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Introduction

The Smoothed Particle Hydrodynamics (SPH) is a meshless particle method, initially conceived in the context of astrophysics (Gingold & Monaghan [START_REF] Gingold | Smoothed Particle Hydrodynamics: theory and application to non-spherical stars[END_REF], Lattanzio et al. [START_REF] Lattanzio | Interstellar cloud collisions[END_REF]) and subsequently applied to different fields of physics, including simulations of fluid dynamics (see e.g. Cao et al. [START_REF] Cao | Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin[END_REF], Cao et al. [START_REF] Cao | Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas[END_REF]) and solid mechanics (see e.g. Zhang et al. [START_REF] Zhang | Total Lagrangian particle method for the large-deformation analyses of solids and curved shells[END_REF], Peng et al. [START_REF] Peng | A 3D meshfree crack propagation algorithm for the dynamic fracture in arbitrary curved shell[END_REF]). Such a route of the original SPH scheme has been possible thanks to a number of different approaches that extended the basic framework of the method and improved some of its weak points. Specifically, the original SPH scheme proved very promising for the prediction of kinematics but, to the same extent, it showed several problems in the estimation of pressure loads. In particular, the pressure field was generally affected by spurious acoustic noise caused by the assumption that the fluid was compressible or weakly-compressible and by the possible occurrence of disordered particle distributions.

Basically, two different approaches were followed to get rid of the acoustic noise: one based on the definition of an incompressible SPH (I-SPH) (see, for example, Chow et al. [START_REF] Chow | Incompressible SPH (ISPH) with fast Poisson solver on a GPU Computer[END_REF], Khayyer et al. [START_REF] Khayyer | An enhanced isphsph coupled method for simulation of incompressible fluid-elastic structure interactions[END_REF], Leroy et al. [START_REF] Leroy | Unified semi-analytical wall boundary conditions applied to 2-d incompressible sph[END_REF], Nomeritae et al. [START_REF] Nomeritae | Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes[END_REF], Farzin et al. [START_REF] Farzin | Position explicit and iterative implicit consistent incompressible sph methods for free surface flow[END_REF]), the second aimed at removing the spurious oscillations in the pressure/density fields through dedicated techniques, preserving in any case the original weak-compressibility framework of the scheme. This second family includes the Riemann-SPH schemes, namely those schemes where the numerical fluxes among interacting particles are modelled through Riemann solvers (see, for example, Vila [START_REF] Vila | On particle weighted methods and Smooth Particle Hydrodynamics[END_REF], Inutsuka [START_REF] Inutsuka | Reformulation of smoothed particle hydrodynamics with riemann solver[END_REF], Parshikov and Medin 2 [START_REF] Parshikov | Smoothed particle hydrodynamics using interparticle contact algorithms[END_REF], Puri and Ramachandran [START_REF] Puri | Approximate riemann solvers for the godunov sph (gsph)[END_REF], Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF], Avesani et al. [START_REF] Avesani | A new class of Moving-Least-Squares WENO-SPH schemes[END_REF]) and the models relying on the use of numerical diffusion (Ferrari et al. [16], Antuono et al. [START_REF] Antuono | Free-surface flows solved by means of SPH schemes with numerical diffusive terms[END_REF], Fatehi et al. [START_REF] Fatehi | A consistent and fast weakly compressible Smoothed Particle Hydrodynamics with a new wall boundary condition[END_REF], Green et al. [START_REF] Green | A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation[END_REF], Ramachandran and Puri [START_REF] Ramachandran | Entropically damped artificial compressibility for sph[END_REF]). Despite both the above approaches can effectively reduce the acoustic oscillations, they can not completely remove the errors generated by the occurrence of disordered particle distributions. A promising strategy to overcome such a problem was firstly proposed in [START_REF] Xu | Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[END_REF], where a small spatial shift was added to the actual particle positions in order to reduce the unevenness in the particle distribution and, therefore, improve the accuracy of the SPH differential operators. This approach was initially conceived in the framework of I-SPH [START_REF] Lind | Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[END_REF] and, then, adopted in weakly-compressible SPH models (as, for example, in Wang et al. [START_REF] Wang | Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics[END_REF], Vacondio et al. [START_REF] Vacondio | Variable resolution 52 for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity[END_REF]). The difficulties related to the use of shifting techniques are both theoretical and numerical. In the former case it is not clear how to include them in the SPH equations consistently, while, from a numerical perspective, it is not simple to define a model where the shifting contributions remain small during the evolution.

A possible strategy to add the Particle Shifting Technique (PST hereinafter) in the SPH scheme is that stemming from the δ-SPH , that is a diffusive variant of the standard weakly-compressible SPH model. The δ-SPH is a robust, accurate and reliable method in solving several hydrodynamic problems, (see e.g. Antuono et al. [START_REF] Antuono | Free-surface flows solved by means of SPH schemes with numerical diffusive terms[END_REF][START_REF] Antuono | Energy balance in the δ-SPH scheme[END_REF], Meringolo et al. [START_REF] Meringolo | SPH numerical modeling of waveperforated breakwater interaction[END_REF], Zhang et al. [START_REF] Zhang | Smoothed particle hydrodynamics and its applications in fluid-structure interactions[END_REF], Sun et al. [START_REF] Sun | Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the δ + -SPH model[END_REF], Green and Peiró [START_REF] Green | Long duration sph simulations of sloshing in tanks with a low fill ratio and high stretching[END_REF], De Chowdhury and Sannasiraj [START_REF] Chowdhury | Numerical simulation of 2d sloshing waves using sph with diffusive terms[END_REF], Zhang et al. [START_REF] Zhang | Sph method with applications of oscillating wave surge converter[END_REF]). Nevertheless, there are still some drawbacks that limit its application in some areas where traditional CFD methods perform well, such as the modelling of shear flows at high Reynolds numbers, vortical flow evolutions characterized by large negative pressure values or viscous flows inside confined domains. To overcome these problems, Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF] combined the δ-SPH scheme with a PST based on the use of a shifting velocity, obtaining the so-called δ + -SPH scheme. It was shown that the use of the PST allows to get regular particle spatial distribution, a condition necessary to reduce errors in the SPH differential operators and to guarantee a convergence order larger than unity (see e.g. Antuono et al. [START_REF] Antuono | A measure of spatial disorder in particle methods[END_REF]). It was also shown that PST helps obtaining a smoother velocity distribution and, consequently, improves the field of vorticity. Unfortunately, despite these strong points, the original δ + -SPH still presents some disadvantages, especially when conservative body forces are present. In these circumstances the shifting velocity yields nonphysical changes on the potential energy of the particles and these errors accumulate in time. Recently, Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF] proposed a different derivation of the δ + -SPH that allows for a convincing inclusion of PST in the δ-SPH scheme and, at the same time, overcomes the above-mentioned issues.

