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Adversarial Multi-Source Transfer Learning in
Healthcare: Application to Glucose Prediction for

Diabetic People
Maxime De Bois, Mounı̂m A. El Yacoubi, and Mehdi Ammi

Abstract—Background and Objectives: Deep learning has yet to
revolutionize general practices in healthcare, despite promising
results for some specific tasks. This is partly due to data being
in insufficient quantities hurting the training of the models. To
address this issue, data from multiple health actors or patients
could be combined by capitalizing on their heterogeneity through
the use of transfer learning.

Methods: To improve the quality of the transfer between
multiple sources of data, we propose a multi-source adversarial
transfer learning framework that enables the learning of a feature
representation that is similar across the sources, and thus more
general and more easily transferable. We apply this idea to
glucose forecasting for diabetic people using a fully convolutional
neural network. The evaluation is done by exploring various
transfer scenarios with three datasets characterized by their high
inter and intra variability.

Results: While transferring knowledge is beneficial in general,
we show that the statistical and clinical accuracies can be further
improved by using of the adversarial training methodology,
surpassing the current state-of-the-art results. In particular, it
shines when using data from different datasets, or when there
is too little data in an intra-dataset situation. To understand the
behavior of the models, we analyze the learnt feature represen-
tations and propose a new metric in this regard. Contrary to a
standard transfer, the adversarial transfer does not discriminate
the patients and datasets, helping the learning of a more general
feature representation.

Conclusion: The adversarial training framework improves the
learning of a general feature representation in a multi-source
environment, enhancing the knowledge transfer to an unseen
target. The proposed method can help improve the efficiency of
data shared by different health actors in the training of deep
models.

Index Terms—artificial intelligence, deep learning, transfer
learning, neural networks, diabetes, personalized medicine

I. INTRODUCTION

Driven by the momentum created by recent successes in
image recognition [1] or natural language processing [2], the
application of deep learning to the medical field is showing
promising results (e.g., detection of diabetes retinopathy [3],
skin cancer classification [4], or breast cancer detection [5]).
However, deep learning has yet to revolutionize healthcare
practices, for which its application is facing several challenges
[6]. Whereas some of them are linked to the nature of the
deep models themselves, with, for instance, the interpretability
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or interoperability of the models, other challenges are related
to the data. Indeed, data are needed in huge quantities for
the models based on deep learning to succeed at their task.
While most of the successful applications owe their success to
data that have been acquired throughout the years (e.g., cancer
images), in general, it is hard to obtain health-related data in
sufficient quantities. This is due to the cost of their labeling
which requires expert knowledge, to their sensitive nature
making their sharing between healthcare structures difficult,
and to the heterogeneity of data (e.g., different hardware,
phenotypes, standards) complicating their simultaneous use
[7].

To alleviate the lack of available data, different strategies
can be considered. First, the original data can be artificially
augmented by operating basic data transformations or by
using data simulation [8]. Alternatively, the efficiency of the
data can be increased, with for instance few-shot learning
methodologies [9]. Finally, prior knowledge can be instilled
into the deep models in order to reduce the quantity of
data needed for their training. This knowledge can either be
domain-specific, expert knowledge [10], or it can be obtained
by first training the model on other semi-related data and then
finetuning it to the data of interest, which is known as transfer
learning [11].

Transfer learning is especially interesting in the medical
field because of the variety of the available sources. For in-
stance, we can transfer knowledge between multiple hospitals
or electronic health records, between datasets with different
experimental settings, or even between patients in the case of
personalized medicine. Furthermore, this situation opens the
way to the combination of multiple sources for the extraction
of knowledge, known as multi-source transfer learning [12]. It
enables the use of more data, which might not be in sufficient
quantities in each individual source. Furthermore, it offers the
opportunity to make the extracted knowledge more general and
thus more easily transferable. However, the efficiency of the
transfer heavily depends on the similarity between the source
tasks and the target task, as a high dissimilarity has been shown
to be a major contributor of negative transfer [13]. There is also
the risk of having the model learn how to discriminate data
from different sources, and therefore hurting the generalization
of the learnt model.

