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A nonlinear discrete duality finite volume scheme is proposed for time-dependent diffusion equations. The model example is written in a new formulation giving rise to similar nonlinearities for both the diffusion and the potential functions. A natural finite volume discretization is built on this particular problem's structure. The fluxes are generically approximated thanks to a key fractional average. The point of this strategy is to promote coercivity and scheme's stability simultaneously. The existence of positive solutions is guaranteed. The theoretical convergence of the nonlinear scheme is established using practical compactness tools. Numerical results are performed in order to highlight the second order accuracy of the methodology and the positiveness of solutions on distorted meshes.

Introduction

We consider Q t f = Ω × (0, t f ) where Ω is a bounded connected open subset of R d (d ∈ N * ) and t f > 0 refers to the time. A transient nonlinear diffusion process can be represented with the parabolic equation

∂p ∂t -div µ(p)Λ∇p = 0 in Q t f , (1.1) 
whose main unknown is p which could account for a saturation of fluid, temperature of material or density of population. The function µ(p) measures the behavior of nonlinear dispersion of p in Ω. The matrix Λ provides preferential axes along which strong or weak diffusion could take place. A complete description of such a process necessitates some specific closure constraints. In our case, it is given by the homogeneous Neumann boundary condition

µ(p)Λ∇p • n = 0 on ∂Ω × (0, t f ), (1.2) 
where n is the outward unit normal to the domain boundary ∂Ω. To start this time-dependent problem, we specify the initial datum by p(•, 0) = p 0 in Ω. (1.3) In this contribution, the construction of the numerical scheme relies heavily on a nonstandard reformulation of the above problem. Next we write the main hypotheses that must be imposed on the different data involved in our model problem in order to properly give the meaning of the sought solution.

(i) β is a continuous and strictly increasing function from R + into R + such that β(0) = 0 and β(s) > 0 for all s ∈ (0, +∞).

(ii) The tensor Λ is a symmetric matrix of L ∞ (Ω) d×d such that there exist two constants Λ > 0 and Λ with Λ |v| (iii) Let us consider Υ a nonnegative primitive of u → log(β(u)) that will subsequently be said the entropy. By construction, the function Υ is convex. We assume the following items.

2 ≤ Λ(x)v • v ≤ Λ |v|
(a) The initial state p 0 is a nonnegative function of L 1 (Ω) with a positive mass i.e. Remark 1.1. Let us construct an example of the entropy Υ. To this end, we fix some γ > 0 and set

C γ = γ + 1 2 . We next consider µ(s) = C γ s γ if s ≤ 1 C γ if s > 1 .
By definition of β, one computes

β(s) = s Cγ if s ≤ 1 2C γ s -γ if s > 1 .
Then, the entropy function verifying (1.7) can be taken as

Υ(s) =        C γ (s log(s) -s + 1) if s ≤ 1 1 2 X(s) log(X(s)) -X(s) + 1 if s > 1
, where X(s) = 2C γ s -γ. Up to a modification enabling the continuity of µ, note that if µ(s) fits a bounded function when s → +∞ then (1.7) is automatically satisfied. The latter situation generally occurs in practice.

The following statement defines the notion of a weak solution to the considered problem. Note that the existence of such a weak solution to the model problem (1.1)- (1.3) in the sense below was the object of the work [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. The convergence of the proposed numerical scheme is an alternative way to prove the existence result.

Definition 1.1. Let us assume that the items (i)-(iii) are fulfilled. A measurable function p : Q t f -→ (0, +∞) is called a weak solution to the continuous model (1.1)-(1.3) if Υ(p) ∈ L ∞ (0, t f ; L 1 (Ω)), β(p) ∈ L 2 (0, t f ; H 1 (Ω)) and p solves the integral formulation

- Qt f p ∂ψ ∂t dx dt - Ω p 0 ψ(•, 0) dx + Q tf β(p)Λ∇β(p) • ∇ψ dx dt = 0, ∀ψ ∈ C ∞ c (Ω × [0, t f )). (1.8)
Diffusion equations of type (1.1) arise widely in a lot of mathematical and physical problems modeling complex flows in porous media [START_REF] Chavent | Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media[END_REF], heat transfer in materials [START_REF] Kaviany | Principles of heat transfer in porous media[END_REF], and biological processes [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF][START_REF] Gurtin | On the diffusion of biological populations[END_REF]. Various computational methods with specific goals, like consistency, stability, accuracy etc, have been devoted to the discretization of problems recast in the formulation (1.1). In addition to the finite element literature [START_REF] Amiez | On a numerical approach to Stefan-like problems[END_REF][START_REF] Arbogast | A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media[END_REF][START_REF] Ebmeyer | Error estimates for a class of degenerate parabolic equations[END_REF][START_REF] Verti | Numerical aspects of parabolic free boundary and hysteresis problems[END_REF], it is well established that many finite volume methods provide consistent and accurate approximations to diffusion terms. By consistency we mean the convergence of the discrete fluxes towards their continuous counterparts in the weak sense. There exists a rich documentation on the finite volume approximation. The most famous finite volume method is TPFA (Two-Point Flux Approximation). The TPFA like schemes are widely used in practice due to their efficient local computation of the fluxes and cheap implementation. They have been intensively analyzed in a great number of contributions [START_REF] Afif | Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media[END_REF][START_REF] Andreianov | Finite volume methods for degenerate chemotaxis model[END_REF][START_REF] Bendahmane | Convergence of a finite volume scheme for gas-water flow in a multi-dimensional porous medium[END_REF][START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions[END_REF][START_REF] Eymard | Finite volume methods[END_REF][START_REF] Eymard | Finite volumes and nonlinear diffusion equations[END_REF][START_REF] Eymard | A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems[END_REF]. In order to take into consideration anisotropic and heterogeneous fields, multi-point approximation of the fluxes is mandatory. For this reason, the Hybrid Mimetic Mixed (HMM) schemes have been conceived and analyzed in [START_REF] Aavatsmark | Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF][START_REF] Brezzi | Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[END_REF][START_REF] Droniou | A mixed finite volume scheme for anisotropic diffusion problems on any grid[END_REF][START_REF] Eymard | Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[END_REF]. Also, the Vertex Approximate Gradient (VAG) methods [START_REF] Brenner | Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes[END_REF][START_REF] Eymard | Vertex-centred discretization of multiphase compositional Darcy flows on general meshes[END_REF] have shown a privileged performance in capturing as accurately as possible the solution jumps in the presence of highly heterogeneous fields. Additionally, the Discrete Duality Finite Volume (DDFV) approach [START_REF] Andreianov | Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations[END_REF][START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF][START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF][START_REF] Coudière | A 3D discrete duality finite volume method for nonlinear elliptic equations[END_REF][START_REF] Coudière | The discrete duality finite volume method for convection-diffusion problems[END_REF][START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary twodimensional grids[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF][START_REF] Krell | Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes[END_REF] is a natural extension of the TPFA method to complex situations. A comparison of the aforementioned discretizations as well as other ones has been carried out in the review [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF]. Most of the described methods have shown to fit in the abstract framework [START_REF] Droniou | The gradient discretisation method[END_REF] referred to as the gradient discretization method.