An alternative and reliable strategy is that originally adopted in the context of Finite Volume Particle Method by Nestor et al. [START_REF] Nestor | Extension of the finite volume particle method to viscous flow[END_REF] and later developed for SPH schemes in Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF] where the PST is included in an Arbitrary-Lagrangian-Eulerian (ALE hereinafter) framework. Specifically, the ALE approach allows one to rewrite the compressible Navier-Stokes equations with an arbitrary advection velocity and to recover the Eulerian or the Lagrangian formulations when this velocity is set equal to zero or to the actual fluid velocity respectively. From a wider perspective, the above ALE framework can be classified as a "direct" ALE approach, as for example in Clair et al. [START_REF] Clair | A multi-dimensional finite volume cell-centered direct ale solver for hydrodynamics[END_REF]. This is opposed to "indirect" approaches which are characterized by a remeshing stage after the advection of the calculation point (see e.g. Galera et al. [START_REF] Galera | A two-dimensional unstructured cellcentered multi-material ale scheme using vof interface reconstruction[END_REF]) and are related to remeshed or regularised SPH schemes as in Chaniotis et al. [START_REF] Chaniotis | Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows[END_REF], Børve et al. [START_REF] Børve | Regularized smoothed particle hydrodynamics with improved multi-resolution handling[END_REF]. The presence of the arbitrary advection velocity in ALE schemes allows for a straightforward inclusion of the shifting velocity, avoiding theoretical inconsistencies. With this regard, recent developments include the use of an iterative particle shifting procedure, as described, for example, in Vacondio et al. [START_REF] Vacondio | An arbitrary Lagrangian-Eulerian weakly compressible SPH formulation by means of iterative diffusion-based particle shifting[END_REF].

The present work inserts in this research path and is devoted to the extension of the δ + -SPH scheme within the framework of the Arbitrary Lagrangian Eulerian (ALE) formulation proposed in Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. Thanks to the latter approach, the shifting velocity can be added in a consistent way and the overall scheme can be regarded as a generalization of that derived in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF].

In particular, the δ + -SPH scheme of Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF] can be obtained back as a simplified version of the proposed model. This, hereinafter denoted δ-ALE-SPH, shares some similarities with the ALE scheme described in Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF] but also contains substantial differences. In Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF] Riemann solvers are used for the particle mass and momentum exchanges and are responsible for the generation of an implicit numerical diffusion. On the contrary, in the δ-ALE-SPH the numerical diffusion terms are added explicitly and can be controlled straightforwardly. In particular, the diffusion is added both in the continuity equation (written in terms of the density field) and in the equation for the particle mass. We show that both the above models, namely the ALE and the δ-ALE-SPH schemes, are unstable if the diffusive terms (implicit or explicit) are not included.

In the δ-ALE-SPH the shifting velocity introduces changes for both volumes and masses of the particles. However, thanks to the PST structure, the relative variations of the particle volumes and masses are limited to few percent. Furthermore, those variations decrease with the particle's size, since the magnitude of the shifting velocity term decreases accordingly.

Differently from the standard ALE approach (see, for example, [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]), we show that the δ-ALE-SPH can be derived by rearranging the Lagrangian time derivatives in the Navier-Stokes equation through the actual velocity field (that is, fluid velocity plus shifted velocity) and by adding the Reynolds Transport Theorem to the derived set of equations. In particular, the latter equation is required to ensure a consistent modelling of the time evolution of elementary masses and volumes.

Then, the conservation properties of the δ-ALE-SPH are described and discussed in detail. Furthermore, two simplified variants of the proposed δ-ALE-SPH model are derived, showing, at least heuristically, only minor differences in the results among them.

The Navier-Stokes Equations for weakly-compressible flows in an ALE framework

In the present section we consider the Navier-Stokes (N.S.) equations for a weakly-compressible, barotropic fluid. We first consider a pure Lagrangian framework and, successively, we introduce an arbitrary transport velocity and rewrite the equation in an Arbitrary Lagrangian-Eulerian (ALE) framework.

Navier-Stokes equation: Lagrangian formulation

The N.S. equations for a weakly-compressible, barotropic fluid in a Lagrangian framework read as:

                               Dρ Dt = -ρ div(u) , Du Dt = - ∇p ρ + div (T v ) ρ + g , Dr Dt = u , p = F (ρ) . (1) 
where ρ , u are the primitive variables, namely the density and the velocity, g represents a generic volume force, F is the state equation (linking the pressure and density fields) and T v is the viscous stress tensor. Since the fluid is assumed to be weakly-compressible, the density variations with respect to a reference value, say ρ 0 , are assumed to be small and, consequently, the state equation can be linearized as p = c 2 0 (ρ -ρ 0 ) where c 0 is the sound speed. The choice of this quantity is important for the definition of weakly-compressible SPH models and will be clarified later. The last equation of system (1) describes the trajectory of a generic material point at the position r.

The derivative Df /Dt is the Lagrangian derivative of a generic fluid variable f , namely:

Df Dt := ∂f ∂t + ∇f • u (2) 
The ratio between the infinitesimal mass, m, and volume, V , of the material point r is finite and equal, by definition, to the density field ρ = m/V . In particular, the mass of the material point is conserved along the Lagrangian trajectory, i.e. Dm/Dt = 0. Combining the above relations with the continuity equation in [START_REF] Antuono | The damping of viscous gravity waves[END_REF], we obtain the Volumetric Strain Rate equation (see e.g. [START_REF] Kundu | Fluid mechanics[END_REF]):

Dm Dt = D(ρ V ) Dt = 0 ⇒ DV Dt = V div(u) . (3) 
2.2 Navier-Stokes equations using a modified advection velocity (u + δu)

We introduce now an arbitrary velocity deviation δu and define a second Lagrangian derivative with respect to the modified advection velocity (u + δu):

df dt := ∂f ∂t + ∇f • (u + δu) = Df Dt + ∇f • δu . (4) 
The last term on the right-hand side can be rewritten for generic scalar, f , and vector, v, functions as follows:

                 ∇f • δu = div(f δu) -f div(δu) , ∇v • δu = div(v ⊗ δu) -v div(δu) . (5) 
Using the above notation, we can rewrite the N.S. equations using the modified time derivatives d/dt with the advection velocity (u + δu):

                               dρ dt = -ρ div(u + δu) + div(ρ δu) , du dt = - ∇p ρ + div (T v ) ρ + g + div(u ⊗ δu) -u div(δu) , dr dt = u + δu , p = c 2 0 (ρ -ρ 0 ) . (6) 
The equation ( 6) becomes purely Lagrangian if δu is null (i.e. df /dt = Df /Dt), or purely Eulerian is δu = -u (i.e. df /dt = ∂f /∂t). Incidentally, we note that system (6) corresponds to the one adopted for the derivation of the consistent δ + -SPH described in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF].

