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Abstract

Inspection by non-destructive testing (NDT) techniques is an effective way for

assessing structures’ condition state, their pathologies and locating potential

critical areas. However, establishing accurate diagnoses requires numerous mea-

surements while the available budget is limited. Nevertheless, determining the

spatial variability of the material properties leads fewer of the required mea-

surements, as it characterizes zones with almost identical properties and helps

identify weak areas. But assessing this spatial variability still requires numer-

ous measurements. It should be limited by a rational criterion that could be

expressed in terms of accuracy and cost minimization. In the present work,

we develop an adaptive approach to characterize spatial variability of struc-

tures’ material properties modelled by transformed Gaussian random fields. The

methodology is performed in two steps. Firstly, the correlation length of the

Gaussian random field is computed for a given accuracy. Secondly, the number

of measurements is refined to estimate the first two moments of the random

field with a given accuracy too. These two steps result in a minimization of

the number of measurements (i.e the cost) for a target accuracy. The proposed

methodology and theoretical results are illustrated using synthetic and real data.
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1. Introduction

In current practice, non-destructive testing (NDT) techniques (ultrasonic,

resistivity and electromagnetic methods) are crucial tools for the management

and the evaluation of the condition state of infrastructures. Structural damages

can lead to major human, environmental or economic consequences. Therefore,5

adapting repair and maintenance strategies and improving diagnosis from in-

spection for evaluating the risk are a permanent challenge. Bayesian methods

are appropriate for condition state and reliability updating when a prior dis-

tribution is known and data are periodically collected to derive the posterior

distribution. Further, a generalised Bayesian framework has shown its efficiency10

to reduce uncertainties in the case of imperfect inspections [17, 24, 26, 35, 36].

The common challenge of these generalized frameworks is to address the issue of

maintenance cost reduction. These procedures are convenient when there is no

significant spatial variability of the deterioration process; in that case provide

the size of the sample (number of uncorrelated measurements).15

A spatial variability model of material properties is the key to describing

the non-homogeneity of mechanical and physical properties of large structural

components. It is derived from three main factors: the intrinsic randomness

of material composition (e.g. scale and nature of aggregates and particles),

the severity of the environmental conditions during the life of the structure (e.g.20

carbonation, chemical composition of water, temperature and humidity) and the

construction conditions and anisotropy (e.g. workmanship). Thus, assessing the

spatial variability allows to locate potential damaged areas on infrastructures

and to propagate this property with time to predict the time-variant reliability

[25, 31, 33].25

On the other hand, recent studies have shown that this spatial variability has

an important and direct impact on structural reliability [28, 33, 34] that requires
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its characterization and modeling. Non-Destructive Testing or Structural Health

Monitoring are efficient and cost effective tools that provide useful information

for spatial variability characterization of material properties. Several researches30

have focused on spatial variability of quantities of interest [8, 12, 19, 28, 29].

However, to our knowledge, none of them has focused on sampling optimization

for optimal assessment of the correlation length, which governs the spatial corre-

lation, roughness and anisotropy of the random field. For example, Nguyen et al

[19] combined several NDT techniques, variogram fitting and kriging prediction,35

to describe the spatial variability of concrete and using the simple confidence

region of the mean which is not accurate since it doesn’t consider the correla-

tion between measures. In [8] an adaptive method uses the kriging prediction

based on the spatial correlation from prior information. The kriging procedure

is progressively performed in view to select the spatial locations with minimum40

variance. However, the estimated parameters can be poorly estimated due to

the bad prediction of the prior spatial variability.

Schoefs et al, [29] proposed a two-step procedure to assess the minimal num-

ber of measurements under some assumptions. Firstly, the spatial variability is

evaluated using a fast NDT. Secondly, after introducing a threshold distance of45

negligible correlation, Monte-Carlo simulations combined with Karhunen-Loève

discretization are performed to compute the confidence region of the mean and

the variance. However, a poor estimation of the correlation length at the first

stage of the method can provide inaccurate reliability estimates. Further, the

simulated confidence region through the Bootstrapping approach is not accurate50

since the correlation between measures is not considered.

The main objective of this paper is to propose an adaptive methodology

that computes the number and locations of measurements needed to assess

spatial variability of quantities within a required confidence level. The adaptive

approach is based on two estimates. The first one is an error indicator that55

estimates an accurate scale of fluctuation [5, 39] based on Maximum Likelihood

Estimate (MLE) [4, 16, 37]. Second, the statistical indicator quantifies the

error on the mean; its decay allows to revise the accuracy of the estimated
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moments of the field at the first stage. The advantage of this approach is that

the spatial correlation is not neglected and the parameters of the model are60

provided within the target accuracy. Hence, our contribution provides a new

approach to improve cost/benefit ratio of NDT techniques on site in terms of

number of measurements given a target accuracy.

The paper starts with a review of key concepts about spatial random field

modeling with a focus on stationary and ergodic random fields. Then we de-65

scribe the iterative MLE and properties of the estimates. Section 3 develops

the procedure to adapt the number and locations of the measurements during

the inspection protocol. Finally, Section 4 presents numerical examples with

synthetic and real data illustrating and validating the proposed methodology.

2. Spatial random field for inspection modeling70

The random fields theory is a basic probabilistic theory for modeling uncer-

tainties of spatially dependent quantities (material property, geometry, deteri-

oration process, load, etc). Spatial uncertainty is statistically quantified by its

mean, variance, and spatial correlation. In most applications, it is given by a

continuous spatial function and depends on a scale of fluctuation. It describes75

how local properties are statistically similar in comparison with others (close or

far). The scale of fluctuation quantifies how properties vary in space (strong for

small scale or weak for large one) .

