

Characterization of medical relevant anaerobic microorganisms by isothermal microcalorimetry

Stéphane Corvec, Eva Seiler, Lei Wang, Mercedes Gonzalez Moreno, Andrej

Trampuz

▶ To cite this version:

Stéphane Corvec, Eva Seiler, Lei Wang, Mercedes Gonzalez Moreno, Andrej Trampuz. Characterization of medical relevant anaerobic microorganisms by isothermal microcalorimetry. Anaerobe, 2020, 66, pp.102282 -. 10.1016/j.anaerobe.2020.102282 . hal-03492861

HAL Id: hal-03492861 https://hal.science/hal-03492861v1

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Research article Anaerobe V2

2	
3	Characterization of medical relevant anaerobic microorganisms
4	by isothermal microcalorimetry
5	
6	Stéphane Corvec ^{1*} , Eva Seiler ^{2*} , Lei Wang ^{3,4} , Mercedes Gonzalez Moreno ^{3,4} , Andrej Trampuz ^{3,4}
7	
8	¹ Service de Bactériologie, Université de Nantes, CHU Nantes, CRCINA, F-44000 Nantes,
9	France
10	² Department of Biomedicine, University Hospital, Basel, Switzerland
11	³ Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-
12	Universität zu Berlin, Berlin, Germany.
13	⁴ Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitätsmedizin
14	Berlin, Berlin, Germany
15	
16	Running title: Detection of anaerobes by calorimetry
17	Keywords: anaerobes, detection, calorimetry
18	Word count (Introduction through Discussion): 2592
19	
20	Potential conflicts of interest: None reported.
21	
22	
23	*Eva Seiler relocated, the current affiliation is Triemli Hospital, Zurich, Switzerland.

Financial support: The study was supported by an unrestricted educational grant from the PRO IMPLANT Foundation (https://www.pro-implant.org), a non-profit organization supporting
 research, education, global networking and care of patients with bone, joint or implant-associated
 infection.

- 5
- 6 *Correspondence:
- 7 Stéphane Corvec
- 8 Institut de Biologie
- 9 Service de Bactériologie-Hygiène hospitalière
- 10 CHU de Nantes
- 11 9 quai Moncousu 44093 Nantes Cedex 01 France
- 12 E-mail address: stephane.corvec@chu-nantes.fr
- 13 Phone: 33.2.40.08.39.55 Fax: 33.2.40.08.38.29

14

1 ABSTRACT 227words

Detection of anaerobe bacteria by culture methods requires appropriate media, special growth 2 3 conditions, additional detection techniques and it typically takes several days. Therefore, 4 anaerobes are often missed in patient specimens under routine culture conditions. 5 Microcalorimetry may provide a simple and accurate real-time method for faster and better 6 detection of anaerobes. An isothermal calorimeter was used for calorimetric experiments, which 7 detect minimal changes of temperature over time. In order to find optimal growth conditions, 8 seven reference or clinical strains of medical relevant anaerobe bacteria were tested under 9 different circumstances. First, the strains were tested with different growth media. After 10 determining the optimal medium for each strain, the gas phase was modified by adding 3 mL or 4 11 mL medium, to evaluate growth under conditions with less oxygen. Cooked Meat Medium was 12 best supporting growth of the tested strains, including Cutibacterium acnes, Fusobacterium nucleatum, Finegoldia magna, Parvimonas micra, Bacteroides fragilis and Actinomyces 13 14 odontolyticus, followed by thioglycolate. The best medium to detect Clostridioides difficile was 15 H-Medium. All tested strains showed better growth in 4 mL medium than in 3 mL. The detection time ranged between 10 to 72 hours. Our results demonstrated that the sensitivity and the 16 17 detection time of anaerobe bacteria can be improved by isothermal calorimetry with optimization 18 of growth conditions. Therefore, calorimetric detection, a practical, quick and easy-to-do method, has the potential to replace current microbiological methods. 19

20

1 **1. Introduction**

Anaerobe bacteria are part of the normal human flora in the oral cavity, upper respiratory tract, lower intestinal tract, genito-urinary tract and on the skin [1]. Anaerobes are involved in several infections, predominantly causing polymicrobial infections together with aerobic bacteria [2,3]. It is important to identify anaerobes, as they often require other or additional antibiotics [4].