Ganin et al. addressed this problem in the context of domain
adaptation by proposing a domain-adversarial training method-
ology [14]. Domain adaptation is a subfield of transfer learning
and differs from general transfer learning (and therefore from
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multi-source transfer learning) by having the model trained
on the source (labeled) and target (unlabeled) data conjointly.
In this setting, the domain-adversarial training implements a
module that discriminates the source domain from the target
domain of the extracted features, and a feature extractor mod-
ule working against that objective. This has the consequence
of promoting the learning of a unique feature representation
shared by both the source and the target. Inspired by their
work, we propose to adapt the idea to multi-source transfer
learning in order to improve the generalizability of the feature
representation that is learnt on the source data.

Our contributions can be summed up as follow:

• We first propose the multi-source adversarial transfer
learning framework, to which we refer as adversarial
transfer learning (ATL) (to ease the reading, the multi-
source label is dropped when deemed not necessary).
Deep models used traditionally in transfer learning (e.g.,
convolutional neural networks) generally implement two
modules: a feature extractor that extracts knowledge from
the inputs, and a predictor that uses the knowledge
to make the predictions. In the ATL setting, a new
module infers the source of the input data based on its
extracted features. By making the features extractor com-
pete against this objective, the learnt feature representa-
tion generalizes better across the sources. Our hypothesis
is that the feature representation, being more general,
will then transfer better to an unknown target. This idea
is particularly well suited for healthcare because of the
heterogeneity of the data making the simultaneous use of
data with different origins difficult. Besides, compared to
data that are usually hard to share, being sensitive and
personal, a model can easily be shared between health
actors, as it preserves the anonymity of the source data.
Finally, after it has been shared, the model can easily be
finetuned to the data of interest as it requires smaller data
quantities.

• We demonstrate the efficiency of the proposed method by
applying it to the challenging task of glucose prediction
for diabetic people. In glucose prediction, because the
models are personalized to the patient, and because the
data are very costly, we often do not have enough data
for the training of deep models. However, data from other
patients could be used to help the learning of a better
personalized predictive model.

• We investigate the transferability of the models when
varying the source data. In this study, we use three
significantly different datasets, the first one consisting
of 6 type-2 diabetic patients, the second one comprising
6 type-1 diabetic patients, and the third being made
of 10 in-silico type-1 diabetic patients. We explore the
transferability of the models in intra-dataset and inter-
dataset settings as well as when using synthetic data or
combinations of the aforementioned datasets to promote
the learning of a general feature representation.

• We analyze the learnt feature representations and we
propose, to this end, a new metric we call Local Domain
Perplexity (LDP) that aims at quantifying the generaliz-

ability of the extracted features in a multi-source setting
by looking at the distance between the extracted features
of different sources.

• Finally, we released the source code of the study as well
as the weights of the models in our GitHub repository
[15].

Our paper is structured as follows. First, we give a more
formal definition of what multi-source transfer learning is and
introduce the proposed method. Then, we review the many
facets and challenges of the glucose prediction problem and
how the proposed methodology can help to address them. We
then provide the reader with extensive experimental details,
from the datasets we used and their preprocessing, to the
building of the models and their evaluation. Finally, we
compare the results of the standard and adverse multi-source
transfer methodologies in every possible transfer scenario and
analyze the results. By significantly improving upon state-of-
the-art results in the field, the multi-source adversarial transfer
learning framework is shown to address efficiently the data
shortage issue in the biomedical field.

II. MULTI-SOURCE ADVERSARIAL TRANSFER LEARNING

The goal of this section is to give a formal definition of
multi-source transfer learning, to highlight the challenges of
its application in healthcare, and then to describe the proposed
multi-source adversarial transfer learning methodology that
aims at addressing them.