We would like to emphasize that in porous media flow type problems for instance, relevant functions like the approximate saturation or the temperature must stay in the physical ranges so that it can be physically admissible. To address this requirement a few positive and consistent schemes have been developed and examined in the recent past years [START_REF] Brenner | Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes[END_REF][START_REF] Brenner | Vertex Approximate Gradient Discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media[END_REF][START_REF] Cancès | Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations[END_REF][START_REF] Ghilani | Positivity-preserving finite volume scheme for compressible twophase flows in anisotropic porous media: The densities are depending on the physical pressures[END_REF][START_REF] Ghilani | Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media[END_REF][START_REF] Quenjel | Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations[END_REF]. The point is about the elimination of possible oscillations using appropriate first order upwind schemes for the diffusion like in the case of convection. A different approach was suggested in [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF][START_REF] Cancès | Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations[END_REF] where the authors exploited the features of some singular functions near zero to achieve higher-positive resolutions. Being inspired by [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF] we have suggested an accurate and robust finite volume finite element approximation with respect to the anisotropy in the case of a linear elliptic operator [START_REF] Quenjel | Analysis of accurate and stable finite volume scheme for anisotropic diffusion equations with drift[END_REF] with a linear transport. Hence, there is a strong interest in designing new reliable discretizations coupling between stability, accuracy and positivity for complex problems. To this end, we are going to extend the methodology of [START_REF] Quenjel | Analysis of accurate and stable finite volume scheme for anisotropic diffusion equations with drift[END_REF] to more general nonlinearities of β(p) with weakest assumptions.

In this work we stick to a strategy preserving the original (quadratic) accuracy of the finite volume method. Then, one retains an easy updating of already existing codes without modifying the stencil or the core of the method. Our scheme is constructed using the DDFV framework. As advantages of the DDFV method, it enjoys a discrete Stokes formula allowing for the establishment of readily a priori analysis, especially the unconditional coercivity, as in the continuous setting. It is further a pure finite volume approximation that uses relevant and peculiar unknowns per each control volume interface. The method has been shown to be accurate of second order and efficient for anisotropic diffusion problems on general meshes through many various tests of the famous FVCA benchmark [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF]. As a relative drawback, the DDFV methodology lacks positivity or a discrete maximum principle on general meshes and anisotropies. The latter is obviously fulfilled under restrictive assumptions placed on the mesh or on the tensor Λ. In a general context we proposed in [START_REF] Quenjel | Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations[END_REF] an alternative correction to the finite volume scheme so that one can recover the discrete maximum principle. Although the approach provided in [START_REF] Quenjel | Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations[END_REF] seems to be quite general, the scheme turns out to be accurate for smooth analytical solutions. It further exhibits low accuracy when the exact solution is merely continuous because of the upwinding. Therefore to make use of the aforementioned attractive features of DDFV approximation, it is highly desirable to circumvent the positivity issue.

Motivated by the above strengths, we propose in this contribution an attempt to devise a reliable nonlinear DDFV scheme to approximate the weak solution to the model equation (1.1). The first idea is to take advantage of the nonlinear formulation (1.5) allowing a symmetric distribution of the problem nonlinearity. After carrying out a finite volume discretization on the primal and dual meshes, the second key point relies on the approximation of the fluxes. It consists of a fractional centered mean of the new diffusion coefficient termed by β(p). These elements are sufficient to derive energy estimates and claim that the scheme is positivity preserving. The numerical scheme should be convergent not only for few assumptions, allowing particular (smooth) solutions, but for any type of solution respecting the weakest Assumptions (i)-(iii). This fact is established by means of a compactness criterion. The theoretical scheme is implemented and run on several test cases. The purpose is to assess the method's accuracy and check the numerical solution positivity in the case of distorted meshes and in the presence of anisotropy.

The rest of this work is outlined as follows. In Section 2 we first specify the meshes in the DDFV context. We survey the construction of the discrete functions and operators as well as discrete norms. We next develop a generic finite volume scheme. A priori estimations are derived in Section 3, which are elements of great importance to prove the existence of positive solutions. Combining these ingredients with compactness arguments we prove the convergence of the nonlinear finite volume scheme in Section 4. Results of scheme's implementation are discussed in Section 5. A summary of the paper is given in Section 6.

Nonlinear discrete duality finite volume approximation

Before exposing the numerical scheme, we should first specify the meshes, especially the spatial discretization of the domain Ω, and the discrete operators in the context of the DDFV framework. We stick to the two dimensional case to highlight the point of the proposed methodology.

Mesh setting and discrete operators

As a finite volume discretization, the construction of the DDFV fluxes across interfaces are built from the connectivity lists of the primal mesh, the dual mesh and the diamond mesh. We denote M = M ∪ ∂M as the primal mesh consisting of a collection of internal polygonal subsets M, together with external edges considered as degenerate cells ∂M. Each subset A ∈ M is referred to as a primal control volume. The union of the control volumes covers the whole domain Ω. This partition generates a finite set of edges denoted by E as well as a family of points {x A } A∈M called primal "centers" such that x A ∈ A for all A ∈ M. For instance, one can take the point x A as the barycenter of A. The diameter of A is denoted by h A and its volume by |A|. We write E A the set containing the edges of the cell A. We denote |σ| as the length of σ ∈ E A . The unit normal to σ ∈ E A outwards A is denoted by n σ,A .

The dual mesh M = M ∪ ∂M is devised around the vertices of the primal one and it covers in its turn the domain Ω. To each vertex x A of M we associate a unique dual control volume A ∈ M . It is set up by connecting the mass centers of the primal cells having in common x A as a vertex. We hereafter call these vertices the dual centers. We denote the diameter of A by h A and its volume by |A |. The edges of M are gathered in the set E . Let |σ | denote the length of the dual edge σ ∈ E . The unit normal to σ ∈ E A outwards to A is denoted by n σ ,A .

The diamond mesh S = S int ∪ S ext is a third decomposition of Ω which is obtained using the primal edges. Indeed, for every internal primal edge σ = A|B ∈ E shared by A, B ∈ M, we associate a unique dual edge σ = A |B ∈ E shared by A , B ∈ M . These two entities define the main diagonals of the internal diamond D σ,σ ∈ S int . Any boundary diamond D σ,σ * ∈ S ext is prescribed by the triangle given by the center and the edge σ ∈ E ext of some primal cell. Note that this center is an extremity of σ * . Rearranging in a circular way the vertices x A , x B of σ and the vertices x A , x B of σ we get those of D σ,σ ∈ S. Let x A , x A , x B , x B be the vertices of D σ,σ . Let t A,B be the unit tangent vector to the primal edge σ = A|B oriented from A to B. In an analogous way, we define t A ,B the unit tangent vector to σ = A |B . These two vectors are so that the couples (n σ ,A , t A,B ) and (t A ,B , n σ ,A ) constitute direct bases. Let α D in ]0, π/2] stand for the angle provided by the two directions (A, B) and (A , B ). We refer to h D as the diameter of D ∈ S and we set h = max D∈S h D . We denote |D| the volume of the diamond D ∈ S. It is computed using the elementary equality

|D| = 1 2 |σ| |σ | sin(α D ). (2.1)
We refer to Figure 1 for an illustration of the aforementioned geometrical objects. We further need to suppose a regularity requirement on the mesh to control in particular the flatting of the diamond cells. The mesh regularity is defined by

θ D = max 1 sin(α D ) , h D |D| , max K=A,B h K |K| , max K =A ,B h K |K | .
In the rest of this paper we assume that there exist constants θ, θ > 0 such that

θ ≤ θ D ≤ θ, ∀D ∈ S. (2.2) 
We consider R T the space where the primal and dual unknowns live. We will sometimes writes v T ∈ (R +, * ) T meaning that all components of v T are positive. The set R T contains elements of the form

v T = (v A ) A∈M , (v A ) A ∈M .
It is moreover endowed with the bilinear form

v T , w T T = 1 2 A∈M |A| v A w A + 1 2 A∈M |A | v A w A .
It is positive, but not necessary definite since the degenerate boundary cells of ∂M are missing. If g is a nonlinear function from R into R we denote g(v T ) the element of R T defined by

g(v T ) = (g(v A )) A∈M , (g(v A )) A ∈M .
Performing the convergence analysis of the scheme requires to introduce reconstruction functions which are piecewise constant on the primal and dual meshes. Given a vector v T ∈ R T we define

v M (x) = v A ∀x ∈ A, ∀A ∈ M, v M (x) = v A ∀x ∈ A , ∀A ∈ M ,
which are identified to two elements of L 2 (Ω). We also define the L 2 (Ω)-function v h that combines both v M and v M such that

v h = 1 2 (v M + v M ).
On the other hand, the DDFV approach is characterized by the definition of a particular discrete gradient which is built on the diamond mesh in a piecewise manner. Then for every v T ∈ R T we define in each diamond cell

∇ D v T = 1 sin(α D ) v B -v A |σ | n σ,A + v B -v A |σ| n σ ,A , ∀D ∈ S. (2.3) 
We can therefore reconstruct the gradient operator denoted by ∇ S as follows

∇ S v T (x) = ∇ D v T ∀x ∈ D, ∀D ∈ S,
which is in its turn a function of L 2 (Ω) 2 . This discrete gradient is consistent in the strong sense because it is constructed on both directions : the primal and dual normal vectors giving rise to a basis of R 2 . In practice we consider the following equivalent formula of the discrete gradient instead of the above one (2.3).

