZ) vanishes for a ≤ 3 by the results on the

Kato conjectures with p-coefficients in low degrees cited in Remark 4.21. For the vanishing of

the group KH
(1)
d (XK ,Z/prZ) consider the short exact sequence

0→ KH
(1)
a+1(XKv ,Qp/Zp)/pn → KH(1)

a (XKv ,Z/pnZ)→ KH(1)
a (XKv ,Qp/Zp)[pn]→ 0

([25, Lemma 7.6]). Now KH
(1)
3 (XKv ,Qp/Zp)) vanishes for dimension reasons and for a ≤ 2 we

have that KH
(1)
a (XKv ,Qp/Zp) ∼= KH

(1)
a (Xv,Qp/Zp) = 0 by [17, Thm. 1.6]. �

Note that due to the twist by d + 1 we have full purity for the logarithmic deRham-Witt
sheaves. This seems to be the main difference to the zero-cycle case.

8. A finiteness theorem for arithmmetic schemes

A version of Bass’ finiteness conjecture predicts that for a regular scheme X of finite type
over Z, the groups

CHr(X, q)

are finitely generated. This conjecture is known to hold for r = 1 or dim(X) = 1 by results
of Quillen. In arbitrary dimension d there are few results. If X is proper and flat over SpecZ,
then CHd(X) is finite by unramified class field theory (see [33, Thm. 0.6] or for a more general
statement [22, Sec. 6]). If X is smooth projective over a finite field, then the groups CHd+j(X, j)
are finitely generated for j ≥ 0 again by unramified class field theory (see [8, Sec. 2] and [22,
Sec. 6] for j = 0 and [29, Sec. 6] for j ≥ 1).

As an application of the Kato conjectures, Kerz and Saito show that for any quasi-projective
scheme X of dimension d over a finite field k and n invertible on X, the groups

CHd(X, q,Z/nZ)

are finite for all q ≥ 0 (see [25, Cor. 9.4]). In the following theorem we establish some small-
degree cases for arithmetic schemes (see also [11, Sec. 7.2]):

Theorem 8.1. Let K be a global field with ring of integers OK , let U ⊂ SpecOK be open,
nonempty and let n ∈ N>1 be invertible on U . Let X be a regular connected scheme, proper and
flat over U with smooth generic fiber XK and let d = dim(X)− 1 = dim(X). If K is a number
field assume furthermore that either n is odd or that K has no real places.
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(1) Suppose that for all places v of K dividing n, XKv satisfies (?). Then the groups

CHd+1(X, a,Z/nZ)

are finite for all 1 ≥ a ≥ 0.
(2) Suppose d = 2 and for all places v of K dividing n, XKv satisfies (??). Then the groups

CHd+1(X, a,Z/nZ)

are finite for all a ≥ 0.

Proof. By Lemma 4.16(2) there is an exact sequence

...→ KH
(0)
q+2(X,Z/nZ)→ CHd+1(X, q,Z/nZ)→ H2d+2−q

ét (X,Z/nZ(d+ 1))

→ KH
(0)
q+1(X,Z/nZ)→ CHd+1(X, q − 1,Z/nZ)→ ...

(8.1)

By [30, Ch. II, 7.1], the étale cohomology groups H2d+2−q
ét (X,Z/nZ(d)) are known to be finite for

n invertible on U . It therefore suffices to show the finiteness of KH
(0)
q+2(X,Z/nZ). By definition

we have an exact sequence

...→ KH(0)
a (X/U,Z/nZ)→ KH(0)

a (X,Z/nZ)→
⊕
v∈

∑
U

KH
(1)
a−1(XKv ,Z/nZ))→ ..

By Theorem 4.11, KH
(0)
a (X/U,Z/nZ) vanishes for a > 0 and is isomorphic to Z/nZ for a = 0.

The statement now follows from Lemma 4.20. �
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[42] Olivier Wittenberg. Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque. Duke Math.

J., 161(11):2113–2166, 2012.

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email address: johann.haas@ur.de
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