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ABSTRACT 32 

There is increasing evidence that ACE2 gene polymorphism can modulate the interaction between 33 

ACE2 and the SARS-CoV-2 spike protein affecting the viral entry into the host cell, and / or 34 

contribute to lung and systemic damage in COVID-19. Here we used in silico molecular docking to 35 

predict the effects of ACE2 missense variants on the interaction with the spike protein of SARS-36 

CoV-2. HDOCK and FireDock simulations identified 6 ACE2 missense variants (I21T, A25T, 37 

K26R, E37K, T55A, E75G) with higher affinity for SARS-CoV-2 Spike protein receptor binding 38 

domain (RBD) with respect to wild type ACE2, and 11 variants (I21V, E23K, K26E, T27A, E35K, 39 

S43R, Y50F, N51D, N58H, K68E, M82I) with lower affinity. This result supports the hypothesis 40 

that ACE2 genetic background may represent the first “genetic gateway” during the disease 41 

progression. 42 

 43 

 44 
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1. Introduction 49 

Different phases can be distinguished during the progression of COVID-19 [1, 2]. During the first 50 

phase, after the incubation period lasting 6 days in average, the onset of disease may be 51 

characterized by influenza-like symptoms, from mild to moderate. The second phase, which is 52 

known as the pulmonary phase and involves ~30% of all SARS-CoV-2 infected subjects, is 53 

characterized by progressive respiratory involvement with onset of pneumonia-like symptoms. The 54 

third phase, which develops in ~15% of all patients, is known as the pro-inflammatory phase, and is 55 

characterized by severe interstitial pneumonia with focal and systemic iper-inflammation, which 56 

may lead to acute respiratory distress syndrome, and systemic inflammatory response syndrome. 57 

The fourth phase of COVID-19, which is known as the pro-thrombotic phase, develops in ~5% of 58 

patients, and is characterized by the onset of microvascular and macrovascular thrombosis possibly 59 

promoted by strong focal and/or systemic inflammation. During this phase patients require medical 60 

treatment in intensive care units, and most of them do not survive. 61 

 62 

SARS-CoV-2 infection susceptibility and severity seem to be influenced by environmental factors 63 

(climate, pollution, cultural, social and economic inequalities, climate, health care system 64 

organizations), co-morbidities (high blood pressure, cardiovascular disease, other heart and lung 65 

conditions, diabetes, cancer, or compromised immune system), and inter-individual genetic 66 

differences [3-6]. Inter-individual genetic differences may affect the spatial transmission dynamics 67 

of COVID-19, the susceptibility and severity of disease, and the inflammatory and immune 68 

response, and three “genetic gateways” have been proposed accounting for disease progression [7]. 69 

 70 

Specifically, there is evidence that angiotensin-converting enzyme 2 (ACE2) is the human cell 71 

receptor of SARS-CoV-2 [8-10], and it was speculated [5,7,11-17] that ACE2 gene polymorphism 72 

may modulate the interaction between ACE2 and the Spike protein of SARS-CoV-2 during the 73 

virus entry into the host cell. In particular, differential affinity of a number of ACE2 missense 74 

variants for Spike protein was predicted using different computational approaches [12,18-21]. 75 

Moreover, since ACE2 regulates the renin-angiotensin-aldosterone system [22], ACE2 missense 76 

variants or expression quantitative trait loci (eQTL) variants may contribute to pulmonary and 77 

systemic injury by fostering vasoconstriction, inflammation, oxidation and fibrosis, thereby 78 

affecting the clinical outcome [4,11,15, 23-25]. The possible association between specific ACE2 79 

gene variants and COVID-19 susceptibility, severity, and clinical outcomes is supported by massive 80 

genomic data from general population [26], while large-scale genome-wide association studies are 81 

urgently needed to firmly establish the causal link [27]. 82 



 4

 83 

In this study we have used in silico molecular docking to analyze the possible effects of ACE2 84 

single nucleotide polymorphisms (SNPs) leading to missense variants on the interaction between 85 