It is obtained by virtue of (2.1)

∇ D v T = 1 2 |D| |σ| (v B -v A ) n σ,A + |σ | (v B -v A ) n σ ,A , ∀D ∈ S. (2.4) 
Hence, one has

|D| |∇ D v T | 2 = δ D v T • K D δ D v T , ∀D ∈ S,
where we set

δ D v T = v A -v B v A -v B ,
and

K D = 1 4 |D| |σ| 2 |σ| |σ | n σ,A • n σ ,A |σ| |σ | n σ,A • n σ ,A |σ | 2 .
The following result shows that this local matrix is symmetric and positive-definite.

Lemma 2.1. There exist positive constant C 1 , C 2 depending only on the mesh regularity such that

C 1 |w| 2 ≤ K D w • w ≤ C 2 |w| 2 , ∀w = (w 1 , w 2 ) ∈ R 2 , ∀D ∈ S.
Proof. First, we observe that

K D w • w = 1 4 |D| w 2 1 |σ| 2 + 2w 1 w 2 |σ| |σ | n σ,A • n σ ,A + w 2 2 |σ | 2 ≥ 1 4 |D| w 2 1 |σ| 2 -2 |w 1 | |σ| |w 2 | |σ | |n σ,A • n σ ,A | + w 2 2 |σ | 2 ≥ 1 4 |D| w 2 1 |σ| 2 -(w 2 1 |σ| 2 + w 2 2 |σ | 2 ) |n σ,A • n σ ,A | + w 2 2 |σ | 2 .
Thanks to the regularity assumption on the mesh (2.2) there exists α ∈]0, π/2] such that

|n σ,A • n σ ,A | = |cos(α D )| ≤ cos(α) < 1, ∀D ∈ S.
Using the fact that

h 2 D θ 2 ≤ |D| ≤ |σ| |σ | gives |σ| ≤ θ 2 |σ | and |σ | ≤ θ 2 |σ|. Hence, one has |σ| 2 |D| ≥ |σ| |σ | ≥ 1 θ 2 , |σ | 2 |D| ≥ |σ | |σ| ≥ 1 θ 2 .
As a consequence

K D w • w ≥ 1 -cos(α) 4 |D| w 2 1 |σ| 2 + w 2 2 |σ | 2 ≥ C 1 |w| 2 , ∀D ∈ S, with C 1 = 1 -cos(α) 4θ 2 .
Again, from the mesh shape condition (2.2), we have that |σ| , |σ | ≤ θ |D|. Then, we directly estimate

K D w • w = 1 4 |D| w 2 1 |σ| 2 + 2w 1 w 2 |σ| |σ | n σ,A • n σ ,A + w 2 2 |σ | 2 ≤ C 2 |w| 2 ,
where

C 2 = θ 2 /2.
Note that the primal and dual unknowns are only connected in the discrete gradient expression. A priori, it is not known how to link their corresponding reconstructions v M , v M , at least to the discrete gradient. This sort of fact is essentially required to show that these functions tend indeed to the same limit when the mesh size goes to 0 from a theoretical viewpoint. A possible way to reinforce this convergence is to incorporate a penalization term in the numerical scheme so that one ultimately recovers (formally) an inequality of type

v M -v M L 2 (Ω) ≤ Ch ∇ S v T L 2 (Ω) 2 ,
for some C > 0 that depends only on the data and on the geometrical regularity of the mesh. Following [START_REF] Andreianov | Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations[END_REF], the penalty operator P T : R T → R T which maps v T to P T v T = w T is defined per components by

w A = 1 |A| 1 h η A ∈M |A ∩ A | (v A -v A ), ∀A ∈ M, w A = 0, ∀A ∈ ∂M, w A = 1 |A | 1 h η A∈M |A ∩ A | (v A -v A ), ∀A ∈ M ,
where η ∈ (0, 2) is a given parameter. Then, one establishes the identity

P T v T , u T T = 1 2 1 h η A∈M A ∈M |A ∩ A | (v A -v A )(u A -u A ), v T , u T ∈ R T . (2.5) 
In particular, when v T = u T one gets

P T v T , v T T = 1 2 1 h η A∈M A ∈M |A ∩ A | (v A -v A ) 2 = 1 2 1 h η v M -v M 2 L 2 (Ω) . (2.6)
The considered problem is time-dependent. Then, the discretization of the time interval (0, t f ) is given by an increasing finite sequence of instants t 0 = 0 < t 1 < • • • < t N = t f . This subdivision is assumed to be uniform with a time step δt. Thereby, t n = nδt. Let us take a family of vectors

(v n T ) n=0,•••N of R T . We define the discrete reconstructions in time v M,δt and v M ,δt such that v M,δt (x, t) = v n A ∀(x, t) ∈ A × (t n-1 , t n ], ∀A ∈ M, ∀n ≥ 1, v M ,δt (x, t) = v n A ∀(x, t) ∈ A × (t n-1 , t n ], ∀A ∈ M , ∀n ≥ 1.
We also denote

v h,δt = 1 2 v M,δt + v M ,δt .
Similarly, we define the reconstruction of the discrete gradient in time by

∇ S,δt v T (x, t) = ∇ D v n T ∀(x, t) ∈ D × (t n-1 , t n ], ∀D ∈ S, ∀n ≥ 1.
The tensor Λ is approximated using the following mean

Λ S (x) := Λ D = 1 |D| D Λ(s) ds ∀x ∈ D, ∀D ∈ S.
Notice that Λ D is still positive-definite for all D.

Generic finite volume scheme

Let us here provide a generic finite volume discretization of the diffusive part in (1.5). A finite volume scheme is usually generated from a set of discrete conservative fluxes. Let K ∈ M ∪ M be a control volume of interest which is characterized by its mass center x K , set of edges E K and the corresponding unit normal vectors {n ν,K } ν∈E K to these interfaces outwards K. We omit the time-dependency for the moment. The first step consists in integrating the diffusion term over K. Applying Green's formula, one gets the balance equation

- K div β(p)Λ∇β(p) dx = - ν∈E K ν β(p)Λ∇β(p) • n ν,K dS(x).
We then propose the following natural approximation of the continuous flux

- ν β(p)Λ∇β(p) • n ν dS(x) ≈ β(p ν )F K,ν (β(p T )). (2.7)
Let us select a cell L in the same finite volume partition as K such that it shares the interface ν i.e.

