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Abstract

In this paper, a numerical method is proposed to investigate the propagation of elastic guided waves in the armors

protecting cylindrical structures, such as cables and pipes, and evaluate the feasibility of using these waves in the

context of non-destructive evaluation and structural health monitoring. Armors usually consist of a large number of

helical wires in contact with polymeric sheaths surrounding the structure. The numerical method combines a semi-

analytical finite element method written in twisting coordinates, which accounts for the continuous screw symmetry

of the problem along the structure axis, with rotational Bloch conditions in the cross-section in order to account

for the high order of the discrete circular symmetry. The proposed formulation allows the initial three-dimensional

problem to be reduced to a two-dimensional unit cell involving only one wire, well suited for fast computations

of contact problems and dispersion curves. The existence of wave modes along the two directions (screw axis and

circumferential direction) is justified from a theoretical point of view by considering the metric tensor of a mixed

twisting-polar coordinate system. Numerical results are presented for a typical armor of power cable, focusing on

longitudinal waves propagating predominantly inside the wires. The internal part of the cable is approximated as a

homogenized medium to preserve the continuous screw symmetry of the problem. A comparison with experimental

measurements is carried out. The results show that the modal velocity of longitudinal waves behaves as in a single free

wire above a limit frequency identified by the model. This is not the case of modal attenuation, always greater in the

armor due to mechanical contact with the viscoelastic sheaths. Two modes of potential interest for the non-destructive

evaluation of armors are identified. The influence of mechanical contacts on wave propagation in armors is finally

discussed, including interwire contact.

Keywords: waveguide, helical, rotational symmetry, finite element, cable, wire

1. Introduction

Elastic guided waves are of potential interest for the non-destructive evaluation (NDE) and the structural health

monitoring (SHM) of elongated structures [1]. Compared to bulk waves, guided waves can propagate over longer

distances. These waves are typically excited in a high-frequency regime (ultrasonic) allowing relatively small defects

to be detected. It is of interest to evaluate the feasibility of using guided waves for the NDE of the armors protecting

cylindrical structures such as cables and pipes. Armors are multi-wired and often consist of one or two cylindrical

layers of helical wires surrounding the structure. Their essential function is to mechanically reinforce the structure,

typically against bending fatigue and extreme conditions, or during installation. Armors are widely encountered in

offshore applications to protect submarine power cables (in the energy industry) and flexible pipes (in the oil and gas

industry) – see e.g. Refs. [2, 3].

The propagation of guided waves is complex in nature. Such waves are dispersive and multimodal. In practice,

modeling tools are required to understand the mechanisms of their propagation, interpret experimental measurements

at a laboratory scale, and optimize inspection techniques for real-field applications [1]. Typically, the knowledge of
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dispersion curves of wave velocities and attenuations as functions of frequency help to maximize the propagation

distance of wave modes in a frequency range of interest (among other factors).

The propagation of waves in multi-wire structures has already been investigated, both experimentally and numer-

ically, considering seven-wire strands (see e.g. Refs. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), aluminum conductor steel

reinforced cables [14, 15, 16, 17] or steel multi-wire ropes [18, 19]. Up to the authors knowledge, cable armors

have not yet been considered in the literature. Furthermore, the modeling approaches used in these studies are gen-

erally based on fully three-dimensional transient finite element simulations, or geometrical simplifications neglecting

curvature and contact phenomena, which does not allow a full and accurate determination of dispersion curves.

The modeling of wave propagation in armors faces several difficulties: helical geometry (screw symmetry), pre-

stress effect, mechanical contact (wires are coupled to polymeric sheaths), a large number of wires... Part of these diffi-

culties have already been addressed, in the modeling of seven-wire strands [20, 21, 22, 23], thanks to a semi-analytical

finite element (SAFE) method expressed in a twisting coordinate system. This method exploits the continuous screw

symmetry of the problem by adopting an analytical description along the screw axis while discretizing the transverse

coordinates (cross-section). The initial three-dimensional (3D) problem is hence reduced to a two-dimensional (2D)

model.

Note that the SAFE approach has been extensively used for the computation of modes in 3D translationally sym-

metric waveguides (see e.g. Refs. [24, 25, 26]). Alternatively, the so-called wave finite element (WFE) method (see

e.g. Refs. [27, 28]), which consists in applying periodic boundary conditions to a single repetitive unit cell, could

also be used. Its computational cost is yet greater than with the SAFE method (the WFE unit cell is 3D). Because the

problem considered in the present paper involves a relatively large amount of degrees of freedom, the SAFE approach

is preferred.

However, this model reduction is insufficient for armors. Compared to seven-wire strands, armors are highly

multi-wired (the number of wires is large and usually exceeds fifty). Fortunately, the problem can be further reduced

by taking advantage of another symmetry: the discrete rotational symmetry (circular periodicity) of the cross-section.

This type of reduction has been recently validated with seven-wire strands [29].

The goal of this paper is twofold. First, the above-mentioned modeling principles are specifically applied to helical

armors involving a large number of wires. The order of the rotational symmetry is equal to the number of wires,

which will be denoted as N in this paper. The initial 3D problem is hence reduced to a 2D/N model, as depicted by

the example in Fig. 1. This reduction yields fast computations, well-suited for contact problems, the analysis of wave

modes and the determination of dispersion curves. The numerical approach applies to any wire cross-section shape:

circular, flat, etc. Second, the feasibility of using guided waves for the NDE of armors consisting of circular wires is

evaluated thanks to numerical simulations as well as comparison with experiments. Our study mainly focuses on a

relatively high-frequency regime, that is to say, such that the bulk wavelengths are at most of the order of the diameter

of wires (the wavelengths hence remain significantly lower than the diameter of the overall structure protected by the

armor).

This paper is organized as follows. Section 2 recalls the SAFE approach in twisting coordinates and details how

to account for the rotational symmetry of the cross-section. In particular, the existence of wave modes along the two

directions (screw axis and circumferential direction) is justified from a theoretical point of view. Section 3 presents

some numerical results for a typical armor of power cable. The analysis focuses on waves propagating predominantly

inside the wires. A comparison with experimental measurements is finally carried out.

The internal part of power cables is often constituted by helical conductors having a torsion different from the

armor itself, so that the screw symmetry of the whole structure may be broken. To circumvent this problem, the

internal part will be approximated as a homogenized medium in this paper. This approximation is justified by our

interest in the NDE of armor, excluding the internal part (the frequency regime of waves is supposed to be high

enough to avoid significant interactions with the core).

Armors may involve one or several layers of wires. The numerical approach proposed in this paper is restricted to

continuous screw symmetric armors and hence remains applicable as long as the layers are twisted with the same rate.