Navier-Stokes equations in an ALE formulation

To obtain the ALE formulation for the Navier-Stokes equations, we need to rewrite the relations for V through the time derivative d/dt. In any case, differently from the approach shown in the previous section, it is not possible to apply the formula (4) to the equations (3) straightforwardly. Indeed, in the ALE framework the volumes move with the modified velocity u + δu and, consequently, the evolution equation is derived by using the Leibniz-Reynolds transport theorem. In particular, this leads to the following integral expressions:

dV dt = S(t) (u + δu) • n dS . (7) 
Using the divergence theorem on the surface integral and collapsing the finite volume V (t) to an infinitesimal volume, we obtain

dV dt = V div(u + δu) . (8) 
When δu = 0, the above relation turns into equation (3). Conversely, for δu = -u, in the Eulerian framework the elementary portions of fluid will remain fixed in space (i.e. dr/dt = 0) with a given fixed volume i.e. ∂V /∂t = 0.

Finally, the equation ( 8) is included in the system (6) maintaining the usual algebraic relation between mass, volume and density (namely m = ρ V ). By rewriting the whole system in conservative variables (namely, mass and linear momentum), we obtain back the scheme described in Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF], that is:

                                             dV dt = V div(u + δu) , dm dt = V div(ρ δu) , d(mu) dt = -V ∇p + V div (T v ) + m g + V div(ρ u ⊗ δu) , dr dt = u + δu , ρ = m V , p = c 2 0 (ρ -ρ 0 ) . (9) 
In [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF] the above set of equation was derived by using a Leibniz-Reynolds transport theorem applied to an elementary portion of fluid moving with an arbitrary velocity u 0 , which in the present work corresponds to the velocity (u + δu). Finally, a Riemann SPH scheme was selected to model the particle interaction of the discrete system.

On the contrary, in the present work we model the spatial differential operators following the standard SPH framework and use a diffusive approach in analogy to the δ-SPH scheme. Specifically, the system (6) is rewritten in terms of mass and density and numerical diffusive terms are added in both the continuity and mass equations, as follows:

                                             dρ dt = -ρ div(u + δu) + div(ρ δu) + D ρ , dm dt = m div(ρ δu) ρ + D m , d(mu) dt = m - ∇p ρ + div (T v ) ρ + g + div(ρ u ⊗ δu) ρ , dr dt = u + δu , V = m ρ , p = c 2 0 (ρ -ρ 0 ) . (10) 
Once again we stress that the above equations are derived through a re-shape of the equations ( 6) and [START_REF] Colagrossi | Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics[END_REF]. The additional terms D ρ and D m represent diffusive contributions and allow to stabilize the numerical scheme when the system [START_REF] Colagrossi | Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows[END_REF] is discretized in the SPH fashion. We underline that, without such diffusive terms (mainly D m ), we were not able to obtain a stable scheme.

Furthermore, the use of the above diffusive terms along with the algebraic relation m = ρ V leads to the presence of a related diffusive contribution inside the volume equation [START_REF] Colagrossi | Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics[END_REF]. In other words the approach drawn in system ( 10) is equivalent to introduce a sort of diffusion inside the volume equation. Finally, we highlight that the scheme in conservative variables [that is system (9)] and that in primitive variables without diffusive terms [namely system [START_REF] Colagrossi | Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows[END_REF] with Riemann solvers are used to model the particle interactions (see, for example, Vila [START_REF] Vila | On particle weighted methods and Smooth Particle Hydrodynamics[END_REF]).

D ρ =
As discussed above, within the ALE framework δu is arbitrary and this can induce large variations on V and m. In fact, while the weakly-compressible assumption implies a constraint on the density field, large variations of δu can induce large changes on elementary masses and volumes. To avoid instabilities and inaccuracies, δu has therefore to be small in comparison to u and, similarly to [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF], it is only used to regularise the particle distributions. In particular, it is sufficient that δu is small in an average sense, i.e. it is allowed to be of order of u locally and in small time intervals but its mean value has to be small in comparison to the actual fluid velocity.

Here, the velocity δu is given by a Particle Shifting Technique (hereinafter PST, see Nestor et al. [START_REF] Nestor | Extension of the finite volume particle method to viscous flow[END_REF], Lind et al. [START_REF] Lind | Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[END_REF], Oger et al. [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF], Khayyer et al. [START_REF] Khayyer | Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context[END_REF]) that is conceived to reduce the disorder in the particle distribution and, thus, to improve the accuracy of the discrete differential operators. The velocity δu has been made proportional to the smoothing length h so that its magnitude reduces as the spatial resolutions increases. In any case, since δu is directly related to the irregularity of the particle distribution, in some conditions its intensity may locally increase in space and time, as better clarified in the next sections. Figure 1 sketches out a description of the above concept. There, the Lagrangian particle trajectory is compared with other three modified trajectories under the action of the PST for three different smoothing lengths.

When the smoothing length decreases, the trajectories tends to the Lagrangian one, although there can be significant local deflections. Incidentally, we observe that in some applications purely Lagrangian trajectories may be a drawback of particle methods, since they induce particle clustering along the streamlines and a consequent reduction of accuracy (see Le Touzé et al. [START_REF] Touzé | A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces[END_REF]). In this case, the shifting algorithm prevents this issue and deviates particles from their Lagrangian paths leading to a regular distribution.

Under the hypothesis that δu is small in comparison to the actual velocity field, it is possible to assume that the mass and volume variations remain small along the modified trajectories (induced by δu) and the concept of "fluid particle" can be still considered valid. Accordingly, the system (6) can be seen as a "quasi"-Lagrangian formulation. In Section 5 this concept is further exploited.
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Before describing the ODEs for the particle system, we briefly introduce the smoothed differential operators used to approximate the right-hand side of equation [START_REF] Colagrossi | Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows[END_REF].

In the SPH context the differential operators on the right-hand side of equation ( 1) are mollified through a suitable convolution integral in the space r * with a kernel function W h (r, r * ). The function W h is assumed to be a positive radial function with a compact support characterized by a reference length h, hereinafter called smoothing length, and its integral over the support is normalized to unity.

Regarding the divergence of the velocity field, the pressure gradient and the divergence of the viscous stress tensor, they are approximated, for a generic particle i, through the formulas below (see Colagrossi et al. [START_REF] Colagrossi | Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model[END_REF][START_REF] Colagrossi | Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows[END_REF]):

                                             div(u) i = j (u j -u i ) • ∇ i W ij V j , ∇p i = j ( p j + p i ) ∇ i W ij V j , div(T v ) i = µ j π ij ∇ i W ij V j , π ij = K (u j -u i ) • r ji r ji 2 , (11) 
where r ji = r j -r i , ∇ i indicates differentiation with respect to the ith particle position, µ denotes the dynamic viscosity, K = 2 (n + 2) and n is the number of spatial dimensions. About the kernel function, namely

W ij := W h ( r j -r i )
, in this work a C2-Wendland kernel is used, that is:

W h (q) =                  C h ( 1 + 2 q ) ( 2 -q ) 4 if q ≤ 2 0 elsewhere
where C h = 7/(64πh 2 ) and q = r j -r i /h. Specifically, about 50 neighbour particles (in a 2D framework) are considered in the kernel support, which corresponds to h = 2∆x where ∆x indicates the initial particle distance. In particular, the packing algorithm developed in [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF] is used to fill the fluid domain with particles placed in an almost equispaced configuration. The smoothing length h is considered constant in time and space and, therefore, the dependency of W on h is understood in the rest of the work.