ν = K|L ∈ E K ∩ E L .
The key expression of the coefficient β(p K|L ) = β(p ν ) is given by the centered formula

β(p K|L ) =        β(p K ) -β(p L ) log(β(p K )) -log(β(p L )) if β(p K ) = β(p L ) β(p K ) else . (2.8)
A variant of this expression of β(p K|L ) has been introduced in [START_REF] Bessemoulin-Chatard | A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF] to preserve the equilibrium. It has also played an intermediary role in the convergence analysis of the numerical scheme proposed in [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF]. We have recently established in [START_REF] Quenjel | Analysis of accurate and stable finite volume scheme for anisotropic diffusion equations with drift[END_REF] that such a choice is more stable and robust than the arithmetic average for the linear diffusion equation with a drift. Contrary to well-known means, like the arithmetic mean or the harmonic one, in the theory of finite volume methods, we will see that the crucial average (2.8) is of great importance for the analysis. Particularly, it will allow to derive some uniform estimations in a straightforward way. It is also used to maintain the optimal numerical accuracy of the discrete fluxes and that of the approximate solution. More importantly, the function F K,ν (β(p T )) is obtained by substituting the continuous gradient by its discrete counterpart on the diamond cell formed around the interface ν.

Then, one writes

F K,ν (β(p T )) = |ν| Λ Dν ∇ Dν β(p T ) • n ν,K .
(2.9)

The discrete flux given in (2.7) satisfies the local conservation property

β(p ν )F K,ν (β(p T )) = -β(p ν )F L,ν (β(p T )), ∀ν = K|L ∈ E K ∩ E L .
Note that the above discretization could be extended to a multi-dimensional abstract framework as far as one provides an appropriate consistent (weak or strong) approximation of the gradient operator. For instance, it can applied to the standard schemes written in the two-point formalism like TPFA [START_REF] Eymard | Finite volume methods[END_REF], conforming CVFE methods [START_REF] Afif | Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media[END_REF][START_REF] Cancès | Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations[END_REF][START_REF] Quenjel | Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations[END_REF] as well as the multi-point framework such as VAG [START_REF] Eymard | Vertex-centred discretization of multiphase compositional Darcy flows on general meshes[END_REF][START_REF] Brenner | Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes[END_REF][START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF], HMM [START_REF] Brezzi | Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[END_REF][START_REF] Droniou | A mixed finite volume scheme for anisotropic diffusion problems on any grid[END_REF] approaches. For more details on how these methods accord with our setting, the reader can consult their constructions in this review [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF].

Remark 2.1. Another possible option to choose β(p ν ) in (2.7) is to consider the following upwind scheme [START_REF] Quenjel | Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations[END_REF] 

β(p K|L ) = β(p K ) if F K,ν (β(p T )) ≥ 0 β(p L ) if F K,ν (β(p T )) < 0 .
We hereafter will not take into account this kind of approximation since it only yields first order accuracy in space. It is however conservative and consistent. It moreover allows to obtain the cornerstone a priori estimations as we will see later on. Therefore the analysis carried out throughout this work is still valid.

Discrete conservation equations

In this work, we use the nonlinear DDFV method in space and the (backward) Euler implicit scheme in time to discretize the parabolic problem (1.1)-(1.3). The approximation of the fluxes stems from the framework (2.7)-(2.9). The discretization of the initial state of the solution is commonly given by the means

p 0 K = 1 |K| K p 0 (x) dx, ∀K ∈ M ∪ M , p 0 A = 0, ∀A ∈ ∂M.
(2.10)

For 1 ≤ n ≤ N , we compute p n T ∈ (R +, * ) T satisfying the discrete conservation equations

|A| δt (p n A -p n-1 A ) + D σ,σ ∈D A β(p n σ )F A,σ (β(p n T )) + λ |A| P T A log β(p n T ) = 0, ∀A ∈ M, (2.11 
)

|A | δt (p n A -p n-1 A ) + D σ,σ ∈D A β(p n σ )F A ,σ (β(p n T )) + λ |A | P T A log β(p n T ) = 0, ∀A ∈ M . (2.
12)

The fixed parameter λ serves to stabilize the scheme. In the case where A ∈ ∂M, the value p n A is determined by considering the equation

F A,σ (β(p n T )) = |σ| Λ Dν ∇ D β(p n T ) • n σ,A = 0, with D = D σ,σ ∈ S ext . (2.13)
Notice that if the solution to the above numerical scheme exists, it is necessarily positive. In the sequel, we will utilize the following identity frequently

1 δt p n T -p n-1 T , u T T + 1 2 D σ,σ ∈S β(p n σ )F A,σ (β(p n T ))(u A -u B ) + β(p n σ )F A ,σ (β(p n T ))(u A -u B ) + λ P T log β(p n T ) , u T T = 0, ∀u T ∈ R T . (2.14) 
We will sometimes write (by abuse of notation) D = D σ,σ with σ = A|B and σ = A |B . The above result is obtained after a couple of manipulations on the scheme. First, we multiply (2.11) (resp.(2.12)) by u A (resp. u A ) and sum on all the primal (resp. dual) cells. We then introduce the local conservation of the fluxes to rearrange each summation by edges. Finally, we add together the resulting equations so that one ends up with (2.14).

Let us next study some mathematical properties fulfilled by the above numerical scheme, namely the a priori estimates that are exploited in particular to establish the existence of a solution to the nonlinear system (2.10)-(2.13).

A priori estimates and existence of discrete solutions

In this section, we first claim the conservation of mass and take advantage of the crucial relationships (2.7) -(2.9) to derive a uniform estimate on the discrete gradient of β(p n T ) as well as the entropy function Υ(p n T ). Having these properties in hand will allow us to perform the analysis of the proposed scheme. Unless specified, we denote by C a generic constant that depends only on the data and on the mesh regularity. Moreover, there exists C > 0 depending only on the data such that the inequality below holds true

∇ S,δt β(p T ) 2 L 2 (Qt f ) 2 + λ N n=1 δt P T log β(p n T ) , log(β(p n T )) T ≤ C. (3.2) Consequently N n=1 δt D∈S |δ D β(p n T )| 2 ≤ C. (3.3)
The entropy function is uniformly bounded in the sense

Υ(p h,δt ) L ∞ (0,t f ;L 1 (Ω)) ≤ C. (3.4)
Furthermore, one has

β(p M,δt ) L 2 (Qt f ) ≤ C and β(p M ,δt ) L 2 (Qt f ) ≤ C. (3.5) 
Proof. Taking all the components of u T to be 1 in (2.14) entails the first point (3.1) directly. Let us prove the second one. Let us again select u T = log(β(p n T )) in the same relationship (2.14) and sum over n ≥ 1 to get

X 1 + X 2 + X 3 = 0, (3.6) 
where

X 1 = N n=1 p n T -p n-1 T , log(β(p n T )) T , X 2 = 1 2 N n=1 δt D∈S β(p n σ )F A,σ (β(p n T )) log(β(p n A )) -log(β(p n B )) + β(p n σ )F A ,σ (β(p n T )) log(β(p n A )) -log(β(p n B )) , X 3 = λ N n=1 δt P T log β(p n T ) , log(β(p n T )) T .
Using the convexity of the entropy function Υ, it can be checked that

X 1 ≥ N n=1 Υ(p n T ) -Υ(p n-1 T ), 1 T T = Υ(p N T ) -Υ(p 0 T ), 1 T T ≥ -Υ(p 0 T ), 1 T T ≥ -Υ(p 0 ) L 1 (Ω) , (3.7) 
thanks to Jensen's inequality. The key formulas (2.8)-(2.9) assert

β(p n σ )F A,σ (β(p n T )) log(β(p n A )) -log(β(p n B )) = |σ| Λ D ∇ D β(p n T ) • β(p n A ) -β(p n B ) n σ,A , β(p n σ )F A ,σ (β(p n T )) log(β(p n A )) -log(β(p n B )) = |σ | Λ D ∇ D β(p n T ) • β(p n A ) -β(p n B ) n σ ,A .
As consequence of these identities, the expression of the discrete gradient and Assumption (ii), one gets

X 2 = N n=1 δt D∈S |D| Λ D ∇ D β(p n T ) • ∇ D β(p n T ) ≥ Λ N n=1 δt ∇ S β(p n T ) 2 L 2 (Ω) 2 . (3.8) We collect (3.6)-(3.8) to deduce (3.2) with C = (1 + 1 Λ ) Υ(p 0 ) L 1 (Ω)
. Mimicking similar steps one refinds that

Υ(p n T ) -Υ(p n-1 T ), 1 T T + δt D∈S |D| Λ D ∇ D β(p n T ) • ∇ D β(p n T ) +λδt P T log β(p n T ) , log(β(p n T )) T ≤ 0, ∀n ≥ 1.
Using (2.6) we see that the third term in the previous inequality is nonnegative. The nonnegativity of the diffusion part forces

0 ≤ Υ(p n T ), 1 T T ≤ Υ(p n-1 T ), 1 T T ≤ • • • ≤ Υ(p 0 ) L 1 (Ω) , ∀n ≥ 1. As a result Υ(p h,δt ) L ∞ (0,t f ;L 1 (Ω)) ≤ Υ(p 0 ) L 1 (Ω) .
Let us finally show the last two inequalities. Following [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF] and owing to assumption (1.7) one has : for all 0 < ε ≤ 1 there exists r ε such that β(s) 2 ≤ Υ(s), ∀s > r ε .