In the case of double-layer armors, the two protecting layers of wires can be twisted in opposite directions, which

breaks the continuous symmetry of the problem and hereby excludes the use of the SAFE approach.
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(a) (b)

Figure 1: (a) Example of armor of power cables: the structure typically consists of helical steel wires surrounded by polymeric inner and outer

sheaths, and protects the active part including electrical conductors (sketched with dashed gray lines). (b) Reduction from a 3D problem to a 2D/N

model by accounting for the continuous screw symmetry as well as for the discrete rotational symmetry of the cross-section (the resulting 2D unit

cell is delimited by left and right boundaries linked together with circular periodic conditions). The two red circles indicate the pair of nodes used

in Sec. 4.3 to artificially enforce interwire contact.

2. Numerical method

2.1. Background: screw symmetric formulation (2D model)

This section briefly recalls the numerical method accounting for the continuous screw symmetry, hence allowing

the initial 3D problem to be reduced to a 2D model. A time-harmonic dependence in e−iωt is adopted.

2.1.1. SAFE approach

The analysis of guided waves inside multi-wire helical structures requires a specific curvilinear coordinate system,

called twisting coordinate system. Such a system has constant non zero torsion but zero curvature. The torsion of the

twisting system is defined by τ0 = 2π/L0, with L0 denoting the helix pitch of wires under prestress. With this kind

of system, the cross-section plane remains perpendicular to the straight axis but rotates around this axis by following

the helical wires. This subsection briefly reviews the main equations of the SAFE method written in a twisting system

and including prestress effects. Further details can be found in Refs. [21, 22, 23].

Let us denote z the straight axis of the waveguide, fixed to the Cartesian system, (x, y) the cross-section twisting

coordinates, k the axial wavenumber and ω the angular frequency. The application of a SAFE method consists in

assuming an ei(kz−ωt) dependence of acoustic fields before finite element (FE) discretization. Therefore, only the 2D

cross-section in the (x, y) plane of the structure needs to be meshed.

The application of a SAFE method to the equilibrium equations of elastodynamics leads to the following matrix

system:

{K1σ − ω
2M + ik(K2σ −KT

2σ) + k2K3σ}U = F, (1)

where U is the vector of nodal displacements, with three degrees of freedom per node, expressed in the orthonormal

Serret-Frenet basis (ex, ey, ez) associated with the twisting system. The expressions of matrices, which involve opera-

tors depending on the torsion τ0, can be found in Ref. [23]. The index σ highlights the dependence of SAFE matrices

on the Cauchy prestress tensor σ0, where the subscript 0 refers to the prestress configuration. The right-hand side F

is the force vector. Equation (1) can be viewed as the so-called linearized updated Lagrangian formulation of non-

linear mechanics (see e.g. [30] for instance), here further transformed into a SAFE formulation expressed in twisting

coordinates. The FE mesh used to calculate the matrices corresponds to the prestressed cross-section S 0, statically

deformed under prestress and obtained from the updating of the initial FE mesh.
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2.1.2. Prestress state

The first step of the analysis consists in computing the static prestress state. This state is loaded by a constant

tensile strain ǫ0. Similarly to a SAFE method, its computation can be achieved efficiently from a 2D cross-section

model, using a homogenization method specifically written in twisting coordinates. Theoretical details can be found

in Ref. [21]. Such a method leads to a linear system, reduced on the cross-section, of the form:

K0U0 = F0 + F′0 (2)

where U0 is the static nodal displacement vector (microscopic) and F0 is the external load vector depending on the

prescribed axial strain ǫ0 (macroscopic). Note that K0 and F0 are integrated on the initial cross-section S (undeformed)

and depend on the initial torsion τ of the undeformed geometry. The torsion τ0 of the deformed geometry is related

to τ by: τ0 = τ/(1 + ǫ0). The expressions of K0 and F0 can be found in Ref. [23] and are not repeated here for paper

conciseness.

The second term in the right hand side of Eq. (2) is specific to the present paper and corresponds to the load

vector relative to the pressure p0 of the fluid, which typically acts on the outer sheath of armors. The element vector

corresponding to this term is given by:

F′e0 = −

∫

∂S e

NeT p0nd∂S (3)

where ∂S denotes the contour of the initial cross-section S , n is its unit outward normal and Ne(u) is the matrix of

one-dimensional functions used to interpolate the displacement vector along the curve (u has to be understood as the

local coordinate along the one-dimensional element). For a given element, the position vector of a point M on the

pressurized surface is parametrized by:

OM(u, z) = x(u)ex(z) + y(u)ey(z) + zez (4)

The normal involved in Eq. (3) can then be obtained from the relation:

nd∂S dz =
∂OM

∂u
×
∂OM

∂z
dudz (5)

The first term of the cross-product, ∂OM/∂u, is approximated thanks to the one-dimensional FE interpolation of the

curve ∂S . From Eq. (4) and the Serret-Frenet relations in the twisting system, ∂ex/∂z = τey, ∂ey/∂z = −τex (see

Ref. [21]), the calculation of the second term leads to: ∂OM/∂z = −τyex + τxey + ez. The element vector given by

Eq. (3) can then be readily computed.

Finally, the Cauchy prestress σ0, necessary for the calculation of the SAFE matrices involved in Eq. (1), can be

post-processed from the solution of Eq. (2).

It has to be emphasized that the external pressure increases the contact width between the sheaths and the wires.

Besides, the tensile strain tends to increase the contact width with the inner sheath because of the helical geometry

of wires (yielding a radial compression of the core). These contact phenomena are neglected when the linear static

problem given by Eq. (2) is solved in a unique step. Instead, an iterative procedure must be used in order to account

for the contact evolution (non-linear by nature). Our modeling approach is based on a node-to-node contact procedure

using a direct elimination method [31]. A matching mesh is used inside the interfacial zone. For the 2D cross-section

FE model used in this paper, the computation starts with a single point contact. As the external load is incremented,

contact pairs of nodes are successively formed: once the gap between a pair of nodes is closed, the continuity of

displacement is enforced at these nodes by the direct elimination method. The continuity is enforced along the three

directions, hence corresponding to the assumption of stick contact conditions (infinite friction). The reader may refer

to [23] for additional details on this iterative procedure.

2.2. Introducing discrete rotational symmetry (2D/N model)

In this paper, the SAFE approach, which accounts for continuous screw symmetry, is combined with circular

Bloch conditions to consider discrete rotational symmetry. This enables to reduce the computational domain to a unit

cell.
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The unit cell of the cross-section is delimited by left and right boundaries as shown in Fig. 1b. The displacement

and force vectors are partitioned as follows: U = [UT
l UT

i UT
r ]T, F = [FT

l FT
i FT

r ]T, where the subscripts l and r are

used to denote the degrees of freedom (dofs) of the left and right boundaries respectively. The subscript i denotes the

internal dofs.

