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Abstract

In this contribution, we study a stability notion for a fundamental linear one-
dimensional lattice Boltzmann scheme, this notion being related to the max-
imum principle. We seek to characterize the parameters of the scheme that
guarantee the preservation of the non-negativity of the particle distribution
functions. In the context of the relative velocity schemes, we derive necessary
and sufficient conditions for the non-negativity preserving property. These con-
ditions are then expressed in a simple way when the relative velocity is reduced
to zero. For the general case, we propose some simple necessary conditions on
the relaxation parameters and we put in evidence numerically the non-negativity
preserving regions. Numerical experiments show finally that no oscillations oc-
cur for the propagation of a non-smooth profile if the non-negativity preserving
property is satisfied.

Keywords: non-negativity preserving property, advection process, numerical
oscillations
2008 MSC: 76M28, 65M12

1. Introduction

Studying the stability of lattice Boltzmann schemes is a non-trivial problem.
Classically for this purpose, the scheme is linearized around a constant state
and a von Neumann-Fourier analysis is performed. For this notion of stability,
we refer to the work of Sterling and Chen in [21] where some stability results for
a 7-velocity hexagonal lattice, a 9-velocity square lattice, and a 15-velocity cubic
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lattice are proposed; the work of Lallemand and Luo [17] for a 9-velocity square
lattice scheme applied to hydrodynamics; the one of Sieber et al. for athermal
and thermal models with a larger number of velocities in two space dimensions
[20]; the one of Ginzburg et al. [11] extending the Fourier analysis to a wide
variety of different two and three-dimensional lattice Boltzmann schemes; the
one of Krivovichev [16] for six widely used body force action models; the one of
Wissocq et al. [24] for projecting information carried by the lattice Boltzmann
eigenvectors on the physical modes.
Instabilities and their interpretation in terms of bulk viscosity have been pro-
posed by Dellar [4]. But no mathematical analysis has been performed.
A new way of improving stability is proposed by Geier [9], who proposed a new
generalized lattice Boltzmann scheme with the approach of relative velocities
and utilized it for hydrodynamics applications [6]. An attempt to analyze this
method for a two-dimensional scalar linear problem has been also proposed [7].
Interesting tentatives have been proposed to enforce stability conditions of
multiple-relaxation time lattice Boltzmann schemes with raw or central mo-
ments with von Neumann analysis and heuristic selection of wave-number vec-
tors by Golbert et al. [12] and Chávez-Modena et al. [3].
Even if it is a difficult task, it is well known that Fourier method (von Neumann
analysis) is a linear approach and in consequence is not relevant for analyzing
non-linear hyperbolic equations.
Total variation diminishing schemes, developed for suppressing oscillations in
higher-order CFD algorithms [1, 23, 22], provide an alternative nonlinear sta-
bility analysis tool for analyzing the schemes for nonlinear wave propagation.
The convergence of such schemes is well established [18]. The underlying sta-
bility notion concerns the maximum principle. In brief, if some solution of a
partial differential equation is positive on the boundary, it remains positive in
all the domain of study [13, 10, 15]. The lattice Boltzmann schemes do not
intrinsically satisfy the property of maximum principle or the associated non-
negativity constraint as detailed by Karimi et al. [14]. This notion can be
extended to non-linear cases and a first attempt for lattice Boltzmann schemes
has been proposed in [2], for the D1Q2 scheme used to simulate scalar non-linear
hyperbolic equations.
In this contribution, we propose to investigate the stability in the maximum
sense, of a linear mono-dimensional lattice Boltzmann scheme with three ve-
locities. More precisely, we look to a non-negativity constraint for the parti-
cle distribution functions in the context of relative velocities. The objective
is the description of the parameter sets of the scheme that allow the particle
distribution functions to remain non-negative. It is obviously linked with the
non-negativity of their equilibrium values but it only coincides with the latter
property if all the relaxation parameters are taken to 1. We refer for instance to
Servan-Camas et al. [19] where this property is investigated for several schemes
used to simulate advection-diffusion equation.
In Section 2, we describe the scheme and the underlying advection model. More
precisely, the local relaxation step is written as a linear operator on the par-
ticle distribution functions. If all the coefficients of the underlying matrix are
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nonnegative, the non-negativity of the distribution is maintained during this
step. Because the transport step is just a change of locus, the non-negativity is
maintained for the whole time step of the scheme. The question is then to find
appropriate conditions to handle this property. In Section 3, a necessary and
sufficient condition is derived on the parameters to ensure that the scheme has
the stability property. In Section 4, we completely describe the classical case
where the relative velocity is reduced to zero. In Section 5, the general case
is presented, with an analytical study for necessary conditions and a numerical
one for a complete description of the stability zones. In Section 6, the presented
numerical experiments show the correlation of the positivity constraint for a
particle distribution and the presence of oscillations for discontinuous profiles.