Since β 2 is a continuous function, its maximum on [0, r ε ] exists and is finite. We denote it by C β,ε . We take ε = 1. Then, one gets

β(s) 2 ≤ C β,1 + Υ(s), ∀s ≥ 0.
As a consequence of this and (3.4), we find

N n=1 δt A∈M |A| β(p n A ) 2 ≤ t f C β,1 |Ω| + N n=1 δt A∈M |A| Υ(p n A ) ≤ t f C β,1 |Ω| + 2t f Υ(p 0 ) L 1 (Ω) .
Therefore, one obtains

β(p M,δt ) L 2 (Qt f ) ≤ C.
Similarly, we establish the L 2 norm on β(p M ,δt ).

Let us denote β S,δt , β S,δt two piecewise constant functions on the diamond cells defined as follows

β S,δt (x, t) = β(p n σ ), and β S,δt (x, t) = β(p n σ ), ∀(x, t) ∈ D × (t n-1 , t n ], ∀D ∈ S, ∀n ≥ 1.
We show in the following result that these functions are bounded in L 2 (Q t f ) independently of the meshes. In particular, there holds

β S,δt L 2 (Qt f ) ≤ C, β S,δt L 2 (Qt f ) ≤ C. (3.10) 
Proof. By construction, we observe that the function β S,δt fulfills

min (β(p n A ), β(p n B )) ≤ β(p n σ ) ≤ max (β(p n A ), β(p n B )) ,
for all D σ,σ ∈ S with σ = A|B. Summing on the diamond cells and making use of (3.3) lead to

β S,δt -β(p M,δt ) 2 L 2 (Qt f ) ≤ N n=1 δt D∈S |D| |β(p n A ) -β(p n B )| 2 ≤ h 2 N n=1 δt D∈S |δ D β(p n T )| 2 ≤ Ch 2 .
Analogously, we prove the second inequality on the dual mesh. Taking advantage of (3.9) together with (3.5), one obtains the uniform bounds of (3.10).

Remark 3.1. The estimations of Proposition 3.1 is still valid if we consider the upwind scheme claimed in Remark 2.1. Let us show for instance how to obtain the first term of inequality (3.2). We first mimic the same steps of the above proof. Then, by virtue of Remark 1.1, it suffices to write the upwind choice equivalently as follows

β(p n σ ) =      max I n AB β(p) if F A,σ (β(p n T )) β(p n A ) -β(p n B ) ≥ 0 min I n AB β(p) otherwise ,
where

I n AB = [min(p n A , p n B ), max(p n A , p n B )].
As a consequence, one gets

β(p n σ )F A,σ (β(p n T )) log(β(p n A )) -log(β(p n B )) ≥ |σ| Λ D ∇ D β(p n T ) • β(p n A ) -β(p n B ) n σ,A .
An analogous idea can be applied to σ * . With that, one ensures the validity of (3.8) in the case where the upstream method is taken into account.

The next result shows a mesh-dependent lower bound on any solution to the discretized problem. The idea of the proof extends the argument provided in [START_REF] Cancès | Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations[END_REF]. Proposition 3.2. Let p n T ∈ (R +, * ) T be a solution to the coupled scheme (2.10)-(2.13) for all n ≥ 1. Then, there exists a positive constant C h,δt that depends on the data and on the discretization steps such that For each vertex (dual volume) A 0 of A 0 we estimate

p n h ≥ C h,δt > 0, ∀n ≥ 1. ( 3 
log(β(p n A0 ) -log(β(p n A 0 )) ≤ C 0,0 h,δt .
Accordingly log(β(p n A 0 )) ≥ -C ,0 h,δt . We now apply the same procedure on the vertices of A 0 except A 0 . Such a primal cell is denoted by A 1 . In its turn, it satisfies log(β(

p n A1 ) -log(β(p n A 0 )) ≤ C 1,0 h,δt . Consequently log(β(p n A1 )) ≥ -C 1 h,δt .
Being inspired by [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF], we continue in the described fashion by induction using always (3.12). We iterate once on the primal mesh and another on the dual mesh until we cover all the (primal and dual) cells . As a consequence we obtain log(β(p n K )) ≥ -C h,δt , ∀K ∈ M ∪ M. Furthermore, we know that β -1 exists, is continuous and is strictly increasing on [0, lim p→+∞ β(p)). We finally deduce

p n K ≥ β -1 e -C h,δt > 0, ∀K ∈ M ∪ M.
This concludes the proof of (3.11).

In the remainder of this section, we state without proof that the numerical scheme possesses at least one solution. The proof is an adaptation of the one given in [START_REF] Cancès | Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations[END_REF] or in [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF].

Proposition 3.3. There exists a solution p n

T ∈ (R +, * ) T to the nonlinear system (2.10)-(2.13) for all n ≥ 1.

Convergence towards the weak solution

The control of a dual norm on the discrete counterpart of the time derivative is of great help to establish that the sequence of solutions to the numerical scheme is relatively compact. Let ϕ be in C ∞ c (Ω). We associate the vector ϕ T of R T defined per components as follows

ϕ K = 1 |K| K ϕ(x) dx, ∀K ∈ M ∪ M , and ϕ K = 0, ∀K ∈ ∂M.
Lemma 4.1. There exists a constant C independent of the discretization parameters such that

N n=1 p n T -p n-1 T , ϕ T T ≤ C ∇ϕ L ∞ (Ω) , ∀ϕ ∈ C ∞ c (Ω).
Proof. We take u T = ϕ T in the relationship (2.14) and split its left hand side into three parts as follows

Z 1 + Z 2 + Z 3 = 0, (4.1)
where each term after summing on all n ≥ 1 reads

Z 1 = N n=1 p n T -p n-1 T , ϕ T T , Z 2 = 1 2 N n=1 δt D σ,σ ∈S β(p n σ )F A,σ (β(p n T ))(ϕ A -ϕ B ) + β(p n σ )F A ,σ (β(p n T ))(ϕ A -ϕ B ), Z 3 = λ N n=1 δt P T log β(p n T ) , ϕ T T .
Let us estimate the diffusion contribution. First, we combine the fact that Λ D is positive-definite and uniformly coercive together with the Cauchy-Schwarz inequality to see that

|F A,σ (β(p n T ))| ≤ |σ| Λ D ∇ D β(p n T ) • ∇ D β(p n T ) 1 2 Λ D n σ,A • n σ,A 1 2 ≤ Λ |σ| |∇ D β(p n T )| .
A similar result holds in the case of a dual interface. Additionally, since ϕ is smooth there exists a constant C depending only on the mesh regularity such that

|ϕ A -ϕ B | ≤ C |σ * | ∇ϕ L ∞ (Ω) and |ϕ A -ϕ B | ≤ C |σ| ∇ϕ L ∞ (Ω) .
As a consequence, one gets

|Z 2 | ≤ 1 2 Λ ∇ϕ L ∞ (Ω) C N n=1 δt D σ,σ ∈S |D| (β(p n σ ) + β(p n σ )) |∇ D β(p n T )| ≤ C ∇ϕ L ∞ (Ω) β S,δt L 2 (Qt f ) + β S,δt L 2 (Qt f ) ∇ S,δt β(p n T ) L 2 (Qt f ) 2 ≤ C ∇ϕ L ∞ (Ω) . (4.2)
The latter inequality holds thanks to (3.2) and (3.10). Next, we treat the penalty part. Owing to (2.5) and the Cauchy-Schwarz inequality we claim

|Z 3 | ≤ λt 1 2 f N n=1 δt P T log β(p n T ) , log(β(p n T )) T 1 2 P T ϕ T , ϕ T 1 2
T .