The left and right dofs are linked together thanks to boundary conditions of Bloch type (see e.g. [32, 33]). Let

us recall the Bloch conditions in the usual case of a scalar wave field φ, and its dual variable ψ, when the periodicity

occurs in a straight direction. These conditions are: φr = λφl and ψr = −λψl, where λ = eiµ (iµ is often called the

propagation constant).

However, the periodicity of interest in this paper is of rotational type and involves non-scalar wavefields (the

displacement and force vectors). The Bloch conditions have to be expressed along a circumferential direction in an

appropriate frame, corresponding to a coordinate system of polar type. Since the displacement components Ul and Ur

are initially expressed in the (x, y, z) twisting frame, they must be transformed to a mixed twisting-polar frame. This

frame will be denoted as (ρ, θ, z). The polar coordinates are defined from the twisting coordinates in the cross-section

through he relation (x, y) = (ρ cos θ, ρ sin θ).

Let us denote Ql and Qr the transformation matrices of Ul and Ur from the twisting frame to the mixed twisting-

polar frame. The rotational periodic conditions for the displacement and force vector fields are then expressed as:

QrUr = λQlUl (6a)

QrFr = −λQlFl (6b)

where Ql,r are block diagonal transformation matrices consisting of three-by-three sub-matrices for the three dis-

placement components at every node. These sub-matrices, denoted as ql,r, are given by:

ql,r =





















cos θl,r sin θl,r 0

− sin θl,r cos θl,r 0

0 0 1





















(7)

where θl and θr are the angles of the left and right boundaries respectively (see Fig. 1b). The matrices ql,r are

orthogonal so that Q−1
l,r = QT

l,r.

Because the structure is divided into N rotationally periodic cells, any wavefield at the right boundary of the Nth

cell must be equal to the field at the left boundary of the first cell, so that λN = 1. Therefore, the propagation factor

can be written as:

λ(n) = ei2nπ/N (8)

where n is a user-defined integer lying inside a set of N consecutive integers. In this paper, the following numbering

is adopted:

n =

{

−N
2
+ 1, ..., 0, ..., N

2
for N even

−N−1
2
, ..., 0, ..., N−1

2
for N odd

(9)

in order to pair right-handed modes (n > 0, rotating anti-clockwise around the z-axis) with left-handed modes (n < 0,

rotating clockwise) [29]. The modes n = 0 are rotationally symmmetric.

From Eq. (6a) written for a given n, the displacement vector U can be reduced to:

U = R(n)Ũ, R(n) =





















I 0

0 I

λ(n)Q−1
r Ql 0





















, Ũ =

[

Ul

Ui

]

. (10)

Based on the reduced displacement vector Ũ, Eq. (1) can then be rewritten as:

{

K̃1σ(n) − ω2M̃(n) + ik
(

K̃2σ(n) − K̃2σ(−n)T
)

+ k2K̃3σ(n)
}

Ũ = 0 (11)

where K̃iσ(n) = R(n)HKiσR(n) (i = 1, 2, 3) and M̃(n) = R(n)HMR(n). The superscript H denotes complex conjugate

transpose.
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In Eq. (11), the right hand side actually stems from the term R(n)HF, which vanishes as shown hereafter. Our

attention is restricted to the free response in the purpose of computing eigenmodes. Hence, there are no forces

acting on internal dofs because acoustic sources are discarded (Fi = 0). Accounting for the orthogonality of Ql,r, the

expansion of R(n)HF leads to:

R(n)HF =

[

Fl + λQ−1
l QrFr

0

]

(12)

where the overbar denotes complex conjugate. Equation (6b) leads to Fl + λQ−1
l QrFr = (1 − |λ|2)Fl, which vanishes

because |λ| = 1 from Eq. (8).

Equation (11) is therefore a homogeneous equation, corresponding to the eigensystem that accounts both for the

continuous helical symmetry (using the SAFE approach) and for the discrete rotational symmetry of the cross-section

(thanks to the application of Bloch conditions). Throughout this paper, the mth eigensolution obtained for a given

circumferential order n will be denoted as follows:

{k(n)
m , Ũ

(n)

m } (13)

The modal excitability, which will be a quantity of interest in this paper, is now introduced. For a given frequency,

the excitability of a particular mode can be defined as the ratio of the displacement of that mode to a point force

applied in a given direction. In this paper, the excitability can be obtained in a straightforward manner by noticing

that the matrices involved in Eq. (11) have the same symmetry properties than those used to derive the excitability in

Ref. [29]. The excitability matrix, denoted as E
(n)
m , can then be written as:

E(n)
m =

iω

4Q
(n,−n)
m,−m

Ũ
(n)

m Ũ
(−n)T

−m (14)

where Ũ
(−n)

−m denotes the mode paired with Ũ
(n)

m , traveling in the opposite directions both axially and circumferentially,

and the normalization factor Q
(n,−n)
m,−m is given by:

Q
(n,−n)
m,−m = i

ω

4

(

T̃
(−n)T

−m Ũ
(n)

m − Ũ
(−n)T

−m T̃
(n)

m

)

(15)

with T̃
(n)

m =
(

K̃2(−n)T + ik
(n)
m K̃3(n)

)

Ũ
(n)

m . The vector T̃
(n)

m can be interpreted as the modal force associated with the

eigendisplacement Ũ
(n)

m . In Eq. (14), the matrix element
(

E
(n)
m

)

i j
represents the displacement amplitude of the mth

wavemode of circumferential order n at dof i when a unit point force acts at dof j.

Finally, as far as the prestress state is concerned, one assumes rotationally symmetric loads (n = 0) so that,

following the same approach as previously, the static problem reduces to:

K̃0Ũ0 = R(0)H(F0 + F′0) (16)

with K̃0 = R(0)HK0R(0) and Ũ0 = [UT
0l

UT
0i

]T.

2.3. Justification of the existence of wave modes

The eikz dependence assumed for wave fields in Sec. 2.1.1 implies that axial variables must be separable from

transverse variables in the governing equations of motion. As justified in Refs. [20, 34], this separation of variables

is possible thanks to the independence of the metric tensor of the twisting system on the z coordinate. Note that the

prestressed state must not vary along the z-axis, otherwise the separation of the z-variable would not be possible.

In practice, this condition is fulfilled, at least far enough from the ends where the axial loads are applied, so that

the prestressed state can be considered as invariant along z. This justifies the existence of wave modes in the axial

direction of helical structures. However, the question of existence of Bloch waves in the circumferential direction of

a twisting system has not been considered.

