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Abstract

Early reliability estimation is still a challenging task. The paper presents a novel approach to deal with early reliability estimation
of upgraded automotive components. The key idea is to combine reliability analysis based on efficient surrogate models and time
transformation function principle. The surrogate model, built using Dimensional Decomposition Method and projection throughout
a Lagrange polynomial basis, is used to substitute a time consuming implicit model initially used to compute the fatigue lifetime.
The time transformation function is represented by a parametric power law model where the corresponding parameters are obtained
through statistical analysis based on both numerical and experimental reliability results of a reference design. The reliability of an
upgraded design is easily obtained by applying the time transformation function to the reliability estimation given by performing
Monte-Carlo simulations on the surrogate model corresponding to the upgraded design. An application to a mechanical component,
used in car seats, clearly illustrates the efficiency and the accuracy of the proposed approach.

Keywords: Early reliability analysis, Dimensional Decomposition Method, Monte-Carlo simulations, Time transformation function,
Accelerated lifetime testing, Automotive components.

List of Symbols

The following list describes some symbols that will be later
used within the body of the document

∆R Small step size used to discretize reliability domain

Dre f Reference design

Dup Upgraded design

exp Experimental

h(t) Time transformation function

N f Fatigue lifetime

num Numerical

R(t) Reliability function

Rexp
Dre f

(t) Experimental reliability function of Dre f

Rnum
Dre f

(t) Numerical reliability function of Dre f

RSi(t) Reliability function under accelerated loading

RSnom(t) Reliability function under operating loading
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Si, i ∈ {1,ns} Severe stress levels

Snom Operating stress level

texp
Dre f

Experimental Lifetime of reference design

tnum
Dre f

Numerical Lifetime of reference design

texp
Dup

Experimental Lifetime of upgraded design

tnum
Dup

Numerical Lifetime of upgraded design

1. Introduction

It is widely recognized now, particularly in automotive in-
dustry, that reliability is one of the most important parameter
which characterizes the performance of the products. Indeed,
the reliability can be defined as a measure of the failure ratio
of a product over a given time span. Hence, products having
the higher reliability level are consequently the most safe. For
these reasons, customers are increasingly interested in reliable
products, and manufacturers are constrained to provide the as-
sociated reliability level of their products in the same way as
their prices. In this context, reliability estimate of new products,
at early steps of their life-cycle is of a great interest. It helps
manufacturers to enhance the reliability of their products before
reaching the market, and consequently to cope effectively with
the concurrency. In fact, at that stages, engineers still have a
large leeway to review the design. Otherwise, modifications at
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later stages of the products life-cycle could be time consuming
and generate extra costs.

Product qualification aims to verify whether an entity fulfill
the reliability and quality requirements. In the case of automo-
tive components, the mechanical reliability assessment is gen-
erally based on statistical analysis of data, which are provided
from testing in the case of a new product, such as accelerated
tests [1] for mechanical components subjected to fatigue, or
collected during the life-cycle of former releases in the case of
upgraded products. In the two cases, early reliability prediction
is still a challenging problem, mainly due to the lack of the avail-
able data and the expensive cost of the testing process. In the last
three decades, numerical-based methods have been developed
[2], which could be a serious alternative to address the relia-
bility assessment problem. Briefly, these methods require first,
a model of the mechanical component to describe its behavior
under various loading conditions, and then the reliability esti-
mate is obtained using a mechano-probabilistic coupling strategy,
which aims to perform uncertainties propagation throughout the
previous mechanical model.

Unfortunately, most of the numerical reliability approaches
are inefficient when dealing with engineering problems, mainly
because, on the one hand the simulation of the mechanical mod-
els are time consuming since they are often available under
implicit form (e.g. finite elements model), and on the other
hand the number of the uncertain parameters could be very high,
which induce the problem of the curse of dimensionality [3],
that is the exponential growth of the number of the mechanical
model calls with the probabilistic dimension (i.e. the number
of the uncertain parameters). In addition, the computation time
spent by the numerical reliability method is sensitive to the tar-
get reliability level. Thus, higher is the target reliability level
(conversely lower is the target failure probability), which is the
case of automotive components, higher is the computation time
spent to achieve accurate results. Using numerical reliability ap-
proaches often needs to take some assumptions, for instance, the
distribution type (i.e. normal, uniform,. . . ) or/and the statistical
parameters (i.e. mean, standard deviation,. . . ) of the uncertain
parameters, since prior information is not available. This can
explain the significant discrepancy often observed between the
estimates given by the numerical methods and the true reliability.
Consequently, the only use of crude numerical approaches to
perform reliability analysis during products qualification pro-
cess can lead to erroneous results. At the same time, performing
reliability analysis based on limited experimental data is not a
trivial task [4–6], and carrying out additional tests, each time
one have new products, would not be the best solution. Fortu-
nately, products are mainly evolutionary and not revolutionary,
especially for automotive industry. Indeed, for a given product,
the upgraded releases have often the same backbone as the ref-
erence design, and only a few minor modifications are carried
out. Hence, reliability estimation at the beginning of the product
development process can be well addressed, if we are able to
integrate available data on similar products or former releases, as
prior information. In this context, Bayesian-based approaches,
which combine testing data and reliability computations, have
been found a great interest in the literature. One type of Bayesian

approaches consists first in assigning a prior distribution for the
failure probability or the lifetime distribution parameters, based
on existing knowledge on the product, and then updating this
distribution when new information is available [7]. Such an ap-
proach can be only used when reliable information is available to
construct the prior distribution. For example, to improve the ac-
curacy of lifetime estimation of an automobile component (Boot
seal) while reducing the amount of tests, Guerin et al. [8] have
proposed a Bayesian estimation of the lifetime distribution (Log-
normal), by incorporating as prior knowledge, results obtained
by finite element computation (mean fatigue lifetime) and expert
opinion (lifetime variance). The second type of approaches [9],
consists firstly in characterizing the responses (e.g. stress level)
of the constitutive model (i.e. mechanical model) through the
propagation of the uncertainty associated to the input parameters.
Secondly, data provided by means of tests are used to update the
distributions of the input parameters and consequently update
finally the prior reliability estimate. Unfortunately, this later
approach suffers from a lack of consistency, since do not use
data from reliability testing. For that reason, Zhang et al. [10]
developed an original approach which uses reliability testing
data in conjunction with results given by computer-based analy-
sis. Despite, the authors have demonstrated its efficiency only
on academic examples; this method can be easily extended to
practical engineering problems. Guida et al. [11, 12] proposed
a Bayesian procedure for making inference on the reliability of
upgraded automotive components, by using both failure data rel-
ative to a previous design releases and prior information about
the technical process used in the modification of the product
design itself, instead of additional reliability testing data. In-
deed, when dealing with product enhancement, the main goal
of designers is to avoid critical failure modes observed in the
former releases, through modifications. If such modifications
are effective, we can be able to eliminate most of the defects
of the previous design and consequently reduce the associated
probability of failure of the new design. The effectiveness of
the design modifications is measured through an improvement
factor defined as the ratio between the new average probability
of failure of the enhanced design release and the past proba-
bility of failure of the reference design. This factor is defined
as a function of random variables to represent the uncertainties
related to the effectiveness of the design modifications. This
approach, also take into account the effect of working conditions
and cost reduction. Based on enhanced subsystem used in al-
ready commercialized car model, the authors demonstrated that
the approach provides more accurate estimate of the probability
of failure. In addition, they clearly showed that informative
prior can be very useful to a better control of the uncertainty
on the reliability of the enhanced products, by reducing their
probability of failure, and the numbers of items that will fail in
the new population.