As discussed in Quinlan et al. [START_REF] Quinlan | Truncation error in mesh-free particle methods[END_REF], Colagrossi et al. [START_REF] Colagrossi | Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model[END_REF][START_REF] Colagrossi | Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows[END_REF], the smoothed operators in equation [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF] approximate the differential operator of equation

(1) when both h and ∆x/h are small. In addition, they allow the conservation of the linear and angular momenta of the discrete particle system as well as the implicitly (in a weak-sense) fulfilment of the dynamic boundary condition at the free-surface.

As discussed in [START_REF] Sun | Multiresolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows[END_REF], the argument (p j + p i ) in the pressure term leads to the so-called tensile instability when the pressure field becomes negative. In such a condition the formula can be modified locally by using the term (p j -p i ).

This strategy helps removing the tensile instability but introduces an error on the conservation of momenta, which, in any case, can be lowered through the use of the PST.

Finally, the approximation of the terms depending on δu (see the system (6))

is performed through the following convolution sums:

δu-terms                                          div(δu) i = j (δu j -δu i ) • ∇ i W ij V j , div(ρδu) i = j (ρ j δu j + ρ i δu i ) • ∇ i W ij V j , div(u ⊗ δu) i = j (u j ⊗ δu j + u i ⊗ δu i ) • ∇ i W ij V j , div(ρ u ⊗ δu) i = j (ρ j u j ⊗ δu j + ρ i u i ⊗ δu i ) • ∇ i W ij V j . (12) 
To be consistent, the divergence of δu is evaluated by using the same formula adopted for the divergence of the velocity in equation [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF]. Conversely, the other divergence operators are expressed through a sum instead of a difference.

Indeed, the symmetric behaviour when swapping the indexes i and j allows to derive terms which conserve the mass and the linear momentum of the particle system, as shown in the next section.

The discrete particle system

Using the SPH approximation introduced in Section 3, the differential equation for the particle system can be derived by approximating the right-hand side of the equation ( 10) as follows:

δ-ALE-SPH                                                  dρ i dt = -ρ i div(u + δu) i + div(ρδu) i + D ρ i , dm i dt = m i div(ρ δu) i ρ i + D m i , d(m i u i ) dt = -m i ∇p i ρ i + m i div(T v ) i ρ i + +m i div(ρ u ⊗ δu) i ρ i + m i g , dr i dt = u i + δu i , V i = m i ρ i , p = c 2 0 (ρ -ρ 0 ), (13) 
where D ρ i is the numerical diffusive term introduced by [START_REF] Antuono | Numerical diffusive terms in weakly-compressible SPH schemes[END_REF] to filter-out the spurious high-frequency noise in the pressure field. Conversely, D m i is the diffusive term in the mass equation. These terms are modelled as follow:

                                         D m i = 2δhc 0 j (m j -m i ) F ij V i V j , D ρ i = 2δhc 0 j ψ ji F ij V j , ψ ji = (ρ j -ρ i ) -1 2 ∇ρ L i + ∇ρ L j • r ji , F ij = r ji • ∇ i W ij r ji 2 , ( 14 
)
where δ is set equal to 0.1 in agreement with the linear stability analysis provided in [START_REF] Antuono | Numerical diffusive terms in weakly-compressible SPH schemes[END_REF] for the density equation. In principle, the coefficients of the diffusive terms in the density and mass equations may differ but, intuitively, they should have the same order of magnitude. For this reason and to avoid the use of a further parameter, we preferred to adopt δ in both the cases. The superscript L indicates that the gradient is evaluated through the renormalized gradient equation, i.e.:

∇ρ L i = j (ρ j -ρ i ) L -1 i ∇ i W ij V j , L i := k (r j -r k ) ⊗ ∇ i W ik V k (15)
where L i is the renormalization matrix (see e.g Antuono et al. [START_REF] Antuono | Free-surface flows solved by means of SPH schemes with numerical diffusive terms[END_REF]).

The initial mass distribution is obtained from the initial density (pressure) field and the initial volume distribution, namely m i (t 0 ) = ρ i (t 0 ) V i (t 0 ). Then, the masses evolve with their own equation.

To ensure the fluid to be weakly-compressible, the density variations with respect to the reference density ρ 0 are required to be smaller than 1%. To satisfy this requirement and, at the same time, to avoid that the Courant-Friedrichs-Lewy condition implies an excessively small time step, a numerical sound speed is usually adopted in weakly-compressible SPH schemes instead of the physical one (see Monaghan [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF]). As shown in Marrone et al. [START_REF] Marrone | Prediction of energy losses in water impacts using incompressible and weakly compressible models[END_REF], a reliable choice is

U ref c 0 ≤ 0.1 with U ref = max U max , δp max ρ 0 , (16) 
where U max and δp max indicate the maximum fluid velocity and the maximum pressure variation expected during the simulation.

Differently from Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF] where the Particle Shifting Technique (PST) was implemented as a particle shifting displacement (namely δr), in the present work the PST is written in terms of velocity deviation δu, that is:

δu i = min δu * i , U max 2 δu * i δu * i ( 17 
)
where U max is the maximum expected velocity and δu * i is given below:

δu * i = -Ma (2h) c 0 j 1 + R W ij W (∆x) n ∇ i W ij V j . (18) 
Here, Ma = U max / c 0 and the constants R and n are respectively set to 0.2 and 4 as in [START_REF] Monaghan | SPH without a tensile instability[END_REF][START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF]. Incidentally, we highlight that the proposed model is only weakly influenced by variations of the parameters R and n. Equation ( 17) is introduced to limit the magnitude of the shifting velocity. Since formula ( 18) is proportional to the smoothing length, the intensity of δu reduces as the spatial resolution increases and this guarantees that the hypothesis made in the previous section (i.e., δu i induces small deviations with respect to the physical particle trajectory) is valid.

As documented in Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF], the use of the PST leads to regular particle distributions and increases the accuracy and the robustness of the scheme. In turn, a direct inclusion of the PST causes the loss of the conservation of linear and angular momenta (even though the discrepancies from the exact conservation remain small during the evolution). Differently from the scheme proposed in Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF], in the following section we prove that the additional terms depending on δu allow for a better conservation of total volume and reduce those inconsistencies that can lead to wrong solutions, especially in presence of confined domains.

Mass, momenta and volume conservation for the δ-ALE-SPH scheme

In the present section we show how the use of a velocity deviation δu influences the main conservation properties of the scheme. To this purpose, we consider a particle system consisting of only fluid particles (no solid boundaries). We stress here that the global conservation of mass and momenta are important for the overall evolution of the fluid according to the system (1) but they do not ensure the convergence of the proposed scheme to the continuum.