In routine microbiology, anaerobes are detected either by anaerobic cultures, by molecular testing or by identifying their specific toxin, e.g. from feces for *Clostridioides difficile* [5,6]. Cultures may require a CO₂-enriched atmosphere to grow properly, and the detection process and microbial identification can take several days (e.g. *Actinomyces* spp.). Therefore, faster and improved detection of anaerobes may be of advantage in the routine microbiological diagnosis. In addition, knowledge of optimal growth conditions, growth media and growth characteristics may further improve the clinical practice [5].

13 Microcalorimetry was described as a new diagnostic method allowing rapid and accurate 14 detection of microorganisms by measuring their heat production as a result of their metabolism 15 [7]. Microcalorimetry was also reported as a promising tool for the diagnosis of septic arthritis from synovial fluid [8] or detection of contaminated platelet products [9]. The output of the 16 17 calorimeter is the rate of change of heat as a function of time in the units of power (Joule/s = 18 Watt), which is referred to as a power-time curve. Despite of the low heat output of bacterial 19 metabolism, the capacity of bacteria to replicate in culture medium leads to an exponential 20 increase of cell numbers in the ampoules, which leads to detectable sums of heat even from low 21 inocula - from 10 to 100 colony-forming units (CFU) per ampoule - within hours [10–12].

More than 75% of anaerobes isolated from selected clinical specimens belong to Gram-positive
anaerobic cocci, non-spore-forming rods, *Prevotella* spp., *Porphyromonas* spp., *Bacteroides fragilis* group and *Fusobacterium* spp. [13]. The aim of this study was to determine the optimal

growth media and conditions for the highest sensitivity and shortest detection time of medically important anaerobe bacteria by using microcalorimetry. The microcalorimetry data were compared with the results of conventional cultures. From this *in vitro* experimental work, we aimed to determine the optimal conditions for diagnosing infections caused by the tested microorganisms.

6 The following representative anaerobes were investigated in this study: Cutibacterium acnes, 7 Actinomyces odontolyticus, C. difficile, Parvimonas micra, Finegoldia magna, Bacteroides fragilis, and Fusobacterium nucleatum. C. acnes is a Gram-positive non-spore-forming rod, that 8 9 causes acne and endogenous infections like endocarditis or device-related infections [14-16]. A. 10 odontolyticus is a Gram-positive non-spore-forming rod causing actinomycosis, an acute or 11 chronic disease with suppurative lesions, abscesses, and draining sinus tracts [17,18]. C. difficile 12 is a Gram-positive spore-forming rod, causing antimicrobial-associated diarrhea, colitis or 13 pseudo-membranous colitis, associated with significant morbidity and mortality particularly in 14 the elderly [19]. P. micra and F. magna are associated with infections of the oral cavity, 15 respiratory tract, genito-urinary tract, central nervous system, superficial and soft-tissue, intraabdominal sites, cardiovascular system or bacteraemia. F. magna is also recovered from bone and 16 17 joint, soft-tissue, foot ulcer and abdominal infections [20,21]. B. fragilis and F. nucleatum are 18 Gram-negative rods. B. fragilis is causing peritonitis, intra-abdominal abscesses and liver-19 abscesses, whereas F. nucleatum causes oro-facial, lower respiratory tract, abdomen and angina 20 Paul-Vincent [22,23].

21

22 **2.** Material and methods

23 **2.1. Preparation of the bacteria for microcalorimetry**

1 The tested strains were either clinical isolates obtained from the clinical microbiology laboratory at our institution or reference laboratory strains as follows: C. acnes (isolate T6030), F. 2 3 nucleatum (isolate T6080.1), F. magna (isolate T5945), P. micra (strain ATCC 33270), B. fragilis (strain ATCC 25285), A. odontolyticus (strain ATCC 17929), C. difficile (isolate 9689). 4 5 First, colonies from a fresh culture on Schaedler agar (bioMérieux, Marcy-l'Etoile, France) was suspended in 2 mL 0.85% NaCl ampoules to give a turbidity of 0.5 McFarland (McF). From this 6 7 0.5 McF suspension, serial 10-fold dilutions in sterile saline were prepared to achieve a dilution 8 of 1:1000, except for C. difficile dilution of 1:10. Sterile 4 mL glass ampoules were filled with 9 the different test media and 50 µL of the inoculum. The ampoules were sealed with sterile 10 rubber-aluminum lids. A hook was attached on each lid to introduce the ampoule into the 11 instrument and the calorimetric measurement was started. Additionally, equivalent dilutions of 12 the inoculum were plated on Schaedler agar and incubated at 37°C during two to three days to 13 determine the inoculum by counting the number of colonies. In general, a turbidity of 0.5 McF represents approximately 1.5x10⁸ CFU/mL, but this value varies, mainly due to different cell 14 15 sizes [24].