In the literature, the joint use of the Bayesian computation and
fuzzy inference is also investigated to perform early reliability
analysis. In this context, Yadav et al. [13] have developed an
approach able to take into account qualitative information as
engineering judgment, expert’s opinion, operating and environ-
mental conditions. As a little or no quantitative information is
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available at early development stage of new products, especially
for reliability analysis, these authors proposed to use fuzzy infer-
ence system to address different kinds of qualitative information.
Then a Bayesian approach is used to enhance its capability to
deal with qualitative information. The applicability of this ap-
proach to engineering problems has been illustrated, through
reliability analysis of a being enhanced car steering system, for
which both qualitative information and reliability testing data
are available.

In this paper, a new approach combining, numerical relia-
bility computation, based on high-dimensional representation
model approach [14, 15], and Time Transformation Function
(TTF), usually used in accelerated test data analysis [16, 17],
is developed to deal with early reliability prediction. Indeed,
for a reference design which experimental reliability function is
known, numerical computations are performed through Monte-
Carlo simulations applied to a surrogate model, to obtain the
numerical reliability function. Then, a TTF associated to the
reference design is derived using both the experimental and the
numerical reliability functions. Now, for an upgraded or new
release of the reference design, the associated true reliability
function is simply obtained by applying the TTF to the numeri-
cal reliability function of this new design, without performing
additional tests.

The paper is organized as follows. In section 2, a brief re-
call of the mathematical formulation of the structural reliability
problem, and the numerical methods commonly used to make
estimate of the probability of failure. In section 3 we describe
the mathematical setup of the new approach allowing to perform
reliability prediction of upgraded products. Section 4 illustrates
the effectiveness and the accuracy of the proposed approach
through an application to automotive components. Finally, the
main findings and conclusions are summarized in section 5.

2. Mathematical formulation of the structural reliability
problem

Reliability analysis aims to evaluate the safety level of an
engineering system or structure, with respect to a prescribed
failure criterion. Commonly, the failure criterion concept can be
defined as the gap between two fundamental quantities named
the Demand and the Capacity, respectively. In mechanical en-
gineering, as well as in civil engineering, the Demand can be
defined as the response of the system, such as a mechanical
stress or displacements fields, induced by the loading conditions.
The Capacity, on the other hand, represents a threshold scenario,
such as an ultimate stress or displacement, beyond which the
system collapses.

Mathematically speaking, the failure criterion is character-
ized by the limit state function, or the performance func-
tion, denoted G. It is defined as a mapping of the random
variables (X1,X2, . . . ,Xn), which represent the uncertain pa-
rameters (x1,x2, . . . ,xn), often gathered in the random vector
X = {X1,X2, . . . ,Xn}T for the sake of simplicity. Thus, the ran-
dom space, can be split up into two regions: the failure do-
main ΩF = {x ∈DX |G(x)< 0} and the safety domain ΩS =
{x ∈DX |G(x)> 0}. The set of points Γ = {x ∈DX |G(x) = 0}

represents the limit state surface which is the frontier between
the failure and the safety domains. Fig. 1 (a), schematically il-
lustrates these concepts in the case of a two-dimensional random
space.

Accordingly, the failure probability Pf , which is by definition
the complementary event of the reliability R, that is R = 1−Pf ,
reads :

Pf = Prob [G(x)≤ 0] =
∫

G(x)≤0
pX (x)dx =

∫
Rn

IΩF (x)pX (x)dx

(1)

where pX is the joint probability density of the random vector
X , and IΩF is the indicator function on ΩF , which is equal to 1
if G(x)≤ 0 and 0 otherwise. As can be seen, the estimation of
the probability of failure Pf is none other than a computation
of a multi-dimensional integral. As the limit state function G is
often not available in an explicit form, especially when dealing
with engineering problems, the integral in above equation can-
not be analytically computed. Instead, numerical methods are
frequently employed. The efficiency of the numerical scheme
mainly depends on the complexity of the limit state function
and the problem dimensionality n. During the last few decades,
various reliability analysis methods have been developed [18],
such as simulations and moments based method.

Among these methods, Monte-Carlo Simulations (MCS) [19]
can be used to compute the integral in Eq. (1). The main
principle consists in interpreting the probability of failure Pf as
the mathematical expectation E [.] of the indicator function IΩF ,
that is to say Pf = E[IΩF ]. The numerical implementation of
the Monte-Carlo Simulations is quite simple. Let us consider
M realizations

{
x1,x2, . . . ,xM

}
of the of the random vector X ,

drawn from its associated joint probability density pX . The
estimator P̂f of the probability of failure Pf can be obtained by :

P̂f =
1
M

M

∑
k=1

IΩF (x
k) (2)

Unfortunately, experience has shown that Monte-Carlo Simu-
lations scheme becomes unpractical to compute high order prob-
ability of failure, mainly due to its slow convergence. Hence,
when the limit state function is represented through time consum-
ing implicit model, the computation cost becomes unaffordable.
To overcome the inefficiency of Monte-Carlo Simulations, the
First Order Reliability Method (FORM) has been developed
[20].

To apply FORM, the reliability problem is rewritten in
the standard random space, where the random vector X =
{X1,X2, . . . ,Xn}T is transformed into standard normal random
vector U = {U1,U2, . . . ,Un}T (i.e. zeros mean, unit standard
deviation and independent components), by means of isoprob-
abilistic transform X = T (U). In the general case where the
components of the random vector X are dependents, the Rosen-
blatt transform or the Nataf transform [21] are used. As a conse-
quence, the probability of failure in Eq. (1) rewrites :

Pf =
∫

G(x≤0)
pX (x)dx =

∫
H(u)≤0

ϕU (u)du (3)
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Fig. 1. (a) Limit state surface, failure domain and safety domain concepts, (b) Monte-Carlo Simulations

where H(U) ≡ G ◦T (U) = G(X) is the limit state function in
the standard random space and ϕU is the standard multivariate
normal probability density function.

Then, FORM substitutes, in the standard random space, the
limit state function H by an hyperplane tangent to the true failure
domain at the Most Probable Failure Point P∗, also called the
design point, which is defined as the nearest point of the limit
state surface to the origin of the standard random space (see Fig.
2 (b)).

Once the coordinates u∗ = {u1,u2, . . . ,un}T of the most prob-
able failure point P∗ are found, the Hasofer-Lind reliability index
βHL = ‖u∗‖ is computed, and the first order approximation of
the probability of failure reads:

Pf ≈ Pf ,FORM = Φ(−βHL) (4)

The FORM approximation is often satisfactory, especially
for high values of the reliability index, provided that the most
probable failure point P∗ is well identified. It is clear from Fig.
2 (b) that FORM approximation is exact when the true limit
state function is linear. Unfortunately, this situation is rarely
encountered in real life problems. For this reason, the Second
Order Reliability Method has been developed. As depicted in
Fig. 2 (b) it uses a quadratic surface in order to better approxi-
mate the true failure domain. Based on Breitung [22] the SORM
estimation of the probability of failure writes :

Pf ≈ Pf ,SORM = Φ(−βHL)×
n−1

∏
i=1

1√
1−βHL.κi

= Pf ,FORM×
n−1

∏
i=1

1√
1−βHL.κi

(5)

where κi, i ∈ 1, . . . ,(n−1) are the main curvatures of the limit
state function at the most probable failure point P∗.

