Okan Arslan
email: okan.arslan@hec.ca

Gül C ¸ulhan Kumcu

Bahar Yetis

Gilbert Laporte

The location and location-routing problem for the refugee camp network design

Keywords: refugee camp location, location-routing problem, vehicle routing problem, transportation, humanitarian logistics, branch-price-and-cut

The refugee crisis is one of the major challenges of modern society. The influxes of refugees are usually sudden and the refugees are in sheer need of services such as health care, education and safety. Planning public services under an imminent humanitarian crisis requires simultaneous strategic and operational decisions. Inspired by a real-world problem that Red Crescent is facing in Southeast Turkey, we study the problem of locating refugee camps and planning transportation of public service providers from their institutions to the located camps. Our modeling approach brings a new facet to the location and routing problem by considering the location of beneficiaries as variables. We develop a branch-price-and-cut algorithm for the problem. To solve the pricing problem, we introduce a cycle-eliminating algorithm using nested recursion to generate elementary hop constrained shortest paths. The best version of our algorithm efficiently solves 244-node realworld instances optimally.

Introduction 1

The world is now witnessing a massive refugee crisis. According to the United Nations High 2 Commissioner for Refugees (UNHCR, 2019), the number of displaced persons is 68.5 million and 3 more than 37% of these people are under the age of 18. One in every 110 people in the world 4 is a refugee. The refugee crisis has significant socio-economic long-term impacts. Furthermore, 5 the numbers are increasing at an alarming rate, especially since the 2011 Syrian refugee crisis 6 (UNHCR, 2019). & Social Affairs (UN/DESA, 2019). The role of the hosting country is central to the welfare of the refugees. During a humanitarian crisis, massive influxes of people are usually sudden, and the hosting countries face many strategic and operational level decisions in the aftermath. These countries are partially or fully responsible for opening and managing refugee camps for the displaced people and providing the necessary needs and public services such as safety, health care and education. While some basic needs are covered by the facilities located within the camps, certain additional services need to be provided by the local authorities [START_REF] Karsu | The refugee camp management: a general framework and a unifying decisionmaking model[END_REF]. Examples of such services include specialist doctor or psychiatrist visits for the self-development of children and youth refugees (UNICEF, 2011).

The UNHRC's operations in Turkey are among the largest worldwide (UNHCR, 2019). Our research is inspired and shaped by a real-world problem faced by the Turkish Red Crescent in southeast Turkey for opening camps and providing public services. The aim is to locate refugee camps, select the service hosting institutions, and determine the routes of service providers from the selected service hosting institutions to the selected camps. It is closely related to the classical location-routing problems (see, e.g., [START_REF] Drexl | A survey of the standard location-routing problem[END_REF] and it entails the additional location decision of the users, who are the refugee camps in our context. It has applications in the public sector, where the user locations are also decisions to be made by the planning authorities, mainly in disaster management after a major evacuation or during a major confinement. Examples include temporary housing after natural disasters such as hurricanes, floods, wildfires or earthquakes (see, e.g., [START_REF] Sherali | A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions[END_REF][START_REF] Murray-Tuite | Evacuation transportation modeling: An overview of research, development, and practice[END_REF]. When the evacuees are located in their temporary shelters, providing basic services such as health care and security is crucial, and can be costly particularly when the duration of the temporary housing is long. Another application arises in managing the major confinements. For instance, during the COVID-19 pandemic, individuals arriving from abroad to Turkey were located for a period of two weeks in selected student dormitories and the municipalities provided health care services and basic supplies for these facilities (Anadolu Agency, 2020). We model the problem as a location and locationrouting problem (LLRP) and we develop efficient solution techniques for it.

Literature review

Humanitarian crises have natural as well as man-made origins. The United Nations has adopted several measures to alleviate sufferings of refugees, namely those who are forced to leave their home country in order to escape major conflict zones. Humanitarian logistics has emerged as a research field and has garnered significant interest over the last decade, particularly in view of the fact that nearly 75% of the funding allocated to disaster response is related to the supply chain [START_REF] Van Wassenhove | Humanitarian aid logistics: supply chain management in high gear[END_REF]. The field is rooted in the early works of [START_REF] Altay | OR/MS research in disaster operations management[END_REF] and [START_REF] Van Wassenhove | Humanitarian aid logistics: supply chain management in high gear[END_REF] and has since evolved into a rich research area. For surveys on humanitarian logistics, we refer the reader to C ¸elik et al. (2012), [START_REF] Galindo | Review of recent developments in OR/MS research in disaster operations management[END_REF], [START_REF] Özdamar | Models, solutions and enabling technologies in humanitarian logistics[END_REF], [START_REF] Kara | Humanitarian logistics[END_REF], and [START_REF] Besiou | Humanitarian operations: A world of opportunity for relevant and impactful research[END_REF].

Disaster operations are generally classified into four phases: mitigation, preparedness, response and development (C ¸elik et al., 2012). [START_REF] Besiou | Humanitarian operations: A world of opportunity for relevant and impactful research[END_REF] portray the history of humanitarian logistics into three phases by investigating the past, present and future.

They note that the future of the field is driven by multiple factors, including the management of large numbers of refugees, which lies at the heart of our study. We will focus on the location and routing components of the problem.

Location-routing problems combine decisions from the tactical and operational levels. Recent surveys are those of [START_REF] Prodhon | A survey of recent research on location-routing problems[END_REF], [START_REF] Albareda-Sambola | Location-routing and location-arc routing[END_REF] and [START_REF] Drexl | A survey of the standard location-routing problem[END_REF]. In humanitarian logistics, location problems are typically solved in the mitigation and preparedness phases (Balcik and Beamon, 2008;[START_REF] Paul | Robust location-allocation network design for earthquake preparedness[END_REF], while routing problems occur in the response phase [START_REF] Campbell | Routing for relief efforts[END_REF]Balcik et al., 2008;[START_REF] Huang | Models for relief routing: Equity, efficiency and efficacy[END_REF][START_REF] Huang | A continuous approximation approach for assessment routing in disaster relief[END_REF][START_REF] Sheu | Post-disaster relief-service centralized logistics distribution with survivor resilience maximization[END_REF][START_REF] Oruc | Post-disaster assessment routing problem[END_REF]. Examples include welfare operations to distribute perishable food to welfare agencies in an equitable and efficient way (Eisenhandler and Tzur, 2019a,b) and dynamic transportation planning for ambulances after an earthquake [START_REF] Mills | Dynamic distribution of patients to medical facilities in the aftermath of a disaster[END_REF]. The integration of location and routing is rarely observed in the humanitarian logistics literature. One of the early works is due to [START_REF] Yi | A dynamic logistics coordination model for evacuation and support in disaster response activities[END_REF], who considered an integrated logistics support and evacuation operations in the disaster response phase. [START_REF] Balcik | Site selection and vehicle routing for post-disaster rapid needs assessment[END_REF] developed a tabu search algorithm for site selection and vehicle routing for post-disaster rapid needs assessment. [START_REF] Cherkesly | Community healthcare network in underserved areas: Design, mathematical models, and analysis[END_REF] recently solved a location, covering and routing problem arising in design of a community health care network in Liberia.

Scientific contributions and organization of this paper

The peculiarities of LLRP that set it apart from previous studies are twofold. First, the location decision of the refugee camps as well as the routing decision among these camps are taken by the same authority. In other words, the location decisions pertain to the depots and also to the refugees who are the users. The second feature that differentiates LLRP from the existing location and routing problems is the fact that the number of service providing depots is larger than the number of candidate refugee camps.

The scientific contributions of this paper are as follows:

• We introduce the refugee camp location and public service planning problem.

• The problem constitutes a new facet of location-routing problems through the consideration of user locations.

• We develop a path-based model and a specialized branch-price-and-cut (BP&C) exact algorithm. We deal with complications arising from the additional location decisions. Particularly, we develop a cycle-canceling algorithm to solve the pricing problem of the model.

• We assess the performance of our methodology on real-world datasets.

The remainder of this paper is organized as follows. We present the problem in Section 2 and devise a BP&C algorithm in Section 3. We present the computational results and discuss the implications on real-world data derived from the Southeastern part of Turkey in Section 4. We conclude the study in Section 5.

Formal Problem Definition

We now provide a formal definition of the LLRP. Consider a graph G = (N, A) where N and A are the sets of nodes and arcs, respectively. Let d i j be the distance from node i ∈ N to node j ∈ N. The nodes represent the candidate refugee camps (or simply camps) and the service hosting institutions (or simply hosts). Let R ⊂ N be the set of candidate camps. There are Q refugees to be located in the refugee camps, and each camp i ∈ R has capacity q i . Let f i be the location cost of camp i ∈ R. As usual, all costs relate to the same planning horizon. Set S represents the public services planned by the government for the arriving refugees, such as health care and safety. Every open camp must be provided with all the services in the set S . For each service type s ∈ S , there is a set of hosting institutions H s ⊂ N where the service providers are located. For instance, for the health care service, hospitals represent the hosting institutions and the medical doctors and the nurses are the service providers. We define H as the set of all hosts, that is, H = s∈S H s . Without loss of generality, a host is assumed to provide a single type of service. If this is not the case, a host node can be duplicated as many times as the number of services it provides. There are C h service providers of type s ∈ S located at host h ∈ H s , which we refer to as the host capacity.