2. Description of the framework

2.1. Description of the scheme

In this contribution, we investigate a mono-dimensional 3 velocities linear lattice
Boltzmann scheme with relative velocity [6]. Denoting ∆x the spatial step, ∆t
the time step, and λ = ∆x/∆t the scheme velocity, this scheme can be described
in a generalized D. d’Humière’s framework [5]:

(1) the 3 velocities c1 = −1, c2 = 0, and c3 = 1;

(2) the 3 associated distributions f1, f2, and f3;

(3) the 3 moments ρ, q(u), and ε(u) given by

ρ =
∑

1≤j≤3

fj , q(u) = λ
∑

1≤j≤3

(cj−u)fj , ε(u) = 3λ2
∑

1≤j≤3

(cj−u)2fj−2λ2
∑

1≤j≤3

fj ,

where u is a given scalar representing the relative velocity;

(4) the equilibrium value of the 3 moments

ρeq = ρ, qeq(u) = λ(V − u)ρ, εeq(u) = λ2(3u2 − 6uV + α)ρ,

where V and α are given scalars (without loss of generality, we assume that
V > 0);

(5) the 2 relaxation parameters s and s′ such that the relaxation phase reads

q?(u) = (1− s)q(u) + sqeq(u), ε?(u) = (1− s′)ε(u) + s′εeq(u).

In this formalism, the moments are defined as polynomial functions of discrete
velocities and the discrete distribution functions. Indeed, introducing the one
variable polynomials P1(X) = 1, P2(X) = λX, and P3(X) = λ2(3X2 − 2)
relative to an abstract indeterminate X, the three moments read

ρ =
∑

1≤j≤3

fjP1(cj − u), q(u) =
∑

1≤j≤3

fjP2(cj − u), ε(u) =
∑

1≤j≤3

fjP3(cj − u).
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The equilibrium values are chosen such that the equilibrium distributions do
not depend on the relative velocity u. Indeed, we have:

f eqj = 1
6ρ
(
2 + 3cjV + (3c2j − 2)α

)
, 1 ≤ j ≤ 3.

Note that this scheme can be used (see e.g. [8]) to simulate a scalar transport
equation with constant velocity λV given by

∂tρ+ λV ∂xρ = 0.

This advection equation is a first-order asymptotic limit as the space and time
steps tend to zero with a fixed ratio λ ≡ ∆x/∆t. We are not interested in this
contribution in the second-order asymptotic expansion and refer to the relative
velocity schemes of Février et al. [6] for the same.
With the notation xk = k∆x, k ∈ Z, and tn = n∆t, n ∈ N, one time step of the
scheme reads

fj(t
n + ∆t, xk + cj∆t) = fj(t

n+1, xk+j) = f?j (tn, xk), 1 ≤ j ≤ 3.

Note that the scheme does not depend on the relative velocity u in the case where
the relaxation parameters are identical, i.e., s = s′. The two moments q(u) and
ε(u) depend on u but the particle distribution functions remain identical at each
time iteration. In that case, for all values of u, the scheme yields the standard
BGK scheme.