The regularity of ϕ implies

P T ϕ T , ϕ T 1 2 T = 1 √ 2 1 h η/2 ϕ M -ϕ M L 2 (Ω) ≤ Ch 1-(η/2) ∇ϕ L ∞ (Ω) ≤ C ∇ϕ L ∞ (Ω) ,
where again C depends only on the mesh regularity, λ, η and Ω. Applying once more (3.2) yields 

|Z 3 | ≤ C ∇ϕ L ∞ (Ω) .
p M k ,δt k , p M k ,δt k , p h k ,δt k -----→ p a.e. in Q t f , and strongly in L 1 (Q t f ), (4.3) ∇ S k ,δt k β(p T k ) -----→ ∇β(p) weakly in L 2 (Q t f ) 2 , (4.4) β(p M k ,δt k ), β(p M k ,δt k ), β(p h k ,δt k ) -----→ β(p) strongly in L 2 (Q t f ), (4.5)
up to a subsequence as k → +∞.

Proof. In this proof, we propose to apply the recent compactness criterion [8, Theorem 3.9] which is mainly dedicated to degenerate parabolic equations. The main elements, labeled (A t ), (A x 1), (A x 2) and (A x 3) in [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF], to make use of this result are checked in our context and summarized in the following list.

(a) We consider a one-step discretization in time. As a consequence, the item (A t ) always holds true.

(b) Following the arguments developed in [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF] one can show, using a discrete Poincaré-Sobolev embedding [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF], that any sequence

u T k ∈ R T k satisfying u h k L 2 (Ω) + ∇ S k u T k L 2 (Ω) 2 ≤ C,
implies that u M k and u M k are relatively compact in L 2 (Ω). Hence, the condition (A x 1) is fulfilled.

(c) The function u M k (resp. u M k ) is piecewise constant on the primal (resp. dual) cells. Then, the property (A x 2) holds also.

(d) Let φ be in C ∞ (Ω) and consider φ T k ∈ R T k such that φ K = 1 |K| K φ(x) dx, ∀K ∈ M k ∪ M k , and φ K = 1 |σ| σ φ(x) dx, ∀K ≡ σ ∈ ∂M k .
Following [START_REF] Chainais-Hillairet | Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media[END_REF], the smoothness of φ entails

φ h k L ∞ (Ω) + ∇ S k φ T k L ∞ (Ω) ≤ C ∇φ L ∞ (Ω) .
where C is depending on the mesh regularity. This implies the validation of (A x 3).

Thanks to Lemma 4.1 we are now in a position to apply [8, Theorem 3.9]. It claims that there exist two possibly different measurable functions referred to as p (1) and p (2) such that one has up to a subsequence

p M k ,δt k -----→ k→∞ p (1) and p M k ,δt k -----→ k→∞ p (2) a.e. in Q t f . (4.6) 
The penalty contribution allows the identification of p (1) to p (2) . Using (2.6) and the energy estimate (3.2) we hence check

log β(p M k ,δt k ) -log β(p M k ,δt k ) L 2 (Qt f ) ≤ Ch η k -----→ k→∞ 0.
Extracting a new subsequence gives

log β(p M k ,δt k ) -log β(p M k ,δt k ) -----→ k→∞ 0 a.e. in Q t f .
According to (4.6), there holds

log β(p M k ,δt k ) -----→ k→∞ log β(p (1) ) and log β(p M ,δt ) -----→ k→∞ log β(p (2) ) a.e. in Q t f .
Thereby log β(p (1) ) = log β(p (2) ) a.e. in Q t f , yielding p (1) = p (2) a.e. in Q t f , since β is invertible.

Hereafter, this limit will be denoted by p. As a consequence

p h k ,δt k , p M k ,δt k , p h k ,δt k -----→ k→∞ p a.e. in Q t f .
Additionally, Assumption (iii) states that the entropy function Υ is convex and increasing. It satisfies in particular that Υ(s) s -----→ +∞ as s -→ +∞.

This condition and (3.4) allow us to apply De la Vallée Poussin criterion [START_REF] Bogachev | Measure theory[END_REF] for establishing the uniform integrability of the sequences p M k ,δt k and p M k ,δt k . On the other hand, Vitali's convergence theorem guarantees that

p M k ,δt k , p M k ,δt k -----→ p strongly in L 1 (Q t f ).
The same result holds true for p h k ,δt k . Now, Proposition (3.1) and the a.e. convergence (4.3) claim the existence of Φ such that

β(p T k ) -----→ β(p) weakly in L 2 (Q t f ) and ∇ S k ,δt k β(p T k ) -----→ Φ weakly in L 2 (Q t f ) 2 .
The identification of the limit process in the DDFV framework [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF] entails Φ = ∇β(p). To reinforce the strong convergence (4.5) we also have resort to Assumption (iii), especially the condition

Υ(s) β(s) 2 -----→ +∞ as s -→ +∞,
which enables us to reproduce a similar proof as done for (4.3), but this time in the L 2 norm. Indeed, De la Vallée Poussin property permits the uniform integrability of

β(p M k ,δt k ) 2 and β(p M k ,δt k ) 2 .
Another application of Vitali's convergence theorem is then sufficient to conclude. What is left is to check that p satisfies the weak formulation described in Definition 1.1. To begin with, let ψ be a test function in C ∞ c (Ω × [0, t f )). For all n ≥ 1, we set ψ T k the vector of R T k as

ψ n L = ψ(x L , t n ), ∀L ∈ M k ∪ M k , We then take u T = ψ n
T k in the formulation (2.14). We sum on all n ≥ 1 and rearrange the summation into three parts

W k + X k + Y k = 0,
where

W k = N n=1 p n T k -p n-1 T k , ψ n T k T k , X k = 1 2 N n=1 δt k D σ,σ ∈S k β(p n σ )F A,σ (β(p n T k ))(ψ n A -ψ n B ) + β(p n σ )F A ,σ (β(p n T k ))(ψ n A -ψ n B ), Y k = λ N n=1 δt k P T k log β(p n T k ) , ψ n T k T k .
First notice that ψ N T k = 0. Using a discrete integration by parts in time gives

W k = -p 0 T k , ψ 0 T k T k - N n=1 p n-1 T k , ψ n T k -ψ n-1 T k T k = - Ω p 0 ψ h k ,δt k (•, 0) dx - Qt f p h k ,δt k (•, -δt k ) ψ h k ,δt k -ψ h k ,δt k (•, -δt k ) δt k dx dt.
Owing to the smoothness of the test function ψ, one has

ψ h k ,δt k (•, 0) -----→ k→∞ ψ(•, 0) and ψ h k ,δt k -ψ h k ,δt k (•, -δt k ) δt k -----→ k→∞ ∂ψ ∂t ,
uniformly on Ω and Q t f respectively. Since p h k ,δt k converges strongly towards p in L 1 (Q t f ) we use the Fréchet-Kolmogorov compactness theorem to claim that p h k ,δt k (•, -δt k ) converges strongly towards p in L 1 (Q t f ). We then infer that