16

2.2. Comparing four different media

17 Trypticase Soy Broth supplied with hemin and vitamin K (TSB-F, bioMérieux) is a standard 18 liquid culture medium, usually recommended as universal growth medium for all 19 microorganisms. This standard medium was compared with Cooked Meat Medium (CMM, 20 BBLTM Cooked Meat Medium with Glucose, Hemin and Vitamin K, Becton Dickinson, Eysins 21 Switzerland), Thioglycolate (BBLTM Enriched Thioglycolate Medium with Vitamin K and 22 Hemin, Becton Dickinson), and H-Medium (Heipha Eppelheim, Germany), three media 23 recommended for anaerobic culture. Before use, aliquots of these media were reduced by exposure to an anaerobic environment or by cooking for 10 minutes. For practical reasons, the
preparation of the ampoules took place in an aerobic environment. The ampoules were filled with
3 mL of one medium plus 50 µL of the dilution containing the bacteria.

The bacterial concentration in the dilutions was determined by counting the number of CFU after plating 50 μ L aliquots of two dilutions on Columbia blood agar plates containing 5% sheep blood (Becton Dickinson) and incubating in an anaerobic hood at 37°C for two or three days. For all species, the dilutions 1:10⁴ and 1:10⁵ were plated except for *C. difficile* the dilutions 1:10 and 1:100 were used. Results were expressed as mean ± standard deviation (SD).

9

2.3. Reduced gas phase

As oxygen is toxic for anaerobic bacteria, the oxygen inside the ampoule was reduced by filling it with 4 mL medium instead of 3 mL, thereby reducing the gas-phase inside to a minimum. This time, only the optimal medium for each strain – as formerly tested – was used. Thus for every strain, there was one ampoule with 3 mL and one ampoule with 4 mL of the optimal medium plus 50 μL of the dilution containing the bacteria.

15

2.4. Calorimetric equipment and measurements

16 A 48-channel batch calorimeter (Thermal Activity Monitor, Model 3102 TAM III, TA Instruments, New Castle, DE, USA) was used to measure the heat flow at 37°C controlled at ± 17 18 0.0001° C and a sensitivity of $\pm 0.2 \mu$ W. Any heat generated or absorbed by the sample as a 19 consequence of any chemical or physical process is measured continuously as a function of time. 20 Each microcalorimeter is capable of accommodating a 4 mL glass ampoule in its measurement 21 chamber above a thermally inert reference in the reference chamber. Ampoules were first 22 lowered into a thermal equilibration position for 15 minutes before being lowered into the 23 measurement position. However, even after 15 minutes in the equilibration position, the 1 measurement of heat flow is temporarily disturbed by introducing an ampoule into the measurement position, due to the heat capacity of the ampoule and its contents. Typically, 2 3 another 45 minutes must elapse before the signal from a specimen which is not currently 4 producing or consuming heat returns to a value close to zero µW of heat flow. Heat flow rate data 5 are then recorded continuously until the experimenter chooses to end an evaluation. In the study 6 described here, heat flow from ampoules was recorded for up to several days. After the 7 measuring phase the ampoules were removed from the microcalorimeter and the content of each 8 ampoule was checked for the presence of microorganisms. Sterility of the negative controls was a 9 basic requirement for the validity of an experiment.

10 Time to detection (TTD) was defined as the time between the insertion of an ampoule into the 11 calorimeter and the increase of the power-time curve above a certain threshold value. We 12 determined this value at 10 µW above the lowest point of the curve immediately before the 13 increase leading to the peak. The detection limit was set at 20 µW in order to distinguish start of 14 microbial growth from background noise. Sterile solutions never give rise to an exponential increase in the heat flow, unless replicating cells are present. Heat flow peak is defined as the 15 16 highest value on the Y-axis (heat-flow) of the heat flow-time curve. Total heat (in Joules [J]) was 17 defined as heat generated until a time point and was determined by integration of the area below 18 the heat flow-time curve. After measurement was completed, the content of each calorimetry 19 ampoule was assessed for turbidity. Experiments were performed in triplicates on different days 20 with different batches and bacterial inocula.

21

22 **3. Results**

23 **3.1. Comparing performances of four different media**

The aim of this assay was to determine the medium leading to the fastest and best growth of the tested species and to check if there is one universal medium, suited for the detection of most, if not all common pathogenic anaerobic bacteria. The tested media were TSB-F and CMM, thioglycolate and H-Medium, media that are routinely recommended and used for culture of anaerobes.