2.2. A notion of non-negativity preserving relaxation

In this contribution, we are concerned with the non-negativity of the particle
distribution functions. We propose the following definition of stability through
non-negativity preserving relaxation.

Definition 1 (non-negativity preserving relaxation). The relaxation phase is
said to be non-negativity preserving if

∀j fj ≥ 0 =⇒ ∀i f?i ≥ 0. (1)

This property can be viewed as referring to a weak maximum principle for
schemes. Indeed, it is always possible, by adding a constant, to assume that
all the particle distribution functions are initially non-negative. If the scheme
ensures that this property of non-negativity remains as time marches, each
particle distribution function is then bounded, as their total sum is conserved.
Moreover, as the transport step consists simply in exchanging the position of
the particle distribution functions, we focus on the relaxation step.
In other words, if ρ is conserved during the relaxation step (and periodic bound-
ary conditions are used for compact space set), the sum of ρ over all the space
points xk, k ∈ Z, is constant. Then the particle distribution functions verify a
maximum principle(

∀k ∈ Z,∀j fj(0, xk) ≥ 0
)

=⇒
(
∀k ∈ Z,∀n ∈ N,∀j 0 ≤ fj(tn, xk) ≤ ρ

)
4



with
ρ =

∑
k∈Z

∑
j

fj(0, xk).

Note that the property of non-negativity preserving relaxation is automatically
satisfied if the equilibrium values of the distribution functions are non-negative
and if the relaxation parameters verify s = s′ ∈ (0, 1]. This result does not
depend on the relative velocity u (as the equilibrium values of the distribution
functions do not depend on u). We will recover this result in the following.

2.3. Matrix notation for the relaxation step

We use a matrix notation for the relaxation step as it can be read as a multipli-
cation by a matrix. As this step is local in space, we omit the dependancy on
time and space. We define the vector of the distribution functions f

f = (f1 f2 f3)T .

One relaxation step then reads

f? = R(u)f,

where the matrix R(u) is defined by

R(u) = M−1T(−u)
(
I + S

(
T(u)ET(−u)− I

))
T(u)M,

with

M =

 1 1 1
−λ 0 λ
λ2 −2λ2 λ2

 , T(u) =

 1 0 0
−λu 1 0

3λ2u2 −6λu 1

 ,

S =

0 0 0
0 s 0
0 0 s′

 , E =

 1 0 0
V λ 0 0
αλ2 0 0

 , I =

1 0 0
0 1 0
0 0 1

 .

The coefficients of the matrix M are obtained by the relations Mk,j = Pk(cj),
1 ≤ k, j ≤ 3 and those of the matrix T(u) by the change of basis formula:
T(u)k,l is the coefficient of the lth-element Pl(cj) in the definition of Pk(cj − u)
according to

Pk(cj − u) =
∑

1≤l≤3

T(u)k,lPl(cj), 1 ≤ j ≤ 3.

The matrix M is then the change of basis that transforms the vector f into the
vector m(0) = (ρ, q(0), ε(0))T :

m(0) = Mf, m(u) = T(u)Mf.

The matrix T(u) can then be viewed as the change of basis matrix from the
classical moments without relative velocity toward the moments with relative
velocity.

5



2.4. Remark on the choice of the moments

Note that the last moment ε(u) that is chosen in this contribution is not the
energy but a moment that is orthogonal to the two first ones, ρ and q(u). In
this section, we show that all the results of the contribution would be identical
by choosing the last moment as the energy: the relaxation matrix R(u) would
still be the same.
We consider two schemes with two different choices of polynomials: the moments
of the first scheme are defined by (P1, P2, P3) while the moments of the second

scheme by (P̂1, P̂2, P̂3). The first moment is the same in both schemes to be able

to simulate the same transport equation. We then have P̂1 = P1. We define C
the change of basis matrix associated to the tranformation M into M̂:

M̂ = CM.

The first line of C is then (1, 0, 0).