Starting from the helical coordinate system defined in Ref. [20] but using the polar coordinates (ρ, θ) instead of

the rectangular cross-section coordinates yields the following expression for the position vector of any point M in the

3D space:

OM(ρ, θ, s) = r(s) + ρ cos θen(s) + ρ sin θeb(s) (17)
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Number of wires Torsion Helix radius of wires Thickness of outer Thickness of inner

N τa R/a sheath hext/a sheath hint/a

50 0.121e-01 17.578 1.422 0.800

Table 1: Dimensionless geometrical parameters. The helix lay angle φ = tan−1(Rτ) is equal to 12◦ . The parameters are given in the initial state

(undeformed, unprestressed).

Density Longitudinal velocity Shear velocity Longitudinal bulk wave Shear bulk wave

ρ (kg/m3) cl (m/s) cs (m/s) attenuation κl (Np/λ) attenuation κs (Np/λ)

steel 7800 6091.4 3256.0 0.003 0.008

PE 1000 1198.2 489.2 0.02 0.16

Table 2: Material properties.

Based on Serret-Frenet formula, the calculation of the covariant basis (∂OM/∂ρ, ∂OM/∂θ, ∂OM/∂s), denoted by

(g1, g2, g3), gives:

g1 = cos θen(s) + sin θeb(s), g2 = −ρ sin θen(s) + ρ cos θeb(s),

g3 = −τρ sin θen(s) + τρ cos θeb(s) + (1 + κρ cos θ)et(s)
(18)

so that the metric tensor, defined by (g)i j = gi · g j, is:

g =





















1 0 0

0 ρ2 τρ2

0 τρ2 τ2ρ2 + (1 + κρ cos θ)2





















. (19)

In Eqs. (17)–(19), s denotes the helical coordinate, r(s) is the position vector on the helix centreline, (en, eb, et) is the

Serret-Frenet basis associated with the helix, κ and τ are the helix curvature and torsion respectively.

The metric tensor given by Eq. (19) is for a helical-polar coordinate system and depends on θ. Yet, the coordinate

system of interest in this paper is a twisting system, which can be viewed as a particular case of helical system having

no curvature (κ = 0, s = z, r(z) = zez). Therefore, the dependence on θ disappears in Eq. (19): the metric tensor

of a mixed twisting-polar system only depends on the radial coordinate ρ. As a consequence, the coefficients of any

partial differential operators expressed in the so-defined coordinate system are independent of θ and z, which justifies

the simultaneous existence of wave modes in the axial and the circumferential directions.

Based on the SAFE formulation written in twisting coordinates (Sec. 2.1.1), there is no need to rewrite the equilib-

rium equations in the polar frame to account for rotational symmetry because the circular periodicity of the problem

is applied through boundary conditions. These periodic conditions yet involve vector fields, which must be expressed

with polar components, as done in Sec. 2.2 through Eq. (6).

3. Results

In this section, the propagation of guided waves is investigated inside the armor of a power cable. The armor

consists of metallic helical wires of circular cross-section in mechanical contact with polymeric sheaths.

3.1. Model description

The geometrical parameters of the armor, represented in Fig. 1b, are summarized in Table 1. The wire radius,

denoted as a, is used as the characteristic length to normalize the geometrical parameters. The dimensionless radius

of the whole cross-section is hence given by (R + a + hext)/a = 20. The wires and sheaths are made of steel and

polyethylene (PE) material respectively. The material properties are listed in Table 2. Viscoelastic losses are taken

into account in the model in order to evaluate the propagation distance of guided waves. The bulk wave attenuations

given in Table 2 have been estimated from Refs. [35, 36].
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The cross-section of the armor has been meshed with Gmsh [37]. Figure 1b depicts the FE mesh of the unit cell,

reduced to a single wire in contact with the inner and the outer sheaths. There is no contact between adjacent wires.

This assumption will be discussed in Sec. 4. The mesh is refined near contact regions with a specified number of

elements to properly discretize the contact width. Six-node triangles have been used (quadratic triangular elements),

yielding 28,413 degrees of freedom. The element length satisfies a meshing criterion of at least 5 elements per steel

wavelength (the minimum wavelength in steel is its shear wavelength at the maximum frequency), that is to say,

roughly 10 nodes per steel wavelength owing to the quadratic interpolation.

As outlined in Sec. 2, the computations are performed in two steps. In the first step, the static state of the structure

(prestressed state) is computed. The prestress tensor, necessary for the calculation of the SAFE matrices, is post-

processed and the FE mesh of the cross-section is updated. In its prestressed state, the cable is statically loaded by an

external pressure p0 = 20 bars and a tensile strain ǫ0 =0.1%. The numerical results obtained for the static prestress

state are briefly presented in Sec. 3.2.

In the second step, the dynamic problem given by Eq. (11) is solved. The ARPACK library [38] is used. This

library is appropriate for large sparse matrices and based on the implicitly restarted Arnoldi method. The calculations

are performed for 200 frequencies uniformly distributed in the interval [0, 5]MHz-mm. With the ARPACK library, a

specified number of eigenvalues k can be looked for around a user-defined shift k0. In order to avoid the computations

of too many modes resonating predominantly inside the PE sheaths, a specified number of 20 eigenvalues is looked

for around the longitudinal bulk wavenumber of steel k0 = ω/cl. The longitudinal wave modes of wires, which will

be denoted as L(0,n), are expected to occur close to this value.

Note that the internal part of the cable is not discretized because we are interested in waves propagating predomi-

nantly inside the wires, i.e. waves that are weakly affected by the media outside the armor. Besides, the internal part

is often constituted by helical conductors having a torsion different from the armor itself, so that the screw symmetry

of the complete structure may be broken. Instead, the internal part is approximated as a homogenized cylindrical

medium with Poisson ratio νh. This approximation leads to the following static boundary condition applied on the

internal boundary S int of the inner sheath for the prestress state:

u0 · n = −νhRintǫ0 on S int (20)

where Rint = R − a − hint denotes the internal radius of the inner sheath. The above condition enforces the radial

displacement generated by the Poisson effect due to the applied axial strain ǫ0. For the numerical results of this paper,

the value of νh = 0.3 has been set. Additionally, a free static boundary condition is applied on the external surface

S ext of the outer sheath:

σ0 · n = −p0n on S ext (21)

As far as wave perturbations are concerned, the dynamic boundary conditions chosen are stress-free on both surfaces:

σ · n0 = 0 on S int
0 ∪ S ext

0 (22)

The influence of fixed boundary conditions, u · n0 = 0 on S int
0
∪ S ext

0
, will be briefly discussed in Sec. 3.3.

3.2. Step 1: computation of the prestress state

Figure 2 shows the local displacement in the x and z directions computed for the prestress state with p0 = 20 bars

and ǫ0 = 0.1%. As expected, the displacement field exhibits a contracting radial motion of the whole system due to

the external pressure (see Fig. 2a), as well as a bending motion of the helical wires due to the tensile load (see Fig. 2b).