Random fields could take several forms of the stationary and non-stationary

properties, depending on the intrinsic characteristics of the material, exter-80

nal factors, and the quantities of interest to be estimated. They are usually

described by their spatial correlation or other statistical estimates like mean,

variance, variogram or scale of fluctuation. Spatial or spatio-temporal random

fields are extensively used in structural engineering for modelling the degrada-

tion process and reliability assessment [23, 28, 34]. Second order (with finite85

variance) stationary random fields have been used to model the spatial variabil-

ity of material properties; for instance surface chloride concentration on concrete
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structures, concrete or soil properties [9, 11, 20]. The Gaussian Random Field

(GRF) or a transformation of GRF (log-normal random field) is widely used in

many applications, because it is completely defined by its mean and its covari-90

ance function.

2.1. Stationary and ergodic random field

In classical statistics, the repetition and the independence of events are es-

sential to derive parameter estimates or testing hypotheses. The equivalence of

these two properties in spatial statistics is the stationarity (spatial repetition)95

and ergodicity (asymptotic independence where the correlation between events

vanishes at infinity). Therefore, we focus on these two key properties in the

following. We consider a spatial set D of the d-dimensional space of coordinates

x in Rd (with d = 1, 2 or 3).

Definition 2.1. Z is a second order stationary random field (in the weak sense),100

if its moments are invariant in space under translation, for each points x and

x+ h in D, h being the Euclidean distance (lag distance),

E[Z(x)] = µ, (1)

E[(Z(x)− µ)(Z(x+ h)− µ)] = C(h) = C(0)c(h); (2)

where C(·) is the stationary covariance, σ2 := C(0) is the variance of Z and

c(h) = C(h)
C(0) is the stationary correlation function of Z. In addition, if C(h)

depends only on the distance ‖h‖, Z is an isotopic field.105

We define a strong stationarity of Z when the distribution of each vector

(Z(x1 + h), . . . , Z(xN + h)) is independent on h. Both concepts, weak and

strong stationarity are equivalent for a Gaussian field. There is a subclass of

stationary fields which have the interesting property of ergodicity, where the

first and second moment of Z can be estimated from a single path of Z by

spatial average. In practice, the ergodic model is convenient for purely spatial

phenomena [5]. The ergodicity means basically a mixture of stationarity with

asymptotic independence where the stationary correlation vanishes at infinity.
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Model c(h) Parameters

Matérn
21−ν

Γ(ν)

(√
2νh

θ

)ν
Kν
(√

2νh

θ

)
θ > 0, ν > 0

Powered exponential exp

(
−
[
h

θ

]ν)
0 < ν ≤ 2, θ > 0

Triangular

 1− h

θ
h ≤ θ

0 h > θ
θ > 0

Cosine exponential exp

(
−h
θ

)
cos

(
h

θ

)
θ > 0

Cardinal Sine

sin

(
h

θ

)
h

θ

θ > 0

Table 1: Some parametric classes of stationary correlation functions for a Gaussian field

A second order stationary random field Z is ergodic (Slutsky’s ergodic theorem

[5]) if,

lim
D→Rd

1

|D|2

∫
D

∫
D

C(x, y)dxdy = 0. (in quadratic mean) (3)

2.2. Correlation function model

We focus in this subsection on the covariance function. From real data

(path), the objective is to select a parametric model for this function. Table

1 provides examples of covariance functions for modeling stationary random

fields. Many models are considered in the literature; several criteria impact their110

selection. For example the smoothness of trajectories (paths of Z i.e the function

x → z(x)) or the memory of the process (the decay of c to zero with respect

to the lag h). They are characterized by the scale of fluctuation θ > 0 and the

parameter of the smoothness ν > 0. The Matérn covariance function generalizes

the most commonly used in engineering applications (Exponential and Gaussian115

covariance) [10]. Kν denotes the modified Bessel function of the second kind

and Γ is the classical gamma function. The parameter ν characterizes the

roughness of Z when 0 < ν < 1 or the smoothness when ν ≥ 1. When ν = 1
2 ,

c coincides with the classical exponential correlation, c(h) := e−h/θ, and when
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ν −→ ∞, c approaches the Gaussian correlation, c(h) := e−h
2/(2θ2) for which120

the trajectories of Z are infinitely differentiable. These last two models are

the most used in structural engineering applications [8, 11, 19, 29]. However,

neither model takes into account into the roughness or the nugget effect of the

spatial data which characterizes the behaviour of the covariance model at the

origin. In order to simplify the presentation of the proposed adaptive approach,125

we consider a model correlation function with a fixed ν > 0 and unknown scale

of fluctuation θ. Further we assume following properties for modelling random

fields and inspection protocols.

1. Quantities of interest are assumed to be modelled by a known transfor-

mation T (Z) of a Gaussian field Z.130

2. The GRF Z is second order stationary, and ergodic. Then, we focus

on the characterization of its mean, its variance and the spatial scale of

fluctuation.

3. Inspections are carried out on a (quasi)-regular grid (constant lag h) where

the number of measurements Ns can be large.135

2.3. Spatial parameters estimation

We introduce some notations, let D be a spatial set (structural compo-

nent) and Z a Gaussian random filed with mean µ, variance σ2 and a sta-

tionary covariance C. We get a realization of Z at Ns locations x1, . . . , xNs
,

hence the random vector Z := (Z(x1), . . . , Z(xNs
))′ has a multivariate Gaus-140

sian distribution. We note by R the correlation matrix of vector Z with entries

Ri,j :=
C(|xi − xj |)

σ2
= c(|xi − xj |); i, j = 1, . . . , , Ns, where (xi+1 − xi) = h is

the lag distance.