Let L h be the maximum number of camps that can be visited in a single trip by a service provider located at host h ∈ H. A service provider of type s ∈ S departs from a host h ∈ H s visits at most L h camps and returns back to host h; we refer to such a path as a feasible path. The problem under consideration is formally defined as follows:

Definition 1. Consider a graph G = (N, A), camps R ⊂ N, hosts H ⊂ N, services S and an integer Q. The LLRP is defined as the problem of selecting camps in the set R in order to locate Q refugees and finding a set of feasible paths in graph G to ensure that all types of services in S are provided for every open camp such that the camp and host capacities are respected and the total cost of opening camps and routing service vehicles is minimized.

Branch-price-and-cut Algorithm

In this section, we present a set-covering model and develop an exact BP&C decomposition algorithm, which has been shown as one of the best performing algorithms for vehicle routing and location-routing problem classes [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF][START_REF] Wang | Vehicle routing problem with drones[END_REF][START_REF] Ozbaygin | An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations[END_REF]. The novelties in the BP&C algorithm developed in this study are manifold.

• The pricing problem considered in this study is a hop-constrained shortest path problem. We develop a recursive cycle-eliminating algorithm in Section 3.4. This algorithm can be used to solve a LRP with the same pricing problem or separately in other problem types.

• The site-selection decisions require changing the branching rules, which are presented in Section 3.8.

• We use knapsack inequalities in Section 3.9 to strengthen the LP relaxation of the model.

Path-Based model

Let P be the set of all feasible paths π, P s i be the set of paths of service type s ∈ S visiting camp i ∈ R, and P h be the set of paths π ∈ P starting and ending at host h ∈ H. In our formulation, the variable y π equals 1 if path π is used and 0 otherwise, variable x i equals 1 if camp i ∈ R is selected and 0 otherwise and variable z h equals the number of service providers used from host h. We refer to y π , x i and z h as path, location and host variables, respectively. The parameter a iπ is the number of times path π visits node i ∈ N and d π is the routing cost of path π in the planning horizon. The path-based model, which we refer to as PM, is:

(PM) minimize i∈R f i x i + π∈P d π y π (1) subject to i∈R q i x i ≥ Q (2) x i ≤ π∈P s i a iπ y π i ∈ R, s ∈ S (3) π∈P h y π = z h h ∈ H (4) z h ≤ C h h ∈ H (5) x i ∈ {0, 1} i ∈ R (6) y π ∈ {0, 1} π ∈ P (7) z h ≥ 0 and integer h ∈ H. (8)
The objective function minimizes the total cost of opening camps and routing the service providers.

Constraint (2) ensures that the total camp capacity is sufficient to host all the refugees. Constraints

(3) imply that if a camp is selected, then all service types must be provided. When only elementary paths are considered, then a iπ = 1 for all i ∈ R and π ∈ P. In non-elementary paths, a iπ can assume values greater than one, but the correctness of the model is still ensured [START_REF] Desrochers | A new optimization algorithm for the vehicle routing problem with time windows[END_REF].

Note that constraints (3) link the location and routing variables. Setting Q = i∈R q i in constraint

(2) requires x i = 1 for all i ∈ R and the model essentially solves a location-routing problem.

Constraints (4) and (5) jointly enforce capacity limits for hosts. The auxiliary variable z h is used in the formulation to enforce the branching rules in the branch-and-bound (B&B) tree. Constraints (6), (7) and (8) define the domains of the variables. This formulation is different from the classical set-covering formulation for the vehicle routing problem [START_REF] Desrosiers | A Primer in Column Generation[END_REF] due to the additional site-selection decisions associated with refugee camps, which introduces additional complexities in the branch-and-price (B&P) framework.

Column generation

The PM model has exponential number of paths variables, which makes it impossible to solve directly. We have therefore developed a B&P algorithm [START_REF] Lübbecke | Selected topics in column generation[END_REF] as an exact solution methodology. A central component of this method is the column generation procedure used to solve the linear programming (LP) relaxation of the PM, which we refer to as PM-R.

In order to prevent having an upper bound on path variables in the LP relaxation of the model, we convert path variables into integer variables, without loss of generality.

We first have a restricted formulation with an initial set of path variables. We then solve this restricted LP and determine whether there exists any path variable with a negative reduced cost. The problem of finding such a variable is referred to as the pricing problem. We solve this problem for every host to find a variable with a negative reduced cost, add such variables to the restricted problem and reiterate this process until no path variable with a negative reduced cost remains. Let α i and β h be the dual variables associated with Constraints (3) and (4), respectively. The reduced cost of path variable y π is equal to

c π = d π - i∈N(π) a iπ α i + β π 0 π ∈ P, (9)
where N(π) is the set of camps in path π and π 0 is the first node in the path, representing the origin host. Having a path π with c π < 0 implies that y π needs to be added to the formulation in the next iteration. To ensure that no such path exists, we need min π∈P {c π } ≥ 0. Therefore, the pricing problem

is to minimize d π - i∈N(π)
a iπ α i + β π 0 over all feasible paths π ∈ P in the graph G.

Pricing problem

The pricing problem can be modeled as a resource-constrained shortest-path problem (RCSPP) on a graph with negative cost cycles [START_REF] Irnich | Shortest Path Problems with Resource Constraints[END_REF]. In this section, we use the terms 'shortest path' and 'minimum cost path' interchangeably to refer to a path with the minimum reduced cost. In the LLRP, the number of camps that can be visited in a path is the only resource and this reduces the pricing problem into the hop-constrained shortest path problem (HSPP) on a graph with negative cost cycles. To ensure the convergence of the column generation scheme, such a pricing problem needs to be solved for every host h ∈ H. When the solution path is required to be elementary, the HSPP is known to be NP-hard [START_REF] Dahl | On the directed hop-constrained shortest path problem[END_REF].

For a given host h ∈ H, consider a graph Ĝ(h) = N, where h is a new dummy node to represent arrival to h, set N = R ∪ {h, h }, Â1 is the set of arc in G induced by nodes in N, Â2 is the set of new arcs (i, h) for all i ∈ R with length d ih and = Â1 ∪ Â2 . An HSPP instance is a quintuple h, L h , Ĝ(h), α, β h where all parameters are as previously defined. The objective of solving such an instance is to identify a minimum cost elementary path in Ĝ(h) from origin h to destination h , visiting at most L h camps, where cost of a path is defined as in (9).

Let v i j be a binary variable indicating whether arc (i, j) is traversed or not, and let r i be a binary variable indicating whether camp i ∈ R is visited or not. The HSPP can be modeled as follows:

minimize (i, j)∈A d i j v i j - i∈R αi r i + βh (10) subject to j:(i, j)∈A v i j - j:(j,i)∈A v ji =              1 if i = h -1 if i = h 0 otherwise i ∈ N (11) i∈R r i ≤ L h (12) r i = j:(i, j)∈A v i j i ∈ R (13
) (i, j)∈S v i j ≤ |S | -1 S ⊂ A : 2 ≤ |S | ≤ |N| -1 (14) r i , v i j ∈ {0, 1} i ∈ R, (i, j) ∈ A. (15
)
The objective function minimizes the reduced cost. Constraints (11) are the flow conservation constraints. Constraint (12) ensures that no more than L h camps are visited on the path. If a camp i ∈ R is visited, then the corresponding r i variable is forced to be equal to one through constraints (13). Since there exists a trade-off between the r and v variables in the objective function, there may exist subtours in the solution. Constraints (14) prevent the existence of such subtours. Finally, constraints (15) define the domains of the variables.

Identifying an elementary hop-constrained shortest path using the preceding model is computationally expensive. Therefore, we do not use it for solving the pricing problem. Instead, we develop a recursive algorithm in Sections 3.4 and 3.5 based on cycle elimination.

To accelerate the solution of the pricing problem, the elementarity requirements of the paths can be relaxed. The PM formulation is still valid under this assumption since a camp will only appear at most once in the optimal solution. Therefore, the optimal solution remains unchanged regardless of the elementarity assumption. The pricing problem is then transformed into nonelementary HSPP in graphs with negative cost cycles, which can be solved by the Bellman-Ford algorithm [START_REF] Ford | Network flow theory[END_REF][START_REF] Bellman | On a routing problem[END_REF] in O(|N| 3) time. However, the LP relaxation of set covering models for vehicle routing problem types is tighter when the paths are cycle-free [START_REF] Desrochers | A new optimization algorithm for the vehicle routing problem with time windows[END_REF]. Generally, eliminating 2-cycles (i, j, i) from the paths improves the bounds and boosts the performance of the algorithm significantly. In the following section, we present a cycleeliminating algorithm. For brevity, we use the term 'σ-cycle elimination' for a given integer σ to imply that all cycles of size not exceeding σ are eliminated from the paths.

A cycle-eliminating algorithm for non-elementary HSPP

The exact labeling algorithm developed in this section is used to find shortest paths without any σ-cycles for σ ≥ 2. Consider an HSPP instance h, L h , Ĝ(h), α, β h . In our algorithm, labels represent partial paths originating from h, visiting a number of camps no greater than L h . A label is a vector of nodes (h, i 0 , . . . , i n) where h is the host node, i 0 , . . . , i n-1 are camps and i n is a camp if is a partial path and it is the dummy node h when it is a full path. For convenience, we refer to a node on a partial path by its position relative to the last node of the partial path. The last node of is therefore represented as [-1]. Other nodes are referred accordingly. The reduced cost of label is c(). We use the sign ⊕ for concatenating partial paths. We also refer to all outgoing and incoming arcs of node i as δ + i and δ - i , respectively.