Figure 3 shows a zoom inside the contact regions of the mesh updated in its prestress state. Twelve three-node

line elements have been used to discretize each contact width, resulting in twenty-five contact nodes and twelve load

increments. The convergence of results has been checked by refining the discretization, yielding negligible differences.

As explained later, of special importance for wave propagation are the wire-sheath contact widths. Figure 4 depicts

the evolution of both the internal and external contact widths, bext
0

and bint
0

, in terms of the normal contact force Next
0

and Nint
0

respectively, as the prescribed loads are gradually increased up to p0 = 20 bars and ǫ0 = 0.1%. For a

given contact interface, the normal contact force is obtained as the sum of the contact nodal reactions of the interface

projected onto its unit normal (the reaction force vector is given by R0 = K0U0 − F0).

8



(a) (b)

Figure 2: Local displacement computed for p0 = 20 bars and ǫ0 = 0.1%. (a) u0x/a, (b) u0z/a (the x-axis is horizontal and the z-axis is out-of-plane).

(a) (b)

Figure 3: Zoom of the updated mesh for p0 = 20 bars and ǫ0 = 0.1%. (a) Internal contact region, (b) external contact region.
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Figure 4: Contact half-width as a function of the contact force. +: numerical results for the external sheath (continuous line: Hertz solution), x:

numerical results for the internal sheath (dashed line: Hertz solution).

Also shown in Fig. 4 is the evolution calculated with Hertz theory for parallel cylinders, given by the following

analytical solutions [39]:

bext
0 =

√

4

π
Next

0

1

E∗
1

1
a
− 1

R+a

, bint
0 =

√

4

π
Nint

0

1

E∗
1

1
a
+ 1

R−a

(23)

where 1
E∗
= 1−ν2

E
+

1−ν2
PE

EPE
(here, ν and E denote the Poisson ratio and Young modulus of steel while νPE and EPE are

those of PE). Note that the external sheath represents a concave contact surface and is hence of negative radius.

The numerical results shown in Fig. 4 are in close agreement with the analytical solution, which validates the

static modeling of contact. Since the results are close to those of Hertz theory for parallel cylinders, this also shows

that the effect of helical geometry is relatively weak on the contact width in this example (the helix angle and torsion

of Table 1 can be considered as small).

One emphasizes that the static state may influence the propagation of guided waves mostly in two ways: by

generating prestress inside the structure and by deforming the geometry. The former effect is known to be non-

negligible in the very low-frequency regime only (as shown in Ref. [40] for helical beams). This effect is negligible

for ultrasonic waves (this has been confirmed by our numerical tests on the armor). On the contrary, the latter effect

changes the wire-sheath contact widths and can be non-negligible even in the high-frequency regime, as already found

for seven-wire strands [23].

As a side remark, numerical tests have also been performed by varying from 0 to 0.5 the value of the homogenized

Poisson’s ratio νh in the internal static boundary condition given by Eq. (20). It turns out that the contact widths are

negligibly influenced by νh (results not shown for paper conciseness). Therefore, this parameter is actually of minor

importance in our problem.

3.3. Step 2: computation of dispersion curves

The energy velocity dispersion curves of the armor are shown in Fig. 5a for n = 0 (i.e. rotationally symmetric

modes). For comparison, Fig. 5b gives the dispersion curves for a single free wire, that is to say, uncoupled from the

sheaths (such a wire follows the same helical pattern as in the armor but is exposed to stress-free boundaries). The

L(0,1) fundamental wire mode turns out to be sensitive to the presence of sheaths in the low-frequency range only

(this can be observed by sharp changes in Fig. 5a, compared to Fig. 5b). Above a limit frequencyΩlim, roughly equal

to 0.5MHz-mm, the numerical results tend to show that the velocity of the L(0,n) modes become weakly affected by

the sheaths. Numerical tests with increasing prestress have shown that this limit frequency is weakly influenced by

the contact width (results not shown for paper conciseness).

Many low-velocity curves can be observed in Fig. 5a. Such modes mainly resonate inside the PE sheaths (the

bulk waves of PE are slow, see Table 2). They are likely to depend on the characteristics of the internal active part

and the outer media (marine environment), which are not modeled. These modes are of no interest in the context of

this paper. The fact that these low-frequency curves are partially computed in the figure is due to the small number of

modes solved at each frequency to reduce the computational time (only 20 modes as mentioned in Sec. 3.1).
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Figure 5: Energy velocity as a function of frequency for: (a) the armor (n=0), (b) a free wire. Red crosses: experimental results. The armor is

loaded by p0 = 20 bars and ǫ0 = 0.1%. The dashed vertical line indicates the limit frequency Ωlim.

The attenuation dispersion curves of the armor, due to the viscoelastic losses of materials, are given by Fig. 6 for

n = 0. The normalized attenuation, equal to 8.686Im(ka), is given in dB-mm/m (the natural units of the attenuation

Im(k) are Nepers/length, multiplication by 8.686 converts Neper/length to dB/length). Compared to the uncoupled

wire (gray curves), modes are more attenuated in the armor. This is an expected result since wires are in contact with

the PE sheaths and the viscoelastic loss of PE is much higher than that of steel (see Table 2). As a consequence, the

attenuation tends to increase with the contact width. This can be observed in Fig. 6. From Fig. 6a to b and from

Fig. 6b to c, the static load has been increased by a factor of 4, yielding an increase of the contact widths by a factor

of 2 (according to Eq. (23)).

In the whole frequency range considered, the least attenuated mode is the L(0,1) mode in its low-frequency regime.

Below the limit frequency Ωlim, the behavior of this mode is yet dependent on the sheaths and is hence likely to be

sensitive to the surrounding media also (this may complicate its use for the NDE of armors).

In the frequency range [2, 4]MHz-mm, the least attenuated modes are the L(0,2) and L(0,3) modes. The velocity of

these modes is weakly affected by the sheaths (they occur aboveΩlim). Although their attenuation noticeably increases

compared to the uncoupled wire, roughly by 50%, these modes could be of interest for the NDE of armors.

Note that the viscoelastic attenuation of the L(0,n) modes is expected to increase as the frequency increases (as

found in Ref. [35] for cylindrical bars). In the context of NDE, the longitudinal modes of order 4 and higher are hence

probably of less interest.

Figure 7 compares the numerical results computed for the two circumferential orders n = 0 and n = N/2. Com-

paring the dispersion curves computed for n = 0 with those for n , 0 actually gives qualitative information about the

degree of interwire coupling for each mode (coupling can be considered as weak if a curve tends to remain similar for

all n and conversely). The n = 0 modes correspond to wires vibrating in phase while the n = 25 modes correspond

to adjacent wires in opposite phase. The behavior of these two kinds of modes is supposed to be extremely different.