As can be seen from Eq. (5), SORM simply improves the es-
timation of the probability of failure given by FORM through a
ponderation by a correction factor ∏

n−1
i=1

1√
1−βHL.κi

including in-

formation about the curvature of the limit state function. SORM
becomes inefficient when the reliability problem dimensionality
n is high. This is mainly due to the computation of the (n−1)
curvatures, which requires the evaluation of the second order
derivatives of the limit state function with respect to the random
variables. This problem can be artfully avoided by the use of
meta-models, also known in probabilistic analysis as surrogate
models or response surface. They aim to substitute the true
limit state function, obviously if it has an implicit form, by an
analytical formulation often constructed by a projection onto a
polynomial basis. Quadratic Response Surface (QRS) method
[23–26] is the widely used meta-modeling technique to perform
reliability analysis based on FORM approximation, mainly due
to its simplicity and efficiency for moderate dimensionality prob-
lems. Based on QRS method, the first order derivatives of the
limit state function, required in the optimization procedure, are
computed on quadratic polynomial approximation, with or with-
out cross terms, rather than the direct use of the true limit state
function. Although, the quadratic polynomial approximation
is built in each iteration of the optimization scheme, the QRS
method remains efficient compared to Monte-Carlo Simulations
or crude FORM. In last years, meta-modeling techniques have
known a large breakthrough, and others approaches have been
developed, such as those based on, Polynomial Chaos Expan-
sion (PCE) [27], Collocation method [28–30], Support Vector
Machine (SVM) [31–33], kriging [33, 34], neural network [35]
and Dimension Decomposition Method (DDM) [36]. This later
is used in this paper to perform reliability analysis, since it is
provides the better balance between efficiency and accuracy.
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Fig. 2. (a) Reliability concepts in the physical random space, (b) FORM and SORM approximations in the standard random space

3. The proposed approach

3.1. Dimensional Decomposition Method for reliability analysis

The key idea of the DDM is to construct a response surface
to approximate an input-output relation. This approach consists
in the discretization of a multidimensional function into a set
of finite and hierarchic sums of simple functions of the basic
random variables. In the sequel, the developed mathematical
formulations are derived in the standard random space. Thus,
let us consider a physical model M defined by the mapping
y = M (u). Here, y is a scalar representing the response of
the model M which depends on a set of uncertain parameters
gathered in the n-dimensional vector u = {u1,u2, . . . ,un}T in the
standard random space. According to the DDM, the response y
may be expanded onto elementary functions, as follows:

y = M (u) = y0 +
n

∑
k=1

yk(uk)+
n

∑
k1=1

n

∑
k2>k1

yk1,k2(uk1 ,uk2)+ · · ·

+yk1,··· ,kn(uk1 , · · · ,xkn)

(6)

where y0 is a real constant, which is obtained as a response of the
model M at a specific reference point ur = {ur

1,u
r
2, . . . ,u

r
n}

T (e.g.
the mean point), yk, yk1,k2 and yk1,··· ,kn are univariate, bivariate
and n-variate functions, respectively. Note that this expansion
is only valid for independent uncertain parameters, and can be
easily derived for non-scalar response y= {y1,y2, . . . ,ym}T ,m>
1.

For practical implementation, the above expansion should be
truncated and only lower order components are to be considered.
Therefore, the s-dimensional approximation ŷs of the response y

reads:

y∼= ỹs =
s

∑
i=0

(−1)iCi
n−s+i−1

n−s+i−1

∑
k1=1

· · ·
n

∑
ks−i=ks−i−1−1

yk1,··· ,ks−i(ũ)

(7)

where yk1,··· ,ks−i are (s− i)-variate functions representing the
(s− i)th order contribution among the parameters uk1 , . . . ,us−i
gathered in the vector ũ.

If the effect of the high order interactions is assumed to be
weak, it is clear from Eq. (7) that the DDM can be very efficient
to approximate implicit time consuming models. Indeed, two
uses of this approach can be distinguished: the dimensionality
reduction of multidimensional integrals such as those encoun-
tered in statistical moments computation of a random quantity,
or the construction of surface response of explicitly-unknown
models.

By definition the lth order statistical moment of the random
variable Y representing the variability of the response y induced
by uncertain parameters of the model M , can be written as:

ml
Y
∼= E[Y l ] =

∫
ΩY

yl pY (y)dy =
∫
Rn

M l(u)ϕU (u)du (8)

where E[.] denotes the mathematical expectation and ϕU is the
standard multivariate normal probability density function.

The evaluation of the integral in Eq. (8), using traditional
computation schemes such as cubature rules, is not a trivial task,
especially in the case of implicit integrand and high dimensional
integration. Replacing, the integrand in Eq. (8) by its approxima-
tion given by the DDM, based on Eq. (7), the lth order statistical
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moment ml
Y is rewritten as:

ml
Y
∼=

s

∑
i=0

(−1)iCi
n−s+i−1

n−s+i−1

∑
k1=1

· · ·
n

∑
ks−i=ks−i−1−1

E
[
yl

k1,··· ,ks−i
(ũ)
]

(9)

The expectation term E
[
yl

k1,··· ,ks−i
(ũ)
]

in the above equation,
reads:

E
[
yl

k1,··· ,ks−i
(ũ)
]
=
∫
R(s−i)

yl
k1,··· ,ks−i

(ũ)ϕŨ (ũ)dũ (10)

where ϕũ is the probability density function of the
(s − i)-dimensional standard normal random variable Ũ ={

Uk1 , . . . ,Uks−i

}T .
Now, based on Eqs. 9 and 10, it is clear that the computation

of the statistical moment ml
Y , is reduced to the evaluation of a

set of (s− i)-dimensional at most integrals, than a tedious n-
dimensional one. These elementary integrals can be accurately
and efficiently computed using Gauss cubature formula. In order
to have a complete picture of the variability of the response y, its
probability density function pY can be easily constructed using
a statistical moments based-technique [37]. Note that, the use of
such technique requires a high accuracy level on the estimates of
the four first statistical moments of the random quantity, namely
the mean, the standard deviation, the skewness and the kurtosis.

In the previous development, the approximation of the re-
sponse of a given model provided by the DDM can be used im-
plicitly to reduce the dimensionality of integrals, which means
without really constructing the response surface. It is clear from
Eq. 7 that an analytical formulation of the response of the model
can be obtained if and only if the component functions yk1,...,ks−i ,
derived through the decomposition process, are known. This
issue can be easily addressed by considering the later functions
as shape functions. Indeed, the component functions can be
simply constructed by interpolation throughout a polynomial
basis.

In this work, the polynomial interpolation is cast in the La-
grange basis, as follow:

yk1,...,ks−i(uk1 , . . . ,uks−i) =
N

∑
j1=1

. . .

N

∑
js−i=1

M (u j1
k1
, . . . ,uJs−i

ks−i
)× l j1(uk1)×·· ·× l js−i(uks−i)

(11)

where l js−i(uks−i) are univariate Lagrange polynomials con-
structed around a set of experimental points u js−i

ks−i
,1≤ js−i ≤ N,

and M (u j1
k1
, . . . ,uJs−i

ks−i
) are real coefficients.

One more step needed before the construction of the poly-
nomial approximation, is to build a suitable Experimental De-
sign (ED). The components of the ED can be chosen as the
Gauss-Hermite integration points used previously in the compu-
tation of the expectation in Eq. 10, or as uniformly distributed
points around a reference point ur = {ur

1,u
r
2, . . . ,u

r
n}

T , obtained

Fig. 3. Experimental Designs (a) n = 1, s = 1, (b) n = 2, s = 1, (c) n = 2, s = 2
(d) Gauss-Hermite integration points

through the following recursive formula [36]: {
u j

k

}N

j=1
={

ur
k−

N−1
2δk

,ur
k−

N−3
2δk

, ...,ur
k, ...,u

r
k +

N−3
2δk

,ur
k +

N−1
2δk

}
(12)

where ur
k is the coordinate of the reference point in the kth direc-

tion of the random space and δk is a perturbation which control
the distance between the points of the ED.