ACE2 and SARS-CoV-2 Spike protein. Molecular docking was performed with HDOCK, a 86 

powerful pipeline for integrated protein-protein docking, which is based on hybrid docking 87 

algorithm of template-based modeling and ab initio free docking to optimize the adjustment of 88 

ligand [28-31]. The HDOCK pipeline differs from other molecular docking platforms in its ability 89 

to support amino acid sequences as inputs, and in its hybrid docking strategy in which experimental 90 

information on the protein-protein binding site and small-angle X-ray scattering are incorporated 91 

during the docking and post-docking processes [28]. 92 

 93 

With respect to the other pipelines that were previously used to model the interaction between 94 

SARS-CoV-2 Spike protein and ACE2 missense variants [5,7,11,13-17], HDOCK has the 95 

advantage of integrating two approaches with the same software, together with a remarkable 96 

simplicity of use, and it is completely automated with consequent high reproducibility. 97 

 98 

 99 

2. Materials and methods 100 

2.1. Databases 101 

3D structures of proteins were downloaded from Research Collaboratory for Structural 102 

Bioinformatics Protein Data Bank (RCSB PDB) (http://www.rcsb.org/) [321]. We focused our 103 

analysis on structures of SARS-COV-2 Spike Receptor Binding Domain (RBD)/ACE2 complexes 104 

6M17 (10.2210/pdb6M17/pdb) [2233] 6LZG (10.2210/pdb6LZG/pdb) [2334], and 6M0J 105 

(10.2210/pdb6M0J/pdb) [2435] models. The Single Nucleotide Polymorphism Database (dbSNP) 106 

[25, 26 36,37] was used to identify the ACE2 SNPs leading to missense variants. Functional 107 

information of ACE2 was acquired by UniProt database (Q9BYF1, ACE2_HUMAN) [2738]. 108 

ACE2 SNP frequencies were obtained by the database GnomAD-Exomes 109 

(https://gnomad.broadinstitute.org/). ACE2 bat sequences were downloaded from NCBI database. 110 

Multiple alignments of human and bat sequences were carried out by Clustal Omega [39]. 111 

 112 

2.2. Molecular docking and statistical analysis 113 

HDOCK server (http://hdock.phys.hust.edu.cn/) was used to carry out molecular docking between 114 

receptor binding domain (RBD) of SARS-CoV-2 Spike protein and ACE2 wild type or missense 115 

variants from the dbSNP. We focused our analysis on two ACE2 N-terminal alpha helices that form 116 
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the major binding interface with SARS-CoV-2 Spike protein RBD based on X-ray crystallography 117 

[33-35]. In our analysis we used, as a receptor, the amino acid sequence of ACE2 wild type or 118 

missense variants, and, as a ligand, the SARS-CoV-2 Spike protein RBD models (6LZG chain B, 119 

6M0J chain E or 6M17 chain E) downloaded from RCSB-PDB database. 6M17 was the most 120 

complete structure because it contains the ACE2 collectrin-like domain [33]. Although this domain 121 

is far from the binding interface, it could still affect the geometry of the protein.  Since HDOCK 122 

only provides score for ab initio free docking, to compare the complex scores obtained by ab initio 123 

free docking and template-based modeling we used FireDock 124 

(http://bioinfo3d.cs.tau.ac.il/FireDock/) [32, 33 40,41]. 125 

 126 

Results of HDOCK/FireDock simulations were confirmed by submitting HDOCK-generated ACE2/ 127 

Spike protein RBD complexes to PRODIGY [42]. Furthermore, wild type ACE2 and K26R ACE2 128 

models were also built by using MODELLER 9.25 [43] via Chimera [44], and these models were 129 

used as receptors in SwarmDock simulations [45]. HDOCK/FireDock pipeline was also used to 130 

evaluate the impact of SARS-CoV-2 Spike protein RBD variants on binding to wild type or K26R 131 