There are two widely used approaches for estimating θ. One approach is

the Maximum Likelihood Estimate MLE where estimates θ̂, µ̂ and σ̂2 maximize

the joint probability density of Z. Another approach relies on the Least Square

Estimate (LSE) where an estimate of the model parameter (see Table 1) provides

the best fit for the empirical covariance or variogram. This latter is faster
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and more tractable when data are not sampled from a Gaussian or log-normal

distribution. Because the knowledge of the joint probability density of Z is not

required in the case of LSE. This method simply considers the covariance model.

The natural estimate of C is the experimental covariance at the lag distance h

[4, 14]:

Ĉ(h) =
1

Nh

Nh∑
i=1

(Z(xi)− µ̂) (Z(xi + h)− µ̂) , (4)

where µ̂ :=
1

Ns

Ns∑
i=1

Z(xi) is the unbiased estimate of µ, Nh being the number of

points distant with h from the considered locations. The fitted parameters from

(4) are biased since Ĉ is a biased estimator of C. Sometimes, it is preferred to

perform the best fitting of the experimental variogram V̂ (h) [4] defined by:

V̂ (h) =
1

2Nh

Nh∑
i=1

(Z(xi)− Z(xi + h))
2
, (5)

The estimate V̂ (h) is unbiased because it does not require any prior estimate

of µ; this can increase the precision of parameters since they are also unbiased145

(for more details; see [4]). Under some regularity conditions on the continuous

variogram with respect to the parameters and the spatial locations, the least

square estimate converges to the Normal distribution [4, 7]. However, the co-

variance matrix of the asymptotic distribution depends on the eigenvalues of

the unknown matrix R, so it is difficult to compute efficiently the confidence150

region of the parameters. Consequently, we propose to use the MLE for esti-

mating parameters where the covariance matrix of the asymptotic distribution

can be computed from the inverse of the Fisher information matrix. The Fisher

information-matrix gives the amount of information that an observable random

vector Z carries about unknown parameters θ. This information-matrix gives155

an asymptotic distribution of the MLE of θ. Formally, it is given by the variance

of the derivative of the logarithm of the likelihood with respect to θ.

2.4. Maximum Likelihood Estimate

When data are assumed to be realizations of Gaussian or log-normal dis-

tribution, it is often preferable to construct the maximum likelihood estimate160
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by maximizing the likelihood of the data. The idea of the method is to con-

struct an estimator which ensures that the probability of the observed values

is maximal. Statistical tests can be performed to check whether data originate

from a multivariate Normal distribution; the generalized multivariate skewness

and kurtosis test is proposed by [15]. Some transformations like the Box-Cox165

transformation [1] can be performed to obtained Normal distributed data.

Let Z be a Gaussian vector discretized from a stationary Gaussian field with

mean µ, variance σ2, and correlation matrix R(θ). We note η := (µ, σ2, θ) and

η̂ its MLE which is given by maximizing the likelihood,

L(η,Z) = (2πσ2)−
Ns
2 |R|− 1

2 exp

(
− 1

2σ2
(Z− µ)′R−1(Z− µ)

)
; (6)

where |R| is the determinant of R and ’ refers to transpose. In practice, we

minimize the negative log-likelihood given by the formula:

`(η,Z) =
1

2

(
Ns log(σ2) + log |R|+ 1

σ2
(Z− µ)′R−1(Z− µ)

)
(7)

An iterative resolution is used to solve this optimization problem according to

the following steps:

1. First, we choose an initial estimate θ0, and we compute the estimates of

µ and σ2, as follows:170

• MLE of the mean µ:

µ̂ =
Z′R−11

1′R−11
, (8)

where we note by 1 the vector with Ns entries all equal 1.

• MLE of the variance σ2:

σ̂2 =
(Z− µ̂)′R−1(Z− µ̂)

Ns
(9)

2. Next, we compute θ̂ by minimizing `(η̂,Z) knowing µ̂ and σ̂2 from step 1.

3. We repeat this step until convergence.

The convergence criterion is reached when two successive approximations of the

scale θ̂ (for instance) are close to a fixed threshold.175
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To compute η̂, some authors propose to use the Cholesky decomposition

of R (at each iteration) which enables us to write R = QQ′ where Q is a

lower triangular matrix and Q′ its transposed. Thus, by performing in step

2 the transformation ξ =
Q−1(Z − µ̂)

σ̂
we have to minimize the negative log-

likelihood:

`(η, ξ) = 2 log |Q|+
Ns∑
n=1

ξ2n, (10)

Where |Q| is the determinant of Q and log |Q| =
∑Ns

i=1 log(Qi,i) with (Qi,i)
Ns
i=1

are diagonal entries of Q. This technique can be numerically more efficient

because of the efficiency and stability of the Cholesky decomposition in com-

parison with others decomposition method. The MLE is more attractive and

computationally feasible since it has the usual asymptotic convergence of con-

sistency and asymptotic Normality. Under some regularity conditions and the

decay of the covariance function of the underlying Gaussian field, authors in

[37] show the efficiency of the method on the case of a stationary Gaussian field

such that:

{η̂ − η} distribution−→ N (0,Σ−1); (11)

where Σ denotes the Fisher matrix information. The inverse of the Fisher matrix

is the covariance matrix of the vector η. The entries of Fisher matrix are given

by the second partial derivative of the log-likelihood:

Σi,j := −E
[
∂2 log(L(η, Z))

∂ηi∂ηj

]
. (12)

Mardia [16] extended the same result in the case of Gaussian vector with

a linear regression. The convergence result (11) is very useful since it allows

building the confidence regions of η̂ by computing the covariance matrix of the

asymptotic distribution.

Remark 2.1. Authors in [13, 12] propose to use an iterative algorithm to com-

pute the estimate of θ by performing the transformation ξ = Q−1(Z−µ)/σ and

minimize the negative log-likelihood of ξ:

`(η, ξ) =

Ns∑
n=1

ξ2n, (13)
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However, this estimate is much different than the estimate which maximizes180

(10), because the likelihood in (13) approaches the true likelihood in (10) only

for a small scale θ ≈ 0.