W k -----→ k→∞ - Ω p 0 ψ(•, 0) dx - Qt f p ∂ψ ∂t dx dt.
Let us move on to the convergence study of the diffusion term X k . We can not usually pass to the limit in terms like X k directly. It is customary to introduce an additional diffusion term written in the integral form which converges to its continuous counterpart. Then, the latter must match the limit of X k . To this purpose, we first define β S k ,δt k as a piecewise constant function on the diamond mesh and in time such that

p n D (x, t) = β -1 1 2 β(p n σ ) + β(p n σ ) , ∀(x, t) ∈ D × (t n-1 , t n ], β S k ,δt k (x, t) = β(p n D (x, t)), ∀(x, t) ∈ D × (t n-1 , t n ].
Let us also consider

X k = 1 2 N n=1 δt k D σ,σ ∈S k β(p n D ) F A,σ (β(p n T k ))(ψ n A -ψ n B ) + F A ,σ (β(p n T k ))(ψ n A -ψ n B ) .
Thanks to the discrete flux expression given in (2.9) and the discrete gradient mentioned in (2.4) we rewrite X k in the compact form

X k = Qt f β S k ,δt k Λ S k ∇ S k ,δt k β(p T k ) • ∇ S k ,δt k ψ T k dx dt.
The sequence Λ S k converges a.e. to Λ. From the regularity of ψ, the sequence ∇ S k ,δt k ψ T k converges uniformly towards ∇ψ. In light of (4.4), the weak convergence of ∇ S k ,δt k β(p T k ) towards ∇β(p) holds true.

To conclude that

X k -----→ k→∞ Qt f β(p)Λ∇β(p) • ∇ψ dx dt,
it is sufficient to show that

β S k ,δt k -----→ k→∞ β(p) strongly in L 2 (Q t f ).
To this end, we develop the L 2 norm of β S k ,δt k -β(p h k ,δt k ) on the both halves of each diamond cell and we employ Corollary 3.1 to deduce

2 β S k ,δt k -β(p h k ,δt k ) L 2 (Qt f ) ≤ β S k ,δt k -β(p M k ,δt k ) L 2 (Qt f ) + β S k ,δt k -β(p M k ,δt k ) L 2 (Qt f ) ≤ Ch k -----→ k→∞ 0.
Therefore β S k ,δt k converges to β(p) in the L 2 norm using (4.5). Let us next establish that X k and X k are asymptotically identical. We compute

X k -X k ≤ 1 2 N n=1 δt k D σ,σ ∈S k β(p n σ ) -β(p n D ) F A,σ (β(p n T k ))(ψ n A -ψ n B ) + β(p n σ ) -β(p n D ) F A ,σ (β(p n T k ))(ψ n A -ψ n B ) .
Reproducing similar calculations used already to estimate Z 2 in (4.2) we get

X k -X k ≤ C ∇ψ L ∞ (Qt f ) ∇ S k ,δt k β(p T k ) L 2 (Qt f ) 2 × β S k ,δt k -β S k ,δt k L 2 (Qt f ) + β S k ,δt k -β S k ,δt k L 2 (Qt f ) .
The energy estimate (3.2) conducts us to

X k -X k ≤ C β S k ,δt k -β S k ,δt k L 2 (Qt f ) + β S k ,δt k -β S k ,δt k L 2 (Qt f ) .
Note that β S k ,δt k and β S k ,δt k converge strongly towards β(p) in L 2 (Q t f ) according to Corollary 3.1. Consequently

X k -X k -----→ k→∞ 0.
In order to finish up the proof of Theorem 4.1 it remains to prove that the limit of the penalty term equals 0. We combine the Cauchy-Schwarz inequality, the a priori estimate (3.2), the smoothness of ψ and the fact that η ∈ (0, 2) to obtain

|Y k | ≤ λ N n=1 δt k P T k log β(p n T k ) , log(β(p n T k )) T k 1 2 N n=1 δt k P T k ψ n T k , ψ n T k T k 1 2 ≤ C h η/2 k ψ M k ,δt k -ψ M k ,δt k L 2 (Ω) ≤ Ch 1-(η/2) k ∇ψ L ∞ (Qt f ) ≤ Ch 1-(η/2) k -----→ k→∞ 0.
In conclusion, p is a weak solution to (1.1)-(1.3) in the sense of Definition 1.1.

Computational results

In this section, we present and discuss various numerical examples for the resolution of the nonlinear diffusion problem (1.1). The objective is to enlighten the robustness and accuracy of the proposed scheme on possibly distorted and poor quality meshes. For all the tests, the Newton method is implemented to solve the nonlinear algebraic system. We consider the maximum of the smallest value of the initial guess as 10 -16 . This allows to avoid the singularity of the involved log function. The exponent η is set to η = 1. We fix the domain of computation to Ω = (0, 1) 2 . It is discretized using a sequence of randomly perturbed and Kershaw meshes. The first element for each category is drawn on Figure 2. The time step is proportional to square of the mesh size so as to assess space accuracy of the method. To simplify the identification of analytical solutions, the matrix Λ is diagonal as follows Λ = a x 0 0 a y .

We will denote Er2p the errors between the exact and the numerical solutions in the sense of

L ∞ (0, t f , L 2 (Ω))- norm : Er2p = p a -p h,δt L ∞ (0,t f ,L 2 (Ω)) .
The corresponding convergence rates will be designated by τ p . Similarly, we consider the difference between the analytical and approximate gradient of the solutions denoted by Er2Gp using the norm of L

2 (Q t f ) 2 : Er2Gp = ∇p a -∇ S,δt p T L 2 (Qt f ) 2 .
In this case, the order of convergence will be denoted by τ Gp .

Figure 2: First deformed quadrilateral mesh on left and first Kershaw mesh on right.

Test case 1

This first representative experiment deals with the classical heat problem. After the nonlinear transformation (1.5), the heat equation can be written like

∂p ∂t -2 div √ pΛ∇ √ p = 0, ( 5.1) 
complemented with the zero-flux boundary condition. We define the one-dimensional analytical solution by

p a (x, y, t) = 1 2 1 + cos(πx) e -π 2 axt .
The initial condition matches this solution at t = 0. The simulation time is t f = 0.2. The domain is anisotropic with a x = 1 and a y = 1000. We first would like to stress that the additional penalty in the proposed scheme is useless numerically. In theory, it was introduced to reinforce the convergence of the primal and the dual solution reconstructions p M,δt and p M ,δt towards the same limit. This fact holds from a numerical viewpoint. Let us then run the implemented scheme on the sequence of the randomly deformed meshes. We compute ||p M,δt -p M ,δt || L 2 (Qt f ) for two values of λ. The results are written in Table 1. According to this table we observe a rate of order one between the approximation of the solution on the primal mesh and on the dual mesh independently of the coefficient λ. By virtue of this, the penalty parameter λ is fixed to 0 in the remaining part of this section. Let us now return to evaluate the accuracy of our discretization for both the discrete solution and its discrete gradient. The results of their numerical convergence are shown on Tables 2-3 for the randomly distorted quadrilateral and Kershaw meshes respectively. From the tables, both approaches preserve the second-order accuracy for the solution. This optimal accuracy is not affected by the distortion of the mesh nor the anisotropy. The convergence order for the gradient is greater than 1.3 on the considered refined meshes. The last column of the same tables shows that the nonlinear scheme produces a positive solution, which confirms the point of Proposition 3.2. This is not the case of the standard linear DDFV schemes where overshoots and undershoots could occur, see the test case of Subsection 5. ). We consider the anisotropy a x = 0.1 and b x = 10. We moreover manufacture the exact solution to be

λ = 0 λ = 1 #T δt ||p M,δt -p M ,
p a (x, y, t) = 90tx 2 (1 -x) 2 .
It also respects the zero-flux boundary condition. The initial solution is taken as p 0 = p a (•, •, 0). Its substitution in the problem (1.1)-(1.3) leads to a nonnegative source contribution. The numerical results of the proposed nonlinear algorithm are given in Tables 67.