If we apply the summation all over the particles to the second equation of system [START_REF] De Leffe | A modified no-slip condition in weakly-compressible SPH[END_REF], we obtain the following time derivative of the total mass:

d dt i m i = i V i div(ρ δu) i + D m i . ( 19 
)
Let us focus on the right-hand side. Since the inner arguments of V i div(ρ δu)

and D m are antisymmetric with respect the swapping of the indices i-j, the double summations contain contributions equal in magnitude and opposite in sign that cancel out exactly. Consequently, the right-hand side of the equation ( 19) is identically null and this implies the conservation of the global mass of the fluid system. Indeed, the global mass (like all global quantities) depends only on time and, under this condition, the time derivative defined in the equations ( 2) and ( 4) coincide. In other words:

D Dt i m i = d dt i m i = 0 , (20) 
and this proves the mass conservation.

A similar procedure can be applied to the continuity equation, namely the first equation of the system [START_REF] De Leffe | A modified no-slip condition in weakly-compressible SPH[END_REF], showing that the terms div(ρ δu) and D ρ i give a null contribution to the global fluid system thanks to their symmetric structure. This proves that the discrete equation is consistent with the global continuity equation without diffusion and velocity deviations.

As already explained above, the pressure and the viscous forces [namely, the second and third equation of equation [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF]] conserve both linear and angular momenta.
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Then, for the linear momentum, we obtain:

d dt i (m i u i ) = i m i g i + div(ρu ⊗ δu) i V i . (21) 
Again, thanks to the symmetric structure of div(ρ u ⊗ δu) , this term gives a null contribution and, consequently, the linear momentum of the particle system is preserved.

On the contrary, if we consider the angular momentum of the particles system, we obtain:

d dt i (r i × m i u i ) = i r i × m i g i + r i × div(ρu ⊗ δu) i V i ( 22 
)
and the summation of the last term on the right-hand side is not identically zero. This is caused by the fact that the argument of div(ρu ⊗ δu) i V i is not radial (i.e.

proportional to r ji ). This implies that within the ALE framework the conservation of the angular momentum is lost. In any case, as shown in Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF], the benefits of the PST on the solution accuracy are higher than this drawback, and, moreover, the error on the angular momentum conservation reduces when the smoothing length h decreases.

Under the assumption of weak-compressibility, the volume of the fluid domain is allowed to change by 1%. However, if we consider hydrodynamic problems where the fluid is confined by non-moving solid boundaries and/or open boundaries, the volume domain Ω remains constant, that is Ω div(u)dV = ∂Ω u•n = 0. Combining the first two equations of system (13), we obtain the time derivative of the global volume of the particle system:

d dt i V i = i V i div(u + δu) i + D m i ρ i - V i D ρ i ρ i . ( 23 
)
Since the right-hand side is generally different from zero (even in the absence of diffusive terms and of the δu-term), the conservation of the total volume of Ω is not guaranteed. In particular, this occurs in all the weakly compressible SPH models (i.e. the mass conservation is ensured but not the volume one, see for example Grenier et al. [START_REF] Grenier | Viscous bubbly flows simulation with an interface SPH model[END_REF]). For example, in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF] it is showed that for problems with confined boundaries the errors on the volume estimation obtained by using δ-SPH model can be quite large. This reflects on the pressure field that may present a considerable positive non-zero average value (i.e. the fluid is slightly compressed with respect to the initial condition). As shown in the Section 6, this issue does not occur in the simulations discussed in the present work and the averaged pressure fields does not exhibit any visible drift of its averaged value.

About the present scheme, the smoothed operators in equation ( 23) imply that the contributions generated by the addition of the δu-terms and by the diffusive terms reduce as h decreases (namely, as the spatial discretization becomes finer).

Two alternative variants: particles with constant mass or constant volumes

Since the shifting velocity is proportional to h, we can simplify the system of equations by assuming that the particle mass does not change along the path (u + δu). The error induced by such an approximation is expected to be small and to reduce when increasing the spatial resolution (i.e. h → 0), as already explained in Section 2.3. Under this hypothesis the particle volumes are directly linked to their densities through the relation:

V i (t) = m i /ρ i (t) (24) 
and the mass conservation is intrinsically satisfied as in the standard SPH model.

Because of the above link between volume, mass and density, the ALE framework is not more necessary and we can directly discretize the system (6). Then, the equations for this first variant becomes:

Scheme with constant masses

                               dρ i dt = -ρ i div(u + δu) i + div(ρδu) i + D ρ i du i dt = - ∇p i ρ i + div (T v ) i ρ i + g + div(u ⊗ δu) i -u i div(δu) i dr i dt = u i + δu i , V i (t) = m 0i ρ i (t), p = c 2 0 (ρ -ρ 0 ) . ( 25 
)
which coincides with the consistent derivation of the δ + -SPH model described in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF]. In that work it is underlined that the action of the δu-terms is problem dependent and that the terms in the continuity equation are more relevant than those in the momentum equation which play a negligible role. In particular, in the first benchmark of Section 6 all the δu-terms have irrelevant effects, while in the remaining benchmarks they are of fundamental importance to avoid a non-physical drift on the volume conservation.

A second possible variant is obtained by enforcing that the particle volumes do not change. Indeed the PST guarantees an ordered spatial particle distribution during all the time evolution and, therefore, we can assume that the particle volumes remain close to the initial ones, i.e dV i /dt = 0. Following this second approximation, the conservation of total volume is intrinsically enforced, while the particle masses are given by:

m i (t) = V 0i ρ i (t) (26) 
The equations for the density and the momentum are derived by discretizing the system (6) through the smoothing procedure described in Section 3:

Scheme with constant volumes

                               dρ i dt = -ρ i ≺div(u + δu) i + ≺div(ρδu) i +D ρ i du i dt = - ≺∇p i ρ i + ≺div (T v ) i ρ i + g + ≺div(u ⊗ δu) i -u i ≺div(δu) i dr i dt = u i + δu i , m i (t) = V 0i ρ i (t), p = c 2 0 (ρ -ρ 0 ) . (27) 
It this worth noting that, differently from the scheme (25), the smoothed operators in ( 27) are evaluated by using the volumes V 0j during all the simulation. The same procedure is used for the shifting velocity defined in equation [START_REF] Khayyer | Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context[END_REF]. For the above reason, the smoothed operators in ( 27) are indicated through the symbol ≺ and, for example, the divergence operator is rewritten as:

≺div(u) i = j (u j -u i ) • ∇ i W ij V 0j . (28) 
In the next section we will show that the results given by these two variants are practically the same and very close to those obtained through the δ-ALE-SPH. We stress that, strictly speaking, the above variants cannot be regarded as ALE schemes on their own.

In order to validate the δ-ALE-SPH model, namely the system (13), we consider the same benchmark used in the works Colagrossi et al. [START_REF] Colagrossi | The Discrete Vortex Hydrodynamics method:analogies and differences with the SPH method[END_REF] and Sun et al. [START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF],

concerning the viscous flow past an inclined elliptical cylinder in subsection 6.1, and the lid-driven cavity problem for two Reynolds numbers in subsection 6.2. Finally, in subsection 6.3 we consider the evolution of a dam-break flow impacting a vertical wall.