Fig. 4. Effectiveness of the DDM compared to Quadrature method

A suitable choice of the reference point is of a great impor-
tance to have an accurate interpolation. It has been shown that
the mean point gives good results when dealing with statisti-
cal moments analysis. In the case of reliability analysis, the
most probable failure point P∗ is the best candidate. However,
FORM analysis should be performed to compute its coordinates
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which probably increases the computation time. Fig. 3 shows
a comparison of experimental designs obtained through the re-
cursive formula (Eq. 12) for different dimensionality n and
decomposition order s, and Gauss-Hermite integration points.

In order to demonstrate the effectiveness of the meta-modeling
method, the number of calls to the implicit model, required by
the DDM is compared to that of the quadrature method (figure
4). For example, with decomposition order s = 1, s = 2 and
s = 3 the DDM makes it possible to reduce the number of calls
to the implicit model compared to the direct integration method
respectively by a factor of 1969, 136, 17 when the quadrature
order q = 3, and respectively by a factor of 26215, 1380, 125
when the quadrature order q = 4.

Note that the DDM does not directly give the reliability func-
tion. This is an intermediate step that allows to obtain a model
easier to compute the output of the mechanical model that will
be in the context of this work, a lifetime of the component. DDM
will be coupled with Monte-carlo simulations to construct the
lifetime distribution, thus the numerical reliability function.

3.2. Construction of the Time Transformation Function (TTF)

During product qualification process, an Accelerated Life
Testing (ALT) based approach [16] is often used to estimate
the reliability of the underlying product. Briefly, this technique
aims to reduce the testing time, required to obtain an estimation
of the reliability, by applying a much more severe stress levels
Si, i ∈ {1,n}, than the one observed under normal operating
conditions (Snom). Fig. 5 (a) schematically summarizes the ALT
procedure. The failure events observed during testing are then
used to construct the reliability function RSi(t) associated to the
accelerated loading conditions. Finally, by means of a Time
Transformation Function (TTF), also called acceleration law in
the ALT context, the reliability function RSi(t) is extrapolated
to obtain the true reliability function RSnom(t), associated to the
operating conditions (see Fig. 5 (b)). For practical purposes, it
is assumed [38] that the failure times observed at different stress
levels are linearly dependent, and the timescale transformation
is constant, which means we have a true linear acceleration.
Therefore, the reliability function under accelerated loading
conditions RSi(t) can be related to the reliability function under
operating loading conditions RSnom(t) as follows:

RSi(t) = RSnom (T T F× t) (13)

where TTF is the so called time transformation function.
The principle of TTF is used in this paper to construct the

reliability function of upgraded automotive components. Let us
consider a reference design Dre f and h(t) the associated TTF,
which measures the gap between the experimental reliability
function Rexp

Dre f
(t), obtained through experimental testing, and

the numerical reliability function Rnum
Dre f

(t), obtained through
structural reliability analysis as presented in section 3.1. Note
that, both reliability functions Rexp

Dre f
(t) and Rnum

Dre f
(t) correspond

to the operating loading conditions of the component.
Now, let us consider an upgraded design Dup, which is a new

release of the reference design Dre f , and for which only the

numerical reliability function is available Rnum
Dup

(t). Since the
upgraded design Dup has the same backbone as the reference de-
sign Dre f , that only few modifications are performed to adapt the
design to new customers requirements, the time transformation
function h(t) should be conserved. Indeed, on the one hand the
reference and the upgraded releases are very similar since they
are made from the same constitutive material, went through same
manufacturing process, subjected to similar operating conditions
and failure modes. On the other hand, the same assumptions
and hypothesis are made for the finite elements models repre-
senting the reference and the upgraded releases. Therefore, the
time transformation function can also be reasonably assumed to
be the same for both product versions. Consequently, the true
reliability function of the upgraded design Dup, also referred to
as experimental reliability function Rnum

Dup
(t), reads as follows:

Rexp
Dup

(t) = (Rnum
Dup
◦h)(t) = Rnum

Dup
(h(t)) (14)

Where ◦ is the function composition symbol.
The following steps describe in details the proposed approach

to construct the time transformation function h(t) and an esti-
mate of the true reliability function of an upgraded design:

• Step 1: Discretization of the reliability domain

Let [0,1] be the set of possible values of the reliability func-
tion and ∆R a small step size used to discretize this domain.
Here, ∆R is fixed to 0.0125 in order to obtain a sufficiently
large sample size (i.e. greater than 30). It is assumed that
the lifetime t is strictly positive variable and modeled as
a lognormal distribution. Thus, to avoid a null or infinite
lifetime values using the inverse distribution function, the
bounds R = 0 and R = 1 are excluded. The sample points
in ]0,1[ are obtained by the following recursive formula:

DR = {∆R, 2×∆R, . . . , 1−∆R} (15)

It is important to note that other distributions than the log-
normal one can be used without any particular modification
of the the formulation of the proposed approach.

• Step 2 : Experimental and numerical lifetime distribution
for the reference design

Let (µexp
Dre f

,σ exp
Dre f

) and (µnum
Dre f

,σnum
Dre f

) be the parameters of
the experimental and the numerical lifetime distributions
of the reference design Dre f , respectively. For a given
value DR(i) ∈ DR, i = 1, . . . ,nR of the reliability function,
the corresponding experimental and numerical lifetimes
texp
Dre f

and tnum
Dre f

read, respectively:

texp
Dre f

(i) = exp
[
Φ
−1(1−DR(i))×σ

exp
Dre f

+µ
exp
Dre f

]
(16)

tnum
Dre f

(i) = exp
[
Φ
−1(1−DR(i))×σ

num
Dre f

+µ
num
Dre f

]
(17)

Where Φ denotes the standard normal cumulative distribu-
tion function.
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Fig. 5. (a) Accelerated Life Testing principle, (b) Definition of the Time Transformation Function (TTF)

• Step 3 : Time transformation function of the reference
design

As so far mentioned, the time transformation function h(t)
represents the relationship between the experimental and
the numerical reliability functions. In the framework of this
paper, the well-known parametric power law model is used
as time transformation function. This model is especially
used when the damage process is sensitive to a particular
loading conditions, such as fatigue. It reads:

h(t) = A× tβ1 ,∀t > 0 (18)

where A and β1 are two unknown parameters.

Assuming that the numerical lifetime tnum is known, ap-
plying the logarithm to Eq. 18, and let β0 = ln(A), the
associated experimental lifetime texp is derived as follows:

ln(texp) = ln(h(tnum)) = β0 +β1× ln(tnum) (19)

The parameters β0 and β1 are then obtained by per-
forming regression analysis based on the set of points{

texp
Dre f

(i), tnum
Dre f

(i)
}nR

i=1
associated to the reliability sample

DR = {∆R,2×∆R, . . . , i×∆R, . . . ,1−∆R} previously de-
fined in step 2:

β1 =
∑

nR
i=1 (ln

(
tnum
Dre f

(i)
)
−µnum

Dre f
)× (ln

(
texp
Dre f

(i)
)
−µ

exp
Dre f

)

∑
nR
i=1 (ln

(
tnum
Dre f

(i)
)
−µnum

Dre f
)2

(20)

β0 = µ
exp
Dre f
−β1×µ

num
Dre f

(21)

where µ
exp
Dre f

= 1
nR

∑
nR
i=1 ln

(
texp
Dre f

(i)
)

and µnum
Dre f

=

1
nR

∑
nR
i=1 ln

(
tnum
Dre f

(i)
)

are the means values of the
experimental and numerical lifetime distributions,
respectively.