ACE2. QMEANDisCo (SwissDock) [46] and MolProbity [47] were used for bad bonds and angles 132 

metrics. A detailed protocol of the computational workflow is depicted in Supplementary Figure S1.  133 

 134 

 135 

3. Results 136 

3.1. Molecular docking of SARS-CoV-2 Spike protein RBD and ACE2 wild type or missense 137 

variants. 138 

Two ACE2 N-terminal alpha helices form the major binding interface with SARS-CoV-2 Spike 139 

protein RBD based on X-ray crystallography [22-24 33-35]. In this region 25 SNPs causing leading 140 

to ACE2 missense variants are listed in the dbSNP. 141 

 142 

HDOCK and FireDock pipelines were used for molecular docking. For each ACE2 missense 143 

variant, three docking simulations were carried, each with a different PDB model (6M17, 6LZG, 144 

6M0J), and the results obtained with the two methods (template-based modeling and ab initio free 145 

docking) were analyzed separately. 146 

 147 

Before proceeding with the simulations, the quality of the models generated by HDOCK was 148 

analyzed and compared with the quality of the corresponding models generated by MODELLER. 149 

The analysis with QMEANDisCo demonstrated good quality of all models with global scores 150 
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similar to those of the control PDB models (6LZG, 6M0J and 6M17). Moreover, percentage of bad 151 

angles according to MolProbity was slightly lower with HDOCK (wild type ACE2 = 0.8%; K26R 152 

ACE2 = 0.77) compared to MODELLER (1.24% for both wild type and K26R ACE2) 153 

(Supplementary Figure S2) 154 

 155 

Overall, HDOCK/FireDock results with the different PDB models and methods were concordant in 156 

92% of cases (Table 1; Supplementary Table S1; Fig. S31). For only two polymorphisms (N58K 157 

and M62V), the template-based method produced results that differed from those produced by ab 158 

initio docking. 159 

 160 

We performed 156 docking simulations (i.e., 26 ACE2 SNPs, S19AQP ACE2, wild type ACE2, all 161 

multiplied by three ligands and two methods). Global energy score (GES) average with all 162 

simulations was -47.20 Kcal/mol (Fig. 1A, gray line), total standard deviation was 6.39 Kcal/mol 163 

and confidence interval was ±1.0035 Kcal/mol (Fig. 1A, dotted line). The highest GES was -37.94 164 

Kcal/mol (M82I), while the lowest one was -56.24 (T55A). We used total GES average, GES value 165 

with wild type ACE2 (Fig. 1A, red line), and confidence interval as a threshold to screen the SNPs, 166 

considering as relevant only the SNPs that affected significantly the binding with SARS-CoV-2 167 

Spike protein RBD. By using this approach, we found 6 out of the 25 ACE2 missense variants 168 

(24%) (I21T, A25T, K26R, E37K, T55A, E75G) that showed higher affinity for SARS-CoV-2 169 

Spike protein RBD with respect to wild type ACE2, and 11 variants (44%) (I21V, E23K, K26E, 170 

T27A, E35K, S43R, Y50F, N51D, N58H, K68E, M82I) that exhibited lower affinity in silico (Fig. 171 

1A) 172 

 173 

3.2. Geographical distribution of ACE2 SNPs affecting binding to SARS-CoV-2 spike protein RBD 174 

GnomAD-Exomes database was used to gain information about frequencies of the examined ACE2 175 

SNPs worldwide (Table 1; Supplementary Table S2). K26R is the most diffused one with a global 176 

frequency of 0.3971%. The large diffusion of this SNP is also confirmed by others database: 177 

0.4579% in TOPMED; 0.595% in 4ALFA Project; 0.368% in ExAC; 0.315% in GnomAD; 0.511% 178 

in GO-ESP; 0.21% in 1000G; 0.62% in TWINSUK; 0.93% in ALSPAC. In particular, the K26R 179 

occurs with highest frequency in European (0.503%) and American (0.329%) populations with 180 

maximum value in Ashkenazi Jewish (1.2%), while it is less common in both African (0.099%) and 181 