In all the simulations the schemes are integrated in time by using a fourth-order Runge-Kutta scheme with Courant-Friedrichs-Lewy number equal to 1.5.

The flow past an inclined elliptical cylinder with an angle of attack of 20 • at Re = 500

In this subsection the viscous flow past an inclined elliptical cylinder is considered.

The chord length of the profile is the major axis of the ellipse and it is indicated in the following text with the letter a. The ratio between the axes is equal to b/a = 0.4, the angle of attack is α = 20 • . The fluid domain is [-4a, 11a]×[-5a, 5a] and during the time evolution the errors between the sum of the particle volumes, i.e. i V i , and initial total volume is monitored. Using the algorithm proposed in Federico et al. ( 2012) [START_REF] Federico | Simulating 2D open-channel flows through an SPH model[END_REF], an inflow boundary condition is enforced on the left side (x = -4a)

of the domain while an outflow condition is implemented on the right side of the domain (x = 11a). The inflow numerical procedure uses a buffer zone where inflow particles are created on a Cartesian lattice. Here, the pressure is assumed to be constant (equal to zero), their velocity is imposed to be equal to the inflow speed U (upstream horizontal velocity) and they are moved by integrating in time their velocities. A buffer zone is adopted also for the outflow region. In particular, when a particle crosses the outflow section, its acceleration is set to zero and it is not more calculated by using the SPH equation. It is worth noting that the outflow velocity cannot be enforced due to the intersection of the body's wake with the outflow section. Indeed, the velocity profile along the outflow boundary depends in time by the solution of the problem.

The Reynolds number is Re = aU/ν = 500, where ν is the kinematic viscosity.

Colagrossi et al. [START_REF] Colagrossi | The Discrete Vortex Hydrodynamics method:analogies and differences with the SPH method[END_REF] showed that δ-SPH model is able to evaluate the forces acting on the inclined ellipse in a good accordance with a reference solution obtained with a vortex method, i.e. the Diffusive Vortex Hydrodynamic (DVH) model [START_REF] Rossi | The Diffused Vortex Hydrodynamics method[END_REF]. Despite this, the vorticity field was affected by numerical noise induced by the particles' spatial disorder. In [START_REF] Sun | Detection of Lagrangian Coherent Structures in the SPH framework[END_REF][START_REF] Sun | The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[END_REF] it was shown that the use of the PST allows for a better evaluation of the vorticity field, also improving the accuracy on the global force evaluation.

Figure 2 shows the pressure and vorticity fields evaluated with the δ-ALE-SPH model at the final time of the simulation, namely tU/a = 50, when a periodic regime of the solution is attained. Figure 3 

V i = (V i /V 0 -1)
, where V 0 is the initial particle volume. Since for this problem the initial configuration is a uniform when h decreases (note that h/∆x = 2 for all the simulations). On the other hand, the field V i becomes more and more irregular when a/∆x increases.

The above results indirectly show that the hypothesis on the behaviour of δu done in the previous sections are basically satisfied. The shifting velocity can present local irregularities caused by the particles' disorder, but, in any case, their magnitude tends to reduce with the particle sizes. In Figure 5 the particle mass distribution is shown for the highest resolution, that is a/∆x = 100. The contour plot refers to field of the relative mass variations, i,e, mi = (m i /m 0 -1), where m 0 are the initial particle masses evaluated as

m 0 = ρ 0 ∆x 2 .
The mass variations mi present a pattern which is essentially similar to the V i distribution. This behaviour is likely due to the fact that the density field is much more regular than both V i and m i and, consequently, mi and V i are closely related.

The left plot of Figure 6 reproduces an enlarged view of the field V i for a/∆x = 25, while the right plot displays the simulation with D m set to zero. When the mass Fig. 7. The flow past an inclined elliptical cylinder for a/∆x = 25, 50, 100. Time history of the relative variation of the total particle volume, namely V in equation ( 29), predicted by the δ-ALE-SPH.

diffusion is inhibited, the scheme becomes unstable, leading to large variations of V i (up to 50%). After that, the mass and volume variations continue to increase because the errors induced on the smoothed operators are enlarged by the inhomogeneous particle distribution. For this reason the simulation is stopped at time tU/c = 2.5.

From a theoretical point of view, the cause of this instability is still unknown and deserves a future investigation.

For the test-case selected in this work, the volume of the fluid domain is constant and equal to 14c × 10c = 140c 2 . Figure 7 shows the time history of V defined as:

V = i V i i V 0i -1 (29) 
evaluated by the δ-ALE-SPH model for three spatial resolutions, i.e. a/∆x = 25, 50, 100. As expected, V reduces when resolution increases and, consequently, i V i converges to the geometrical volume of the fluid domain.

Benchmark N • 1 solved with constraints on particle masses and volumes

In this section we consider the two variants of the δ-ALE-SPH described in Section 5, namely the constant-mass scheme in equation ( 25) and the constant-volume model in [START_REF] Quinlan | Truncation error in mesh-free particle methods[END_REF]. Figure 8 displays the time history of the drag coefficient evaluated by the different models (the results from the complete δ-ALE-SPH are also displayed).

These models yield practically the same results which are all in a good agreement with the reference solution reported in [START_REF] Colagrossi | The Discrete Vortex Hydrodynamics method:analogies and differences with the SPH method[END_REF] for the same test-case. The same behaviour is observed for the other force components (the velocity and the pressure field are not shown here for the sake of brevity).

Even though both the variants have not large effects on forces, velocity and pressure fields, the mass and volume distributions are different with respect to those given by the δ-ALE-SPH. The volume distribution for the SPH variant where the masses are forced to be constant in time is shown in Figure 9. As already commented above, the constraint on the masses implies that the volumes share the same pattern of the pressure/density field. A similar behaviour is observed when the volumes are enforced to be constant in time: indeed, in a such condition, the mass distribution Fig. 8. The flow past an inclined elliptical cylinder for a/∆x = 100. Time histories of the drag coefficient using the δ-ALE-SPH scheme and the simplified versions described in equations ( 25) and [START_REF] Quinlan | Truncation error in mesh-free particle methods[END_REF]. follows the pressure/density field (see Figure 10). For this reason and because of the weakly-compressibility assumption, the variations on the masses are limited within the 1%, i.e.

∆m i m 0 = ∆ρ i ρ 0 ≤ 0.01 (30) 
The same applies to volumes when the constraint on the masses is used. 412

Lid-driven cavity at Re = 100 and Re=1000

As a second benchmark we consider the lid-driven cavity problem. This consists of a two-dimensional squared domain with fixed solid walls along three sides and a wall moving tangentially at constant velocity U on the top side. As usual, the Reynolds number is given by Re = U L/ν where L is the square side and ν is the kinematic viscosity of the fluid. In particular, we consider the motion at Re = 100 and Re = 1000. In both the cases, the dynamics reaches a steady state after a transient whose duration depends on the specific Reynolds number.