An extension of a label is the operation of adding a new node to the end of the partial path, adjacent to the last node. At each iteration of our algorithm, all labels are extended once and we refer to such an iteration as a pass. In each pass, the first step is the extension of current labels to create new σ-cycle-free labels. In the second step, dominance rules are applied to keep the labels that have the potential to be an optimal path. In our algorithm, we determine the non-dominated labels to guarantee optimality and we discard all other labels since they are dominated. For each σ, the dominance rules change. To determine non-dominated labels for σ-cycle elimination, we need the following sequence of results. We first start with dominance rule for 2-cycle elimination.

Proposition 1. Consider a host h, node i and associated set of labels L i . A label 1 ∈ L i is non-dominated in order to eliminate 2-cycles if and only if there exists a node j ∈ δ + i such that j 1 [-1] and the partial path 1 ⊕ { j} has the minimum reduced cost among all partial paths

2 ⊕ { j} with j 2 [-1] and 2 ∈ L i .
Proof. (Necessity) Assume that there exists such a node j ∈ δ + i . When j 1 [-1], the partial path 1 ∪ { j} does not create a 2-cycle and is therefore feasible. Since the partial path created by this extension has the minimum reduced cost among other possible extensions, it has the potential of having the minimum reduced cost, which implies that it is not dominated.

(Sufficiency) By contraposition, assume that for all nodes j ∈ δ + i such that j 1 [-1], the partial path 1 ∪ { j} does not have the minimum reduced cost among all partial paths created by extension of other labels. This implies that for every node j ∈ δ + i such that j 1 [-1], there exists another label j ∈ L i , for which j ∪ { j} has the minimum reduced cost among among all partial paths 2 ∪ { j} with j 2 [-1] and 2 ∈ L i . Clearly, for every possible extension, 1 is dominated.

Note that, in order to eliminate 2-cycles, the condition for a label to be non-dominated is satisfied by investigating the costs when extending this label in the next pass. This reasoning can be generalized and can be extended to σ-cycle elimination by considering the following σ -1 passes.

Proposition 2. Consider a host h, node i and associated set of labels L i . A label 1 ∈ L i is nondominated in order to eliminate σ-cycles if and only if there exists a partial path pPath, with at most σ nodes, such that (1 ⊕ pPath) does not create a σ-cycle and (1 ⊕ pPath) has the minimum reduced cost among all partial paths (2 ⊕ pPath) that does not contain a σ-cycle and 2 ∈ L i .

The proof is very similar to that of Proposition 1 and we omit for conciseness. Algorithm 1 is the cycle-eliminating HSPP algorithm, which we refer to as CHSPP. Forbidden nodes and arcs can also be imposed in the algorithm, which is needed in the B&B tree for fixing variables and for implementing branching decisions (as will become clear in the following section). For a given graph Ĝ, a host h, a hop limit L h , a cycle-elimination limit σ, sets of forbidden nodes and arcs f Nodes and f Arcs, and dual values α i , i ∈ R, and β h , the algorithm outputs a minimum cost path from h to h without any cycles of size σ or less, using at most L h camps and not using any of the nodes in f Nodes or arcs in f Arcs. We now describe the algorithm. In the initialization phase, empty label sets are created for all the nodes in N and a single label is added to the source node with a zero reduced cost. In the Bellman-Ford algorithm, the main loop is executed |N| times so that after |N| updates either a cycle is detected or the shortest path to the destination is found.

Similarly, the main loop of our algorithm is executed L h + 1 times since a feasible path can have at most L h camps. We first create temporary label sets in lines 6-7 of Algorithm 1 to keep the new potential labels. Those that do not contain a σ-cycle are then recorded in the labels set in lines 15-16. In the label extension phase described in lines 8-14, every label in node i ∈ N is extended to all nodes adjacent to i, for all i ∈ N. Once all updates are completed, we identify the non-dominated labels in lines 17-21. Labels are first sorted with respect to their cost in line 18. Such labels are identified in lines 33-37. They can provide alternative optimal solutions, which is needed when the algorithm is customized to return multiple paths instead of only a single path.

A labeling algorithm for elementary HSPP

We now show that a feasible path is elementary if it does not include any σ-cycles with σ = L h -1.

Proposition 3. If a path (h, i 1 , . . . , i n , h) with n ≤ L h does not contain any σ-cycles with σ =

(n -1), then it is elementary.

Proof. Node h has only outgoing arcs and h has only incoming arcs. Furthermore, these two nodes representing departure and arrival from and to a host do not appear in the set of intermediate nodes. The longest possible cycle then has length L h -1 when i 1 = i L h .

Therefore, when σ = L h -1, Algorithm 1 generates an elementary hop constrained shortest path.

A heuristic algorithm for elementary HSPP

The most time-consuming step of Algorithm 1 is lines 17-21, where the nestedLoop function is called. Instead of this costly step, we apply a heuristic which consists of keeping only the top σ labels generally finds a path with negative reduced cost, if one exists. If this heuristic cannot identify a path with negative reduced cost path, the exact algorithm is then applied.

Initial set of columns

The column generation procedure requires an initial set of path variables, which is needed to generate the dual variables. Even though a feasible solution of the model does not require to have a path from every host, we still need to have at least one path variable originating from each host in the initial pool of path variables in order to generate all the dual variables. Similarly, a feasible solution does not require visiting all camps, but we need to have variables visiting every camp in the initial pool of path variables so that the corresponding dual variables can be obtained, and the reduced costs in the next iteration of the column generation can be calculated correctly. To this end, the selection of initial set of columns is crucial. In our implementation, we use a greedy heuristic to generate an initial set of path variables starting from each host h and visiting the closest camp until a maximum of L h camps have been visited. This process is reiterated until all camps are visited.

Algorithm 1: Cycle-eliminating hop-constrained shortest path algorithm (CHSPP)

Input: Ĝ = (N, Â), h, L h , σ, f Nodes, f Arcs, β h , α i i ∈ R.
Output: A hop-constrained σ-cycle-free path with the minimum reduced cost 1 Function Main():

2 foreach i ∈ N \ f Nodes do //

Branch-and-price for an integer solution

Once we have the solution of the PM-R by column generation, we apply branching to obtain an integer feasible solution. There are binary location variables, integer host variables and integer path variables in PM. We use a three stage hierarchical branching rule and we always branch on the most fractional variable in all three levels of branching rules. We first branch on the location variables x i . The branching rules on x i are enforced by adding a single constraint in the master problem. The pricing problem does not change with this branching rule since we forbid node i in the pricing problem only if x i = 0. If all the location variables are binary, we then branch on the host variables z h . A single constraint is added to enforce the branching rules, which does not change the pricing problem. In the third level, we consider the path variables y π . Using the standard branching rule on path variables creates two unbalanced branches: one forcing the path to be selected, and the other branch corresponding to the path not being selected. Selecting a path is a strong decision; however, eliminating a path from the formulation is weak since alternative paths similar to the eliminated one can easily be found in dense graphs. Furthermore, forbidding a path in the pricing problem is not trivial [START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF]. For these reasons, branching on (implicit) arc variables has been widely used in B&P algorithms in vehicle routing contexts. When each customer is visited only once, enforcing (implicit) arc variables in a compact formulation implies the use of binary path variables. However, in our context, an arc can potentially be traveled by multiple vehicles providing different services. This necessitates having integer arc variables, which is not straightforward from an implementation point of view. Our solution for enforcing the path variables to binary values is by branching on an implicit variable corresponding to archost combinations. Let r h i j be a binary variable equal to 1 if and only if a path originates from host h and visits arc (i, j). Branching on r h i j either forces an arc to be traveled by a vehicle from host h or forces it not to be used from this host. We branch on the arc-host combination that has the most fractional arc flow. Note that the second and third level branching rules ensure that the y π variables are binary, as these two branching rules has widely been applied in vehicle routing context [START_REF] Bettinelli | A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows[END_REF].

Another complication of the problem at hand is the fact that there is no requirement to visit every potential camp, but only selected ones. Therefore a careful treatment is needed for correct branching implementation. Forbidding arcs and nodes is used at both the PM-R level and at the pricing problem level to enforce the branching decisions.

3.8.1. Branching 1 (Forcing host h to use arc (i, j)):

To enforce this rule at the PM-R level, all variables associated with paths starting at host h and using an arc emanating from node i or entering into node j, other than arc (i, j), are removed from the formulation. Let s be the service of host h. All variables associated with paths starting at a host ĥ ∈ H s \ {h} and using arc (i, j) are also removed from PM-R. These removals ensure that if nodes i and j are visited, then arc (i, j) is the only option. However, this is still not sufficient to ensure that arc (i, j) is traveled by a vehicle starting at host h, because the camps are not required to be visited in the problem. Therefore, we also need to set x i = x j = 1 to ensure that arc (i, j) appears in the solution. A similar technique is implemented at the pricing problem level. When solving the pricing problem for host h, we forbid all arcs leaving node i and entering node j, except arc (i, j). When solving the pricing problem for hosts ĥ ∈ H s \ {h}, we forbid nodes i and j. This only leaves the possibility of using arc (i, j) by a path starting at host h. Note that, unlike the PM-R level operation, we do not force arc (i, j) to be used at the pricing problem level. Forcing arc (i, j)

in the pricing problem can possibly lead to missing negative-length paths.

