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Nowadays, it is clear that there is an increasing importance in spectroscopic imaging in all fields of science. Obviously, one bulk analysis can no longer be satisfactory, as the interest focuses more on the chemical nature and the location of the compounds present within a given complex matrix. This is, evidently, due to the fact that for a more comprehensive exploration of complex samples, one single acquired hyperspectral data cube can provide both spectral and spatial information simultaneously. Although many techniques were proposed by the chemometric community in explorations of these specific datasets, unfortunately, they are almost always focusing on spectral information, even if chemical images were ultimately observed. In other words, spatial information is not well exploited, and therefore lost during the actual chemometric calculation phase. The goal of this short communication is to present a very simple and fast spectral/spatial fusion approach based on 2-D stationary wavelet transform (SWT 2-D) which is able to improve the obtainable

INTRODUCTION

Nowadays, hyperspectral imaging is a powerful tool. It is also out of the question how hyperspectral image analysis is broadening the horizons in different domains. The principle behind this technique is the acquisition of the whole referring spectrum for every single pixel of the image. This means each pixel is a column vector whose dimensions are equal to the number of spectral bands. As a result, the final data cube will lead to a data set of several thousands of spectra or even more, which allows a new and much deeper investigation of the sample. Rapidly, the interest in this discipline has been spread in many fields of analytical chemistry. For instance, food quality and control [START_REF] Wu | Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review -Part I: Fundamentals[END_REF][START_REF] Gowen | Hyperspectral imaging -an emerging process analytical tool for food quality and safety control[END_REF][START_REF] Amigo | Hyperspectral Imaging and Chemometrics[END_REF][START_REF] Nogales-Bueno | Comparative study on the use of anthocyanin profile, color image analysis and near-infrared hyperspectral imaging as tools to discriminate between four autochthonous red grape cultivars from La Rioja (Spain)[END_REF][START_REF] Feng | Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets[END_REF], and other branches have investigated the use of hyperspectral imaging for their purposes [START_REF] Gosselin | A hyperspectral imaging sensor for on-line quality control of extruded polymer composite products[END_REF][START_REF] Cruz | Nir-chemical imaging study of acetylsalicylic acid in commercial tablets[END_REF][START_REF] Mishra | Near-infrared hyperspectral imaging for non-destructive classification of commercial tea products[END_REF][START_REF] Fortunato De Carvalho Rocha | Quantitative analysis of piroxicam polymorphs pharmaceutical mixtures by hyperspectral imaging and chemometrics[END_REF][START_REF] Tatzer | Industrial application for inline material sorting using hyperspectral imaging in the NIR range[END_REF][START_REF] Gowen | Recent applications of hyperspectral imaging in microbiology[END_REF][START_REF] Carvalho | Laserinduced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition[END_REF][START_REF] Almeida | Raman hyperspectral imaging in conjunction with independent component analysis as a forensic tool for explosive analysis: The case of an ATM explosion[END_REF]. Furthermore, this technique has been applied for medical tasks too [START_REF] Fei | Hyperspectral imaging in medical applications[END_REF][START_REF] Lu | Medical hyperspectral imaging: a review[END_REF][START_REF] Calin | Hyperspectral Imaging in the Medical Field: Present and Future[END_REF], in which hyperspectral images were used mainly for tumour diagnostics [START_REF] Kong | Hyperspectral fluorescence image analysis for use in medical diagnostics[END_REF][START_REF] Panasyuk | Medical hyperspectral imaging to facilitate residual tumor identification during surgery[END_REF][START_REF] Liu | Tongue Tumor Detection in Medical Hyperspectral Images[END_REF][START_REF] Zhi | Classification of hyperspectral medical tongue images for tongue diagnosis[END_REF]. Certainly, the great interest that image analysis is obtaining is owing to the continuous overcomes of its limitations, which in turn will constantly leading to the analysis of more complex and meaningful matrices obtained by various kinds of experiments and spectroscopic techniques. On the one hand, this development leads to the possibility to obtain more details of the data set from the spectral perspective views, but on the other hand, the spatial domain remains a non-used part of the global information that can be extracted from a hyperspectral image. Nowadays in fact, the main studies on images are closely related to the use of multivariate statistical methods such as Principal Component Analysis (PCA) [START_REF] Wold | Principal component analysis[END_REF][START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF][START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] and Multivariate Curve Resolution -Alternate Least Squares (MCR-ALS) approaches [START_REF] Lawton | Self Modeling Curve Resolution[END_REF][START_REF] Tauler | Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution[END_REF][START_REF] Tauler | Multivariate curve resolution applied to second order data[END_REF][START_REF] De Juan | Multivariate Curve Resolution (MCR). Solving the mixture analysis problem[END_REF][START_REF] Jaumot | A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB[END_REF][START_REF] Jaumot | MCR-ALS GUI 2.0: New features and applications[END_REF][START_REF] Ruckebusch | Multivariate curve resolution: A review of advanced and tailored applications and challenges[END_REF]. The peculiarity of these methods is that they are based only on the exploration of spectral contribution of the selected data set, no matter the dimensions of the matrix. In the meantime, the widely accepted tools by the scientific community, developed with the goal of exploring images exclusively, as the multivariate image analysis (MIA) [START_REF] Esbensen | Strategy of multivariate image analysis (MIA)[END_REF][START_REF] Prats-Montalbán | Multivariate image analysis: A review with applications[END_REF] show the same issue. In fact, an essential step in which the acquired three-dimensional data cube is unfolded into a two-dimensional data set in order to be analyzed is always involved in the classical approaches for spectroscopic image analysis. This procedure leads to a completely absence of the spatial information correlated to a particular pixel and its neighbourhoods. Then, it is manifest that the importance of these details should not be underestimated. In fact, with the use of powerful instruments of today and the growing interests in multicomponent matrices, certain spatial information could lead to obtaining a deeper understanding in many research fields. Clearly, with the goal of exploring a complex matrix deeply, it would be interesting to observe not only the part related to the spectra, but also the new details from the spatial point of view and merge the two parts of information together during the data analysis stage. In order to prove it, different procedures in which some additional steps are used during the analysis were investigated, as shown in few works [START_REF] Bharati | Image texture analysis: methods and comparisons[END_REF][START_REF] Jamme | Neighbouring pixel data augmentation: a simple way to fuse spectral and spatial information for hyperspectral imaging data analysis[END_REF][START_REF] Liu | On the extraction of spectral and spatial information from images[END_REF][START_REF] Hugelier | On the implementation of spatial constraints in multivariate curve resolution alternating least squares for hyperspectral image analysis: Spatial constraints in HSI-MCR-ALS[END_REF]. Despite this, some limitations still exist. Particularly, in order to integrate the spatial information, these methods involve the use of particular constraints and/or the observation of only one pixel and its neighbourhoods per time, which will lead to a longer and less fluent analysis.