However, as observed from a comparison between Fig. 7a and 7b, the differences quickly appear negligible beyond a

limit frequency (it has been checked that the dispersion curves for n = 0 and n = 25, although shown separately in

Fig. 7a and 7b in order to quantify the excitability by a color scale, become superimposed). This means that the wires

tend to get uncoupled from each other as the frequency increases. This is an expected result because no interwire

contact has been assumed. Interestingly, the limit frequency can be quantified thanks to the numerical model. This

limit frequency is found to be the same as in Fig. 5a (Ωlim ≃ 0.5MHz-mm).

Although not shown for paper conciseness, numerical tests have also been performed with fixed boundary con-

ditions u · n0 = 0 on S int
0
∪ S ext

0
(instead of free boundary conditions considered in the previous results), yielding

negligible difference compared to the results of Fig. 7, except for the L(0,1) mode in its low-frequency region (below

the same limit frequency Ωlim as before). This confirms that the higher-order longitudinal modes are expected to be

weakly sensitive both to the external medium and to the internal active part of the cable, which has been approximated

as a homogenized medium (as previously outlined in Sec. 3.1, the geometry of the internal part usually breaks the

helical symmetry of armors and cannot be modeled by the approach proposed in this paper).

11



0 1 2 3 4 5

Frequency-radius (MHz-mm)

0

50

100

150

200

A
tt

e
n

u
a

ti
o

n
-r

a
d

iu
s
 (

d
B

-m
m

/m
)

(a)

0 1 2 3 4 5

Frequency-radius (MHz-mm)

0

50

100

150

200

A
tt

e
n

u
a

ti
o

n
-r

a
d

iu
s
 (

d
B

-m
m

/m
)

L(0,1)
L(0,2)

L(0,3)
L(0,4)

(b)

0 1 2 3 4 5

Frequency-radius (MHz-mm)

0

50

100

150

200

A
tt

e
n

u
a

ti
o

n
-r

a
d

iu
s
 (

d
B

-m
m

/m
)

(c)

Figure 6: Attenuation as a function of frequency. Black: armor (n = 0), gray: free wire. (a) p0 = 5 bars, ǫ0 = 0.025%, (b) p0 = 20 bars, ǫ0 = 0.1%,

(c) p0 = 80 bars, ǫ0 = 0.4%.
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Figure 7: Energy velocity curves with excitability for the armor: (a) n = 0 (b) n = 25 (p0 = 20 bars, ǫ0 = 0.1%). The color scale corresponds to

20 log10 of the excitability modulus.

Figure 7 also represents the modal excitabilities, as calculated from Eq. (14), at the wire center and in the z-

direction. The point force excitation is also located at the center and oriented in the same direction. As expected for

a z-orientation, the most excitable modes are the longitudinal L(0,n) modes. Two remarks can be made. First, the

excitabilities of the n = 0 and n = 25 modes remain nearly identical, which confirms that wires tend to get uncoupled

from each other. Second, the most excitable modes are the L(0,1) and the L(0,3) modes. The excitability of the L(0,2)

mode is about 25dB lower, which suggests using the L(0,3) rather than the L(0,2) mode in practice.

Also noticeable, the excitability of the L(0,3) mode is the highest in a plateau region, around 3MHz-mm, far below

the maximum of its energy velocity (occurring roughly at 4.5MHz-mm, where the excitability is about 10dB lower).

Similarly to the L(0,2) mode, the excitability of the L(0,4) mode is found to be the highest near its cut-off frequency

and then decreases with frequency. The fact that the excitability is found to be strong for odd modes (modes 1 and

3) and weak for even modes is consistent with the findings of Refs. [41]. These differences of excitability can be

explained from the mode shapes near the wire center (where the point force is applied), significantly lower for even

modes than for odd modes.

3.4. Comparison with experiments

Experiments on guided wave propagation have been conducted on a cable sample of length L=75cm. The cable

was not intact (not in new condition) but used for real field tests and hence submitted to marine conditions prior to

these experiments. Beforehand, the whole sample was cut using a circular saw machine so that both sample cross-

section ends are at right angles with the sample longitudinal axis. The cross-section of the sample is shown in Fig. 8.

All the measurements have been performed in transmission mode. Two identical 2.25MHz wideband piston-like

transducers were used and respectively coupled to each end of a given wire of the armor with a viscoelastic couplant.

The arrangement of the transducer attachment is shown in Fig. 9. The ratchet strap and the two plastic pieces insure

the active face of each transducer to be at right angle with the cross-section of the probed wire, and a positioning

of the transducers easy and stable. Longitudinal modes are predominantly generated and detected in this case. The

diameter of the active face of the transducer model used here is slightly larger than the diameter of a constitutive wire

(see Fig. 9b). In consequence, the transducer area is in contact with the whole area of the involved wire and with a

small part, that is, 1/10 of the area of the two adjacent wires.

In the experiments, tone-burst excitation signals with various center frequency and bandwidths were used. The

time excitation signal (a gaussian amplitude-modulated sinusoid) delivered by the function generator (with an input

voltage of 1Vpp) fed the transmitting transducer after voltage amplification (typically around 50dB). The measured

time signal at the detecting transducer was filtered and amplified (from 40dB up to 80dB) before averaging. As a

first example of experimental result, Fig. 10 shows the image of the stacked time signal envelopes of the first wave

packet arrival at the receiver (the direct transmitted wave) for a given wire of the cable, obtained by varying the center

frequency (here from 2.25 to 4.95MHz-mm) of a narrowband time excitation signal (112.5kHz-mm bandwidth).

Between 2.25 and 3.35MHz-mm, the late arrival is the one with the highest amplitude value, and corresponds to the
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Figure 8: Picture of the cross-section of the power cable sample used for the experiments.

(a)

(b) (c)

Figure 9: Pictures of the experimental arrangement for the guided wave transmission measurements for a given wire of the power cable. (a) General

view, (b) transducer size versus wire size, (c) local view of the attachment system for the wire cable excitation.
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Figure 10: Image of the stacked time signal envelopes of the first wave packet arrival detected in transmission for different excitation signal with

centre frequencies varying from 2.25 to 4.95MHz-mm at constant 112.5kHz-mm bandwidth.

L(0,3) mode contribution in its most-excitable frequency region around 3MHz-mm (as discussed and confirmed later

by the experimental and simulated group velocity comparison of Fig. 5a as well as the simulated excitability curves

of Fig. 7). In the same frequency region, the first arrival corresponds to the L(0,2) mode. Above 4MHz-mm, the time

arrival corresponds to the L(0,4) mode and occurs near 5MHz-mm (see Fig. 5a), which is also consistent with the

simulation results (around this frequency, both the attenuation and dispersion are rather low and the excitability is not

negligible – see Figs. 6 and 7).