3.8.2. Branching 2 (Forbidding arc (i, j) for host h):

We remove all variables corresponding to paths starting from host h and using arc (i, j) from PM-R. To ensure that no such paths are generated by the pricing problem, we forbid arc (i, j)

when solving the pricing problem for host h. Our primary goal in branching is to improve the lower bound. To this end, we select the node with the best bound in the B&B tree.

Cutting planes

When no paths are generated by the pricing algorithm, the solution of the LP relaxation can be separated to improve the lower bound by adding violated inequalities. One such inequality is the knapsack cover inequality [START_REF] Wolsey | Faces for a linear inequality in 0-1 variables[END_REF]

for constraint (2). A set C is called a cover if i∈C q i > i∈R q i -Q, or equivalently Q > i∈R\C q i
. For all such covers, the knapsack cover inequality i∈C x i ≥ 1 is valid for PM-R. Given an LP solution x, a violation can be determined if

γ = min C⊂N j∈C xi | j∈R\C q j < Q < 1, which requires solving another optimization problem. Instead,
we use a greedy heuristic to determine a violated knapsack inequality. We first sort the camps in ascending order according to x. Starting from the top, we add camps to the cover set C until i∈C q i > i∈R q i -Q, at which point we check whether i∈C xi < 1. This implies that i∈C x i ≥ 1 is violated and we add this inequality and reiterate to generate new columns if possible.

Acceleration techniques

We now discuss two methods to accelerate the implementation to produce improved upper and lower bounds.

Variable Fixing:

In vehicle routing problems, variable fixing by reduced costs is generally applied on the implicit arc variables [START_REF] Costa | Exact branch-price-and-cut algorithms for vehicle routing[END_REF]. However, the reduced costs of the implicit variables are not directly available in a path-based model. On the other hand, PM contains location variables that are strongly linked with the implicit arc variables. Setting a location variable equal to zero disqualifies all paths using the corresponding node. Furthermore, the reduced costs of the location variables are available at every node of the of the B&B tree. Let z and z be the upper and lower bounds on the optimal value of the PM, respectively, and let χ i be the reduced cost of location variable x i for all i ∈ N. A location variable x i , i ∈ N can then be fixed to zero if χ i > zz. At PM the level, a constraint is added to set the corresponding location variable equal to zero. At the pricing problem level, a node is 'forbidden' and therefore no path using the corresponding node is generated. 3.10.2. Heuristics:

After solving the root node relaxation of the B&B tree, we solve an integer programming model with the columns so far generated to possibly find a good upper bound before starting to branch [START_REF] Rothenbächer | Branch-and-price-and-cut for the truck-and-trailer routing problem with time windows[END_REF]. We also call this integer programming model whenever one hundred or more new variables have been generated in the B&B tree and before reaching the time limit. All such models aim to generate good upper bounds and are limited in time. In our implementation, we run this heuristic for at most two minutes.

Computational Study

We have implemented the algorithms using Java and CPLEX 12.9.0.0, and all experiments were conducted on a cluster of 26 machines each with two Intel Xeon X5675 3.07-GHz processors with 96 GB of RAM running on Linux. Each machine has 12 cores, and each experiment was run using a single thread. The time limit for all experiments was set to six hours. In the following, we describe the dataset, study the impacts of path elementarity on the LP relaxation of our model, determine the algorithm parameters, present the computational experiments, and analyze the results on a real-world dataset.

Data

Our dataset origins from the field in the southeast Turkey, where refugee camps are located along the Turkish-Syrian border. Figure 1 1. Additionally, on the basis of expert opinions from the Turkish Red Crescent, we generated networks that contain three, five, seven or 10 cities in the region and selected subsets of service provides in these cities. The characteristics of the networks corresponding to each scenario are shown in Table 1. We use Networks 1-6 for determining the parameters of our algorithm and carry out the computational experiments in Networks 7-12.

According to UNHCR (2019), a minimum of 45 square meters per person are required in refugee camps. Camp capacities are determined by expert views based on the size of the available area for the camp and change between 5,000 and 25,000 refugees per camp.

The f i parameter in the objective function of the PM model captures the trade-off between the setup cost of camps and the lifetime routing costs. It is usually assumed by the professionals in the field that f i = 0 for all i ∈ R because the lands are provided by the government. In our analysis, we additionally tested f i = wq i , where q i is the capacity of camp i and w is equal to the land cost of 45 square meters per refugee, divided by the lifetime routing cost per kilometer. We obtained the land costs from the Turkish Revenue Agency (2019). Considering three visits per week and a lifetime of five to 10 years, the range of values we tested for w therefore changes between 0 and 0.05. We refer to w as the trade-off weight.

The number C h of service providers in hosting institution h ∈ H generally does not constitute a restriction in the region. For this reason, we consider loose capacities in the initial set of runs. We also tested tight capacities to show the efficiency of our algorithms by setting all hosting institution capacities equal to 1 in Section 4.5.

In our computational experiments, we assume a fixed value L as the maximum number of camps that can be visited from every host. That is, the hop bound L h = L for h ∈ H. For a given network, we use the phrase basic settings to refer to setting with hop bound L ∈ {3, 4, 5}, the refugee number Q ∈ {50K, 100K, 150K, 200K} and w ∈ {0, 0.005, 0.010, 0.025, 0.050}, which yields a total of 60 instances.

Impacts of elementarity assumption on the LP relaxations of the model

The strength of the root node relaxation is a critical factor on the solution efficiency of the PM model. The correctness of the model is ensured under different elementarity assumptions made on the paths, however these assumptions greatly affect the LP relaxations. We will therefore investigate the LP relaxations under three different elementarity assumptions. We first consider non-elementary paths. The paths can contain cycles and the pricing problem is therefore a nonelementary HSPP in graphs with negative cost cycles, which is solved using the Bellman-Ford algorithm [START_REF] Ford | Network flow theory[END_REF][START_REF] Bellman | On a routing problem[END_REF] in O(|N| 3) time. We then consider 2-cycle-free paths and elementary paths. We use our CHSPP algorithm for canceling 2-cycles and all cycles. Additionally, we also test the impacts of adding knapsack cuts, as presented in Section 3.9. In total we test these four alternatives using Networks 1-6 with the basic settings, which yields a total of 1,440 instances.

Table 2 shows the average optimality gaps of PM model LP relaxations under non-elementary, 2-cycle-free and elementary path assumptions, and under the elementary path assumption with the addition of knapsack cuts. The results are presented for the L, Q and w values considered in the basic settings in Table 2, parts (a), (b) and (c), respectively. Canceling 2-cycles helps improve the LP relaxation significantly with respect to the non-elementary paths for L = 3, but this property does not carry over as L increases. On the other hand, the elementary path assumption reduces the gaps with respect to non-elementary path assumption for all L values considered. The elementary path assumption, combined with the addition of knapsack cuts performs the best among all cases considered. In Table 2(b), the gaps improve across the rows and columns. The LP relaxations improve when there is a larger number of refugees, and the average gap reduces to 0.68% in the best setting. The gaps also decrease in Table 2(c) across rows and columns. The impact of considering fixed costs on the LP relaxations is also significant. The relaxations improve greatly when higher cost weights are considered.

Considering the improvements obtained through the elementary path assumption and with the addition of knapsack cuts, we use this setting in our experiments. The cut generation helps improve the root node relaxation, but our preliminary results showed that generating cuts in the rest of the B&B tree can be time-consuming. For this reason, we only generate cuts in the first 10 explored nodes of the B&B tree, and we then stop the cut generation.

Determining the parameter settings of the algorithm

The efficiency of the BP&C algorithm also depends on the number of variables pricing out at each iteration. Note that the CHSPP algorithm can be easily customized to output multiple paths with negative reduced costs (if they exist), the details of which we omit for the sake of conciseness.

Let mult be the maximum number of pricing out variables added for each service provider. In this section, we test the efficiency of the algorithm when mult = 1, 5, 10, 50 or 100 for each service provider. Additionally, the impact of the variable fixing as introduced in Section 3.10.1 is tested.

To this end, we use Networks 1-6 with the basic settings to test variable fixing (true and false) and 5 mult values (1, 5, 10, 50 and 100), which yields a total of 3,600 instances. Table 3 presents the average solution times and the optimality gaps. Variable fixing always helps in accelerating the solution process and in closing the optimality gaps. However, as mult increases, the solution times decrease and optimality gaps increase. This is explained by the instances that are solved optimally within a very short period of time. Adding a bulk of pricing out variables helps solve these instances very fast. However, as the B&B tree grows, generating several path variables becomes a burden due to the increasing sizes of the LPs that are solved. When only those instances taking more than 360 seconds are taken into account, then the average solution times are 6530.0, 6391.2, 6681.3, 7217.9 and 7635.6 seconds for mult = 1, 5, 10, 50 and 100, respectively.