6 Table 1 shows that TSB-F was not suited to detect most of the pathogens using the 10 µW-7 detection limit. Using the other three media all the tested species could be detected. CMM 8 resulted in the highest mean heat flow peak in five out of seven microorganisms especially C. 9 acnes (Fig. 1a) and the TTD was the shortest for three out of seven microorganisms ranging 10 between 22 to 72 hours. Thioglycolate led to the fastest TTD for C. acnes and F. nucleatum 11 though the highest mean heat flow peak it achieved only in F. nucleatum. The best medium to 12 detect C. difficile was H-Medium (shortest TTD and highest peak, Fig.1b) and it was faster than 13 the other media to detect B. fragilis, with a detection time of 19.6 ± 0.8 hours. In summary, CMM 14 obtained the best coverage to detect the tested anaerobic microorganisms looking at both 15 parameters TTD and heat flow peak.

16

17

3.2. Impact of reduced gas phase

With the best medium for each species determined in the previous experiment, the detection parameters were compared 4 mL *versus* 3 mL medium. For *C. acnes*, only the CMM medium was tested, although there was a shorter TTD with thioglycolate but with a much lower heat. With *B. fragilis* H-Medium was tested instead of CMM, because of the markedly shorter TTD. Of seven tested organisms, four showed shorter TTD with using the larger volume of media, whereas two species showed no significant change. For most (six of seven tested organisms) the microcalorimetric peak was higher with larger volume of media, involving a minimized gas
phase (Table 2 and Fig.2).

- 3
- 4
- 5

6 4. Discussion

7 In this study, we investigated the potential of microcalorimetry to detect anaerobe bacteria with 8 better sensitivity and speed. An isothermal calorimeter was used for calorimetric experiments, 9 which detect minimal changes of temperature over time. To achieve this goal, different growth 10 media were artificially contaminated with a selection of seven different representative anaerobe 11 bacteria strains. Culture conditions were varied according to the specific requirements of the microorganisms. The calorimetric results were compared with conventional microbiological tests. 12 As previously shown in the literature [24,25], we found that CMM was the optimal supporting 13 14 growth medium for the tested anaerobes, including C. acnes, F. nucleatum, F. magna, P. micra, 15 B. fragilis and A. odontolyticus, followed by thioglycolate. The best medium to detect C. difficile 16 was H-Medium [26].

In order to reduce the amount of oxygen in the samples, we reduced the media before use by either incubating them in anaerobic atmosphere or cooking for 10 min. Additionally, the ampoules were filled by using a volume of 4 mL instead of 3 mL, to maximally reduce the gas phase in the ampoule. To further decrease the oxygen level in the ampoules, all preparation steps for the filling of microcalorimetry ampoules could be performed under anaerobic conditions, using a special hood, or the gas phase in the ampoules could be exchanged by nitrogen. These measures could further improve the detection time, especially for strict anaerobes [27].

24 In this study, we optimized the conditions for different clinical relevant anaerobe microorganisms

1 to better detect them by growth-related heat production. Once there is a microcalorimetry setting 2 with optimal conditions, (i.e. optimal medium and optimal volume of the medium), microbial 3 detection can be performed with high sensitivity and specificity. Moreover, the heat-flow curve 4 of each microorganism is distinguishable from the others (data not shown), which additionally 5 might be further explored for accurate identification of the group or even species of 6 microorganism in patient samples with suspected infection as previously reported [8,9,28,29]. As 7 the type of calorimeter used in this study allows parallel measurements of up to 48 samples, a combination of test ampoules containing different growth media and conditions could be used to 8 9 further increase the sensitivity of the detection. Moreover, this strategy could be used as the 10 sample size of the presented method is relatively small. Indeed, patient samples could be 11 distributed on a number of ampoules containing different media. In such case, this combination 12 would allow the detection of anaerobes but also fastidious and slow-growing microorganisms 13 such as Borrelia burdorferi sensu stricto or Bartonella henselae (data not shown), low-inoculum 14 or polymicrobial clinical samples.

We assume that the heat-flow curve will be the sum of heat production by each organism of the mixture, depending on their inoculum, growth rate and potential interaction (competition) in the same growth medium. At last, this approach has been developed to characterize *Mycobacterium abscessus* susceptibility and can probably be establish for other and fastidious *Mycobacteriaceae* species [30].