A. Transfer Learning

A domain D is defined by a feature space X and a marginal
probability distribution P (X), where X ∈ X . A task T
consists in an objective space Y and an objective predictive
function f(·). f(·) is unknown but can be learnt from data
samples {xi, yi}, where xi ∈ X and yi ∈ Y .

Pan and Yang defined transfer learning as follows [16]:
given a source domain DS and learning task TS , a tar-
get domain DT and learning task TT , transfer learning
{DS , TS} → {DT , TT } aims at improving the learning of the
target predictive function fT (·) in DT using the knowledge in
DS on TS , where DS 6= DT or TS 6= TT .

In this paper, we will focus on inductive transfer learning,
which is the most common type of transfer learning. Inductive
transfer learning is characterized by having closely related
source and target tasks, and by having some labeled data
in the target domain and enough labeled data in the source
domain. Using deep models, this kind of transfer is usually
done by training a first model on the source domain, and then
by finetuning it (or a portion of it) on the target domain.

B. Multi-Source Transfer Learning

In multi-source transfer learning, the knowledge we aim
at transferring is conjointly learnt on several source pairs
{DSn

, TSn
}, each of them being different from one another

and different from the target {DT , TT }. By learning on several
source domains, we aim at addressing a potential data quantity
issue in the invidual sources as well as at learning a feature
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Fig. 1: General representation of a deep model trained with the adversarial training methodology in the multi-source transfer learning setting.
The model is made of three different parts: a feature extractor, an output predictor, and a domain classifier. The adversarial nature of the
learning is achieved by having the feature extractor compete against the domain classifier thanks to the reversal of lossd (multiplication by
−1) when passing through the gradient reversal layer (GRL) during backpropagation.

representation that is more general, and thus hopefully more
useful when being transferred to the target domain.

The nature of the source domains can vary a lot, requiring us
to be careful when selecting them, in order to avoid scenarios
of negative transfers (a transfer that harms the learning of
the target task in the target domain, instead of helping it).
This is especially true in the medical field where data are
heterogenous, having different probability distributions due to
their origin (e.g., different patients, sensors, collection envi-
ronments), different formats (e.g., image resolution, sample
frequency), different scales (e.g., color scale for images, units
for physical or physiological measurements), or simply being
in different quantities [7].

To make a positive transfer possible, these differences
need to be addressed either before or during the training
of the model we want to transfer. Differences in scale or
format can easily be eliminated through the transformation
of the data beforehand (rescaling, reshaping, standardization).
Uneven data quantities across the domains can be solved the
same way as imbalanced datasets in classification problems
with, for instance, sample-reweighing or data-augmentation
techniques [17]. On the other hand, the difference in prob-
ability distributions could be healthy for the building of a
general model, taking advantage of the diversity of the data.
However, there is a risk, for the model, of learning how to
discriminate the different source domains and learn a distinct
feature representation for each of them. This kind of feature
representation would be less general by being heavily specific,
overfitted, to these individual domains, harming its future
transfer to the unseen target domain.

C. Multi-Source Adversarial Transfer Learning

To address the issue of the over-specialization of the models
trained on the multiple sources, inspired by the work of Ganin

et al. in the field of domain adaptation, we propose the multi-
source adversarial transfer learning framework.

Fig. 1 provides a general graphical representation of a
model using the adversarial training methodology in a multi-
source transfer learning setting. The features computed by
the feature extractor module are used by the output predictor
and the domain classifier to respectively predict the output,
and the domain the data come from. The output predictor
and the domain classifier are both classically trained by
backpropagating their respective losses, the first one depending
on the problem the model aims at solving (is it a regression or
classification problem?), the second one being the multi-class
cross-entropy (each class representing one source domain).
When arriving at the feature extractor module, the loss of
the domain classifier is reversed (multiplied by −1) by the
gradient reversal layer. As a consequence, while the feature
extractor learns a feature representation that is useful for the
output prediction, it also learns a feature representation that is
indiscriminative of the domain the data come from, and thus
promotes a more general one. The bias-vs-variance tradeoff
of the generalization is balanced by tweaking a coefficient,
λ, weighing the magnitude of the domain-classifier-related
gradient. To cope with imbalanced datasets, the multi-class
cross-entropy penalty associated to a given domain is further
weighed inversely proportionally to its representation among
the domains.