Proposition 1. We assume that the equilibrium values of the distribution func-
tions are the same, that is Ê = CEC−1, and that the relaxation parameters are
the same, that is Ŝ = S Then, we have R̂(u) = R(u) for all (s, s′) iff

P̂2 ∈ Span(P1, P2), P̂3 ∈ Span(P1, P3), in R[X]/X(X − 1)(X + 1).

In a practical way, the exact choice of the moments has no influence on the
precise computation of the matrix R(u) even in the relative velocity framework.
If for example, we use on one hand the matrix proposed previously in this
contribution M and on the other hand the favorite moment matrix of one of us,
M̂, with

M =

 1 1 1
−λ 0 λ
λ2 −2λ2 λ2

 , M̂ =

 1 1 1
−λ 0 λ
λ2/2 0 λ2/2

 ,

we just change the definition of the third moment named “energy” in this con-
tribution. We observe that

C =

 1 0 0
0 1 0

λ2/3 0 1/6

 .

The equilibrium matrices E and Ê

E =

 1 0 0
V λ 0 0
αλ2 0 0

 , Ê =

 1 0 0
V λ 0 0

λ2 α+2
6 0 0


are linked by Ê = CEC−1 in order to maintain identical the equilibrium distribu-
tion functions. Then we maintain unchanged the relaxation coefficients because
S = Ŝ.
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Proof. First, we immediately obtain the following relations by identifying the
coefficients of M̂ and of M:

P̂k(cj) =
∑

1≤l≤3

Ck,lPl(cj), 1 ≤ j ≤ 3.

We deduce that
T̂(u) = CT(u)C−1.

We have

R̂(u) = M̂−1T̂(−u)
(
I + Ŝ

(
T̂(u)ÊT̂(−u)− I

))
T̂(u)M̂

= M−1T(−u)C−1
(
I + S

(
CT(u)ET(−u)C−1 − I

))
CT(u)M

= M−1T(−u)
(
I + C−1SC

(
T(u)ET(−u)− I

))
T(u)M.

Then

R̂(u)− R(u) = M−1T(−u)C−1
(
SC− CS

)
T(u)

(
E− I

)
M.

As the matrices M, T(u), T(−u), and C are invertible, the condition R̂(u) = R(u)
is equivalent to (SC− CS)T(u)(E− I) = 0. Denoting

C =

 1 0 0
c21 c22 c23
c31 c32 c33

 ,

a straightforward calculation yields

(SC− CS)T(u)(E− I) = (s− s′)

 0 0 0
c23λ

2(α− 6V ) c236λu −c23
c32λV −c32 0

 .

Then the property R̂(u) = R(u) for all values of s and s′ is equivalent to c23 =
c32 = 0, that ends the proof.

2.5. Positivity of the R(u) matrix

The velocity V being fixed, we propose to give a full description of the sets

ΩV,u =
{

(s, s′, α) ∈ R3 such that R(u) is a non-negative matrix
}
, u ∈ R.

The relaxation phase is non-negativity preserving in the sense of the Definition 1,
for given V and u, if and only if the parameters (s, s′, α) are in ΩV,u. Indeed,
the non-negativity of the matrix R(u) imposes that all the distributions fα,
α ∈ {−, 0,+}, remain non-negative if they are so at the initial time. These sets
are first described by a set of nine inequalities that can be joined into just one.
Numerical illustrations are then given to visualize it in the characteristic cases
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including single relaxation time, multiple relaxation time and relative velocity
scheme.
In this contribution, we assume that V ≥ 0 without loss of generality as

Ω−V,−u = ΩV,u.

This last property is obvious after some algebra or after remarking that the
transformation just exchanges the f1 and f3 values (corresponding to the veloc-
ities ±λ).