2.5. Asymptotic distribution of estimated parameters with MLE

The correlation matrix is assumed to depend only on the scale of fluctuation

θ , so η = (µ, σ2, θ). The covariance matrix Σ−1 is computed by substituting η̂

in the Fisher matrix information. The MLE of µ̂ is unbiased since E[µ̂] = µ with

minimal variance which is computed explicitly from (12) by taking ηi = ηj = µ.

Then, the MLE of µ̂ follows a Normal distribution with mean µ and variance

var[µ̂]:

var[µ̂] = −
(
E
[
∂2 log(L(η, Z))

∂2µ

])−1
=

σ2

1R−11′
. (14)

The Fisher matrix of the estimate (σ̂2, θ̂) is explicitly computed using the

classical derivative formulas
∂ log(|R(θ)|)

∂θ
= Tr(R−1

∂R

∂θ
) and

∂R−1

∂θ
= −R−1 ∂R

∂θ
R−1185

where Tr(B) designates the trace of a matrix B. Further, since the estimates

σ̂2 and θ̂ are asymptotically independent, their variance are estimated by:

var[θ̂] ≈
(
E
[
∂2 log(L(η̂, Z))

∂2θ

])−1
=

√
2qα√

Tr
(

(R−1(θ̂)∂θR(θ̂))2
) (15)

var[σ̂2] ≈
(
E
[
∂2 log(L(η̂, Z))

∂2(σ2)

])−1
=

2σ4

Ns
. (16)

Therefore, we estimate the asymptotic law of θ̂ as a Gaussian distribution with

mean θ and variance var[θ̂]. Similarly, we estimate the asymptotic law of σ̂2 as

a Gaussian distribution with mean σ2 and variance var[σ̂2]. However, from the

expression of σ̂2 given in (9), this estimate of the variance is biased (only asymp-

totically unbiased). Thus, we consider in what follows an unbiased estimate S2

defined by the following transformation:

S2 =
Ns

Ns − 1
σ̂2 =

(Z − µ̂)′R−1(Z − µ̂)

Ns − 1
(17)

By neglecting the error on the covariance matrix R we estimate the law of
Ns − 1

σ2
S2 as a chi-squared distribution χ2(Ns − 1) with Ns − 1 degrees of free-
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dom.

S2 ∼ σ2

N − 1
χ2(Ns − 1) (18)

3. Practical implementation for a target accuracy

When focusing on a practical application on a real database, the aim is to

optimize (reduce the number of measurements and respect a target accuracy)190

the total number of measurements N = Np × Ns where Np is the number of

repetitive tests to improve the quality of the inspection, Ns is the total number

of inspected locations (Fig 1).

Figure 1: Example of NDT measurements

The quality of inspection can be characterized by several approaches where

the consequence of measurement uncertainty on the decision is analysed by using

a risk based approach [2, 27, 32]. The quality of measurements can be improved

by performing reasonable repetitions of measures [29]. We assume in this paper

that repetitive measurements are sufficient and the measurement uncertainty is

neglected. Therefore, under the ergodicity assumption, we have to select the

total number of correlated inspections Ns for one structural component. The

first step consists in focusing on the assessment of the scale of fluctuation. It is

estimated by making its confidence region as small as possible. For a relatively

large Ns, the MLE θ̂ is approximated by a Gaussian vector with mean θ and

variance var[θ̂] given in (15). Thus, the asymptotic confidence region Iθ of θ is

12



given by:

Iθ ≈

[
θ̂ −

√
2qα√

Tr ((R−1∂θR)2)
; θ̂ +

√
2qα√

Tr ((R−1∂θR)2)

]
, (19)

where qα denotes the α-quantile of the Normal distribution. This confidence

interval Iθ satisfies approximately the probability: P(θ ∈ Iθ) ≈ 1− α.195

The aim is to determine the number of measurements Ns for which the size

of Iθ reaches the target accuracy level. Thus, we define the following error β(θ̂)

which depends on the current estimate (MLE) of θ:

β(θ̂) =

√
2qα√

Tr
(

(R−1(θ̂)∂θR(θ̂))2
) (20)

where ∂θR(θ̂) represents the derivative of each entries of R with respect to θ.

It is approximately computed from the parametric model of the correlation by

the finite difference approximation:

∂θR(θ̂) ≈ R(θ̂ + δθ)−R(θ̂)

δθ
, (21)

where δθ is a small variation of θ (for instance δθ ≈ θ
10r for some r > 2). The

definition (20) of the error β(θ̂) is independent on σ2, since σ2 is a multiplicative

parameter. Therefore, β(θ̂) is used for determining a suitable scale θ indepen-

dently on the first and second moments of Z. The accuracy on the estimate

is specified by the target accuracy ε > 0 which is defined by the asset owner.

It can be defined as a small percentage of the length L of the structure (for

example ε ≈ L/100). Thus, we define the following constraint:

β(θ̂) ≤ ε. (22)

The practical implementation follows 3 key steps:

- start with initial and small spatial locations with Ns0 measurements;

- evaluate θ̂0 the MLE of θ and its corresponding indicator β(θ̂0);

- increase progressively the number of measurements until β(θ̂) satisfies the

shut off conditions (22).200
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The final number Nsn ensures that the final estimation of θ̂n evaluated with

Nsn measurements satisfies approximately,

P(θ̂n ∈ [θ − ε, θ + ε]) ≈ 1− α. (23)

Once the scale of fluctuation is estimated from Nsn spatial measurements,

the second step consists of checking the accuracy of the approximation of the

mean µ̂ and variance σ̂2 of the field Z. The MLE of the mean follows a Gaussian

distribution with mean µ and variance defined in (14). Therefore, by considering

the α-quantile of a Normal distribution with order α, we exhibit the following

confidence interval of the mean µ using the current value of θ̂:

Iµ =

[
µ̂− qαS√

1′R−11
, µ̂+

qαS√
1′R−11

]
, (24)

where S2 is the unbiased estimate of σ2 in (17). The vector 1 contains Nsn

entries all equal to 1. Similarly, under the current estimation of θ from Nsn

measures, we exhibit from (18) the following confidence interval of σ2:

Iσ2 =

[
(Nsn − 1)S2

ϑ1−α/2
;

(Nsn − 1)S2

ϑα/2

]
(25)

where ϑ1−α/2 and ϑα/2 are the α-quantile of the χ2(Nsn − 1) distribution with

order 1− α and α respectively.205

In practice, depending on the quantity of interest, it is important to note that

the precision on the confidence region for θ can be different from the precision

on the confidence region µ. This is because the accuracy on θ can require more

measurements than the accuracy on µ. Furthermore, the width of Iµ does not

decrease quickly with respect to the number of measurements, since its decay210

depends on the ratio L/θ and levels out for a relatively large measurements

Ns. Therefore, the statistical indicator in (26) which quantifies the width of

the confidence region Iµ is used to revise the current number of measurements

Nsn . Thus, when this bound decreases numerically from Ns, a new number of

14



measurements N̂s is provided within the condition:215

qαS√
1′R(θ̂)−11

≤ ε. (26)

where the fitted N̂s × N̂s correlation matrix R(θ̂) is computed from the param-

eter model with the approximation of θ̂ provided in the first stage. From this

new number of measurements, we compute the new MLE to obtain the target

assessment on the parameters θ, µ and σ2. Sometimes the statistical bound

in (26) decreases slowly, or it levels out from Ns ( strong correlation between220

measurements). In that case, the current number of measurements Nsn and its

corresponding MLE estimates are maintained. The flowchart of the method is

illustrated in Figure 2.

Figure 2: Flowchart of the proposed approach
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4. Numerical application

In this section, we illustrate the potential of the proposed approach with a225

set of experimental and synthetic data. The synthetic data (subsection 4.1) are

generated from simulations of a Gaussian random field Z in one and two dimen-

sions. The data are simulated through the circulant embedding method [5, 6]

which gives an exact simulation through the Fourier Decomposition of a positive

circulant matrix. The field Z is generated with a stationary Matern covariance230

function with known regularity parameter ν = 1/2 (exponential covariance) be-

cause it is widely used in the literature. Two examples of experimental data

are considered. The first example (Section 4.3.1) with Ns = 80 measurements

of water content allows analysing the error on parameters, especially, θ. In the

second one (Section 4.3.2), data consists of surface chloride content and the235

coefficients of diffusion both are given with a small number of measurements

Ns = 16. The accuracy is conducted using the statistical indicator (26) under

the current estimation of the scale θ.

4.1. Simulated data

4.1.1. One dimensional variability240

In order to illustrate the proposed adaptive approach, we consider a set

of one-dimensional components (beams, indexed by spatial coordinate x) with

large length L in comparison with the scale of fluctuation θ (Lθ � 1). The

GRF is then defined on the interval [0, L] where L = 300; it is discretized in

N = 257 equidistant spatial locations. The parameters of Z are µ = 1, σ2 = 1245

and θ = 15. The sample path of Z is then a Gaussian vector Z with length

N = 257. Figure 3 (left) plots the considered path of Z, all following results are

obtained from this sample path. Figure 3 (right) compares the exact stationary

covariance C with the simulated one and the fitted covariance (with N = 257).

It shows a good agreement between the exact and the fitted one. The latter250

is computed using parameters θ̂ and S2, both estimated from the MLE of θ

and σ2; the MLE of θ is illustrated in the Figure 4 (left). The plot of the
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Figure 3: path of Z (left); (right) Stationary Covariance (θ = 15, ν = 1/2, µ = 1, σ2 = 1).

Figure 4: (left) Negative log-likelihood of Z; (right) Mean-Error estimate of the MLE .

negative logarithm of likelihood of Z as a function of θ shows a clear minimum

value that approaches θ = 15. The convergence of MLE is illustrated in Figure

4 (right) where the mean-error in (%) is computed as a function of Ns the255

number of equidistant points in the path Z: Ns ∈ (20 : N). The mean-error

is computed with 500 MC simulations of θ̂. It shows that the MLE converges

similar to O( 1√
N

) in%. We divide Z on six nested vectors with several lengths

Ns = 9, 17, 33, 65, 129, 257. First we assume that µ and σ2 are both known in

view to distinguish the effect of this knowledge on the accuracy of the MLE of260

θ and then on the error β(θ). Figure 5 (right) plots for each sample of Z the

error defined by (20) where the α-quantile qα = 1.96 (α = 5%). The exact error

is computed from an exact correlation matrix and its derivative with respect
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to θ, while the numerical indicator β(θ̂) is computed from the fitted correlation

using MLE of θ as defined in (20). The exact error is the absolute value |θ̂− θ|.265

Figure 5: Error bounds on θ (left), Error in (%) on θ (right); µ, σ known.

We observe a strong similarity between the exact and numerical error indi-

cator. It shows that indicator β(θ̂) decreases to zero when the number of spatial

locations Ns increases.

Figure 5 (right) presents the error in (%) on θ using MLE with respect270

to Ns. It shows that the error is large for small number of measurements

Ns. It exceeds 40% when Ns is less than 33 measurements. We noted that

for some other numerical test cases, the numerical error is very large with a

very small number of measurements Ns < 9; such inaccuracy is explained by

a poor estimation of θ̂ when the fitted correlation matrix is nearly singular or275

ill-conditioned. Conversely, a very large number Ns does not necessarily lead to

an accurate estimation of θ when the ratio L
θ ≈ 2 is small since, the correlation

matrix is ill-conditioned.