Particularly, one algorithm, the wavelet transform [START_REF] Nason | The Stationary Wavelet Transform and some Statistical Applications[END_REF][START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF], is in the spotlight regarding the importance of the spatial information nowadays, and its peculiarities have been recently investigated [START_REF] Vigni | Coupling 2D-wavelet decomposition and multivariate image analysis (2D WT-MIA): Coupling 2D-WT to Multivariate Image Analysis (2D WT-MIA)[END_REF][START_REF] Juneau | The undecimated wavelet transform-multivariate image analysis (UWT-MIA) for simultaneous extraction of spectral and spatial information[END_REF][START_REF] Ahmad | Exploring local spatial features in hyperspectral images[END_REF]. The main con here is that till now only a small part of the wide information provided by the use of the wavelet is used in order to merge the spectral and the spatial features together of an image.

The aim of this work is to overcome this lack in the use of both spectral and spatial information together within a unified analysis. In order to achieve this, an interesting and new procedure that fuses spectral and spatial details is shown. In detail, 2-D stationary wavelet transform (SWT 2-D) is applied to the raw data cube with the intention to enhance the whole extractable information from a matrix to deepen its understanding. The goal of this short communication is to broaden the horizons of new ways to analyse hyperspectral data cubes by fully exploiting all their dimensions.