3. Positivity of the iterative matrix

The nine inequalities obtained from the matrix R(u) can be combined neatly
into one formula.
The inequalities are

R0,0 = V su− V s
2 − V s′u+ αs′

6 + su− s
2 − s′u− s′

6 + 1 > 0,

R0,1 = V su− V s
2 − V s′u+ αs′

6 + s′

3 > 0,

R0,2 = V su− V s
2 − V s′u+ αs′

6 − su+ s
2 + s′u− s′

6 > 0,

R1,0 = −2V su+ 2V s′u− αs′

3 − 2su+ 2s′u+ s′

3 > 0,

R1,1 = −2V su+ 2V s′u− αs′

3 − 2s′

3 + 1 > 0,

R1,2 = −2V su+ 2V s′u− αs′

3 + 2su− 2s′u+ s′

3 > 0,

R2,0 = V su+ V s
2 − V s′u+ αs′

6 + su+ s
2 − s′u− s′

6 > 0,

R2,1 = V su+ V s
2 − V s′u+ αs′

6 + s′

3 > 0,

R2,2 = V su+ V s
2 − V s′u+ αs′

6 − su− s
2 + s′u− s′

6 + 1 > 0.

(2)

We prove now that the previous nine inequalities can be written in a much more
lucid way.

Proposition 2. We introduce the reduced parameters u and γ according to

u = 2u(s− s′), γ =
s′

6
(1− α)− u(s− s′)V. (3)

Then the nine previous inequalities Ri,j ≥ 0 displayed in (2) are equivalent to

max(s′ − 1, |u|) ≤ 2γ ≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |). (4)

Proof. Consider first the two inequalities associated with R0,0 and R2,2 :{
V su− V s′u+ αs′

6 − s
2 − s′

6 + 1 > V s
2 − su+ s′u

V su− V s′u+ αs′

6 − s
2 − s′

6 + 1 > −V s2 + su− s′u .

They can be synthesized in the following form:∣∣∣∣u2 − V s

2

∣∣∣∣ ≤ 1− s

2
−
(s′

6
(1− α) + u(s′ − s)V

)
= 1− s

2
− γ
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and we can write this relation as

2 γ ≤ 2− s− |u− s V | . (5)

Write now the inequalities (2) associated with R0,1 and R2,1 :{
V su− V s′u+ αs′

6 + s′

3 > V s
2

V su− V s′u+ αs′

6 + s′

3 > −V s2 .

In other words, |V s2 | ≤ −γ + s′

2 . Then

2 γ ≤ s′ − |s V | . (6)

We now focus on the inequalities (2) associated with R0,2 and R2,0 :{
V su− V s′u+ αs′

6 + s
2 − s′

6 > V s
2 + su− s′u

V su− V s′u+ αs′

6 + s
2 − s′

6 > −V s2 − su+ s′u

We have |V s2 + su− s′u| ≤ V su−V s′u+ αs′

6 + s
2 − s′

6 = s
2 −γ. In consequence,

2 γ ≤ s− |u+ s V | . (7)

Considering the inequalities with R1,0 and R1,2, we have{
−V su+ V s′u− αs′

6 + s′

6 > su− s′u
−V su+ V s′u− αs′

6 + s′

6 > −su+ s′u

and | 12 u| ≤ −V su+ V s′u− αs′

6 + s′

6 = γ. In consequence,

|u| ≤ 2 γ . (8)

The last inequality R1,1 ≥ 0 can be written as −V su+V s′u− αs′

6 − s′

3 + 1
2 > 0

and this inequality is equivalent to γ − s′

2 + 1
2 > 0. In other terms,

s′ − 1 ≤ 2 γ . (9)

The inequalities (5), (6) and (7) establish a triple majoration of 2 γ whereas
the inequalities (8) and (9) show a double minoration of the same quantity. The
proof is completed.

4. The particular case u = 0

In this section, we suppose that the relative velocity u is reduced to zero. Then
the necessary and sufficient conditions for non-negativity preserving relaxation
can be written as

max(s′ − 1, 0) ≤ s′

3
(1− α) ≤ min(2− s− |sV |, s− |sV |, s′ − |sV |). (10)
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s
0 22

1+V

0

1

2
s′ s′ = 3− (1 + V ) s s′ = 1 + (1 + V ) s

s′ = V s

Figure 1: Necessary and sufficient stability regions described by the inequalities (12) for a null
relative velocity u. Illustration proposed for V = 2

3
.