Let us consider now that the mean µ and the variance σ2 are unknown.

Figure 6 (left) illustrates numerical and theoretical indicators and the error on280

θ when we estimate all the components of the vector (µ̂, σ̂2, θ̂) following the

iterative method in Section 3. Figure 6 (right) plots the error in (%) on the

scale of fluctuation θ with respect to the number of measurements Ns. It shows
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Figure 6: Error bounds (left) and error in (%) on θ (right); µ and σ2 are unknown.

that the approximation with MLE of the mean and variance has no significant

effect (except when Ns is small < 9) on the accuracy of the scale θ. The error285

indicator has a similar order of magnitude with the previous results where µ

and σ2 are known.

Figure 7: Error in % on µ and σ2 (left); Upper bound on µ (right)

Figure 7 (left) presents the error in % on µ and σ2 given by MLE. It shows

that for a large number of measurements (Ns > 100), the error levels out for

both parameters σ2 and µ. Figure 7 (right) plots the upper bound of µ given290

by the upper bound of its confidence region (24) with α-quantile qα = 1.96. It
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shows that this latter levels out as Ns becomes large. This results in a poor

improvement of the precision on µ and σ2 for Ns > 100; more measurements

are not useful for this length L. We investigate this relationship in the next

subsection.295

4.1.2. Effect of the size of the structure on the accuracy

Identification of spatial random field from a set of NDT measurements usu-

ally relies on spatial average. It is in fact difficult to find several structural

components with the same spatial variability and then, getting statistically in-

dependent events is rare. Using spatial average yields to an accurate estimate

when the ergodic property is satisfied; thus, a constraint is required on the di-

mension of structure. An accuracy on the mean and variance can be reached

when the variance of the estimates µ̂ and σ̂2 are as small as possible within

a target confidence. This accuracy is reached when the upper bound in (26)

satisfies the target precision. However, this bound decreases very slowly with

respect to the number of measurements. Thus in order to analyse its behavior,

we introduce the following simple upper bound of the variance of µ̂ (MLE of µ):

ŝ = σ2
Ns∑
i,j=1

Ri,j
N2
s

, (27)

where R is the correlation matrix. The positive quantity ŝ is the variance of the

estimator

∑Ns

j=1 Zj

Ns
, the unbiased estimate of the mean µ. On the other hand,

ŝ is seen as a discrete formula of the integral in (3). Therefore, the condition

ŝ ≈ 0, which implies an accuracy on the spatial statistics, can hold when the300

ratio L
θ is large. Otherwise, when the ratio L

θ is small, the numerator
∑Ns

i,j=1Ri,j

in (27) has a behavior similar to O(N2), then ŝ ≈ O(1), that explains why the

parameters of the field cannot be accurately estimated when L
θ is small. Figure

8 compares the variance of µ̂ from (14) with ŝ defined in (27) where the fitted

correlation matrix R is computed for both upper bounds with MLE θ̂ = 14.03.305

The figure confirms that MLE has a minimal variance and shows that this

bound decreases very slowly when Ns > 100 which explains the stagnation of
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Figure 8: Variance of µ̂ and ŝ.

the error on µ and σ2. Indeed, the numerator
∑Ns

i,j=1Ri,j in (27) increases

when Ns increases because the presence of large correlated points. Physically,

this stagnation means that there are zones with almost similar properties in the310

average. To illustrate the effect of the size of the component on the inference

Figure 9: Error on µ and σ2 as function of L Figure 10: behavior of the bound ŝ.

accuracy, we consider the previous Gaussian random field described above in

4.1.1. discretized on components of size 5m to 300m. Figure 9 illustrates the

effect of L on the estimated parameters µ and σ2 where the number of locations
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is Ns = 129. It shows that the error decreases (in the mean sense) with respect315

to the size of the structure for the same number of measurements Ns. Like

in Section 4.1, we note that for a fixed length L, a large number of Ns does

not increase the precision on µ and σ2 because the numerator increases as Ns

increases in (27); when the size L is large the numerator is small since R contains

entries close to zero. Figure 10 plots four curves of the upper bound ŝ computed320

with four numbers Ns = 10, 50, 100, 300. It illustrates how the upper bound ŝ

of the variance of µ̂ decreases strongly with L. It is also important to note that

the upper bound ŝ can blow up either if L is small or if σ2 is too large.

4.2. Two dimensional variability

4.2.1. Isotropic example325

The Gaussian random field Z(x, y) is herein defined on the rectangle [0, L1]×

[0, L2] where L1 = 200, L2 = 80 with mean µ = 1, unit variance σ2 = 1 and

the scale of fluctuation θ = 10. The field Z is discretized on N = N1 × N2

equidistant spatial locations with N1 = N2 = 65 and defined by an isotropic

and non-separable exponential covariance (Matèrn covariance with ν = 1/2).

Figure 11: Path of Z (θ = 10, ν = 1/2, µ = 1 and σ2 = 1), (left); Negative log-likelihood of Z

(right).