Next, the experiments consisted in recording the time history signals over a time-duration, including at least the

two first wave packet arrivals (after a 1L and a 3L propagation distance, respectively), in order to derive the group

velocity vg( f ) and the apparent attenuation α( f ) from two successive arrivals of the same propagating mode. The

extraction of the group velocity are performed by doing a spectrogram time-frequency analysis on the measured

signal [5, 42] and picking the mode time arrival as a function of frequency, owing to the following formula:

vg( f ) =
t2( f ) − t1( f )

2L
(24)

where L is the length of the cable sample as mentioned before, t1 and t2 are the two successive time arrivals. The

apparent attenuation in dB/m is derived from the same spectrogram by picking the amplitude of the mode at the

same time arrival (as for the group velocity) as a function of frequency. The apparent attenuation is then extracted as

follows:

α( f ) = −
20

2L
log10

(

A2( f )

A1( f )

)

(25)

where A1 and A2 are the two successive amplitudes.

Figure 11 shows an example of spectrogram for another wire (diameter unchanged) of the same cable sample,

obtained for a tone burst excitation signal at 2.7MHz-mm (with a 1.125MHz-mm bandwidth). The third time arrival

observed at 2.9MHz-mm (occurring roughly at 0.75ms) is relative to the L(0,3) mode, confirming its higher excitabil-

ity over the L(0,2) mode in this frequency range , as pointed out in the first experiment results (Fig. 10). Additionally,

the fundamental L(0,1) mode is also detected in these experiments. Owing to the low attenuation of the L(0,1) mode,

three arrivals (corresponding to a propagation distance of 1L, 3L and 5L respectively) can be clearly observed near

0.7MHz-mm in the spectrogram, although this mode is excited (and detected) with much less energy by the transducer.

As mentioned before, the identification of modes was allowed by the comparison of the group velocities post-

processed from the experiments with numerical results. Figure 5 shows these comparisons both for a wire in the

cable (armor configuration) and for the same single wire extracted from the cable (free wire configuration). These

preliminary experimental results shown in Fig. 5 confirm the general trends found in the simulations, despite non-

negligible discrepancies. In particular, the relatively high-frequency regime of measurements is such that few differ-

ences between the cable and the single wire are obtained for the velocity. The differences between the simulations

and experiments can be explained by uncertainties related to material properties and further investigation should be
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Figure 11: Spectrogram of one time signal detected in transmission for an excitation signal at 2.7MHz-mm with a 1.125MHz-mm bandwidth.

Mode Frequency (MHz-mm) Attenuation (dB-mm/m)

Wire in the cable Free wire

Experiments Simulations Experiments Simulations

L(0,1) 0.8 [25,34] 18 [7,12] 8

L(0,3) 3 [60,68] [48,58] [40,45] 39

L(0,4) 5 [71,87] 69 [63,74] 58

Table 3: Attenuation estimations for longitudinal modes and frequencies at which they have been measured. The simulation results are taken from

Fig. 6b (p0 = 20 bars, ǫ0 = 0.1%).

addressed in the future on this topic. On the one hand, these properties have been assumed as constant with respect

to the frequency in the simulations (they are probably not constant in the experiments). On the other hand, the initial

material characteristics of the cable are not intact but have been affected prior to the experiments by real field tests,

carried out under marine conditions as already mentioned.

The attenuations of the L(0,1), L(0,3), and L(0,4) modes have been estimated from the experiment data set ac-

cording to the post data processing explained above. Measurements have been conducted on several wires, first in

the cable sample (armor configuration) and then extracted from the armor (free wire configuration). Experimental

results are given as intervals owing to the variability of the structural conditions of the wires of the cable sample. In

particular, traces of corrosion were more or less visible depending on the wires (only the measurements of healthier

wires have been retained here).

The results are shown in Table 3. It can be observed that the lowest frequencies range data exhibit a lower

attenuation, confirming the simulation trends. Besides, the relative difference in attenuation between an embedded

wire and a single wire gets larger as the frequency range decreases, confirming that the behavior of modes at low

frequencies is more affected by the sheaths.

It is noteworthy that the attenuation estimated from these experiments is an apparent attenuation since it involves

reflections from the sample ends. End reflection generates conversion into other modes, which possibly lead to an

overestimation of the attenuation. This apparent attenuation is also influenced by the presence of a transducer at an

end. Even if an estimation of this latter effect has not been yet done by the authors here, a 1dB insertion loss in this

frequency range can be reached, according to their experience, which could lead in this case to an overall overestima-

tion of 3dB. Besides the bulk wave attenuations of PE, which have been roughly estimated from the literature, have

not been measured and might be different in the real sample. There is also an uncertainty concerning the wire-sheath

contact widths, which have been roughly estimated in the experiments as discussed later in Sec. 4.1.

Due to these various uncertainties, the attenuation appears to be slightly underestimated by the simulations. How-

ever, it follows the same general trends as in the experiments, which confirms the main conclusions found from the

numerical model in Sec. 3.3 concerning the most suitable modes for the NDE of armors. There are actually two
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ways to increase the attenuation in the simulations: by increasing the wire-sheath contact widths or by increasing the

viscoelastic loss of materials in Table 2. Note that these parameters have not been adjusted in the model to avoid

artificial agreement with the experiments (further works would rather be necessary to accurately characterize both the

viscoelasticity of materials and the wire-sheath contact of the real cable).

It has to be emphasized that the attenuation of the L(0,2) mode is missing in Table 3. The single-time arrival, found

for this mode, does not allow the attenuation to be estimated. This observation is consistent with the numerical results

of Fig. 7, predicting a much lower excitability for the L(0,2) mode. Furthermore, it can be observed that the L(0,1)

mode in the armor is detected around 0.8MHz-mm, above the limit frequency Ωlim identified from the simulations,

and that the L(0,3) mode in the armor is detected around 3MHz-mm, i.e. the same frequency as in the simulations.

This confirms that the L(0,1) mode can be appropriately propagated, at least from a certain limit frequency, and that

the L(0,3) mode is more excitable in a frequency region lower than the frequency of its maximum of group velocity.

Note that the numerical result for the L(0,3) mode is also shown as an interval in Table 3 owing to a relatively sharp

variation found in the simulations around 3MHz-mm (see Fig. 6b).