Proposition 3. To fix the ideas, we suppose that the advection velocity V is
positive:

V ≥ 0. (11)

The case V ≤ 0 follows directly. When u = 0, the reduced stability conditions

max(s′ − 1, 0) ≤ min(2− s− |sV |, s− |sV |, s′ − |sV |) (12)

are equivalent to the following conditions for the relaxation parameters
0 ≤ s, s′ ≤ 2
s′ ≥ s V
s ≤ 2

1+V

s′ ≤ min (3− (1 + V ) s , 1 + (1− V ) s)

(13)

joined with a natural Courant type condition for explicit schemes

V ≤ 1 (14)

for the advection velocity.

Of course, the conditions (10) have still to be imposed for the equilibrium pa-
rameter α when the pair s, s′ is given. In particular,

α ≤ 1 (15)

and

s′ ≤ 3

α+ 2
. (16)

Proof. We first observe that 0 ≤ max (s′ − 1, 0) ≤ |s V | ≤ min (2− s, s).
Then 0 ≤ s ≤ 2. Secondly, we have |s V | ≤ s′ and because both s and
V are positive, we have 0 ≤ s V ≤ s′. We have also s V ≤ s and (14) is
established. Moreover, s ≥ 0 and |s V | ≤ 2 − s implies s ≤ 2

1+V . Due to
the positivity of the parameter s, we deduce from (10) a new set of inequalities:
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s′− 1 ≤ max (s′− 1, 0) ≤ min (2− s− s V, s− s V ). Then s′ ≤ min (3− (1 +
V ) s, 1 + (1− V ) s). Moreover, s′ ≤ 3− (1 + V ) s ≤ 2 because V ≥ 0.
Conversely, if the relations (13) and (14) are satisfied, we have s′−1 ≤ 2−s−s V ,
s′−1 ≤ s−s V and s′−1 ≤ s′−s V . Then s′−1 ≤ min (2−s−s V, s−s V, s′−
s V ). Moreover, 0 ≤ 2− s− s V , 0 ≤ s− s V because V ≤ 1 and 0 ≤ s′− s V .
Thus 0 ≤ min (2− s− s V, s− s V, s′ − s V ). Finally the inequalities (12) are
established and the proposition is proven.

5. The general case

We analyse the general case of non-zero u in this section, with suitable illustra-
tions of the stability region for various ranges of the parameters.

5.1. Necessary conditions for stability

In this subsection, we prove the following proposition.

Proposition 4. We suppose that the necessary and sufficient non-negativity
preserving relaxation conditions (4) are satisfied as

max(s′ − 1, |u|) ≤ 2γ ≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |)

with the notations (3):

u = 2u(s− s′), γ =
s′

6
(1− α)− u(s− s′)V.

We suppose also that the advection velocity V is non-negative. Then, the point
(s, s′) satisfies the following inequalities

0 ≤ s V ≤ s′ ≤ 2,
0 ≤ s V ≤ 1,
0 ≤ s ≤ 2,
s′ ≤ min (2− s V, s+ 1, 3− s),
s ≤ 2

1+V .

(17)

With these necessary stability conditions, the parameter u has been eliminated.
We have also, necessarily

V ≤ 1 (18)

and

|u| ≤ 1

2
. (19)

Proof. We start from the inequalities (4). Then we have

0 ≤ |u| ≤ max(s′ − 1, |u|)
≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |) ≤ s′ − |sV |

and s′ ≥ |sV | ≥ sV .
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With the same type of inequalities, |u|+|u−s V | ≤ 2−s and |u|+|u+s V | ≤ s.
If we remark that |u| ≤ 1