330

The sample path of the field Z is given by a Gaussian matrix Z with size N =

652 = 4225. We extract from the matrix Z five nested matrix with sizes Ns =
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52, 92, 172, 332, 652. Each matrix represents a realisation of Z on Ns equidistant

points of rectangle [0, L1]× [0, L2]. Figure 11 (left) plots the considered path of

Z. Figure 11 (right) plots the curve of the negative logarithm of the likelihood335

of Z as a function of θ given in (10). Figure 12 (right) presents the error in (%)

Figure 12: Error bounds and error in (%) on θ.

on θ using the MLE with respect to Ns. It illustrates the decreasing of such

error to zero when the number of spatial locations Ns increases. Figure 12 (left)

plots for each of the 4 sample paths the error defined by (20) for the α-quantile

qα = 1.96. It shows a strong similarity between the exact and numerical errors.340

The numerical indicator shows that the indicator β(θ̂) decreases to zero when

the number of spatial locations Ns increases. Thus, it is considered a practical

bound of the error on θ. Note that the error β(θ̂) in Figure 12 (left) is very

large when the sample path of Z has the size Ns < 52 since the moments µ and

σ2 are badly estimated and the correlation matrix is nearly singular. Figure345

13 plots the error in % on µ and σ2 given by MLE. Figure 14 plots the upper

bound (26) of the error on µ. As in one dimensional case, this bound of the error

decreases very slowly when Ns > 400. Thus, when the statistical error levels out

as N > Ns and satisfies the condition (26), the current number of measurements

Ns that gives θ̂ on the first stage also provides an accurate estimation of µ and350

σ2.
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Figure 13: Error in % on µ and σ2. Figure 14: Upper bound of µ.

4.2.2. Anisotropic example

Here, the Gaussian random field Z is anisotropic (orthotropic) with the

same characteristics as the stochastic field described above in 4.2.1 on N =

N1 × N2 equidistant spatial positions with N1 = N2 = 332 = 1089. The scale355

of fluctuations in x-direction is θx = 10 and θy = 3 in y-direction. The upper

bounds of θx and θy are computed as in (20) respectively by:

βx(θ̂x) =

√
2qα√

Tr
(

(R−1(θ̂)∂θxR(θ̂))2
) (28)

βx(θ̂y) =

√
2qα√

Tr
(

(R−1(θ̂)∂θyR(θ̂))2
) ; (29)

where ∂θxR(θ̂)) and ∂θxR(θ̂)) are the derivative of the matrix R(θ) with respect

to the parameter θx and θy.

Figure 15 illustrates numerical and theoretical error indicator for θ = (θx, θy).360

It shows that the error is large when the number of measurements Ns is small

(Ns = 9 or Ns = 25) and both errors in (28, 29) decrease to zero when Ns > 100.

Thus, to determine a suitable number of measurements with NDT protocol ac-

cording to a target precision; we can use the precision ε ≈ L/100 where L is the

length of the structure.365
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Figure 15: Error in (%) on θx (left) and θy (right).

4.3. Validation of the method based on an experimental data base

4.3.1. Water content data base

The objective of this example is to illustrate the proposed methodology us-

ing CND measurements. They were performed by a capacitive technique for

quantifying the water content W (in %) of a reinforced concrete beam exposed370

to natural environmental conditions in Bouguenais (region of Pays de la Loire,

France). These data were analysed by Schoefs et al [29] without focusing on the

accuracy on the estimation of the scale of fluctuation. The set of measurements

was performed on Ns = 80 horizontal and equidistant spatial locations of mea-

surements along the beam with length L = 16m. At each location, Np = 30375

repetitions of measures were carried out in view to neglect and reduce the epis-

temic measurement uncertainties (see [29] for more details). Therefore, the final

trajectory W is obtained by taking the expectation over all Np unbiased mea-

surements at each location. Figure 16 plots the considered path of the water

content. Here, the water content is modelled by a second order random field380

with log-normal marginal distribution. Therefore, its logarithm Z = log(W ) is

seen as a Gaussian random field. The MLE of the parameters for Z, are given

by; µ̂Z = 2.24, σ̂2
Z = 0.009 and θ̂ = 0.38. From these estimates, estimates of
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Figure 16: Trajectory of W (%)
Figure 17: Experimental and fitted correlation

of W (%)

the mean and variance of the field W are:

µ̂W = exp(µ̂Z + σ̂2
Z/2)

σ̂2
W = exp(2µ̂Z + σ̂2

Z)(exp(σ̂2
Z)− 1)

The uncertainty on the assessment of θ comes from its estimation with MLE385

performed with limited number of measurements Ns. The confidence region of

θ quantifies this error. The latter can be reduced by using a suitable set of

measurements.

In order to illustrate the proposed adaptive method, we consider various

nested sets with several lengths Ns = 4, 9, 17, 33, 65. For each set of measure-390

ments, we estimate θ with MLE and we compute the error from equation (20)

where qα = 1.96 (α = 5%) and qα = 1.645 (α = 10%). Figure 18 illustrates

the confidence region of the scale θ for these two quantiles. It shows that the

indicator β(θ̂) decreases regardless to the number of measurements Ns and the

quantile qα.395

Table 2 gives the MLE of (θ, µZ , σ
2
Z) with respect to Ns. It shows how the

relative upper bound β(θ)/L decreases with Ns. At the given relative precision

level ε ≈ 0.04L, the needed number of inspections is Ns = 17; and it is Ns = 33

if we set the relative precision level ε ≈ 0.0067L. Further, these two examples
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Figure 18: Confidence region of θ Figure 19: Evolution of qα
√
var[µ̂Z ] with Ns.

Ns 9 17 33 65 80

β(θ)/L 0.2732 0.0426 0.0158 0.0067 0.0053

θ̂ (m) 0.96 0.54 0.57 0.42 0.38

µ̂Z 2.237 2.256 2.242 2.236 2.236

σ̂2
Z 0.007 0.091 0.01 0.009 0.009

Table 2: Relative error β(θ)/L and MLE of (θ, µZ , σ
2
Z)

show that by considering a convenient relative level ε, the adaptive NDT allows400

saving a considerable cost of inspection per component.

The accuracy on µ and σ2 levels out when the number Ns increases. This

level is illustrated in Figure 19 by the statistical indicator in (26). First, it

decreases and then levels out as the number of measurements increases for both

estimation of the scale θ̂ = 42.5 (value estimated from Ns = 64) and θ̂ = 38.05405

(value estimated from the whole data). Thus, performing more inspections does

not improve the accuracy of µ and σ2 estimates.