• Step 4 : Experimental lifetime of the upgraded design

Structural reliability analysis is performed on the up-
graded design to construct first, the corresponding nu-
merical lifetime distribution. A set of numerical life-
time points are obtained by performing inverse relia-
bility analysis based on the reliability sample DR =
{∆R,2×∆R, . . . , i×∆R, . . . ,1−∆R}:

tnum
Dup

(i) = exp
[
Φ
−1(1−DR(i))×σ

num
Dre f

+µ
num
Dup

]
(22)

Now, since the time transformation function remains the
same for the two designs, the experimental lifetime dis-
tribution of the upgraded design can be obtained through:

texp
Dup

(i) = exp
[
Φ
−1(1−DR(i))×σ

exp
Dup

+µ
exp
Dup

]
(23)

• Step 5 : Experimental reliability function of the upgraded
design

Once a sample of experimental lifetime points of the up-
graded design is obtained, a lognormal model can be fitted
on this sample in order to estimate the lifetime distribution
parameters.

The so-called bootstrap [39] approach is used here for this
purpose. This numerical method, based on re-sampling
technique from a prior population, is widely used for many
statistical problems such as hypothesis testing and confi-
dence intervals estimation. In our case, it provides the
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estimates of the lifetime distribution parameters and the
associated confidence intervals. In addition, confidence
bounds of the reliability function can be also derived.

First, we randomly generate B sub-samples, also called
bootstrap samples, based on sampling with replacement
technique from a training sample, which corresponds in
our case to the experimental lifetime sample

{
texp
Dup

(i)
}nR

i=1
associated to the upgraded design. Consequently, it is clear
that the bootstrap has the same size as the training sam-
ple, that is to say nR points. Some of them are redundant
and others are not selected since the sampling process is
perfectly random.

Then, for each bootstrap sample, the parameters (µ,σ) of
the lifetime distribution are obtained through a Maximum-
Likelihood-Estimation method. For a lognormal distribu-
tion, the likelihood function reads:

L(t|µ,σ) = ∏ f (ti|µ,σ) (24)

=

(
1

σ
√

2π

)nR
(

nR

∏
i=1

1
ti

)
exp

[
nR

∑
i=1

−(ln(ti)−µ)2

2σ2

]

The estimators µ̂ and σ̂2 of the lognormal parameters are
obtained by :

µ̂ =
1

nR

nR

∑
i=1

ln(ti) (25)

σ̂
2 =

1
nR

nR

∑
i=1

(ln(ti)− µ̂)2 (26)

When all the B bootstrap samples are evaluated, a set of
B values of each of the lifetime distribution parameters
µ̂ and σ̂ are obtained, and gathered in the samples ΞB =

{µ̂k}Bk=1 and ΣB = {σ̂k}Bk=1, respectively. After sorting the
components of these samples in ascending order, the mean
values associated to µ̂ and σ̂ corresponding to the 50%
fractile, are obtained :

µ̂
exp
Dup

= ΞB(0.5×B) (27)

σ̂
exp
Dup

= ΣB(0.5×B) (28)

Let us consider a target confidence interval δ ×100%. In
the case of symmetric distribution of the parameters, the
corresponding lower and upper bounds are respectively
(1−δ )/2 and (1+δ )/2 fractiles. For instance, if we are
interested in the parameters µ̂

exp
Dup

, the associated lower and
upper bounds are given by:

µ̂
exp
Dup

(lower) = ΞB(
1−δ

2
×B) (29)

µ̂
exp
Dup

(upper) = ΞB(
1+δ

2
×B) (30)

Finally, the confidence bounds for the reliability distribu-
tion are constructed in the same manner. Indeed, for a
lifetime ti, the reliability is computed for each value ΞB(k)
and ΣB(k), as follows:

Rk
i = 1−Φ

(
ln(ti)−ΞB(k)

ΣB(k)

)
(31)

The obtained B values
{

Rk
i
}B

k=1 are sorted in ascending
order and the (1−δ )/2 and (1+δ )/2 fractiles are retained
as the minimum and the maximum values of the reliability
at the lifetime ti. The lower and upper bounds curves of the
experimental reliability function of the upgraded design are
obtained by repeating the above process for all lifetimes ti.

4. Application to automotive components

In this section, two releases of an automotive mechanical
component are studied to assess the advantages of the proposed
approach. The first release, for which experimental data are
available, is taken as the reference design Dre f to construct the
associated time transformation function of the automotive com-
ponent based on both, statistical analysis of the experimental
data and numerical assessment of the structural reliability. The
second one is a modified release of the reference design to better
respond to car constructors’ requirements. It is considered as
the upgraded design Dup, where the corresponding true reli-
ability function (i.e. experimental reliability) will be derived
by applying the time transformation function to the numerical
reliability function obtained through Monte-Carlo simulations
on the DDM-based surrogate model. For the upgraded design
only few tests are performed in order to assess the accuracy of
the reliability function.

4.1. Reliability analysis of the reference design

The studied component is a mechanical component of car seat
that allows locking and unlocking the longitudinal sliding of the
seat. A schematic sketch of the product is shown in Fig. 6 (a).
As a part of the product qualification process, ALT was carried
out on the concerned component to evaluate its reliability. A
dominant failure mode is observed under cyclic loading (see Fig.
6 (b)), which is the breaking of the component at the upper right
side.

In order to reduce the testing process time, which is the
main goal of the accelerated lifetime testing, three stress lev-
els s3 > s2 > s1 much higher than the operating stress snom are
used. Stress in ALT can be of different types depending on
the application case (mechanical stress, displacement, voltage,
temperature, etc...). In this application, the stress is relative
to displacement stroke. Three levels of displacement {uk}k=3

k=1
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Fig. 6. (a) Sketch of the reference design, (b) Applied load for the reference design

higher than nominal displacement unom have been applied (Ta-
ble 1) and the obtained results are given in Table 2. For the
displacements u3 and u2 five specimens are tested, only four
specimens are used for the displacement u1. The testing process
is stopped when the full collapse of the specimen is observed,
and the fatigue lifetime N f , defined as the number of loading
cycles required to reach the failure, is recorded.

Table 1
Accelerated fatigue testing Stress

Accelerated stress levels : displacement strokes
-high - -medium- -low- -nominal-
u1 u2 u3 unom

29.3 mm 27.3 mm 24 mm 22.3 mm

Table 2
Accelerated fatigue testing results : Lifetimes (cycles)

Accelerated fatigue lifetimes at each stress levels
-high- -medium- -low-

N
f(

cy
cl

es
)

9088 12797 27305
9909 16845 31457
8883 13177 26580
8358 14252 23759
8899 24275

Statistical analysis is performed assuming a lognormal distri-
bution for the fatigue lifetime N f and an inverse power law as
acceleration model, which reads:

N̄ f (s) =
1

K× sγ1
(32)

where s denotes the stress level, N̄ f is the median fatigue lifetime
at stress level s, and K and γ1 are real unknown parameters of
the model.

Now applying the logarithm on the both sides of Eq. (32) in
order to linearize the acceleration law with respect to the stress
level, the median fatigue lifetime may be cast as a function of s
as follows:

µN f (s) = ln
(
N̄ f (s)

)
= γ0− γ1× ln(s) (33)

where γ0 =−ln(K)

It follows that the lognormal cumulative distribution function,
used to represent the variability of the fatigue lifetime N f , may
be written in the following form:

F
(

N f ,µN f (s),σ
)
= Φ

(
ln(N f )− γ0 + γ1× ln(s)

σ

)
(34)

where µN f (s) is the scale parameter and σ represents the shape
parameter.