2 |u − s V | + 1
2 |u + s V |, we deduce that 2 |u| ≤

1
2 (2− s+ s) = 1 and the inequality (19) is proven.
We have the triangular inequality |s V | ≤ |u−s V |+ |u|. Then from the general
stability conditions (4), we deduce |u− s V |+ |u| ≤ 2− s and |s V | ≤ 2− s.
In a similar way, |s V | ≤ |u + s V | + |u|, |u + s V | + |u| ≤ s from (4) and
finally |s V | ≤ 2 − s. We put together the two inequalities and we have 0 ≤
|s V | ≤ min (s, 2− s).
In consequence, we have 0 ≤ s ≤ 2 and the third point is proven. Since we
made the choice of V ≥ 0 then s ≥ 0. The first inequality of the two first
points are established. From s V ≤ s we have V ≤ 1 and the relation (18) is
true. Moreover, s V ≤ 2− s and the last inequality of (17) is true.
Consider now the the inequalities
s′−1 ≤ 2 γ ≤ min (2−s−|u−s V |, s−|u+s V |). We deduce s′−1+|u−s V | ≤
2− s and s′ − 1 + |u+ s V | ≤ s. Due to the positvity of the absolute values,
we have also s′ ≤ 3− s and s′ ≤ s+ 1. A part of the fifth inequality of (17)
is proven.
Finally, due to the triangular inequality, s V = |s V | ≤ 1

2 |u−s V |+ 1
2 |u+s V |.

We add this inequality with the two following ones: s′−1+|u−s V | ≤ 2−s and
s′− 1 + |u+ s V | ≤ s. Then s′− 1 + s V ≤ 1

2 (2− s+ s) = 1 and s′ ≤ 2− s V .
The fifth inequality of (17) is completely established. Because s V ≥ 0, we
have also s′ ≤ 2 and the first inequality of (17) is also established.

We illustrate the zones of necessary stability in the Figure 2 for five particular
velocities : V = 0, 1

4 ,
1
3 ,

1
2 and 1.

5.2. Numerical study of necessary and sufficient conditions for stability

We now illustrate the necessary and sufficient stability regions for V = 0, V = 1
4 ,

V = 1
3 , V = 1

2 , V = 2
3 and V = 1 for various ranges of u in the Figure 3. Each

figure represents the projection of the set ΩV,u onto the two-dimensional plane
(s, s′) ∈ R2 given by the external inequalities of (4):

max(s′ − 1, |u|) ≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |).

Indeed, if (s, s′) verifies (4), there exists always a value of α such that (s, s′, α) ∈
ΩV,u. The figures were obtained by following the straight edges of the domain,
which can be written as an intersection of half-planes.
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Figure 2: Necessary stability regions descibed by the inequalities (17) for V = 0, V = 1
4

[first line, from left to right], V = 1
3

, V = 1
2

[second line, from left to right], and for V = 2
3

,
V = 1 [third line, from left to right].
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Figure 3: Numerical study of necessary and sufficient stability regions
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For each value of V , the necessary and sufficient stability regions given by
the relations (4) are displayed for several values of the relative velocity: u ∈
{−2V,−V, 0, V/2, V, 2V }. In dotted line, the necessary stability region of the
Proposition 4 is added for comparison. The particular value u = 0 is enhanced
by filling the region in gray.
Some analysis can be drawn from these figures:

• the stability region changes with the relative velocity;

• the maximal value of the first relaxation parameter s is obtained (not
only) for u = 0;

• the stability region is not clearly more favorable (larger or including greater
value of s) for u = V ;

• the segment corresponding to s = s′ ∈ (0, 1] is always in the stability
region.

To conclude this section, this notion of stability allows a large set of values for
the relaxation parameters. If the scheme is used to simulate the hyperbolic
advection equation without second-order operators, we can try to minimize
the numerical diffusion while maintaining this stability property. This task is
complicated and out of the scope of the paper as the numerical second-order
term reads as a non-linear formula that links all the parameters s, α, and V .