4. Discussion about contact

4.1. Quantifying the wire-sheath contact

To estimate the wire-sheath contact pressure of the sample, the outer sheath has been cut and its change in circum-

ference, δ0, has been measured. Considering the sheath as a cylindrical thin shell, the circumferential prestress can

be related to the pressure by: σ0θ = p0Rext/hext where Rext = R + a + hext is the external radius of the sheath. Since

σ0θ = EPEδ0/2πRext, the contact pressure can be estimated from the knowledge of δ0 as follows:

p0 =
EPEhext

2π(Rext)2
δ0 (26)

This yields a value of about 20 bars, which justifies the external pressure prescribed in the numerical model, and

hereby, the resulting wire-sheath contact widths. However, such an estimation does not account for the possible plastic

deformation of the sheath, which might lead to an underestimation of the circumferential change δ0 and, hence, of the

contact pressure in the model as well as the attenuations predicted in Table 3.

4.2. Neglecting interwire contact

In the model, it has been assumed that there is no contact between adjacent wires. This assumption is probably

the most plausible from the visual observation of the sample: as shown in Fig. 8, some adjacent wires appear in

contact and others do not. This supports the assumption of a nonexistent contact, or a soft contact, between wires (not

sufficient to ensure a significative direct transmission of the acoustic energy).

In addition to this observation, it has to be noted that the ratio R/a itself is such that adjacent wires cannot be in

contact. This is clearly visible in Fig. 1b, where the left and right boundaries do not touch the wire circumference. Ac-

tually, this absence of interwire contact is a rather widespread design criterion in multi-wire structures for minimizing

friction effects (for instance, the peripheral wires of seven-wire strands usually do not touch each other [21]).

In the simulations, the interaction between wires therefore only occurs through the sheaths. Due to the strong

impedance mismatch between steel and PE, the behavior of the wires in the armor appears similar to that of a single

wire with viscoelastic strip. However, such similarity does no longer hold in a low-frequency regime, where the

motion of the structure tends to be of a global type. Figure 12 shows the energy velocity curves in a low-frequency

regime: significant differences compared to the free wire, as well as between the n=0 and n=25 modes, are found.

These differences are mainly due to velocity drops caused by contact interactions, as already observed in multi-wire

cables [23]. These velocity drops correspond to curve veering phenomena, generally found in eigenvalue problems of

weakly coupled systems [43, 44], and can be defined as the repulsion of two modal branches, veering away from each

other instead of crossing. This shows that each wire cannot be considered independently below a certain frequency.

The model proposed in this paper allows to quantify the upper limit frequency of this low-frequency regime, given by

Ωlim ≃ 0.5MHz-mm as previously mentioned in Sec. 3.3.

4.3. Numerical results including interwire contact

For further understanding of propagation mechanisms in armors, it is of interest to evaluate how waves can be

affected if contact occurs between adjacent wires. This can be investigated thanks to the numerical model.
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Figure 12: Energy velocity curves for the armor in a low-frequency regime: (a) n = 0, (b) n = 25 (p0 = 20 bars, ǫ0 = 0.1%). Gray curves: free

wire. The dashed vertical line indicates the limit frequency Ωlim.
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Figure 13: Energy velocity curves for the armor with interwire contact: (a) n = 0, (b) n = 25.

For simplicity, let us consider an artificial interwire contact point in the cross-section, involving the node pair

sketched in Fig. 1b: one node belongs to the left boundary while the other one belongs to the right boundary. The only

difference compared to the previous simulations is that these two nodes are hence now linked through the rotational

periodic conditions (6).

Figure 13 shows the dispersion curves computed for n = 0 and n = 25. Large differences are found between

these two circumferential orders, indicating significant interwire interactions. Compared to Fig. 7, the longitudinal

modes have a quite different dispersive behavior and appear to suffer from strong veering phenomena over the whole

frequency range. The simulations including interwire contact are no longer in agreement with the experimental results

of Fig. 5. This tends to confirm that the influence of interwire contact on wave propagation has to be neglected, at

least for the frequency range and laboratory conditions considered in the experiments.

In real field conditions, it is noteworthy that the contact force between adjacent wires is likely to be greater under

high prestress and external pressure (in great depth sea environment). Further experimental works are required to

check the possible influence of interwire contact in more realistic conditions, which is out-of-the scope of this paper.

More generally, note that the occurrence of interwire contact in armors could also depend on other factors, such as

design criteria (R/a ratio) or manufacturing processes (e.g. thermal stress).
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5. Conclusion

A numerical method has been proposed to investigate the propagation of guided waves in helical multi-wire

armors. The method combines a SAFE method written in twisting coordinates, to account for the continuous screw

symmetry of the problem, with Bloch conditions of rotational type in the cross-section in order to account for the

high order of the discrete rotational symmetry. The existence of wave modes along the two directions (screw axis

and circumferential direction) has been justified from a theoretical point of view thanks to the calculation of the

metric tensor in a mixed twisting-polar coordinate system. The formulation hence allows the initial three-dimensional

problem to be reduced to a two-dimensional unit cell involving only one wire. Numerical results have been presented

for a typical armor of power cable. The analysis has focused on longitudinal wave modes propagating predominantly

inside the wires. A comparison with experimental measurements has been carried out. The results show that the modal

velocity of longitudinal waves behaves as in a single free wire above a limit frequency, quantified by the model, so

that in practice, the velocity of the L(0,n) wire modes (n ≥ 2) is nearly unaffected by the armor. This is not the case

of their attenuation, always greater in the armor due to mechanical contact with the viscoelastic sheaths. The least

attenuated mode is the L(0,1) mode. This mode is in a low-frequency regime where waves are likely to be sensitive to

the internal part and to the external media surrounding the armor. Although more attenuated, the L(0,3) appears to be

weakly affected by the sheaths. This mode is also highly excitable, in a plateau region occurring below the maximum

of its energy velocity. The influence of mechanical contacts, in particular interwire contact, has also been discussed.

With interwire contact, the velocity behavior of longitudinal modes is destroyed by curve veering phenomena, which

contradicts the experimental observations (in laboratory conditions). Using appropriate excitation frequencies, both

the L(0,1) and L(0,3) modes could be of potential interest for the NDE of armors. The present paper paves the way

for further experimental studies to evaluate the influence of sea environmental conditions and the sensitivity of guided

waves to defects in armors of power cables. Furthermore, the numerical approach could be applied to investigate

wave propagation in the armors of flexible pipes, the wires of which are usually not circular but flat (rectangular

cross-section).
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[42] L. Laguerre, F. Treyssède, Non destructive evaluation of seven-wire strands using ultrasonic guided waves, European Journal of Environmen-

tal and Civil Engineering 15 (2011) 487–500.

[43] N. C. Perkins, C. D. Mote, Comments on curve veering in eigenvalue problems, Journal of Sound and Vibration 106 (1986) 451–463.

[44] C. Pierre, Mode localization and eigenvalue loci veering in disordered structures, Journal of Sound and Vibration 126 (1988) 485–502.

20