We therefore conclude that setting mult = 5 balances both affects. We also turn on the variable fixing in all nodes of the B&B tree.

Computational results

After having fixed the algorithm parameters, we carried out a computational study on Networks 7-12 using the basic settings, which amounts to 360 instances. Table 4 shows the results categorized by network, L, Q and w. In total, 352 instances were solved to optimality within the time limit with an average of 2119.4 seconds and an average optimality gap of 0.01%. The optimality gap of the unsolved instances is 0.44% on average, with a minimum of 0.06% and a maximum of 1.29%. In Table 4(a), Networks 9 and 12 have the longest average solution times and non-zero average optimality gaps. The reason is that these two networks have the highest numbers of service hosts (Table 1). Even though Networks 10 and 11 have greater number of candidate refugee camps, all instances in these two networks could be solved to optimality. This suggests that the number of service hosts complicates the solution process more than the number of refugee camps. Table 4(b) reports the results as a function of L. The solution times are higher for both L = 3 and L = 5 when compared to L = 4, but the reasons are different. When L = 3, the pricing problem is easier to solve, but the algorithm spends more time in the B&B tree, whereas when L = 5, the pricing problem takes longer to solve, but the B&B tree is smaller due to smaller root node relaxations. The results presented in Table 4(c) and (d) relate to change in the Q and w parameters. They confirm the robustness of the algorithm for various inputs.

In order to rigorously test the computational efficiency of the algorithm under different settings,

we build new problem instances by modifying the camp capacities, the host capacities and the number of services in the data. For the camp capacities, we consider loose and tight settings. The loose setting corresponds to the data, as considered in the previous set of runs. In the tight setting, we halve the capacities. Similarly, we consider a loose and a tight setting for host capacities.

The loose setting corresponds to the data and the tight setting is obtained by assigning a single service provider for each host. In the data, we have 3 services to be provided to the refugees. In this section, we test our algorithm for 1, 3 and 5 service types by keeping the number of service providers the same. In total we have 12 different settings, each of which is applied on Network 11 and for L h ∈ {1, 2, 3, 4, 5}, Q ∈ {50K, 100K, 150K, 200K} and w ∈ {0, 0.005, 0.010, 0.025, 0.050}.

This makes a total of 1200 new instances.

The results are reported in Table 5. The first four columns are the settings and we report the number of solved instances, solution times in seconds and the average optimality gaps in columns 5-7, respectively. The algorithm optimally solved 1057 of the 1200 instances (88.1%).

The average solution time is 4480.7 seconds and the average optimality gap is 0.15% over all the instances. Camp capacities have a strong impact on the solution efficiency. Instances with tight tight setting. We have not observed a similar impact for the host capacities. For the loose and tight settings of host capacities, the total number of solved instances are 528 and 529, respectively and the average solution times are 4528.8 and 5525.4 seconds, respectively. The number of services also have a strong negative impact on the solution times, particularly when the number of services increases to 5. The total number of instances solved optimally is 387, 383 and 287 when the number of services equals 1, 3 and 5, respectively. The average solution times are 2720.9, 2769.3 and 7949.1 seconds respectively.

In summary, we have tested the efficiency of our algorithm on networks with different numbers of camps (18-74) and hosts (12-170), under various settings by changing the refugee numbers (50K-200K), number of services (1-5), camp and host capacities (loose and tight), cost parameters (0-0.050) and number of hop bounds (1-5). The computational experiments show that our algorithm is robust in solving the problem with various inputs.

Discussion

In this section, we analyze the results on real-world data, corresponding to Network 12 and for L h ∈ {1, 2, 3, 4, 5}, Q ∈ {50K, 100K, 150K, 200K} and w ∈ {0, 0.005, 0.010, 0.025, 0.050}, for a total of 100 instances. Additionally, we solve the same instances with tight host capacities by assigning a single service provider for each host. The detailed results are presented in Tables 10 and 11 in the appendix, for the uncapacitated and capacitated instances, respectively. The objective function values for capacitated and uncapacitated scenarios are presented in Figure 2 for varying L values. The costs decrease sharply if more than one camp can be visited in a single tour. This change is not as significant when L ≥ 2. We have not observed much difference in terms of objective function value between the capacitated and uncapacitated scenarios, except when L = 1. 7). This parameter mainly puts more emphasis on the fixed costs, and the relative weight of routing cost decreases. .27 2054.20 3203.15 4379.74 4 1007.27 2049.32 3150.63 4346.82 5 1007.27 2049.32 3134.29 4336.16 Table 8 shows the number of camps opened in different settings. For a given L and Q setting, the number of camps does not change when w ≥ 0.01 because the cost of opening a camp is highly dominant in the objective function. For a given L and w setting, if a camp appears in the optimal solution for locating 50K refugees, it keeps appearing when locating higher numbers of refugees as well. In all the scenarios considered for Network 12, both for the capacitated and the , 2019). The number of camps in each city is compared to the cities in our solutions in Figure 4. A large difference is observed in Kilis. The camps our algorithm locates in Kilis are distributed between Gaziantep, Hatay and S ¸anlıurfa in the real world.

Conclusions

Inspired by a real-world problem, we have defined, modeled and solved the refugee camp location and public service planning problem. The problem brings a new facet to the location and routing literature by optimizing the user locations. This feature has the potential to model public sector service planning when the planning authorities have the possibility of deciding both the location of the service providers and those of the service beneficiaries. Such applications include public service planning when a large population evacuates a region and when basic services need to be provided for the evacuees. We have modeled this problem and developed an efficient exact decomposition algorithm by exploiting features of the model. An extensive computational study has shown that our BP&C algorithm can scale up to networks with as many as 244 nodes. Future research can potentially take into account equity among the cities, the origins of the refugees and refugee urban locations, among others.

7

 Top five refugee-hosting countries as of 2019 are Turkey (3.5 million), Uganda (1.4 million), 8 Pakistan (1.4 million), Lebanon (1.0 million), and Iran (0.98 million) (UNHCR, 2019), all of 9 which are classified as 'developing economies' by the United Nations Department of Economic

 10

Figure 1 :

 1 Figure 1: Map of Turkey (cities with refugee camp operations in the Southeastern part are highlighted in gray color)

Figure 2 :

 2 Figure 2: Objective function value change for different L values with capacitated and uncapacitated service hosts

 An empty set newLabelsS et is created in line 19 to keep the list of non-dominated labels, and a set of nodes is created in line 20 to keep track of possible future extensions, which corresponds to pPath in Proposition 2. A nested loop in line 21 determines the non-dominated nodes. The function nestedLoop checks the conditions presented in Proposition 2. It starts by eliminating 2-cycles (level 2) and continues by incrementing the parameter level one by one until it equals σ. When canceling σ cycles, the number of iterations between the current pass and L h + 1 can potentially be less than σ. For this reason, min{L h + 1pass, σ} future passes are checked in line 21. Note that if a label has the same cost as the minimum cost, it is also non-dominated.

 Initialization

	3	labels[i] ← Empty Labels S et();	
	4	labels[h].add({h}, 0);	
	5	for pass = 1 to L h + 1 do	// Main loop
	6	foreach i ∈ N \ f Nodes do	
	7	tempLabels[i] ← Empty Labels S et();	
	8	foreach i ∈ N \ f Nodes do	// Extension of Labels
	9	foreach ∈ labels[i] do	
		foreach j ∈ δ + (i) : (i, j) f Arcs do	
		if j is not contained in the last σ nodes of then	// Cycle-canceling

if i == h then dualCost ← β h ; else dualCost ← -α j ; new abel ← new Label(⊕ { j}, c() + d i j + dualCost); tempLabels.add(new abel);

foreach i ∈ N \ f Nodes do // Update Labels[i].add(tempLabels[i]); foreach i ∈ N \ f

Nodes do // Domination sortedLabels[i] ← labels[i] sorted in ascending order with respect to cost; newLabelsS et ← Empty Labels S et(); nodes ← new Integers S et[σ]; labels[i] ← nestedLoop(nodes, i, newLabelsS et, sortedLabels, 2, min{L h + 1pass, σ}); 22 return path constructed from the minimum cost label in labels[h]. 23 Function nestedLoop(nodes, i, inputS et, sortedLabels, level, σ): 24 if level > σ then return inputS et; 25 foreach j ∈ δ + (i) : (i, j) f Arcs do nodes[level] ← j; if f Nodes.contains(node[level]) then continue; outerWhileLoop: while sortedLabels has label do Pop from sortedLabels; f uturePath ← (nodes[2], . . . , nodes[level]); if (.path ⊕ f uturePath) does not contain an m-cycle for m ≤ σ then inputS et.add(); while sortedLabels has label do Pop 2 from sortedLabels; if c(2) > c() then break outerWhileLoop; if (2 ⊕ f uturePath) does not contain an m-cycle for m ≤ σ then inputS et.add(2) if level σ then nestedLoop(nodes, i, inputS et, sortedLabels, level + 1, σ); 39 return inputS et

Table 1 :

 1 highlights the 10 cities in the region of interest: Adana, Characteristics of the networks