MATERIAL AND METHODS

2-D Stationary wavelet transform algorithm and spectral/spatial data fusion approach

In this work, stationary wavelet transform algorithm (SWT) has been exploited to develop a new approach for the simultaneous fusion of spectral and spatial data. From a technical point of view, SWT uses particular low-(g) and high-pass (h) filters in order to extract the frequency contents of the considered signal (i.e. its identity) and obtain four distinct sets of wavelet details, namely approximation (A), horizontal (H), vertical (V), and diagonal (D) coefficients [START_REF] Nason | The Stationary Wavelet Transform and some Statistical Applications[END_REF],

respectively. The SWT mechanism is shown in Figure 1. Another important aspect of the SWT algorithm is that various wavelet families can be used, with the aim to better fit the type of signals to be explored [START_REF] Kovacevic | Wavelet families of increasing order in arbitrary dimensions[END_REF][START_REF] Cé | Generalized Daubechies Wavelet Families[END_REF]. By way of example, the first and simplest one, the well-known Haar wavelet, which is represented by a discontinuous and step-size function. Readers who are interested are invited to read other works specifically dedicated to this concept [START_REF] Debnath | Wavelet Transforms and Their Applications[END_REF].

To illustrate the proposed fusion approach, it could be useful to introduce a scheme of the single algorithms used for the investigation of the hyperspectral image. Figure 2 shows the well-known PCA [START_REF] Wold | [END_REF] used in the framework of spectroscopic imaging. As highlighted in the Introduction, the limit of this method is the obligated image unfolding step before the analysis, leading to the loss of spatial information contained in the data cube. In other words, the spatial information is not used during this classical analysis. As in many other multivariate methods, only a reshaping procedure of the final results being done to finally produce an image representation. Differently, the proposed fusion approach based on wavelet algorithm (Fig. 3) operates directly on the nonunfolded image i.e. the raw data cube. Especially, as shown in the scheme, SWT 2-D is applied to each single wavelength image (from λ=1 to λ=n) of the cube and decomposes the whole information into the contribution of the four different coefficients (approximation, horizontal, vertical and diagonal details). The objective of this first step is, thus, to capture spatial information. Once the calculation is finished, all the single results will be anew augmented and four different hyperspectral images of the same dimensionality of the original data cube are obtained. Finally, the original data set is fused with the wavelet results to obtain an augmented hyperspectral image. Then a multivariate data analysis method such as PCA can be conducted on this new data cube after an unfolding step. Clearly, the use of this procedure could lead to the idea that the problem remains unsolved since there is always an unfolding stage. Despite of this, the spectral and spatial information were intrinsically included in the same augmented data cube after applying this method.

It is fair to point out that, despite the existence of different wavelet families, that were also investigated during the working line of this project, good results were obtained by the use of the most common wavelet family called Daubechies, particularly the Daubechies-1, which is the same as the Haar wavelet, the simplest wavelet [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. As an initial step, the second decomposition level was used to investigate the results. Further levels were then used, in order to extract more information. The used approach in order to explore the further information carried by the fusion of the original spectra with the extracted wavelet coefficients can be summarized into simple and ordered steps, as following:

1) The original data cube was analyzed by the use of the stationary wavelet transform in order to extract the information regarding A, H, V, and D coefficients. As shown in Figure 3, the SWT method was applied to each image at a given wavelength allowing to generate 4 other images of wavelet coefficients for the first level of decomposition. It is important to underline the fact that, depending on the chosen decomposition level, the total number of coefficient images changes, hence the total number of the variables in the augmented data cube. For instance, the second decomposition level will lead to the extrapolation of more blocks, in such order: A1, H1, V1 and D1 corresponding to the first decomposition level and A2, H2, V2 and D2 for the second one. For the third decomposition level, also A3, H3, V3

and D3 coefficients will be generated and so on. In order to obtain an easier interpretation of the loadings during the analysis, the blocks were organized in this order: firstly, the spectra and then each single coefficient, lastly grouping together the various selected decomposition levels. As an example, considering a second decomposition level, then the variables in the matrix will be organized in spectra, A1, A2, H1, H2, V1, V2, D1 and D2. The augmented data cube was unfolded for further processing. Notice that, regardless of this unfolding step, the final data structure contains both spectral and spatial information, the latter was encoded by the wavelet coefficients.

2) Naturally, these two series of data (spectra and wavelet coefficients) present different properties and so, they need to be pre-processed separately and differently. Especially, while the spectra were pre-treated by the use of the mean centering, wavelet coefficients were auto-scaled [START_REF] Jackson | A User's Guide To Principal Components[END_REF].

3) An additional normalization step is necessary, in order to give the same importance to spectra and wavelet coefficients. This procedure is necessary due to the fact that the variance of a particular block could result bigger and so bias the PCA results. In order to avoid this problem, Normalization by Frobenius norm, which is defined as the square root of the sum of the absolute squares of the matrix elements, was used to obtain a unit norm for each block [START_REF] Golub | Matrix computations[END_REF]. In detail, the wavelet coefficients (A1, A2, …, H1, H2, …, V1, V2, …, D1, D2, …) have been separately normalized before merging them together into only one block.