Asian (0.079%) populations. 182 

 183 
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Cumulative frequency analysis of ACE SNPs demonstrated that ACE2 missense variants exhibiting 184 

increased affinity for SARS-CoV-2 Spike protein were more common in European and American 185 

populations (Fig. 1B), while those exhibiting reduced affinity were more common in African and 186 

Asian populations (Fig. 1C). The frequencies of each ACE2 missense variants were plotted 187 

individually in Supplementary Figure S4. 188 

 189 

3.3 Impact of SARS-CoV-2 Spike protein RBD variants on binding to ACE2 190 

A number of missense variants affecting the SARS-CoV-2 Spike protein have recently been 191 

identified worldwide, and listed in a comprehensive database [48]. In particular, some of these 192 

variants including N439K, L455F, F456L, A475V, Q493R, Q493L and N501Y, fall into the 193 

interfaces of binding of RBD. The impact of these RBD variants on binding to wild type ACE2 or 194 

K26R ACE2 was then evaluated. We focused on K26R missense variant because of its high 195 

frequency in the general population. 196 

 197 

Preliminary, PRODIGY was used to confirm the effect of ACE2 K26R missense on wild type Spike 198 

protein RBD binding as predicted by FireDock with HDOCK complexes. Moreover, PRODIGY 199 

calculated dissociation constants (Kd) that were 8.8E-10 for the ACE2 K26R and 4.610E-9 for wild 200 

type ACE2. The effect of K26R missense was further confirmed using models that were generated 201 

by MODELLER, and then submitted to SwarmDock obtaining an energy of -39.88 Kcal/mol for 202 

wild type ACE2 and of -46.13 Kcal/mol for K26R ACE2.  203 

 204 

HDOCK/FireDock analysis was performed using the wild type or K26R ACE2 receptor and 205 

missense variants of the Spike protein RBD listed above. Results demonstrated that 5 of the 7 RBD 206 

mutations increased binding affinity for wild type ACE2 (Fig1D), while 5 of the 7 RBD mutations 207 

decreased the binding affinity for K26R ACE2 compared to wild type RBD (Fig1E). 208 

 209 

 210 

4. Discussion and conclusions 211 

The present study supports the hypothesis that ACE2 gene polymorphism may contribute to the 212 

genetic susceptibility to COVID-19 affecting the SARS-CoV-2 entry into the host cells, thus 213 

representing the first “genetic gateways” during disease progression [7]. Our results broaden the list 214 

of ACE2 missense variants that can affect the interaction with the SARS-CoV-2 spike protein [7, 9-215 

12, 168, 189, 1921]. Specifically, we focused our attention on ACE2 SNPs affecting two N-terminal 216 

alpha helices that form the major binding interface with SARS-CoV-2 Spike protein [22-24 33-35]. 217 
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 218 

We did not include in our analysis the S19P variant because it falls into the cleavage site of ACE2 219 

precursor, and it may affect the N-terminal sequence of the mature protein. Besides, there is 220 

evidence that the S19P may reduce the affinity for SARS-CoV-2 Spike protein [189]. Results about 221 

K26R that is expected to increase the affinity for Spike protein is noteworthy because this variant is 222 

relatively frequent in European people with a frequency about 0.5%, which would correspond to a 223 

potential target population of 2,230,000 people at the European Union level [912]. In this study we 224 

confirmed the results of K26R by using HDOCK that also allowed us to identify additional 225 

missense variants (I21T, A25T, E37K, T55A, E75G) with higher affinity for SARS-CoV-2 Spike 226 

protein, and 11 variants (I21V, E23K, K26E, T27A, E35K, S43R, Y50F, N51D, N58H, K68E, 227 