	Adıyaman, Gaziantep, Hatay, Kahramanmaras ¸, Kilis, Malatya, Mardin, Osmaniye, and S ¸anlıurfa.
	Turkey's Law No. 6458 on Foreigners and International Protection entitles refugees to health
	care, education and social services. To this end, we consider these three types of services to be
	provided to the refugees. The corresponding hosting institutions are hospitals, high schools and
	municipality city halls. There are 60 hospitals, 77 high schools and 33 municipality city halls in
	the region. A set of 74 locations are identified as potential refugee camps that are either currently
	serving as camps or that are non-residential large areas suitable for the establishment of a refugee

camp. Therefore, our network contains 244 nodes

[START_REF] Kumcu | Location-Location Routing Problem and Its Application on Refugee Camps[END_REF]

, which corresponds to 'Network 12' in Table

Table 2 :

 2 Average optimality gaps (%) of LP relaxations of the PM model under non-elementary, 2-cycle-free and elementary path assumptions and under elementary path assumption with the addition of knapsack cuts

	(a) Results by changing values of maximum camps in a single tour
	L	Non-elementary 2-cycle-free Elementary Elementary with cuts
	3	5.93	3.94	3.94	3.23
	4	6.56	5.42	3.60	3.00
	5	8.46	6.17	3.72	3.06
		(b) Results by varying number of refugees	
	Q	Non-elementary 2-cycle-free Elementary Elementary with cuts
	50	10.26	9.10	9.09	6.87
	100	6.44	4.44	1.95	1.90
	150	7.01	5.35	3.12	2.93
	200	4.21	1.81	0.86	0.68
		(c) Results by different tradeoff weights	
	w	Non-elementary 2-cycle-free Elementary Elementary with cuts
	0	15.89	10.92	7.07	4.94
	0.005	7.93	6.00	4.44	3.86
	0.010	5.76	4.53	3.56	3.21
	0.025	3.36	2.77	2.31	2.16
	0.050	1.97	1.66	1.41	1.32

Table 3 :

 3 Average solution times and optimality gaps for different number of pricing out variables with and without

	variable fixing				
		(a) Average solution times (s)	
	Var Fixing			mult	
		1	5	10	50	100
	false	1531.3 1498.7 1485.7 1460.6 1453.3
	true	1444.7 1404.5 1389.4 1375.7 1371.7
		(b) Average optimality gaps (%)
	Var Fixing			mult	
		1	5	10	50	100
	false	0.016% 0.017% 0.017% 0.017% 0.017%
	true	0.013% 0.014% 0.015% 0.015% 0.015%

Table 4 :

 4 Number of solved instances, solution times (s) and average optimality gaps (%) for Networks 7-12 to solve than the ones with loose capacities. The total number of solved instances for loose and tight camp capacity settings are 549 and 508, respectively. The average solution time is 3740.1 seconds for loose camp capacities, but it increases to 5215.3 seconds in the

		(a) Results by networks	
	Network	No. solved Solution time (s) Gap (%)
	7	60	1651.4	0
	8	60	1096.4	0
	9	56	2823.6	0.013
	10	60	1041.8	0
	11	60	1951.9	0
	12	56	4151.5	0.046
	(b) Results by different number of hops	
	L	No. solved Solution time (s) Gap (%)
	3	116	1948.2	0.006
	4	120	581.0	0
	5	116	3829.1	0.023
	(c) Results by different number of refugees
	Q	No. solved Solution time (s) Gap (%)
	50K	86	2555.0	0.031
	100K	90	1241.6	0
	150K	90	1316.5	0
	200K	86	3364.7	0.008
	(d) Results by different tradeoff weights	
	w	No. solved Solution time (s) Gap (%)
	0	72	1215.3	0
	0.005	70	2098.0	0.013
	0.010	70	2333.8	0.021
	0.025	70	2524.9	0.010
	0.050	70	2425.2	0.005
	Total/Avg.	352	2119.4	0.010

Table 5 :

 5 Number of solved instances, solution times (s) and average optimality gaps (%) for Networks 11 with different camp capacity, host capacity and service settings

	Setting	Camp	Host	No. of No. Solved Solution Gap
	number capacity capacity services		time (s) (%)
	1	L	L	1	95	3481.3 0.01
	2	L	L	3	100	1472.7	0
	3	L	L	5	77	6711.3 0.50
	4	L	T	1	92	3527.1 0.02
	5	L	T	3	100	1900.9	0
	6	L	T	5	85	5347.6 0.25
	7	T	L	1	100	1925.0	0
	8	T	L	3	100	2576.0	0
	9	T	L	5	56	11006.4 0.57
	10	T	T	1	100	1950.3	0
	11	T	T	3	83	5127.6 0.06
	12	T	T	5	69	8741.9 0.41
	Average				88.1	4480.7 0.15

Table 6 :

 6 Objective function values for changing L and Q

	L	Q		
	50K	100K	150K	200K
	1 1125.23 2414.04 3804.32 5341.24
	2 1007.27 2057.22 3232.52 4442.34
	3 1007			

Table 7 :

 7 Objective function values for changing w and Q

	w		Q	
		50K	100K	150K	200K
	0	108.68 322.10 604.98	969.26
	0.005 381.18 824.60 1354.98 1969.26
	0.010 638.15 1325.80 2104.98 2969.26
	0.025 1388.15 2825.80 4354.98 5969.26
	0.050 2638.15 5325.80 8104.98 10969.26

Table 8 :

 8 Number of camps opened in different instances Objective function values for different numbers of refugees uncapacitated versions, the camps consistently appear in the optimal solutions 99.48% of the time after their initial appearance. A total of 19 camps among the 74 candidate locations appear in the optimal solutions and the frequency of their appearance is shown in Table 9. The number of refugee camps in the southeastern part of Turkey changed between 19 and 24 from October 2019 to August 2018 (UNHCR, 2019). The number of refugees in August 2018 was 203,300 in 19 open camps (UNHCR

	w	L		Q -Uncapacitated			Q -Capacitated
			50K 100K 150K 200K 50K 100K 150K 200K
	0	1	4	6	8	10	3	5	8
		2	3	6	8	12	3	6	8
		3	3	6	10	12	3	6	8
		4	3	6	10	12	3	6	10
		5	3	6	10	12	3	6	10
	0.005 1	4	6	8	10	3	5	8
		2	3	6	8	12	3	6	8
		3	3	6	10	12	3	6	8
		4	3	6	10	12	3	6	10
		5	3	6	10	12	3	6	10
	0.010 1	4	6	8	10	4	6	8
		2	2	6	8	12	2	6	8
		3	2	6	10	12	2	6	8
		4	2	6	10	12	2	6	10
		5	2	6	10	12	2	6	10
	0.025 1	4	6	8	10	4	6	8
		2	2	6	8	12	2	6	8
		3	2	6	10	12	2	6	8
		4	2	6	10	12	2	6	10
		5	2	6	10	12	2	6	10
	0.050 1	4	6	8	10	4	6	8
		2	2	6	8	12	2	6	8
		3	2	6	10	12	2	6	8
		4	2	6	10	12	2	6	10
		5	2	6	10	12	2	6	10
					21			

Table 9 :

 9 Frequency of camps appearing in the optimal solutions

	Camp number	City	Frequency (%)
	5	Kilis	100
	9	Kilis	99
	6	Kilis	97.5
	1	Kilis	96
		Kahramanmaras ¸95
		Adana	83
	4	Kilis	78.5
	2	Kilis	55
		Kilis	40
	3	Kilis	38
		Adıyaman	30
		Gaziantep	27.5
		Adana	25
		S ¸anlıurfa	22.5
		Osmaniye	20.5
		Kilis	20
		S ¸anlıurfa	17.5
		Mardin	6.5
		Gaziantep	5

Table 10 :