4) Last step was the PCA on the unfolded augmented data cube matrix. An important aspect to be remarked is that to obtain an easier interpretation regarding to the loadings in the paper, different colours were applied, coefficient per coefficient. For this reason, while the spectrarelated loadings are black, the approximations are red, the horizontals blue, the verticals green and the diagonals cyan in the showed results.

It should be noted that PCA is not an integral part of the fusion approach. It has been employed

in the present work just because it is generally used for unbiased exploration of spectral data. In other words, other chemometric exploration techniques could be, of course, applied to the fused data cube, but that is beyond the scope of this short communication.

Dataset description

The dataset used to show the obtainable supplementary information by fusing together the objectively assessing what such an approach can bring. It should be also emphasized that the aim of this work and therefore of this short communication is, above all, to present the concept with preliminary results that will be extended in future work. In detail, the dataset was obtained by a linear combination of three different images, which were used to generate the hyperspectral data cube for the exploration (Fig. 4a). Each image was built to have a unique geometrical shapes, and a specific Gaussian-distribution spectral intensity and domain. In detail, the first image is composed by three concentric circles and three rectangles with different orientations.

The second is made of seven circles of different diameters. The third and last shows an oblique cross and four oblique rectangles. Furthermore, the geometric figures of the first two components show different intensities in order to obtain a higher variability in the spectra. By a spectral point of view, the two first components are represented by two Gaussians of the same intensity that don't overlap. Differently, the third spectral contribution corresponds to a Gaussian that is located between the first ones. In particular, with the aim of showing the interesting contribution carried by fusing spectra and wavelet coefficients, the third pure image is represented by a lower spectral intensity compared with the other two components, leading to hiding its contribution. In detail, when boosting the spectral noise, it is clear that the third component is invisible by a visual point of view, as confirmed also by the observation of the global integration image in Figure 4b. The reason to stress the spectra of this dataset was intentionally chosen with the aim to demonstrate whether the use of wavelets could add some new information obtained from the spatial part of the hyperspectral image, leading to a deeper knowledge of the dataset. The size of the image is 208 pixels by 208 pixels, for a total of 43264 spectra and 100 spectral variables.

RESULTS AND DISCUSSION

As already discussed above, investigating the global integration image is not possible to obtain any information regarding to the third pure component, due to the fact that from a spectral point of view, boosting the noise level, its relative variance is enormously lower compared with the other two. More interesting is the fact that neither PCA, one of the mainstay tools used in exploratory analysis, seems to show the ability of extracting hardly any useful information regarding to the contribution of this component. As shown in Figure 5, in fact, having a look at the eigenvalues scree plot and particularly at the various principal components (PCs), both scores and loadings, the whole information is divided into the first two principal components (PC1 and PC2) with 57.23 % and 13.25% of explained variance, respectively. The rest of the information is spread into the other PCs, 0.33% of the total explained variance per PC. Knowing the exact composition of the dataset, some details regarding to the third pure image can be vaguely glimpsed. Despite this, it is out of discussion that the shown details are too feeble to be considered in a real exploratory data analysis.

To investigate the results obtained by the use of the proposed fusion approach, a second decomposition level of the wavelet decomposition was initially considered leading to a total number of 900 variables (100 from the spectra and 100 for each wavelet coefficient, considering the selected decomposition level). So, applying the proposed fusion approach to the same dataset, it is possible to observe some interesting aspects investigating both the scores and the loadings of the final PCA (Fig. 6). In fact, while the first two PCs show the same information obtained in the original dataset (with a total explained variance value of 15.46% for PC1 and 8.70% for PC2, respectively), digging deeper it is possible now to observe the shape of the third pure component, particularly thanks to the fact that the PCA is driven by the use of both spectral and spatial variables. Precisely, the information related to the third component is observable in PC17 (0.17% of explained variance). Investigating the loadings, it is evident that this phenomenon is because the variables related to the wavelets add an important contribution to the interpretation of the third object. Specifically, the approximation coefficients show a clear peak corresponding to the missing component, giving it the possibility to glimpse its shape from the background noise in the scores. It is also interesting to mention that the same peak shape is also observable in the variables of the second decomposition levels related to horizontal, vertical and diagonal coefficients, albeit their intensities are lower compared with the rest of the loadings. This leads to the idea that higher is the used decomposition level, better is the ability of the proposed fusion method ability to show the missing information of the original data cube. As prove of this, specific contributions of the third compound are shown in Figure 7, comparing to the second, the third and the fourth decomposition levels. Respectively, when the third decomposition level is considered, the missing object is observable in PC22 (0.14% of the total explained variance), while for the fourth decomposition level, it is visible in PC30 (0.13% of the total explained variance). Observing the scores is then clear that the use of more decomposition levels leads to a better visibility of all contributions. Comparing this factor with the loadings, it seems obvious that most of this information is related to the approximation coefficients, whose intensities are higher compared with the horizontal, vertical and diagonal details. Finally, it is undeniable that it is possible to obtain details regarding to the third component that were not visible using the usual approach on the raw data cube. Furthermore, it is obvious that fusing the wavelet coefficients with the spectra, an enhancement of the total information is obtained and particularly the approximation coefficients can lead to gain details that are able to show aspects which could be hidden in a direct approach to the raw data cube.