The calorimetry detection limit (TTD) of 10 μ W was defined previously [9]. In the present study we observed, that even in cases where this value was not reached (detection considered as negative), in most cases there was indeed an increasing heat flow, which was distinct from the sterile control (background noise). A lower detection limit, as long as it is high enough to discriminate from sterile samples, could further increase detection sensitivity by
 microcalorimetry.

3 In summary, this calorimetric method is suitable to determine the optimal growth conditions for 4 fastidious and slow-growing microorganisms, e.g. anaerobes but also some fungi. Different 5 studies have also reported its ability to determine the efficacy of drugs alone or in combination 6 against planktonic and sessile strains optimizing the medium used [31-34]. Even though no 7 universal medium and growth condition could be found to allow a culture-based detection of the 8 multitude of different microorganisms causing infections, we demonstrate here that for specific 9 groups and species the optimization of growth conditions remains important to increase 10 sensitivity and decrease detection time of any culture based detection method.

11 In this study we employed the measurement of growth-related heat as a novel principle for 12 detection of anaerobes microorganisms in samples. With optimization, the sensitivity and detection time can be further improved and have the potential to replace current microbiological 13 14 methods. Advantages of the calorimetric method compared to other techniques include its non-15 invasive nature - measuring heat production without interfering with the microorganism, and no 16 need of clear solution - unlike spectrophotometric methods [35]. In addition, the calorimetric 17 method could have higher sensitivity compared to most standard methods [9,12]. At last, the 18 ampoule can be recovered easily to realize subcultures on different appropriate media to achieve 19 susceptibility testing, if necessary. This susceptibility testing can be also achieved using 20 microcalorimetry as previously reported [7,35,36]. We have not performed experiments with 21 mixed cultures, however, the heat-flow curve should represent the sum of heat production by 22 each organism of the mixture, depending on their inoculum, growth rate and interaction in the 23 same growth medium. Microcalorimetry may be, therefore, used for investigation of real-time 24 interaction between different microorganisms in mixed cultures.

1	For a future clinical use of this method, it is required to combine these results with the results of							
2	previous studies and, of course, future studies using this new approach, to implement							
3	microcalorimetry as a potential and useful tool to detect anaerobes or fastidious microorganisms							
4	in small volumes of patient's body fluids.							
5								
6	Conflicts of interest:							
7	All authors report no conflicts of interest relevant to this article.							
8								
9	Acknowledgements:							
10	We thank Andrea Steinhuber for her comments to the manuscript. This work was supported by an							
11	educational grant of the PRO-IMPLANT Foundation (https://www.pro-implant.org), a non-profit							
12	organization supporting research, education, global networking, and care of patients with bone,							
13	joint or implant-associated infections.							
14								
15								
16	References							
17								
18 19 20	 E.C. Murphy, IM. Frick, Gram-positive anaerobic coccicommensals and opportunistic pathogens, FEMS Microbiol. Rev. 37 (2013) 520–553. https://doi.org/10.1111/1574- 6976.12005. 							
21 22 23	 H. Zhao-Fleming, S. Dissanaike, K. Rumbaugh, Are anaerobes a major, underappreciated cause of necrotizing infections?, Anaerobe. 45 (2017) 65–70. https://doi.org/10.1016/i.anaerobe.2017.04.012. 							
24 25 26	 [3] C. Vuotto, G. Donelli, Anaerobes in biofilm-based healthcare-associated infections, Adv. Exp. Med. Biol. 830 (2015) 97–112. https://doi.org/10.1007/978-3-319-11038-7_6. [4] L Brook Spectrum and treatment of anaerobic infections. J. Infect. Chemother. 22 (2016). 							
20 27	 1-13. https://doi.org/10.1016/j.jiac.2015.10.010. 151 J.E. Son has M. Ali D.B. Marse Dalating and for the life of the life o							
28 29	[5] J.E. Sondag, M. All, P.K. Murray, Relative recovery of anaerobes on different isolation media, J. Clin. Microbiol. 10 (1979) 756–757.							