The shape parameter σ is assumed to be constant for all stress
level s. This assumption is a commonly used [40, 41] which
allows to simplify Eq.34 but also means that the failure mecha-
nism remains the same for all the applied stress levels. Indeed,
in accelerated life testing, when over-stressing the component,
one has to ensure that the component will fail in the same man-
ner. This assumption is not always valid [42], thus need to be
validated using the obtained results from the ALT.

As previously mentioned, Maximum-Likelihood-Estimation
method is used to compute the parameters of the acceleration
model. The log-likelihood function reads :
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L (γ0,γ1,σ) =

3

∑
k=1

(
nk

∑
i=1

ln

(
1

N fiσ
√

2π
exp

[
−
(
ln(N fi)− γ0 + γ1ln(sk)

)2

2σ2

]))
(35)

The estimators of the parameters of the acceleration model,
as well as those of the fatigue lifetime distribution are reported
in Table 3. µ̂

exp
Dre f

and σ̂
exp
Dre f

correspond respectively to the scale
and shape parameter estimators of the lognormal distribution of
the experimental lifetime of Dre f .

To validate the assumption that the shape parameter σ̂
exp
Dre f

is constant for all the three stress levels, the likelihood ratio
test is performed. For each stress level si, the log-likelihood
Li is computed as well as the log-likelihood La considering all
the stress levels. Then the statistic T = 2× (L1 + L2 + · · ·+
Lk−La) is calculated and compared to χ2(1−α,k− 1), that
is the 1−α order quantile of the Chi-square distribution χ2,
with k−1 degrees of freedom, where k is the number of stress
levels and α is the risk of error. According to this test, if T ≤
χ2(1−α,k− 1) then constant shape assumption is validated
and if T > χ2(1−α,k−1) the assumption is rejected. In this
paper k = 3 and a risk α = 0.1 is used leading to T = 2.151
and χ2(1−α,k−1) = 4.605. Therefore, T ≤ χ2(1−α,k−1)
which validated the assumption.

The median fatigue lifetime N̄ f ,0 of the component at op-
erating loading conditions, is also estimated and shows that
the failure of the component occurs during Low-Cycles Fatigue
(LCF) stage, since the fatigue lifetime do not exceeds 105 cycles.

Table 3
Estimates of the acceleration model and fatigue lifetime distribution parameters
of the reference design

γ̂0 γ̂1 µ̂
exp
Dre f

σ̂
exp
Dre f

N̄ f ,0

28.281 -5.669 10.681 0.090 43525

In addition, the experimental reliability function of the refer-
ence design and the corresponding 95% confidence bounds are
plotted in Fig. 7 (a).

In order to construct the time transformation function associ-
ated to the studied mechanical component, numerical analysis
is also carried out based on the proposed approach presented in
section 3. First of all, a 3D finite element model of the refer-
ence design has been developed using the software Abaqus [43].
The mechanical behavior of the constitutive material follows the
well-known Ramberg-Osgood law [44] and the Coffin-Manson-
Morrow’s fatigue model [45] was used to compute the fatigue
lifetime. The use of this fatigue model is motivated by the ex-
perimental results which clearly show that the failure of the
mechanical component occurs during low-cycles fatigue stage.
The main advantages of the Coffin-Manson-Morrow fatigue
model, compared to the original Coffin-Manson fatigue model,
is that it takes into account the effect of the mean stress σm as

shown in the following equation:

∆εt

2
=

σ
′
f −σm

E
(2N f )

b + ε
′
f (2N f )

c (36)

where ∆εt/2 = ∆εe/2+∆εp/2 is the strain amplitude which is
function of the elastic and plastic strain amplitudes, σ

′
f is the

fatigue strength coefficient, ε
′
f is the fatigue ductility coefficient,

b is the fatigue strength exponent, c is the fatigue ductility expo-
nent, E is the elastic modulus and 2N f is the number of reversals
to failure. The parameters σ

′
f , ε

′
f , b and c of the fatigue model

are obtained through hardness coefficient of the constitutive
material [45]. Note that, the fatigue lifetime N f is obtained by
solving Eq. (36) based on numerical scheme, where the total
strain amplitude ∆εt/2 is given by the finite elements model.

Now we are interested in the study the effect of the uncertain-
ties observed on loading parameters and materials properties,
on the response of the mechanical model defined as the fatigue
lifetime N f . The uncertain parameters are the elastic modulus E,
the fatigue strength coefficient σ

′
f , the fatigue strength exponent

b and the cyclic loading amplitude uc. They are modeled as inde-
pendent lognormal variables, where the statistical characteristics
(i.e. the mean value µ and the standard deviation σ ) are given
in Table 4.

Table 4
Distribution type and statistical characteristics of the uncertain parameters of the
reference design

Parameter Distribution µ σ

E(GPa) Lognormal 210 2.1
σ
′
f (MPa) Lognormal 2339.724 23.39

ε
′
f Constant 0.45 -

b Lognormal 0.09 9.10−4

c Constant 0.59 -
up(mm) Constant 4.15 -
uc(mm) Lognormal 14.8 0.158

Since the mechanical model has an implicit form (i.e. finite
elements model), which is time consuming to be used directly
to carry out uncertainty propagation analysis, a surrogate model
based on the DDM has been constructed. The mechanical re-
sponse, defined as the fatigue lifetime N f , is then represented
through a polynomial approximation N̂ f (E,σ

′
f ,b,uc), based on

univariate dimensional decomposition (s = 1) and 7th order ex-
perimental design. That is, 7 experimental points are used in
each direction of the random space, and obtained through the re-
cursive formula (see Eq. 12), where the reference point is taken
as the mean point. Consequently, only 24 finite elements analy-
sis are needed to construct the surrogate model. One should note
that the experimental design is firstly constructed in the standard
random space and then generated in the physical random space
based on isoprobabilistic transformation as explained in section
2.
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Fig. 7. (a) Experimental reliability of the reference design Rexp
Dre f

, (b) Finite elements mesh of the reference design

In order to evaluate the accuracy of the obtained surrogate
model, the polynomial approximation is plotted with respect to
the uncertain parameters E,σ

′
f ,b and uc. Every time, only one

uncertain parameter is taken as a variable quantity and the others
remaining parameters are fixed at their respective mean values.

It is important to note that the experimental points used to
assess the accuracy of the polynomial approximation are differ-
ent from those used in the construction of the surrogate model.
They are sampled in the range [µi±3σi], where µi and σi are the
mean and the standard deviation of the ith uncertain parameter.
As shown in Fig. 8, univariate approximation matches the exact
mechanical model, which is represented here by a finite element
model, in the range [µi±3σi]. Thus, Monte-Carlo simulations
can be applied to the surrogate model to efficiently perform
uncertainty propagation analysis. This procedure is efficient
since it does not require any additional finite elements analysis.
Indeed, the four first statistical moments, namely the mean, the
standard deviation, the skewness and the kurtosis, of the fatigue
lifetime are computed (see Table 5) based on 105 Monte-Carlo
simulations. The probability density function is also constructed,
which gives more information compared to the statistical mo-
ment since each possible event is weighted by a probability of
occurrence.