Being the domain a simple square the ghost-particle approach [START_REF] Colagrossi | Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics[END_REF] is chosen to enforce the no-slip condition. It worth to note that within this technique it is important to mirror also the δu field along with the velocity and pressure fields, in order to impose the condition δu • n = 0 on the solid surfaces. For the velocity field, as explained in De Leffe et al. [START_REF] De Leffe | A modified no-slip condition in weakly-compressible SPH[END_REF] and further in Bouscasse et al. [START_REF] Bouscasse | Nonlinear water wave interaction with floating bodies in SPH[END_REF], a different mirroring is required for the continuity and momentum equations.

Figure 11 shows the steady state solutions obtained through the proposed δ-ALE-SPH model for both the Reynolds numbers. In particular, the left panels display the pressure field and the streamlines while the right panels show the vorticity field.

The main difference between Re = 100 (with L/∆x = 400) and Re = 1000 (with L/∆x = 800) is represented by the generation in the latter case of a large central vortex and of larger re-circulations regions close to the bottom corners. In both the cases the use of the PST allows for very regular solutions and avoids the onset of any spurious numerical noise, which, on the contrary, affects SPH models where PST are not used.

In order to validate the proposed method on this second benchmark, as the fact that the equation of the particle's mass variations in equation ( 13) is not crucial in terms of the obtained results.

A further validation is depicted in Figure 13 where the comparisons between δ-ALE-SPH model and the results presented in Erturk et al. [START_REF] Erturk | Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers[END_REF] are shown in terms of the vorticity field evaluated along the line x = 0.5L and y = 0.5L at the steady condition.

The most challenging issue related to the numerical solution of the lid-driven cavity is represented by the singularities that occur at the top-right and top-left corners of the squared domain. There, the no-slip condition is ill-defined since u = 0 along the side wall and u = U e 1 along the top wall, introducing a discontinuity on the domain boundary. In the numerical simulation this twofold assignment is the cause of errors in the particle volume evolution. With respect to this, Figure 14 displays a snapshot of the absolute relative error | V i | at different spatial resolutions.

For Re = 100 (top panels), the sources of errors close to the top corners are rather clear even though they rapidly reduce as the resolution increases (from left to right). The relative errors reduce in space but not in intensity because of the singularities on the boundary conditions at the upper corners. For Re = 1000 (bottom panels) these reductions in space of | V i | are less evident and the errors levels are smaller with respect to the more viscous case. The global convergence analysis is depicted in Figure 15 where the time history of the global error V is displayed. For both Reynolds numbers V decreases as the spatial resolution increases even if the rate of convergence is larger for Re = 100. This figure also shows that the error on the global volume tends to increase during the simulation even though it remains very small. The change on the convergence rates of V deserves a more in-depth numerical analysis which is left for future works.

Finally, because of the conservation properties discussed in Section 4.1 and thanks to the mirroring of the field (u + δu) • n on the ghost particles, the recorded global mass variations are at the machine precision for all the cases presented.

Dam-break flow impacting a vertical wall

This final benchmark is conceived to prove the reliability of the proposed scheme for free-surface problems. The initial configuration is described, for example, in Marrone et al. [START_REF] Marrone | Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling[END_REF] and reproduces the experimental campaign of Lobovsky et al. [START_REF] Lobovsky | Experimental investigation of dynamic pressure loads during dam break[END_REF].

In particular the fluid is initially confined in a reservoir on the left side of a rectangular tank and its right wall is suddenly removed to generate a fluid wedge as in Figure 16. The initial water height is H, the length of the reservoir is B = 2H and the tank length is L = 5.367H.

Both the standard SPH and the present δ-ALE-SPH are compared for this problem.

In both schemes the spatial resolution is H/∆x = 400 and the artificial viscosity is implemented (see, for example, [START_REF] Antuono | Numerical diffusive terms in weakly-compressible SPH schemes[END_REF]). This corresponds to assign µ = αhc 0 ρ 0 /K where α is a dimensionless parameter. In particular α = 0.01 hereinafter. Following [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF] the shifting velocity of the δ-ALE-SPH model is modified to satisfy δu • n = 0 close to the free-surface and preserve the free-surface kinematic boundary condition.

For what concerns the diffusive terms, these are switched off when the minimum eigenvalue of the Libersky renormalization matrix ( 15) is smaller than 0.2 (for more details see, for example, Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF]). This avoids the use of diffusion in small jets and droplets where the renormalization matrices L i may be ill-conditioned introducing numerical errors and instabilities with a possible reduction of the scheme robustness.

Figure 17 shows the instant of generation of the plunging wave and its reconnection with the underlying flow. Thanks to the action of the diffusive terms, the pressure field predicted by the δ-ALE-SPH model is much more regular than that obtained by using the standard SPH.

In Figure 18 the δ-ALE-SPH results are compared with those obtained by a Level-Set Finite Volume solver (LS-FVM). The spatial resolution is H/∆x = 400 for both the solvers, corresponding to about 320,000 particles for the δ-ALE-SPH and This kind of disturbance is also observed for the volume variations (see the top panels of Figure 20) and, more evidently, for the mass distribution (bottom panels of the same figure). In the latter case mi is evaluated by using the mass of the particles that are initially along the free surface as reference value (namely, m 0 = ρ 0 ∆x 2 ).

Since in the standard SPH the masses are constant during the evolution, the field Finally, Figure 21 shows the pressure signal recorded at the probe P 1 (see Figure 16) during the experimental campaign of Lobovsky et al. [START_REF] Lobovsky | Experimental investigation of dynamic pressure loads during dam break[END_REF], along with the comparison between the solutions obtained through the δ-ALE-SPH (red line) and the δ-ALE-SPH variant with constant masses (blue line). The maximum pressure value predicted by the potential flow theory (bullet-dot) is also reported. The solutions of the two schemes are practically superimposed up to t g/H = 6.4 while some discrepancies arise during the splash-up stage. These behaviour is caused be the fact that small parameter variations may induce non-negligible effects on the pressure field during flow stages characterized by high velocity gradients and large deformations of the free surface. 16).

Comparison between the δ-ALE-SPH and the solution obtained through the consistent δ + -SPH model of Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF]. The bullet-dot denotes the maximum pressure value as predicted by the potential flow theory.

Conclusion and Perspectives

In the present work we described a general way to obtain an Arbitrary-Lagrangian-Eulerian framework for the δ-SPH scheme with the Particle Shifting Technique.

The proposed model, named δ-ALE-SPH scheme, has been derived by rewriting the Navier-Stokes equations in the ALE formalism and, then, including the diffusive terms of the δ-SPH scheme in both the equations of density and mass. Finally, the arbitrary velocity field has been represented as the sum of the actual fluid velocity u and of a deviation field δu, and the latter has been modelled through the Particle Shifting Technique described in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF]. It was shown that the above approach is, in fact, equivalent to the weak formulation proposed by Vila [START_REF] Vila | On particle weighted methods and Smooth Particle Hydrodynamics[END_REF].

Three benchmark cases have been considered to test the δ-ALE-SPH scheme, namely the flow past an inclined elliptical cylinder with an angle of attack of 20 • at Re = 500, the lid-driven cavity at Re = 100 and Re = 1000 and a dam-break flow.