- [6] K. Aktories, C. Schwan, T. Jank, *Clostridium difficile* Toxin Biology, Annu. Rev.
 Microbiol. 71 (2017) 281–307. https://doi.org/10.1146/annurev-micro-090816-093458.
- [7] M.E. Butini, M. Gonzalez Moreno, M. Czuban, A. Koliszak, T. Tkhilaishvili, A. Trampuz,
 M. Di Luca, Real-Time Antimicrobial Susceptibility Assay of Planktonic and Biofilm
 Bacteria by Isothermal Microcalorimetry, Adv. Exp. Med. Biol. 1214 (2019) 61–77.
 https://doi.org/10.1007/5584_2018_291.
- [8] E. Yusuf, T. Hügle, T. Daikeler, C. Voide, O. Borens, A. Trampuz, The potential use of
 microcalorimetry in rapid differentiation between septic arthritis and other causes of
 arthritis, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 461–465.
- 10 https://doi.org/10.1007/s10096-014-2248-y.
- [9] A. Trampuz, S. Salzmann, J. Antheaume, A.U. Daniels, Microcalorimetry: a novel method for detection of microbial contamination in platelet products, Transfusion. 47 (2007) 1643– 1650. https://doi.org/10.1111/j.1537-2995.2007.01336.x.
- [10] S. Corvec, M.E. Portillo, B.M. Pasticci, O. Borens, A. Trampuz, Epidemiology and new
 developments in the diagnosis of prosthetic joint infection, Int J Artif Organs. 35 (2012)
 923–934. https://doi.org/10.5301/ijao.5000168.
- [11] F. Bou-Abdallah, Microcalorimetry in the BioSciences-Principles and applications,
 Biochim. Biophys. Acta. 1860 (2016) 859–860.
 https://doi.org/10.1016/j.bbagen.2016.02.004.
- [12] O. Braissant, D. Wirz, B. Göpfert, A.U. Daniels, Use of isothermal microcalorimetry to
 monitor microbial activities, FEMS Microbiol. Lett. 303 (2010) 1–8.
 https://doi.org/10.1111/j.1574-6968.2009.01819.x.
- [13] P.A. Shenoy, S. Vishwanath, A. Gawda, S. Shetty, R. Anegundi, M. Varma, C.
 Mukhopadhyay, K. Chawla, Anaerobic Bacteria in Clinical Specimens Frequent, But a
 Neglected Lot: A Five Year Experience at a Tertiary Care Hospital, J Clin Diagn Res. 11
 (2017) DC44–DC48. https://doi.org/10.7860/JCDR/2017/26009.10311.
- [14] G.G. Aubin, M.E. Portillo, A. Trampuz, S. Corvec, *Propionibacterium acnes*, an emerging
 pathogen: from acne to implant-infections, from phylotype to resistance, Med Mal Infect. 44
 (2014) 241–250. https://doi.org/10.1016/j.medmal.2014.02.004.
- [15] M.E. Portillo, S. Corvec, O. Borens, A. Trampuz, *Propionibacterium acnes*: an
 underestimated pathogen in implant-associated infections, Biomed Res Int. 2013 (2013)
 804391. https://doi.org/10.1155/2013/804391.
- [16] N. Renz, S. Mudrovcic, C. Perka, A. Trampuz, Orthopedic implant-associated infections
 caused by *Cutibacterium* spp. A remaining diagnostic challenge, PLoS ONE. 13 (2018)
 e0202639. https://doi.org/10.1371/journal.pone.0202639.
- [17] L.A. Cone, M.M. Leung, J. Hirschberg, *Actinomyces odontolyticus* bacteremia, Emerging
 Infect. Dis. 9 (2003) 1629–1632. https://doi.org/10.3201/eid0912.020646.
- [18] S.S. Yun, H.S. Cho, M. Heo, J.H. Jeong, H.R. Lee, S. Ju, J.-Y. Kim, J.W. You, Y.J. Cho,
 Y.Y. Jeong, H.C. Kim, J.D. Lee, S.J. Lee, Lung abscess by *Actinomyces odontolyticus* and *Parvimonas micra* co-infection presenting as acute respiratory failure: A case report,
 Medicine (Baltimore). 98 (2019) e16911. https://doi.org/10.1097/MD.00000000016911.
- 42 [19] E. Thomas, P. Bémer, C. Eckert, A. Guillouzouic, J. Orain, S. Corvec, J. Caillon, C.
- Bourigault, D. Boutoille, *Clostridium difficile* infections: analysis of recurrence in an area
 with low prevalence of 027 strain, J. Hosp. Infect. 93 (2016) 109–112.
 https://doi.org/10.1016/j.jhin.2016.01.015.