The probability density function of the fatigue lifetime is
compared to standard distributions. As depicted in Fig. 9 (a),
it can be accurately approximated by lognormal distribution,
which is more simple to use (i.e. since an analytical formulation
is already available) to carry out reliability analysis, for instance.
It should be noted that the equivalent scale parameter µ̂num

Dre f

and shape parameter σ̂num
Dre f

of the lognormal distribution of the
fatigue lifetime are also computed (see Table 5).

The probability density function of the fatigue lifetime is then
integrated to obtain the numerical reliability function Rnum

Dre f
and

compared to the experimental reliability function Rexp
Dre f

obtained

Table 5
Statistical moments of the fatigue lifetime of the reference design from surrogate
model based on the DDM

Statistical moments of the fatigue lifetime
Mean Standard

deviation
Skewness Kurtosis Coefficient

of varia-
tion

65546.68 10826.76 0.178 3.078 16.5%
Lognormal distribution parameters
µ̂num

Dre f
σ̂num

Dre f

11.08 0.164

previously through experimental test results analysis. The gap
observed between the numerical estimations and the true relia-
bility (see Fig. 9 (b)), can be explained through, on one hand,
the simplifying assumptions made in the finite elements anal-
ysis such as the boundary conditions which can be a little bit
different from those taken in the experimental testing process,
and on the other hand, the lack of information about the uncer-
tain parameters. Indeed, the probabilistic models (i.e. random
variables) and the associated statistical characteristics should be
obtained through statistical analysis to be able to represent the
true variability of the uncertain parameters. In this study, the
coefficients of variation of the uncertain parameters are obtained
through engineers experiment feedback.

We are interested now on the construction of the time transfor-
mation function of the studied mechanical component which is
defined as the relationship between the numerical and the exper-
imental reliability function. To do this, the approach proposed
in section 3.2 is used. Let Nexp

f ,Dre f
(i) and Nnum

f ,Dre f
(i) respectively

the experimental and numerical estimates of the fatigue lifetime
associated to a same reliability level Ri. The relationship be-
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Fig. 8. Evaluation of the accuracy of the surrogate model for the reference design

Fig. 9. (a) Probability density function of the fatigue lifetime N f for the reference design, (b) Comparison of the experimental and numerical estimations of the
reliability for the reference design

tween Nexp
f ,Dre f

(i) and Nnum
f ,Dre f

(i) is written as follows using the
time transformation function h(t) described by the Eq. (18):

Nexp
f ,Dre f

(i) = h
(

Nnum
f ,Dre f

(i)
)
= A×

[
Nnum

f ,Dre f
(i)
]β1

(37)

Based on the third step of the methodology developed in sec-
tion 3.2, the parameters A and β1 of the transformation function
have been computed and the corresponding estimated values Â
and β̂1 are reported in Table 5. The power law model is com-
pared to linear and 2nd order polynomial approximations, and is

found to be the best to fit the regression points as shown in Fig.
10.

Table 6
Estimates of the parameters of the time transformation function

Linear 2nd order polynomial Power law
R2 R2 R2 Â β̂1

0.9984 0.9914 1 61.198 0.593
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Fig. 10. Comparison of the regression models used to construct the time trans-
formation function

4.2. Reliability analysis of the upgraded design

The reference design Dre f of the mechanical component is
now modified to cope with some car constructors requirements.
Obviously, it is necessary to assess the effect of these modifica-
tions on the reliability of the upgraded design Dre f . The problem
is that FAURECIA Company, which is in charge of the qualifica-
tion process, would not want performs experimental tests on the
upgraded design to estimate the corresponding reliability, since
it is time consuming and expensive. The idea is to use results
of reliability analysis carried out on previous designs as prior
knowledge to estimate the reliability of the upgraded design.
Indeed, this later has the same backbone as the reference design,
since the modifications are not significant. Consequently, the
time transformation function should be the same for the two
designs. In other words, the time transformation function is
rather related to the product and invariant against the design.
Thus, the true reliability (i.e. experimental reliability) can be
easily obtained by applying the time transformation function to
the results of numerical reliability analysis carried out on the
upgraded design, following the method developed in section 3.

First of all, a 3D finite elements model is developed on the
software Abaqus to compute the fatigue lifetime of the upgraded
design, using the same assumptions on the boundary conditions
as for the reference design. It is important to note that the
upgraded design is built of the same material as the reference de-
sign and Ramberg-Osgood constitutive law and Coffin-Manson-
Morrow fatigue model are also used. However, the loading
conditions have been a little bit modified (see Fig. 11 (a)) since
the preloading displacement up and the cyclic displacement uc
are equal now to 4.8 mm and 8 mm, respectively. In addition,
as schematically depicted in Fig. 11 (a) a spring model is taken
into account in the finite elements analysis to reproduce the real
operating conditions of the new design. A sketch of the finite

elements mesh is depicted in Fig. 12.
Then probabilistic analysis is performed combining surro-

gate model and Monte-Carlo simulations to assess the effect
of the variability of the uncertain parameters (see Table 7) on
the fatigue lifetime of the upgraded design. The deterministic
parameter k in Table 7 refers to the stiffness of the spring model
used in the finite elements analysis.

Table 7
Distribution type and statistical characteristics of the uncertain parameters of the
upgraded design

Parameter Distribution µ σ

E (GPa) Lognormal 210 2.1
σ
′
f (MPa) Lognormal 2339.72 23.39

ε
′
f Constant 0.45 -

b Lognormal 0.09 9.10−4

c Constant 0.59 -
up (mm) Constant 4.8 -
uc (mm) Lognormal 8 0.08
k (N/mm) Constant 3.359 -

Firstly, the accuracy of the surrogate model is evaluated by
plotting the obtained analytical formulation with respect to the
uncertain parameters as shown in Fig. 13. As can be seen, the
polynomial approximation built through DDM reproduce very
well the real behavior of the studied mechanical component
represented here by a finite elements model. Thus, it can be
used to perform reliability analysis. It is important to note that
the surrogate model is obtained through univariate dimensional
decomposition (s = 1) and Lagrange polynomial constructed on
the same experimental design as for the reference design.

The four first statistical moments of the fatigue lifetime N f are
computed through 105 sample obtained through Monte-Carlo
simulations on the surrogate model (see Table 8). The equiv-
alent scale parameter µ̂num

Dup
and shape parameter σ̂num

Dup
of the

lognormal distribution are also estimated.

Table 8
Statistical moments of the fatigue lifetime of the upgraded design from surrogate
model based on the DDM

Statistical moments of the fatigue lifetime
Mean Standard

deviation
Skewness Kurtosis Coefficient

of varia-
tion

32382.93 5751.87 0.335 3.249 17.8%
Lognormal distribution parameters
µ̂num

Dup
σ̂num

Dup

10.370 0.176

Based only on the results of the numerical analysis for both
reference and upgraded designs, and comparing the mean values
of the fatigue lifetime, it is clear that the reference design better
resist to the corresponding operating loading conditions since
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Fig. 11. (a) Sketch of the upgraded design, (b) Applied load for the upgraded design

Fig. 12. Finite elements mesh of the upgraded design

the fatigue lifetime is much longer. As a preliminary conclusion,
we can say that the modifications carried on the mechanical
component will have harmful effect on its reliability. This in-
formation is very useful for the engineers since the product is
still in the design stage, and has not reached the market. Indeed,
they still have a large leeway to enhance the product without
expensive efforts.

From the sample set given by Monte-Carlo simulations an
histogram of the fatigue lifetime may be built. Then, as depicted
in Fig. 14 (a), a graphical representation of the probability
density function of the fatigue lifetime is obtained using kernel
smoothing technique on the previous histogram. In addition, the
probability density function is compared to standard distribution
models for which analytical formulation is available. As can be
seen, the lognormal model fits very well the probability density
function of the numerical fatigue lifetime of the upgraded design.