6. Numerical illustrations

In this section, we illustrate the stability property with numerical simulations
involving the D1Q3 model, with and without relative velocity, used to simulate
the linear advection equation. The stability is demonstrated for the parameters
chosen according to the analysis presented in the previous sections. Oscillations
are seen whenever the parameters go beyond the stability limits presented, as
highlighted in the results.
The parameters chosen for the simulations are the following:

V u s s′ α

left (stable) 0.25 0.0 1.6 1.3 0.3076923076923076
0.25 0.25 1.6 1.3 -0.17548076923076938

right (unstable) 0.25 0.0 1.9 1.4 0.14285714285714302
0.25 0.25 1.9 1.4 -0.10491071428571441

Moreover, all the simulations are performed for the same space range [0, 1] with
periodic boundary conditions, with the same space step ∆x = 1/128, the same
time step ∆t = ∆x, such that λ = 1, until the final time t = 1.
For the left figures, the parameters are chosen in order to satisfy the stability
property. We observe numerically also a maximum principle (the conserved
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moment ρ remains in the interval [0, 1] corresponding to the initial condition),
even if it is not formally the stability notion that we investigate. For the right
figures, the parameters are chosen in order to break the stability property.
The initial conditions are built from the polynomial functions φ0(X) = 1,
φ1(X) = X, and φ2(X) = X(3−X2)/2 by

ρk(x) =


1

2

[
1 + φk

(2x− 3`

`

)]
if ` ≤ x ≤ 2`,

1

2

[
1 + φk

(5`− 2x

`

)]
if 2` ≤ x ≤ 3`,

0 otherwise,

with ` = 0.125, for 0 ≤ k ≤ 2. For Fig. 4, we choose ρ(0, x) = ρ2(x) to have
a smooth initial condition, for Fig. 5, ρ(0, x) = ρ1(x) to have a continuous
initial condition, and for Fig. 6, ρ(0, x) = ρ0(x) to have a discontinuous initial
condition.
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exact solution
D1Q3 (u = 0)
D1Q3 (u = 0.25)
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Figure 4: Smooth profile with a continuous derivative. The parameters for the D1Q3 are
tuned in order to have (left) or not (right) the non-negativity property
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Figure 5: Continuous profile. The parameters for the D1Q3 are tuned in order to have (left)
or not (right) the non-negativity property
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Figure 6: Discontinuous profile. The parameters for the D1Q3 are tuned in order to have
(left) or not (right) the non-negativity property

If the profile is smooth (Fig. 4), we have observed that no numerical oscillations
occur even if the non-negativity property of the matrix is not satisfied. If the
profile is just continuous (Fig. 5), small negative values of the macroscopic
quantity are observed when our non-negativity property is not satisfied. Last
but not least, classical oscillations are visible for discontinuous profiles (Fig. 6)
if our non-negativity property is not satisfied. These oscillations are eliminated
when the non-negativity property of the matrix is realized.

7. Conclusion

In this contribution, we have investigated a stability property for a classical
mono-dimensional linear three velocities lattice Boltzmann scheme with rela-
tive velocity. This property ensures that non-negativity of the initial particle
distribution functions continues to remain the same in time. We then give a
necessary and sufficient condition to describe the stability region. The case with-
out relative velocity is completely described and simpler necessary conditions
are given for the general case. We finally propose some numerical simulations
that illustrate the stability property: even if the stability notion that we inves-
tigate is not exactly a constraint of convexity, a numerical maximum principle
is observed if the parameters are inside the stability region whereas numerical
oscillations appear (in particular for the non-smooth profiles) if the parameters
are outside.
Moreover, relative velocities modify the stability array in a nontrivial manner.
For instance, intuition might have suggested that the stability region for the
relative velocity equal to the advection velocity contains all the others but it is
really not the case. For a given advection velocity, relative velocities cannot be
used to increase the value of the first relaxation parameter, the one involved in
the numerical diffusion operator.
In order to focus on fundamental aspects, we have assumed periodic boundary
conditions in this contribution. Of course, the possibility of including more
realistic boundary conditions and the associated source terms is an important
task for a future work.
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The non-negativity of the relaxation matrix could be extended to nonlinear
schemes. The theoretical study will then be much more technical and has not
been performed. Nevertheless, numerical experiments for the Burgers equation
show that the behavior of the D1Q3 scheme, and in particular the appearance
or absence of oscillations, is analogous to the linear case.
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