M82I) with lower affinity. 228 

 229 

It is worth of noticing the K26R variant of ACE2 was identified in a COVID-19 patient but not in 230 

control subjects in Italy, in a recent genome-wide association study enrolling a cohort of 131 231 

patients and 258 controls [27], further reinforcing the hypothesis that this missense variant may be 232 

associated with clinical susceptibility to disease. 233 

 234 

Beside, it may be also relevant to note is rather common in different families of bats including 235 

Vespertilionidae and Phyllostomidae (Supplementary Fig. S5). Specifically, Phyllostomidae are 236 

diffused in South America (Desmodus rotundus XP_024425698.1, Phyllostomus discolor 237 

XP_028378317.1), while Phyllostomidae are very common in China (Pipistrellus abramus 238 

ACT66266.1) and Indochina (Kerivoula pellucida QJF77795.1), and the presence of P. abramus 239 

was confirmed in the Wuhan area [49]. 240 

 241 

It is conceivable that the polymorphisms responsible for a higher affinity may be responsible for a 242 

greater severity of the disease in humans, especially when very high affinity receptors are 243 

overexpressed due to the environmental and pharmacological factors. Of course, underlying 244 

diseases would contribute to an even more severe course of the disease, with an intense viral 245 

replication capable of infecting in turn a large number of persons, including some individuals with 246 

similar ACE2 polymorphisms, and so on. Another aspect to consider is the co-evolution of Spike 247 

protein. Indeed, missense mutations in the Spike RBD may have conflicting effects on binding 248 

affinity for wild type and K26R ACE2 (Fig.1D and Fig.1E). 249 

 250 



 9

Polymorphisms in genes coding for proteases from the respiratory tract belonging to the 251 

transmembrane protease/serine subfamily (TMPRSS) may also contribute to inter-individual 252 

differences in susceptibility and severity of disease [26, 50]. Indeed, there is evidence that TMPRSS 253 

proteolytic activity induces SARS-CoV Spike protein fusogenic activity, and, notably, SARS-CoV-254 

2 cell entry is dependent on TMPRSS2, and blocked by protease inhibitors [51]. 255 

 256 

Obviously, the impact of these polymorphisms on severity of outcome should be weighted by 257 

appropriate demographic and clinical factors. If this difference were confirmed, this would pave the 258 

way for the identification, on a population scale, of healthy individuals whose molecular 259 

phenotypes would be responsible for disease that is more serious. Apart from the usual social 260 

distancing measures, targeted drug prevention strategies could be evaluated. It could be logical to 261 

assess pharmacological prophylactic interventions, as proposed in categories of healthy people at 262 

particular risk of exposure such as care-givers. The serine protease inhibitor camostat mesylate, 263 

approved in Japan to treat unrelated diseases, has been shown to block TMPRSS2 activity [52,53], 264 

and is thus an interesting candidate. Conversely, the identification of broader categories of people 265 

with lower risk of developing severe disease, could allow a safer exit from the lock-down phases, 266 

while facilitating the establishment of a faster herd immunity, and waiting reliable serological tests 267 

and effective vaccine. 268 

 269 

270 
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Legends to Figure 509 

 510 

Figure 1. Molecular docking simulations and frequencies of ACE2 SNPs that either enhance 511 

or the affinity with SARS-Cov-2 Spike protein. A) Global Energy Score (GES) (Kcal/mol) of the 512 

interaction between wild type ACE2 or ACE2 missense variants and SARS-Cov-2 Spike protein. 513 

Molecular docking simulation were carried out by using HDOCK, which is based on two methods: 514 

template-based modeling and ab initio free docking. GES here shown are an average of the GES 515 

with the two methods. As reference values are shown: the average GES obtained with all 516 

simulations (solid line), the confidence interval (dotted line), and the GES obtained with wild type 517 

ACE (red line). B-C) Frequencies of ACE2 SNPs that either enhance (I21T, K26R, E37K, T55A) 518 