In conclusion it can be assumed that while the first two components show higher loading intensities related to the spectral region, the third is associated to high-contribution loadings in the spatial (wavelet) domain. Furthermore, it is noteworthy that, when merging the spectral and the spatial information, it is necessary to investigate more PCA components. This is explained by the fact that wavelets carry a large amount of orthogonal, thus, independent information. It is also true that most of the information is related to the approximation coefficients, as mentioned above.

Removing the rest of the wavelet information could lead to the investigation of less PCs in order to retrieve the missing component. Despite this, due to the fact that the approach is applied for an exploratory analysis, it has been decided to use all the wavelet coefficients in order to obtain a global view of the data obtained by the contribution of both spectral and spatial information. Last but not the least, in order to validate the method, it has been compared with the use of the Bharati-

McGregor approach [START_REF] Jamme | Neighbouring pixel data augmentation: a simple way to fuse spectral and spatial information for hyperspectral imaging data analysis[END_REF][START_REF] Bharati | Texture analysis of images using principal component analysis[END_REF]. As expected, being this another method applied for the extraction and the use of the spatial information of a data cube, it is possible to observe the third component.

Comparison of the two approaches proved that the contrast obtained by the use of the present method is higher with the Root Mean Square (RMS) contrast [START_REF] Peli | Contrast in complex images[END_REF], particularly when more decomposition levels were selected. Hence the Bharati-McGregor approach can be used for the extraction of the spatial information, the method in this work seems to show a good alternative for the investigation of hyperspectral images.

CONCLUSIONS

The presented short communication was developed with the aim of showing the possibility to fuse together spectral and spatial information of a spectroscopic image data cube and so overcome the lack in the most common standard procedures. The typical used approaches nowadays in fact show an unfolding step drawback, that implies the impossibility to use spatial information.

Particularly, just including in the default exploring procedure (typically PCA) the use of the wavelet algorithm to extract the spatial-related information seems to lead in obtaining new interesting hyperspectral image details. Particularly, the results of this work show that the use of the augmented dataset (obtained fusing spectral variables and wavelet coefficients) leads to retrieve new information that correspond to weak spectral fingerprints, but are related to strong spatial details. As shown in the presented case, this approach can be used to reveal new details that are difficult to be noticed relying only on the spectral information, thanks to the ability to extract spatial information and the well-known denoising ability of wavelets. To conclude, it can be asserted that using this spectral and spatial fusion is possible to show new information for a deeper interpretation of a spectroscopic imaging data set. Despite this, this work represents only the first step for an alternative methodology that could broaden the horizons of new ways to drive a more complete hyperspectral image analysis exploration with potentially multiple extensions for clustering, classification and regression methods. 

  spatial and the spectral domains corresponds to a simulated hyperspectral image. The reason to use an artificial image lies in the fact that nowadays the use of wavelets in hyperspectral imaging is still a new, limited knowledge open field with thousands of possibilities to be explored. Knowing exactly the real nature and structure of the image would bring to an easier interpretation of the obtained results. Knowledge of the ground truth is indeed a good way of
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 7 Fig. 7 -Comparison of the third component when, respectively, a second, third and fourth decomposition level is used to extrapolate the wavelet coefficients. In the loadings, black variables are related to the original spectra, red to the approximation, blue to the horizontal, green to the vertical and cyan to the diagonal coefficients.