When finetuning the model on the target domain, the domain
classifier has no purpose anymore and can be removed (either
by transferring the feature extractor and output predictor
weights into a new model that does not have a domain
classifier, or by setting λ to 0).

III. GLUCOSE PREDICTION FOR DIABETIC PEOPLE

In this section, we review the state of the art of the glucose
prediction field, aiming at highlighting the high diversity of the
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datasets used in the studies, the numerous challenges the field
is facing, and how transfer learning can help in this regard.

Diabetic people suffer from the regulation of their glucose
level, troubled by either the non-production of insulin (type-
1 diabetes, T1D), or by an increasing body resistance to
its action (type-2 diabetes, T2D). Whereas they face short-
term consequences (e.g., clumsiness, coma, death) when their
glucose level falls too low (hypoglycemia), the consequences
are more long-term (e.g., cardiovascular diseases, blindness)
when it gets too high (hyperglycemia). In order to avoid being
in either state, the forecasting of future glucose values could
warn the patient of its arrival, enabling him/her to take the
appropriate actions.

The topic of glucose prediction for diabetic patients is not
new. In 2007, Sparacino et al. showed that the task was
doable using autoregressive (AR) models [18]. They used data
coming from 28 T1D patients, whose glucose values have been
collected for 48 hours through the use of a continuous glucose
monitoring (CGM) device, the Glucoday. Following this lead,
a lot of different kind of AR models have been tried out
throughout the years (e.g., AR with exogenous inputs, ARX
[19]; AR with moving average, ARMA [20]).

However, we are currently witnessing a shift towards the use
of more advanced machine learning models. This shift is made
possible by the increasing availability of data using better
CGM devices, which are more accurate and have a higher
sampling frequency. Besides, those data quantities enable the
building of personalized glucose predictive models which are
more efficient, due to the high inter/intra variability of the
diabetic population [21]. In 2012, Georga et al. explored the
use of Support Vector Regression (SVR) on a cohort of 27 T1D
patients for the forecasting of glucose at a prediction horizon
(PH) ranging from 15 to 120 minutes [22]. In their study,
the patients have been monitored for an average of 13.42 ±
3.69 days, during which glucose values (Guardian Real-Time
CGM device, Medtronic Minimed, Inc.), energy expenditure
(SenseWear Armband, BodyMedia, Inc.), carbohydrate (CHO)
intakes, and insulin infusions (both using a paper diary)
have been collected. In 2016, Jankovic et al. proposed to
use Gaussian processes (GP) for the prediction of current
glucose values from manually recorded events and time (paper
diary) collected on 10 T1D patients [23]. More recently, using
two different datasets made of respectively 2 and 4 diabetic
patients, Saiti et al. studied the use of ensemble-learning
combining both ARX and SVR models for the forecasting
of future glucose values [24].

Thanks to the recent progress in the field of deep learning,
neural-network-based models are heavily investigated for the
task of glucose prediction. In 2012, Daskalaki et al. showed
that feed-forward neural networks (FFNN) outperform stan-
dard AR and ARX models for a PH of 30-to-45 minutes
[25]. They used the Type 1 Diabetes Metabolic Simulator
(T1DMS) [26] to simulate 8 days of data of the software’s
10-adults in-silico population. Recurrent neural networks, and
especially those based on LSTM units, have seen some re-
cent use because of their inherent nature making them well
suited for the forecasting of time-series, and thus, of future
glucose values [27], [28]. Following their success in the image

recognition field, convolutional neural networks (CNN) have
drawn interest to the glucose prediction community [29], [30]
as well. In particular, Zhu et al. explored their use using
the OhioT1DM dataset [29]. This dataset, which has been
made publicly available [31], is made of 6 T1D patients
that have been monitored for 8 weeks and for which data
related to glucose values, CHO intakes, insulin infusions,
physical activity, skin conductance and temperature, have been
collected.