To validate the assumption of same time transformation func-
tion for the reference and upgraded designs, a linearity analysis

is performed using the probabilistic mechanical models of both
designs. In Fig. 16, each point

(
CV (yup);CV (yre f )

)
represents

the estimated variabilities (coefficient of variations) of the re-
sponses of both mechanical models given same variabilities
levels (perturbations) introduced on their input parameters. As
can be seen, a linear relationship with a slope βL ≈ 1 and an
y-intercept αL ≈ 0 can be derived between the variabilities of
the responses of the reference and the upgraded design, which
means that they have the same behaviour. Therefore, we can
conclude that the time transformation function is conserved for
both designs.

Having previously obtained the time transformation function
of the mechanical component based on results of both experi-
mental and numerical reliability analysis of the reference design,
the true reliability (i.e. experimental reliability) of the upgraded
design can be easily obtained by applying the time transforma-
tion function to the numerical reliability of the upgraded design,
as explained in section 3. Firstly, after discretizing the reliability
domain, a sample set of expected experimental lifetime for the
upgraded design is generated. Then, thanks to the bootstrap tech-
nique the statistical characteristics, typically the mean µ̂

exp
Dup

and
the standard deviation σ̂

exp
Dup

, of the lognormal distribution of the
experimental fatigue lifetime, are obtained in conjunction with
the associated 95% confidence bounds. The obtained values are
given in Table 9.

Table 9
Lognormal distribution parameters of the experimental fatigue lifetime for the
upgraded design

µ̂
exp
Dup

σ̂
exp
Dup

Lower Median U pper Lower Median U pper
10.237 10.261 10.283 0.085 0.0986 0.113

It should be noted that a symmetric confidence interval has
been chosen here since the estimators µ̂

exp
Dup

and σ̂
exp
Dup

can be well
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Fig. 13. Evaluation of the accuracy of the surrogate model for the upgraded design

Fig. 14. (a) Probability density function of the fatigue lifetime N f for the upgraded design, (b) Comparison of the experimental and numerical estimations of the
reliability for the upgraded design

fitted by normal distribution as shown in Fig. 15 (a) and Fig. 15
(b).

Finally, the experimental reliability Rexp
Dup

of the upgraded de-
sign can be easily derived through the integration of the probabil-
ity density function of the experimental fatigue lifetime Nexp

f ,Dup
.

As depicted in Fig. 14 (b), for high reliability levels (i.e. ∼ 1) a

small discrepancy is observed between the experimental and the
numerical estimations since the relative error does not exceeds
2%. However, this later (i.e. the discrepancy) is more significant
when the reliability tends to 0. This discrepancy is mainly due
to the assumptions taken in the finite elements analysis and the
modeling of the variability of the uncertain parameters. It is
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Fig. 15. Scatter on the estimators of statistical parameters of the experimental fatigue lifetime distribution of the upgraded design

Fig. 16. Linear relationship between the mechanical models representing the
reference and the upgraded designs (conservation of the mechanical behavior)

important here to remind that the main subject of the proposed
approach is to construct an accurate prior knowledge of the true
reliability of the underlying component at the design stage, in
order to reduce the number of accelerated tests, required later at
the qualification stage. Only for validation purposes, a few tests
reproducing nominal operating conditions have been performed
on a prototype of the upgraded release of the mechanical com-
ponent. Tests results consists of 5 failures times corresponding
to the number of cycles to fatigue (24983, 26660, 27400, 27970,
32500).

Fig. 17 compares the experimental test results and the ex-
perimental reliability function obtained through the proposed
approach. For graphical comparison purpose, we have also plot-
ted in the same figure, the numerical reliability curve Rnum

Dup
of

the upgraded design Dup. As can be seen, regarding the 5 ex-
perimental points, the reliability function obtained through the
proposed approach is an acceptable estimate of the upgraded

Fig. 17. Comparison of the reliability estimation given by the proposed approach
and experimental test results performed on the upgraded design

design reliability, especially for high and low reliability levels
since these later are too close to the median curve and belongs in
the 95% confidence interval. Also note that, the area of interest
on the reliability curves is limited to the reliability values located
in the interval [0.7,1[, that generally corresponds to customer
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reliability requirements. Therefore, the proposed approach is
efficient and sufficiently accurate to carry out early reliability
analysis of upgraded automotive components. Indeed, one have
to keep in mind that the aim of the proposed approach, from an
industrial point of view, is to reduce as possible the number of
experimental tests to estimate the true reliability of upgraded
design. In this context, the reliability of the upgraded design ob-
tained by the proposed approach can be enhanced further, using
for instance, Bayesian updating, based only on few testing.

5. Conclusion

In this paper, we propose a novel approach, combining effi-
cient surrogate models and time transformation concept, to deal
with early reliability analysis of upgraded automotive compo-
nents. The proposed approach is composed of five steps. In
summary, first, the TTF associated to the automotive component
is derived from reliability analysis based on both experimen-
tal data and numerical computation of the fatigue lifetime of a
reference design. The fatigue lifetime distribution is built by
performing Monte-Carlo simulations on a surrogate model. The
surrogate model, which approximates the mechanical behavior
of an automotive component, initially derived from an implicit
formulation (i.e. finite elements model) is built using the DDM
and projection on Lagrange polynomial basis. Secondly, the true
reliability of any upgraded design of the same automotive com-
ponent is easily derived by applying the TTF to the numerical
reliability obtained through finite elements analysis and DDM-
based surrogate model. In addition, a bootstrap-based sampling
technique is used to obtain confidence interval of the reliability
estimates.

The efficiency and the accuracy of the proposed approach
are evaluated through reliability analysis of two design releases
of a mechanical component used to locking and unlocking the
longitudinal sliding of car seat. The results have shown that the
use of meta-modeling technique to perform uncertainty propa-
gation throughout a mechanical model contribute significantly
to the efficiency of the proposed approach since only 2× 24
finite elements analysis (i.e. 24 calls of the finite elements per
each release of the studied mechanical component) are needed
to obtain a surrogate model able to reproduce accurately the real
mechanical behavior of the automotive component initially given
by a time consuming implicit model. This is mainly due to the
structure of the polynomial approximation given by the DDM,
where high order interactions of weak effect are automatically
omitted. Indeed, a simple univariate dimensional decomposition
is sufficient to correctly reproduce the nonlinear behavior of the
mechanical component. It has been also shown that a power
model is suitable to build the time transformation function since
it fits better the evolution of the reliability than linear and 2nd

order polynomial models. In addition, the time transformation
function is rather related to the product than the design releases.
That is, it remains the same for the upgraded and the refer-
ence designs. The reliability function of the upgraded design,
derived through the proposed approach, is close to the reliabil-
ity obtained through experimental testing, since the observed

discrepancy is very small. This later is mainly due to the assump-
tion made on the probabilistic models (i.e. the distribution type
and the statistical characteristics of the random variables) repre-
senting the variability of the uncertain parameters. In summary,
the proposed approach combining meta-modeling-based reliabil-
ity analysis and time transformation function concept provides
a good alternative, to carry out early reliability estimation on
upgraded automotive components.

Further works should be focused on improving the accuracy
of the proposed approach. One way is to perform statistical
analysis to determine objectively the statistical characteristics
and the distribution type of the random variables representing
the uncertain input parameters in order to better represent their
real variabilities. Another way is to combine the proposed ap-
proach with Bayesian computations that aim to optimizing an
experimental qualification plan.
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