Figure 20 plots one simulation of the water content on N = 245 positions

which coincides with the measured path in Figure (16) on the same positions.

We use this path to predict the behaviour of the relative error β(θ)/L for Ns >410
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Figure 20: Simulated W conditioning on the

measured path
Figure 21: Relative error on θ

80. Figure 21 shows that this error decreases gradually with respect to Ns.

However, it decreases much slower than the decay given in Table 2.

The target relative accuracy level is the key to selecting the required number

of measurements. It is defined by an asset owner or an expert judgment, depend-

ing on the length of the structure and how it affects the reliability assessment415

[34].

We note that for a short illustration, the behaviour of the relative error was

estimated in Table 2 on the nested grid of positions with numbers of measure-

ments (Ns = 9, 17, 33, 65). In practice, we start with a small grid and add

positions of measurements for refining the grid by analysing the relative error420

at each position.

4.3.2. Chloride content measurements data base

This data set consists of two paths of the main parameters used in modelling

chloride-induced corrosion for reinforced concrete; i.e., the surface chloride con-

tent Cs and the apparent diffusion coefficient Dapp. Both parameters are com-425

puted through the curve fitting method from Fick’s second law of diffusion using

experimental chloride profile [21, 30]. The set of measurements was performed
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using a semi-destructive test along the beam with length L = 9m (region of

Pays de la Loire, France).

Position (m) Cs × 10−4) Dapp × 10−12

0.2 44.5836 1.3611

0.5 65.1834 1.1616

1.1 74.2033 1.1688

1.4 41.3765 3.6419

2.9 44.5428 2.0330

3.8 74.6240 0.9099

4.1 77.8895 1.0631

4.7 54.9014 1.4133

5.3 52.9310 1.3102

6.2 33.9131 0.7662

6.8 67.2010 0.6475

7.1 34.3982 0.6831

7.4 44.4848 1.5020

8.0 38.4594 2.5143

8.3 36.6141 1.5706

8.9 36.6042 1.1876

Table 3: Estimate of Cs and Dapp by curve fitting

method from Fick’s second law.

Ns var[log(Cs)] var[log(Dapp)]

Ns = 2 0.0004 0.0074

Ns = 4 0.0297 0.0056

Ns = 8 0.0991 0.0681

Ns = 16 0.1967 0.0818

Ns E[log(Cs)] E[log(Dapp)]

Ns = 2 -27.3418 -5.3272

Ns = 4 -27.2073 -5.3709

Ns = 8 -27.3899 -5.2318

Ns = 16 -27.3576 -5.3167

Table 4: Variance and mean esti-

mates of log(Cs) and log(Dapp)

Table 3 gives the considered path of Cs and Dapp on Ns = 16 positions.430

Both parameters are modelled by a second order random field with log-normal

marginal distribution and both are defined by the exponential correlation. Table

4 gives estimates of the mean and variance of both fields log(Cs) and log(Dapp)

with four nested grid points. The first stage of the inspection methodology is

devoted to the assessment of θ on the whole path of Cs and Dapp. Using the435

MLE, we obtain θ̂Cs = 18.65 cm as an estimate of the scale θ for the random

field log(Cs) and θ̂Dapp = 29.42 cm an estimate of θ for log(Dapp). The error on

the assessment of θ is quantified according to (20). For these random fields, we

get the relative error estimate: βCs
/L = 0.038 and βDapp

/L = 0.04. In this case
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of small number of measured values (N ≤ 16), the error on θ can be inaccurate440

because the normal distribution of the estimate θ̂ is only asymptotic. Therefore,

the accuracy level will be conducted using the statistical indicator (26) under

an estimate of θ and ignoring the error on θ.

The statistical indicator (26) quantifies the accuracy on the mean and par-

tially on the variance of the random field. Figure 22 (left) illustrates the be-445

haviour of such indicator for four nested grid of positions (Ns = 2, 4, 8, 16)

where qα = 1.96 (α = 5%) for both parameters log(Cs) and log(Dapp). Figure

Figure 22: Evolution of the errors with Ns.

22 (right) illustrates the numerical behaviour of the statistical indicator (26) as

a function of Ns, where Ns is the number of equidistant positions in the interval

(0, 9m). It shows that this statistical indicator declines gradually from Ns > 8450

and it levels out for both random fields when Ns > 16. Thus, including further

inspections slowly improves the accuracy of µ and variance σ2. For example,

in Figure 22 (left) at the given precision level ε = 0.265, (ε ≈ 0.97%|E[log(Cs)]|

and ε ≈ 5%E[log(D)]), the required minimal number of inspections is Ns = 8,

while the spatial variability of log(Cs) evaluated with Ns = 16 measures ensures455

the accuracy level ε = 0.215.
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5. Conclusion

This paper proposes an approach for characterizing the spatial variability

of structural components through discrete and limited measurements. It allows

to assesses the parameters of a stationary random field given a target accuracy460

on the estimates. The adaptive approach is based on two errors to determine

the spatial correlation and the statistics of the model. The method relies on

two steps. First, an error is used to estimate an accurate scale of fluctuation of

the Gaussian random field using the Maximum Likelihood Estimate. Second,

the accuracy of the estimated moments of the field with the current number465

of measurements is revised by analysing the decay of the statistical indicator

within a target precision level. The advantage of this approach is that the spatial

correlation is not neglected when assessing mean and variance of the model,

and the range of the correlation is properly computed within a target accuracy.

Further, the statistical errors on the parameters estimation are perfectly known.470

Therefore, our contribution offers a new approach to carry out assessment of

structural condition state with a good cost/benefit ratio.

For future work, it is appropriate to improve this adaptive method includ-

ing a local adaptation and considering a non-stationary model with trend or

variance-stationarity and piece-wise stationary fields.475
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