- [20] L. Boyanova, R. Markovska, I. Mitov, Virulence arsenal of the most pathogenic species
 among the Gram-positive anaerobic cocci, *Finegoldia magna*, Anaerobe. 42 (2016) 145–
 151. https://doi.org/10.1016/j.anaerobe.2016.10.007.
- [21] A. Shtaya, H. Schuster, P. Riley, K. Harris, S. Hettige, Oesophageal pleural fistula
 presenting with *Parvimonas micra* infection causing cervical and brain abscesses,
 Anaerobe. 47 (2017) 233–237. https://doi.org/10.1016/j.anaerobe.2017.06.012.
- [22] H.M. Wexler, *Bacteroides*: the good, the bad, and the nitty-gritty, Clin. Microbiol. Rev. 20
 (2007) 593–621. https://doi.org/10.1128/CMR.00008-07.
- 9 [23] C.A. Brennan, W.S. Garrett, *Fusobacterium nucleatum* symbiont, opportunist and
 10 oncobacterium, Nat. Rev. Microbiol. 17 (2019) 156–166. https://doi.org/10.1038/s4157911 018-0129-6.
- [24] R. Hartemink, F.M. Rombouts, Comparison of media for the detection of bifidobacteria,
 lactobacilli and total anaerobes from faecal samples, J. Microbiol. Methods. 36 (1999) 181–
 14 192. https://doi.org/10.1016/s0167-7012(99)00031-7.
- [25] K.D. Scythes, M. Louie, A.E. Simor, Evaluation of nutritive capacities of 10 broth media, J.
 Clin. Microbiol. 34 (1996) 1804–1807.
- [26] W.L. George, V.L. Sutter, D. Citron, S.M. Finegold, Selective and differential medium for
 isolation of *Clostridium difficile*, J. Clin. Microbiol. 9 (1979) 214–219.
- [27] E. Guilhot, S. Khelaifia, B. La Scola, D. Raoult, G. Dubourg, Methods for culturing
 anaerobes from human specimen, Future Microbiol. 13 (2018) 369–381.
 https://doi.org/10.2217/fmb-2017-0170.
- [28] O. Borens, E. Yusuf, J. Steinrücken, A. Trampuz, Accurate and early diagnosis of
 orthopedic device-related infection by microbial heat production and sonication, J. Orthop.
 Res. 31 (2013) 1700–1703. https://doi.org/10.1002/jor.22419.
- [29] E. Yusuf, J. Steinrücken, S. Nordback, A. Trampuz, Necrotizing fasciitis after breast
 augmentation: rapid microbiologic detection by using sonication of removed implants and
 microcalorimetry, Am. J. Clin. Pathol. 142 (2014) 269–272.
 https://doi.org/10.1309/AJCPNA1ZKVK7PHUD.
- [30] N. Boillat-Blanco, U. Furustrand Tafin, K. Jaton, A. Trampuz, Susceptibility testing of
 Mycobacterium abscessus by isothermal microcalorimetry, Diagn. Microbiol. Infect. Dis. 83
 (2015) 139–143. https://doi.org/10.1016/j.diagmicrobio.2015.06.006.
- [31] U. Furustrand Tafin, C. Orasch, A. Trampuz, Activity of antifungal combinations against
 Aspergillus species evaluated by isothermal microcalorimetry, Diagn. Microbiol. Infect.
 Dis. 77 (2013) 31–36. https://doi.org/10.1016/j.diagmicrobio.2013.06.004.
- [32] U. Furustrand Tafin, J.F. Meis, A. Trampuz, Microcalorimetry assay for rapid detection of
 voriconazole resistance in *Aspergillus fumigatus*, Antimicrob. Agents Chemother. 57 (2013)
 5704–5706. https://doi.org/10.1128/AAC.01379-13.
- [33] E.M. Maiolo, U. Furustrand Tafin, O. Borens, A. Trampuz, Activities of fluconazole,
 caspofungin, anidulafungin, and amphotericin B on planktonic and biofilm *Candida* species
 determined by microcalorimetry, Antimicrob. Agents Chemother. 58 (2014) 2709–2717.
 https://doi.org/10.1128/AAC.00057-14.
- [34] M. Di Luca, A. Koliszak, S. Karbysheva, A. Chowdhary, J.F. Meis, A. Trampuz,
 Thermogenic Characterization and Antifungal Susceptibility of *Candida auris* by
 Microcalorimetry, J Fungi (Basel). 5 (2019). https://doi.org/10.3390/jof5040103.
- [35] S.-J. Kwon, D. Kim, I. Lee, J. Nam, J. Kim, J.S. Dordick, Sensitive multiplex detection of
 whole bacteria using self-assembled cell binding domain complexes, Anal. Chim. Acta.
 1030 (2018) 156–165. https://doi.org/10.1016/j.aca.2018.05.008.