It is observed that the designed nonlinear scheme produces an approximate solution that converges to the continuous one with a rate of second order. Notice that the minimum of the computed solution is also positive. Concerning the errors of the gradients, convergence rates are much improved on the Kershaw meshes than the randomly deformed ones. Here again, this example illustrates that our methodology is capable to handle severe nonlinearities even on distorted meshes. 

#T δt

Test case 4

In this last experiment, we compare the behavior of the approximate solution computed by the proposed nonlinear scheme to the one provided by the classical linear DDFV discretization in the case of the heat equation with a low regular initialization function. The initial condition is then taken to be p 0 = 1 on Ω 0 = [0.3, 0.7] × [0.3, 0.7] 0 on Ω \ Ω 0 .

In such a situation we do not have access to the exact solution. It is however expected to be nonnegative. The domain Ω is covered by the cells of the third randomly deformed mesh. We consider the problem with the anisotropy a x = 1 and a y = 0.1. The final time is chosen as t f = 0.02. We fix the time step to δt = 0.001. We perform two tests with this identical set up. In the first run, we determine the numerical solution to the classical linear DDFV scheme, for the heat problem, by solving the linear system Recall that the linear DDFV method is also accurate of second order [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF]. In the second run, the numerical solution is obtained by executing the alternative nonlinear algorithm (2.10)-(2.13). The results of the simulation are given on Figure 3. The latter shows the cross section of the calculated solution at the point (0, 0.2) for the instants t ∈ {3.10 -3 , 6.10 -3 , 8.10 -3 , 1.10 -2 }. The left sub-figure exhibits the result of the linear scheme (5.3)-(5.5). It is clearly seen that the linear discretization forms severe peaks that go under 0. This defect can not be evaded or disregarded since it engenders critical deviation on the diffusion process. This kind of oscillation is a standard fact in the literature of the DDFV approach. To overcome this problem, we use the nonlinear version of the scheme (2.10)-(2.13). The results are presented on the right sub-figure. This strategy produces no oscillation and the solution honors its lower bound which is 0. Therefore, the proposed nonlinear scheme is more robust and stable than the well-known linear DDFV approximation. 

Conclusion

In this work we proposed and studied a new nonlinear discrete duality finite volume method for the discretization of parabolic equations. The objective is obtain a stable, convergent and accurate strategy which works also on general data and meshes defined by the physics of the problem. In addition to accuracy quests, a huge focus has been paid on assembling key properties referred to as coercivity and positivity. To achieve this we have suggested a chief idea for the approximation of the fluxes. It resides in the centered fractional scheme for the diffusion function. By taking an appropriate nonlinear discrete test function we control some energy estimates. The latter have particularly ensured the existence of positive approximate solutions. Thanks to a compactness criterion, the convergence of the numerical scheme has been established. Numerical simulation has been performed and exhibited good results. The accuracy is of second order on severe nonlinearities and the solution is still positive even on distorted meshes. This confirms the efficiency and the robustness of the proposed methodology.

  It requires by the way the useful Kirchhoff transform ζ(p) = p 0 µ(a) da. (1.4) Therefore, (1.1) can be formally presented in the following equivalent form ∂p ∂t -2 div ζ(p)Λ∇ ζ(p) = 0. By setting β(p) = 2ζ(p), the previous equality reads ∂p ∂t -div β(p)Λ∇β(p) = 0. (1.5)

2 a

 2 .e. x ∈ Ω and ∀v ∈ R d .

Ω p 0

 0 dx > 0. We also need a control on the initial entropy function in the following sense 0 ≤ Ω Υ(p 0 (x)) dx < +∞. (1.6) (b) We require an asymptotic behavior on Υ as follows Υ(s) s -----→ +∞ and Υ(s) β(s) 2 -----→ +∞ as s -→ +∞. (1.7)
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 1 Figure 1: Primal control volumes A, B and dual cells A , B as well as the units normal vectors n σ,A , n σ ,A to σ and σ . The cell C reduces to a single boundary edge. The blue dashed region is the diamond cell.
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 31 Consider p n T ∈ (R +, * ) T a solution to the scheme (2.10)-(2.13) for all n ≥ 1. Then, the mass is conserved at each time level i.e.
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 11 Proof. The mass conservation(3.1) and Assumption (iii)-(a) ensures the existence of anA 0 ∈ M that satisfies p n A0 ≥ 1 |Ω| Ω p 0 (x) dx > 0.Therefore log(β(p n A0 )) ≥ -C . Thanks to the uniform bound (3.2) on the penalization contribution together with the identity (2.6) we get
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Figure 3 :

 3 Figure 3: Results for the linear DDFV scheme (5.3)-(5.5) (left) and nonlinear formulation (2.10)-(2.13) (right).
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 1 δt || 2 rate ||p M,δt -p M ,δt || 2 Evaluation of ||p M,δt -p M ,δt || L 2 (Qt f )with and without penalty.
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 5 Test case 2 results using the sequence of Kershaw meshes.
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yielding β(p) = log(1 + p 2

Table 6 :

 6 Test case 3 results using the sequence of randomly deformed meshes.

			Er2p	τ p	Er2Gp	τ Gp	p min
	57	0.12 E-01	0.338 E-02	-	0.735 E-01	-	0.46 E-08
	177	0.30 E-02	0.856 E-03	2.047	0.193 E-01	1.988	0.11 E-12
	609	0.84 E-03	0.318 E-03	1.544	0.669 E-02	1.656	0.11 E-15
	2241 0.22 E-03	0.106 E-03	1.639	0.283 E-02	1.288	0.10 E-15
	8577 0.37 E-04	0.183 E-04	1.989	0.702 E-03	1.575	0.10 E-15
	#T	δt	Er2p	τ p	Er2Gp	τ Gp	p min
	681	0.73 E-02	0.198 E-03	-	0.294 E-01	-	0.93 E-12
	2517	0.18 E-02	0.625 E-04	1.664	0.750 E-02	1.972	0.13 E-15
	5509	0.82 E-03	0.288 E-04	1.909	0.334 E-02	1.994	0.10 E-15
	9657	0.46 E-03	0.163 E-04	1.967	0.188 E-02	1.998	0.10 E-15
	14961 0.29 E-03	0.106 E-04	1.942	0.121 E-02	1.992	0.10 E-15

Table 7 :

 7 Test case 3 results using the sequence of Kershaw meshes.
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Test case 2

The following example addresses the numerical errors as well as a discrete maximum principle for the investigated finite volume scheme in the case of a nonlinear polynomial expression of µ(p). Then, the diffusion function is given by µ(p) = 3p 2 . Consequently, one has β(p) = √ 2p 3/2 . We set the final time to t f = 0.1. We take into account a slightly anisotropic diffusion with a x = 0.1 and a y = 1. We therefore consider the analytical solution p a (x, y, t) = 5t 1 + cos(πx) ,

subject to the initial boundary value problem (1.1)-(1.3) leading to a source term which is nonnegative. On the other hand, this solution maintains the zero-flux boundary constraint. The initial condition is in accordance with (5.2). As in the first test, the obtained results are reported in Tables 45.

Inspecting these tables, we note again a super-convergence on the solution and better convergence rates on the gradient. The implemented nonlinear scheme does not violate the discrete maximum principle. Thereby, the accuracy of our strategy is not severely sensible to polynomial nonlinearities, the anisotropy and the mesh quality. 

Test case 3

In this third example we increase the nonlinearities seriousness and look at their impact on the behavior of solutions to the studied finite volume scheme. To this purpose, we set