(B), or reduce (I21V, E23K, K26E, T27A, E35K, S43R, Y50F, N51D, N58H, K68E, M82I) (C) the 519 

affinity with SARS-Cov-2 Spike protein, based on GES. 520 

 521 

 522 

523 
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Table 524 
 525 

Table 1. ACE2 SNPs analyzed in this study, their frequencies, and Global Energy Score (GES, 526 

Kcal/mol) of the interaction between wild type ACE2 or ACE2 missense variants and SARS-Cov-2 527 

Spike protein. 528 

 

ACE2 wild 

type or 

missense 

variant 

 

dbSNP ID 

Frequency Template-based 

modeling GES 

(Kcal/mol)
a
 

Ab initio docking 

GES 

(Kcal/mol)
a
 

Total 

GES 

(Kcal/mol)
b
 

GnomAD 

Exomes 

Average SD Average SD Average SD 

Wild type - - -48.15 1.83 -50.45 0 -49.3 1.71 

I21T rs1244687367 0.000005  -53.83 4.35 -53.96 3.93 -53.9 3.71 

I21V rs778030746 0.000011 -42.76 0.43 -41.17 0.65 -41.97 1 

E23K rs756231991 0.000005 -37.66 5.38 -45.68 0.43 -41.67 5.56 

A25T rs1434130600 - -55.89 0.54 -54.43 0.62 -55.16 0.95 

K26R rs4646116 0.003971 -55.2 0.36 -54.51 1.43 -54.86 1.01 

K26E rs1299103394 0.000005 -40.94 2.48 -40.24 0.69 -40.59 1.67 

T27A rs781255386 0.000011 -47.51 1.01 -40.99 2.07 -44.25 3.86 

E35D rs778500138 - -47.87 1.24 -44.42 3.63 -46.14 3.08 

E35K rs1348114695 0.000016 -36.68 4.85 -42.19 1.03 -39.43 4.35 

E37K rs146676783 0.000033 -54.65 2.38 -53.92 1.33 -54.29 1.77 

F40L rs924799658 0.000016 -52.76 0.44 -50.75 3.34 -51.76 2.4 

S43R rs1447927937 0.000005 -42.82 0.99 -45.28 0.39 -44.05 1.5 

Y50F rs1192192618 0.000005 -45.33 0.32 -44.12 0.61 -44.72 0.79 

N51D rs760159085 0.000005 -39.55 0.72 -38.45 2.67 -39 1.85 

T55A rs775273812 0.000006 -57.8 4.06 -54.67 2.7 -56.24 3.53 

N58K rs771621249 0.000011 -45.68 3.24 -54 0.84 -49.84 5.03 

N58H rs1222417695 0.000011 -46.26 0.06 -40.53 2.16 -43.39 3.42 

Q60R rs759162332 0.000011 -51.12 4.87 -54.81 0.12 -52.96 3.68 

M62V rs1325542104 0.000006  -53.77 0.03 -47.37 3.07 -50.57 4.01 

N64K rs1199100713 0.000005  -45.51 3.81 -48.97 1.46 -47.24 3.2 

K68E rs755691167 0.000011  -39.34 0.63 -37.75 0.45 -38.54 1 

F72V rs1256007252 0.000005  -46.91 1.51 -50.35 0.88 -48.63 2.18 

E75G rs867318181 - -52.47 1.29 -54.27 0.44 -53.37 1.31 

S77F rs1234981462 N.D. -44.85 4.78 -49.97 0.24 -47.41 4.13 

M82I rs766996587 0.000011 -33.49 2.7 -42.39 1.05 -37.94 5.21 

aValues are averages of GES obtained with the three different 3D PDB SRARS-CoV-2 Spike 529 

protein RDB structures (6LZG chain B, 6M0J chain E or 6M17 chain E), which were used as 530 

ligands. SD, standard deviation. bValues are averages of GES obtained with the two methods 531 

(template-based modeling or ab initio docking) and the three different 3D PDB structures. 532 

 533 
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