Two variants of the principal scheme have also been proposed, namely a scheme with constant volumes and a scheme with constant masses.

The first test case showed that the three models provide similar results in terms of forces, vorticity and pressure/density field while the mass and volume distributions display different behaviours because of their direct relation with the density field.

Further, the use of the diffusive terms in the mass and density equations revealed of fundamental importance for the stability of the scheme. The second benchmark confirmed the robustness and accuracy of the δ-ALE-SPH scheme, providing a good agreement with the numerical solutions obtained through the models of Xu et al. [START_REF] Xu | Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[END_REF] and Erturk et al. [START_REF] Erturk | Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers[END_REF]. The presence of singularities at the cavity top corners was shown to influence the error on the total volume conservation though the latter remains limited. Conversely, the mass conservation for this confined test case was preserved by the δ-ALE-SPH scheme. Finally, the dam-break flow proved the reliability of the proposed scheme in simulating free-surface problems and its ability in overcoming some of the drawback of the standard Lagrangian SPH model.

The overall investigation highlighted that the ALE-SPH schemes, whose differential operators are usually represented by using Riemann solvers (Vila [START_REF] Vila | On particle weighted methods and Smooth Particle Hydrodynamics[END_REF]), can be alternatively implemented by adding suitable diffusive terms. This latter approach leads to the definition of an ALE-SPH schemes with properties of stability and accuracy that seem comparable to those typical of the Riemann-based models.

Future studies will be addressed to clarify similarities and differences among the above schemes.

Remarkably, the variant of the δ-ALE-SPH with constant masses coincides with the δ + -SPH scheme described in Sun et al. [START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF], bridging the gap between the weak formulation of Vila [START_REF] Vila | On particle weighted methods and Smooth Particle Hydrodynamics[END_REF] and the standard approach from Lagrangian Navier-Stokes equations. In fact, the numerical simulations showed that the general δ-ALE-SPH and the δ + -SPH scheme are practically equivalent in terms of accuracy and conservation properties.
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 1 Fig. 1. Sketch of the deviated particles trajectory under the action of a PST using three different smoothing lengths h 1 > h 2 > h 3 .

  depicts the time histories of the viscous component in drag force obtained for three different spatial resolutions, namely a/∆x = 25, 50, 100. These results are compared with the reference solution given by the DVH model, showing that the δ-ALE-SPH converges to the DVH output and proving that the boundary layer is correctly resolved by this SPH variant.

Figure 4

 4 Figure4depicts the volume distribution given by the δ-ALE-SPH model by using three different spatial resolutions, that is a/∆x = 25, 50, 100. The contour plots refer to the field of relative volume variations, i.e. V i = (V i /V 0 -1), where V 0 is the

Fig. 2 .

 2 Fig. 2. The flow past an inclined elliptical cylinder at tU/a = 50 for a/∆x = 100. The pressure (top) and vorticity (bottom) fields predicted by the δ-ALE-SPH.

Fig. 3 .

 3 Fig. 3. The flow past an inclined elliptical cylinder. Time histories of the viscous drag component predicted by the δ-ALE-SPH for three different resolutions:a/∆x = 25, 50, 100. The dashed black line is the solution given by the DVH model (see[START_REF] Rossi | The Diffused Vortex Hydrodynamics method[END_REF]).

Fig. 4 .

 4 Fig. 4. The flow past an inclined elliptical cylinder. Particle volume distributions predicted through the δ-ALE-SPH for three spatial resolutions, namely a/∆x = 25, 50, 100.
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 56 Fig. 5. The flow past an inclined elliptical cylinder. Particle mass distributions predicted by δ-ALE-SPH for a/∆x = 100.
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 910 Fig.9. The flow past an inclined elliptical cylinder for a/∆x = 100. Contour plot of the relative volume variations V i as predicted by the scheme with constant masses [see equation[START_REF] Marrone | Prediction of energy losses in water impacts using incompressible and weakly compressible models[END_REF]].
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 11 Fig. 11. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels). Left: pressure field and streamlines. Right: vorticity field.

Fig. 12 .

 12 Fig. 12. Lid-driven cavity at Re = 100 (L/∆x = 400, left panels) and Re = 1000 (L/∆x = 800, right panels). Comparisons between the results of δ-ALE-SPH model, the reference results described in Xu et al. [42] and the solution obtained through the consistent δ + -SPH model of Sun et al. [31]. Top: the horizontal velocity component u along x = 0.5L. Middle: the vertical velocity component v along y = 0.5L. Bottom: the pressure along the axis x = y.

Fig. 13 .

 13 Fig. 13. Lid-driven cavity at Re = 1000 (L/∆x = 800). Comparisons between the results of δ-ALE-SPH model and the reference results described in [14]. Left: vorticity ω along x = 0.5L. Right: vorticity ω along y = 0.5L

Fig. 14 .

 14 Fig. 14. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels). Snapshots of | V i | at different spatial resolutions for the δ-ALE-SPH model.

Fig. 15 .

 15 Fig. 15. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels). Time histories of V for different spatial resolutions for the δ-ALE-SPH model.

Fig. 16 .

 16 Fig. 16. Dam-break flow: early stages of the evolution of the pressure field as predicted by the δ-ALE-SPH model. Here α denotes the coefficient of the artificial viscosity, while the symbol P 1 indicates the position of a pressure probe at position y = 0.01H.

Fig. 17

 17 Fig. 17. Dam-break flow: pressure field as predicted by the standard SPH (top) and by the δ-ALE-SPH model (bottom). In both the models the spatial resolution is H/∆x = 400.

  Fig. 17. Dam-break flow: pressure field as predicted by the standard SPH (top) and by the δ-ALE-SPH model (bottom). In both the models the spatial resolution is H/∆x = 400.

Fig. 18 .

 18 Fig. 18. Dam-break flow: pressure field as predicted by the δ-ALE-SPH (left column) model and the Level-Set Finite Volume solver (right column). In both the models the spatial resolution is H/∆x = 400.

Fig. 19 .

 19 Fig. 19. Dam-break flow: long-time evolution of the pressure field as predicted by the standard SPH (top) and by the δ-ALE-SPH model (bottom). Side panels display a detail of the flow close to the left wall. In both the models the spatial resolution is H/∆x = 400.

Figure 20 .

 20 Figure 20.

Fig. 20 .

 20 Fig. 20. Dam-break flow: details of the volume (top) and mass (bottom) variations close to the left wall at t g/H = 30, as predicted by the standard SPH (left column) and the δ-ALE-SPH (right column). In both the models the spatial resolution is H/∆x = 400.

Fig. 21 .

 21 Fig.21. Dam-break flow: pressure signal recorded at probe P 1 (see Figure16). Comparison between the δ-ALE-SPH and the solution obtained through the consistent δ + -SPH model of Sun et al.[START_REF] Sun | A consistent approach to particle shifting in the δ-Plus-SPH model[END_REF]. The bullet-dot denotes the maximum pressure value as predicted by the potential flow theory.
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