 10 Results for Network 12 with uncapacitated service hosts

	#	w	L	Q	Root node	Lower	Upper	Optimality Solution	No. of	No. of	No. of
					relaxation	bound	bound	gap (%)	Time (s) Variables Cuts B&B nodes
	1	0		50K	166.71	166.71	166.71	0	0.8	466	1	0
	2	0		100K	543.54	543.54	543.54	0	0.9	466	1	0
	3	0		150K 1028.93	1028.93 1028.93	0	0.6	466	0	0
	4	0		200K 1660.21	1665.85 1665.85	0	3.0	466	6	5
	5	0		50K	78.34	83.66	83.66	0	100.3	3408	7	5
	6	0		100K	253.67	255.1	255.1	0	81.4	3806	4	3
	7	0		150K	510.79	514.08	514.08	0	116.0	4027	2	13
	8	0		200K	814.19	820.54	820.54	0	100.9	3463	5	7
	9	0		50K	78.34	83.66	83.66	0	492.1	8879	5	7
	10	0		100K	238.04	252.77	252.77	0	577.7	9786	4	9
	11	0		150K	473.86	495.39	495.39	0	1074.5	11536	9	27
	12	0		200K	775.14	778.5	778.5	0	532.4	10071	4	15
	13	0		50K	78.34	83.66	83.66	0	1652.8	12812	7	7
	14	0		100K	236.73	249.32	249.32	0	1617.8	10977	7	5
	15	0		150K	449.47	449.47	449.47	0	794.0	9591	1	0
	16	0		200K	744.38	745.57	745.57	0	1025.7	10957	1	5
	17	0		50K	78.34	83.66	83.66	0	12759.7	10217	8	9
	18	0		100K	236.46	249.32	249.32	0	9830.8	10517	7	5
	19	0		150K	432.94	432.94	432.94	0	2324.8	15231	0	0
	20	0		200K	733.55	734.92	734.92	0	13551.2	19013	5	7
	21 0.005 50K	416.71	416.71	416.71	0	1.0	466	1	0
	22 0.005 100K 1043.54	1043.54	1043.54	0	0.9	466	1	0
	23 0.005 150K 1778.93	1778.93	1778.93	0	0.7	466	0	0
	24 0.005 200K 2660.21	2665.85	2665.85	0	3.2	466	6	5
	25 0.005 50K	328.34	358.66	358.66	0	159.9	3351	11	11
	26 0.005 100K	753.67	755.1	755.1	0	87.2	3385	4	3
	27 0.005 150K 1260.79	1264.08	1264.08	0	101.4	2964	2	13
	28 0.005 200K 1814.19	1820.54	1820.54	0	114.0	4135	5	7
	29 0.005 50K	328.34	358.66	358.66	0	848.2	11666	12	15
	30 0.005 100K	738.04	752.77	752.77	0	575.4	10017	7	9
	31 0.005 150K 1223.86	1245.39	1245.39	0	1010.2	11325	11	27
	32 0.005 200K 1775.14	1778.5	1778.5	0	527.0	9707	4	15
	33 0.005 50K	328.34	358.66	358.66	0	2621.3	16117	12	15
	34 0.005 100K	736.73	749.32	749.32	0	1534.0	12801	7	5
	35 0.005 150K 1199.47	1199.47	1199.47	0	710.1	10198	1	0
	36 0.005 200K 1744.38	1745.57	1745.57	0	965.2	11655	0	5
	37 0.005 50K	328.34	356.66	358.66	0.56	21712.4	13919	11	11
	38 0.005 100K	736.46	749.32	749.32	0	8627.5	10994	7	5
	39 0.005 150K 1182.94	1182.94	1182.94	0	3053.2	12731	0	0
	40 0.005 200K 1733.87	1734.92	1734.92	0	6106.5	17312	3	3
	41 0.010 50K	666.71	666.71	666.71	0	0.8	466	1	0
	42 0.010 100K 1543.54	1543.54	1543.54	0	0.9	466	1	0
	43 0.010 150K 2528.93	2528.93	2528.93	0	0.5	466	0	0
	44 0.010 200K 3660.21	3665.85	3665.85	0	3.0	466	6	5
	45 0.010 50K	578.34	614.68	614.68	0	281.8	3517	11	17
	46 0.010 100K 1253.67	1255.1	1255.1	0	83.0	2929	4	3
	47 0.010 150K 2010.79	2014.08	2014.08	0	103.2	2885	2	13
	48 0.010 200K 2814.19	2820.54	2820.54	0	159.8	3553	5	7
	49 0.010 50K	578.34	614.68	614.68	0	892.0	10335	12	15
	50 0.010 100K 1238.04	1252.77	1252.77	0	649.6	9779	7	9
	51 0.010 150K 1973.86	1995.39	1995.39	0	1155.2	12733	11	27
	52 0.010 200K 2775.14	2778.5	2778.5	0	554.1	9779	4	13
	53 0.010 50K	578.34	614.68	614.68	0	2846.1	14383	12	15
	54 0.010 100K 1236.73	1249.32	1249.32	0	1647.3	10908	7	5
	55 0.010 150K 1949.47	1949.47	1949.47	0	692.3	10674	1	0
	56 0.010 200K 2744.38	2745.57	2745.57	0	1153.4	10220	0	5
	57 0.010 50K	578.34	606.77	614.68	1.29	22178.6	16441	12	15
	58 0.010 100K 1236.46	1249.32	1249.32	0	9231.1	10520	7	5
	59 0.010 150K 1932.94	1932.94	1932.94	0	2531.7	14187	0	0
	60 0.010 200K 2733.87	2734.92	2734.92	0	5612.2	15822	3	3
	61 0.025 50K	1416.71	1416.71 1416.71	0	0.9	466	1	0
	62 0.025 100K 3043.54	3043.54	3043.54	0	1.1	466	1	0
	63 0.025 150K 4778.93	4778.93	4778.93	0	0.6	466	0	0
	64 0.025 200K 6660.21	6665.85	6665.85	0	3.3	466	6	5
	65 0.025 50K	1328.34	1364.68 1364.68	0	237.7	3844	12	17
	66 0.025 100K 2753.67	2755.1	2755.1	0	83.9	3882	4	3
	67 0.025 150K 4260.79	4264.08	4264.08	0	128.2	3052	2	13
	68 0.025 200K 5814.19	5820.54	5820.54	0	111.0	4291	5	7
	69 0.025 50K	1328.34	1364.68 1364.68	0	818.8	10062	12	15
	70 0.025 100K 2738.04	2752.77	2752.77	0	660.5	12299	7	9
	71 0.025 150K 4223.86	4245.39	4245.39	0	1049.6	12852	10	25
	72 0.025 200K 5775.14	5778.5	5778.5	0	550.2	11079	4	13
	73 0.025 50K	1328.34	1364.68 1364.68	0	3172.3	15150	11	17
	74 0.025 100K 2736.73	2749.32	2749.32	0	1723.8	14154	7	5
	75 0.025 150K 4199.47	4199.47	4199.47	0	761.7	8398	1	0
	76 0.025 200K 5744.38	5745.57	5745.57	0	1288.5	13276	2	5
	77 0.025 50K	1328.34	1356.66 1364.68	0.59	21664.1	14912	12	14
	78 0.025 100K 2736.46	2749.32	2749.32	0	9035.9	6603	7	5
	79 0.025 150K 4182.94	4182.94	4182.94	0	2577.7	13474	0	0
	80 0.025 200K 5733.55	5734.92	5734.92	0	12290.0	15235	5	7
	81 0.050 50K	2666.71	2666.71 2666.71	0	1.0	466	1	0
	82 0.050 100K 5543.54	5543.54	5543.54	0	1.0	466	1	0
	83 0.050 150K 8528.93	8528.93	8528.93	0	0.7	466	0	0
	84 0.050 200K 11660.21 11665.85 11665.85	0	3.1	466	6	5
	85 0.050 50K	2578.34	2614.68 2614.68	0	196.2	4061	11	17
	86 0.050 100K 5253.67	5255.1	5255.1	0	80.1	3271	4	3
	87 0.050 150K 8010.79	8014.08	8014.08	0	124.3	3133	2	13
	88 0.050 200K 10814.19 10820.54 10820.54	0	115.2	3922	5	7
	89 0.050 50K	2578.34	2614.68 2614.68	0	923.4	11227	12	15
	90 0.050 100K 5238.04	5252.77	5252.77	0	596.4	10066	7	9
	91 0.050 150K 7973.86	7995.39	7995.39	0	911.2	10687	10	25
	92 0.050 200K 10775.14 10778.5 10778.5	0	527.5	9711	4	13
	93 0.050 50K	2578.34	2614.68 2614.68	0	2683.1	14548	12	15
	94 0.050 100K 5236.73	5249.32	5249.32	0	1480.5	8833	7	5
	95 0.050 150K 7949.47	7949.47	7949.47	0	684.9	8279	1	0
	96 0.050 200K 10744.38 10745.57 10745.57	0	1285.7	11694	2	5
	97 0.050 50K	2578.34	2606.52 2614.68	0.31	23124.2	17050	12	12
	98 0.050 100K 5236.46	5249.32	5249.32	0	8567.8	8340	7	5
	99 0.050 150K 7932.94	7932.94	7932.94	0	2705.9	14028	0	0
	100 0.050 200K 10733.87 10734.92 10734.92	0	6338.2	16189	3	3

Table 11 :