Fig1. Examples of representative heat flow curves obtained with the microcalorimeter over a 6-day period for *Cutibacterium acnes* (a) and *Clostridioides difficile* (b) detection using four different media Trypticase Soy Broth supplied with hemin and vitamin K (TSB-F), Cooked Meat Medium (CMM), Thioglycolate broth medium (Thiol Medium), and H-Medium, NC = negative control.

Fig2. Examples of representative heat flow curve differences (Time to detection) with the microcalorimeter during a 6-day period for *Cutibacterium acnes* (a) and *Parvimonas micra* (b) detection using 3 or 4 mL of Cooked Meat Medium (CMM) in the ampoule, NC = negative control.

- 1 **TABLE 1.** Influence of different media on microcalorimetric parameters for anaerobe detection. Numbers represent mean values ±
- 2 standard deviation of triplicate measurements.

Microorganism	TTD (h)				Peak (µW)			
(Inoculum per ampoule in CFU)	TSB	СММ	Thio	H-Med	TSB	СММ	Thio	H-med
C. acnes (11,000)	-	55.5 ± 2.2	49.8 ± 1.9	75.4 ± 2.2	3.8 ± 1.9	184.4 ± 9.8	36.1 ± 2.0	66.8 ± 3.9
F. nucleatum (260)	-	-	34.3 ± 1.1	-	2.2 ± 0.5	*	59.6 ± 3.1	*
F. magna (665)	-	22.1 ± 1.1	-	127.6 ± 5.3	1.9 ± 0.2	55.2 ± 2.9	5.7 ± 0.2	10.6 ± 1.5
P. micra (3,300)	-	72.2 ± 3.7	-	79.8 ± 3.5	*	28.1 ± 2.2	8.2 ± 0.6	10.9 ± 1.1
<i>B. fragilis</i> (4,000)	-	42.5 ± 2.4	45.9 ± 1.5	19.6 ± 0.8	*	42.7 ± 3.0	12.1 ± 0.9	34.0 ± 2.0
A. odontolyticus (4,700)	90.5 ± 5.2	25.2 ± 1.3	32.6 ± 1.4	26.1 ± 1.3	17.6 ± 1.1	90.5 ± 3.7	16.2 ± 1.2	22.7 ± 1.8
C. difficile (600)	-	-	16.4 ± 0.8	10.5 ± 0.7	*	*	52.9 ± 2.0	140.3 ± 8.4

3 Bold numbers represent the medium with the shortest TTD/ highest peak.

4 * No heat-flow peak measurable because the curve is sinking from the beginning.

5 - The heat limit of $10 \,\mu W$ was not reached.

6 TSB = Trypticase Soy Broth supplied with hemin and Vitamin K

- 1 CMM = Cook Meat Medium
- 2 Thio = Thioglycolate
- 3 H-Med = H-Medium
- 4

1 **TABLE 2.** Influence of different volumes of medium on microcalorimetric parameters for anaerobe detection. Numbers represent

Microorganism		TTD (h)	Peak (µW)		
(Inoculum per	Medium	3 mL	4 mI.	3 mL	4 mI	
ampoule in CFU)				5 112		
<i>C. acnes</i> (2,200)	СММ	32.5 ± 1.9	45.2 ± 1.6	173.8 ± 5.1	266.7 ± 8.8	
F. nucleatum (30)	Thio	50.3 ± 1.5	35.4 ± 2.1	26.9 ± 1.1	92.8 ± 3.6	
F. magna (110)	СММ	19.1 ± 1.1	15.9 ± 1.0	49.5 ± 2.6	102.3 ± 6.0	
<i>P. micra</i> (1,400)	СММ	71.7 ± 2.0	53.3 ± 0.8	24.8 ± 1.8	55.0 ± 2.2	
<i>B. fragilis</i> (7,400)	H-med	17.7 ± 0.9	14.2 ± 1.2	39.6 ± 2.2	87.7 ± 2.5	
A. odontolyticus (10,000)	СММ	22.8 ± 1.6	22.5 ± 1.9	88.7 ± 4.1	83.7 ± 2.1	
C. difficile (815)	H-med	16.6 ± 0.3	16.4 ± 1.6	97.2 ±3.5	139.5 ± 5.9	

2 mean values ± standard deviation of triplicate measurements.

3

4 CMM = Cook Meat Medium

5 Thio = Thioglycolate

6 H-Med = H-Medium