 11 Results for Network 12 with capacitated service hosts

	#	w	L	Q	Root node	Lower	Upper	Optimality Solution	No. of	No. of	No. of
					relaxation	bound	bound	gap (%)	Time (s) Variables Cuts B&B nodes
	1	0	1 50K	220.05	250.84	250.84	0	2.4	466	7	11
	2	0	1 100K	618.54	657.39	657.39	0	2.4	466	7	11
	3	0	1 150K 1179.71	1179.71 1179.71	0	0.5	466	1	0
	4	0	1 200K 1816.63	1816.63 1816.63	0	0.4	466	0	0
	5	0	2 50K	78.34	83.66	83.66	0	81.8	2795	5	5
	6	0	2 100K	259.08	259.33	259.33	0	64.1	3260	4	5
	7	0	2 150K	534.88	550.96	550.96	0	98.0	3078	2	13
	8	0	2 200K	838.30	864.13	864.13	0	221.7	4779	6	37
	9	0	3 50K	78.34	83.66	83.66	0	521.7	8986	7	7
	10	0	3 100K	238.86	255.63	255.63	0	690.9	9123	7	9
	11	0	3 150K	476.34	510.91	510.91	0	1681.4	12385	8	49
	12	0	3 200K	777.62	780.98	780.98	0	778.7	12341	7	9
	13	0	4 50K	78.34	83.66	83.66	0	1767.2	10183	7	7
	14	0	4 100K	237.40	249.32	249.32	0	1393.8	9992	3	3
	15	0	4 150K	451.79	451.79	451.79	0	802.5	9990	1	0
	16	0	4 200K	746.86	748.06	748.06	0	1352.0	13041	1	5
	17	0	5 50K	78.34	83.66	83.66	0	20983.4	12824	9	9
	18	0	5 100K	237.00	249.32	249.32	0	9202.4	11723	7	5
	19	0	5 150K	435.64	435.64	435.64	0	2975.0	16823	0	0
	20	0	5 200K	736.38	737.4	737.4	0	8964.3	17148	2	5
	21 0.005 1 50K	470.05	525.84	525.84	0	3.8	466	7	23
	22 0.005 1 100K 1118.54	1182.39	1182.39	0	2.9	466	7	15
	23 0.005 1 150K 1929.71	1929.71	1929.71	0	0.5	466	1	0
	24 0.005 1 200K 2816.63	2816.63	2816.63	0	0.4	466	0	0
	25 0.005 2 50K	328.34	358.66	358.66	0	104.0	3536	8	11
	26 0.005 2 100K	759.08	759.33	759.33	0	73.7	3779	4	5
	27 0.005 2 150K 1284.88	1300.96	1300.96	0	87.0	3298	2	13
	28 0.005 2 200K 1838.30	1864.13	1864.13	0	228.2	4856	5	35
	29 0.005 3 50K	328.34	358.66	358.66	0	907.6	9731	12	13
	30 0.005 3 100K	738.86	755.63	755.63	0	744.2	9644	7	9
	31 0.005 3 150K 1226.34	1260.91	1260.91	0	1677.0	13952	8	49
	32 0.005 3 200K 1777.62	1780.98	1780.98	0	790.7	10982	4	13
	33 0.005 4 50K	328.34	358.66	358.66	0	3308.0	13016	12	15
	34 0.005 4 100K	737.40	749.32	749.32	0	1198.2	10411	3	3
	35 0.005 4 150K 1201.79	1201.79	1201.79	0	841.3	9469	1	0
	36 0.005 4 200K 1746.86	1748.06	1748.06	0	1441.8	13115	2	5
	37 0.005 5 50K	328.34	356.66	358.66	0.56	22943.7	13245	12	13
	38 0.005 5 100K	737.00	749.32	749.32	0	11266.0	12195	7	5
	39 0.005 5 150K 1185.64	1185.64	1185.64	0	3323.3	17152	0	0
	40 0.005 5 200K 1736.10	1737.4	1737.4	0	14539.2	20424	5	7
	41 0.010 1 50K	720.05	797.37	797.37	0	4.5	466	7	29
	42 0.010 1 100K 1618.54	1694.31	1694.31	0	3.8	466	7	23
	43 0.010 1 150K 2679.71	2679.71	2679.71	0	0.5	466	1	0
	44 0.010 1 200K 3816.63	3816.63	3816.63	0	0.3	466	0	0
	45 0.010 2 50K	578.34	614.68	614.68	0	153.3	3691	9	17
	46 0.010 2 100K 1259.08	1259.33	1259.33	0	69.8	3580	4	5
	47 0.010 2 150K 2034.88	2050.96	2050.96	0	96.3	3339	2	13
	48 0.010 2 200K 2838.30	2864.13	2864.13	0	240.6	5589	5	31
	49 0.010 3 50K	578.34	614.68	614.68	0	998.3	10250	12	15
	50 0.010 3 100K 1238.86	1255.63	1255.63	0	717.9	9021	7	9
	51 0.010 3 150K 1976.34	2010.91	2010.91	0	1646.8	12602	8	49
	52 0.010 3 200K 2777.62	2780.98	2780.98	0	812.7	13109	5	13
	53 0.010 4 50K	578.34	614.68	614.68	0	3222.1	14333	12	15
	54 0.010 4 100K 1237.40	1249.32	1249.32	0	1258.9	10314	3	3
	55 0.010 4 150K 1951.79	1951.79	1951.79	0	956.1	10120	1	0
	56 0.010 4 200K 2746.86	2748.06	2748.06	0	1311.1	13230	0	5
	57 0.010 5 50K	578.34	603.49	614.68	1.82	21932.3	12352	12	9
	58 0.010 5 100K 1237.00	1249.32	1249.32	0	8908.8	11013	7	5
	59 0.010 5 150K 1935.64	1935.64	1935.64	0	3514.2	16504	0	0
	60 0.010 5 200K 2736.10	2737.4	2737.4	0	16691.3	20890	5	7
	61 0.025 1 50K	1470.05	1547.37 1547.37	0	4.5	466	7	29
	62 0.025 1 100K 3118.54	3194.31	3194.31	0	3.9	466	7	23
	63 0.025 1 150K 4929.71	4929.71	4929.71	0	0.5	466	1	0
	64 0.025 1 200K 6816.63	6816.63	6816.63	0	0.4	466	0	0
	65 0.025 2 50K	1328.34	1364.68 1364.68	0	153.9	4412	9	17
	66 0.025 2 100K 2759.08	2759.33	2759.33	0	71.7	3947	4	5
	67 0.025 2 150K 4284.88	4300.96	4300.96	0	97.8	3386	2	13
	68 0.025 2 200K 5838.30	5864.13	5864.13	0	182.7	4642	5	31
	69 0.025 3 50K	1328.34	1364.68 1364.68	0	957.4	9854	11	15
	70 0.025 3 100K 2738.86	2755.63	2755.63	0	641.7	7896	4	9
	71 0.025 3 150K 4226.34	4260.91	4260.91	0	1773.6	11977	8	49
	72 0.025 3 200K 5777.62	5780.98	5780.98	0	709.4	10307	5	11
	73 0.025 4 50K	1328.34	1364.68 1364.68	0	2993.6	12906	12	15
	74 0.025 4 100K 2737.40	2749.32	2749.32	0	1246.9	10074	3	3
	75 0.025 4 150K 4201.79	4201.79	4201.79	0	840.2	9247	1	0
	76 0.025 4 200K 5746.86	5748.06	5748.06	0	1293.7	11660	0	5
	77 0.025 5 50K	1328.34	1356.52 1364.68	0.60	21996.3	11388	12	11
	78 0.025 5 100K 2737.00	2749.32	2749.32	0	10154.6	13875	7	5
	79 0.025 5 150K 4185.64	4185.64	4185.64	0	2985.7	16406	0	0
	80 0.025 5 200K 5736.38	5737.4	5737.4	0	9311.4	20653	2	5
	81 0.050 1 50K	2720.05	2797.37 2797.37	0	3.8	466	7	29
	82 0.050 1 100K 5618.54	5694.31	5694.31	0	3.9	466	7	23
	83 0.050 1 150K 8679.71	8679.71	8679.71	0	0.5	466	1	0
	84 0.050 1 200K 11816.63 11816.63 11816.63	0	0.4	466	0	0
	85 0.050 2 50K	2578.34	2614.68 2614.68	0	139.8	3853	9	15
	86 0.050 2 100K 5259.08	5259.33	5259.33	0	64.4	3636	4	5
	87 0.050 2 150K 8034.88	8050.96	8050.96	0	96.3	3402	2	13
	88 0.050 2 200K 10838.30 10864.13 10864.13	0	222.3	5021	6	37
	89 0.050 3 50K	2578.34	2614.68 2614.68	0	1071.9	11356	12	15
	90 0.050 3 100K 5238.86	5255.63	5255.63	0	730.0	9896	7	9
	91 0.050 3 150K 7976.34	8010.91	8010.91	0	1950.5	14271	8	49
	92 0.050 3 200K 10777.62 10780.98 10780.98	0	718.8	13681	6	9
	93 0.050 4 50K	2578.34	2614.68 2614.68	0	3296.3	12670	12	15
	94 0.050 4 100K 5237.40	5249.32	5249.32	0	1222.1	10458	3	3
	95 0.050 4 150K 7951.79	7951.79	7951.79	0	850.4	10518	1	0
	96 0.050 4 200K 10746.86 10748.06 10748.06	0	1497.3	12848	1	5
	97 0.050 5 50K	2578.34	2597.85 2614.68	0.64	21963.7	11654	11	9
	98 0.050 5 100K 5237.00	5249.32	5249.32	0	10159.3	8666	7	5
	99 0.050 5 150K 7935.64	7935.64	7935.64	0	2939.1	14085	0	0
	100 0.050 5 200K 10736.10 10737.4 10737.4	0	12925.6	19739	5	7
							28			

Acknowledgment

The authors gratefully acknowledge funding provided by the Canadian Natural Sciences and Engineering Research Council under grant 2015-06189 and by the Scientific and Technological Research Council of Turkey (TUBITAK) under the grant number 216M380. Thanks are due to the Associate Editor and to the referees for their valuable comments.

Appendix: Detailed results

We present in this appendix detailed results for instances with uncapacitated (Table 10) and capacitated (Table 11) service hosts. In both tables, the first four columns are parameters: # is the instance number, w is the trade-off weight, L is the maximum number of camps that can be visited on a single tour and Q is the number of refugees. We report the results in the following eight columns. Root node relaxation is the LP relaxation at the root node after the addition of the knapsack cover inequalities. Lower bound, upper bound, optimality gap, solution time, number of variables, number of cuts, and the number of B&B tree nodes are reported in columns 6-12, respectively.