Given the high diversity of the experimental settings, the
high inter-/intra-subject variability, and given the complex-
ity of collecting sufficient quantities of such sensitive data,
transfer learning is a promising approach to alleviate this
issue. That being said, it has not been explored much in the
past in this field until very recently. Luo et al. proposed a
methodology to transfer ARX models learnt on several patients
to another, unseen, patient [32]. They validated their results
using the T1DMS software, with a simulation length of 6 days.
They showed that their methodology outperforms individual
models and enables the use of less data for the new patient.
However, while promising, those results have been obtained
on a synthetic dataset, requiring further investigations on real-
world data; besides, ARX models have been shown to be
outperformed by non-linear machine-learning-based models
(e.g., SVR, GP) and deep models (e.g., FFNN, LSTM) [33].
Transfer learning, in the context of easing the training of deep
models, has been used in the work of Zhu et al, Kushner
et al., Mirshekarian et al., and Bhimireddy et al. [34]–[37].
While the results obtained by Zhu et al. and Mirshekarian et
al. are promising, it is unclear if it is made possible by transfer
learning or by the design of their model (variants of recurrent
neural networks). As for Kushner et al., they reported that
transfer learning was useful in the context of the training of
physiogically-informed feedforward neural network. Finally,
Bhimireddy et al. report that transfer learning was contributing
negatively in their experiments. We suppose that it comes from
the way the transfer was done (transfering from one random
patient to another one), preventing the learning of a general,
easy-to-transfer, feature representation.

Following the advances in the field, the use of transfer learn-
ing for the forecasting of future glucose values for diabetic
people raises questions we intend at answering in this study:

1) Can we transfer knowledge between real-world diabetic
patients, given the high inter-/intra-subject variability of
the disease?

2) Is transfer learning useful for deep-learning-based mod-
els?

3) Can we transfer between patients whose data have
been collected in different experimental settings (e.g.,
different sensors, environments)?

4) Can we transfer between type-1 and type-2 diabetic
patients?

5) Can synthetic data be used for the transfer to real-world
data?

IV. METHODS

This section presents the whole methodology that has
been followed throughout the study, from the acquisition and
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preprocessing of the experimental data, to the training and
evaluation of the models.

A. Experimental Data
One of the goals of this study is to compare the trans-

ferability of the models when varying the source and target
datasets. We present here three different datasets: the IDIAB
dataset (I), the Ohio dataset (O), and the T1DMS dataset
(T). We focus our attention on the major differences that
exist between them (e.g., diabetes type, patient diversity, data
shape and scale inconsistency). In this study, we only use
glucose, insulin and carbohydrates data, which are the most
useful for the prediction of future glucose value. Data related
to patient’s physical activity, while having an impact on the
glucose regulatory system, have yet to be shown useful for the
task of glucose prediction [38].

1) IDIAB Dataset (I): Collected by ourselves between 2018
and 2019 (ID RCB 2018-A00312-53), the IDIAB dataset is
made of data coming from 6 T2D patients (5F/1M, age 56.5 ±
9.14 years old, BMI 33.52 ± 4.17 kg/m2). The patients have
been monitored for 31.17 ± 1.86 days in free-living conditions
wearing FreeStyle Libre CGM devices (Abbott Diabetes Care)
and using the mySugr coaching application for diabetes as a
diary. Whereas glucose values (in mg/dL) have been obtained
every 15 minutes on average, insulin infusion (in units) and
CHO intakes (in g) have been collected every minute. When
looking at the glucose signals, numerous erroneous values have
been identified (characterized by high-amplitude spikes). We
chose to remove those values as their presence would have
hurt the training of the models [28].

2) OhioT1DM Dataset (O): Made public for the Blood
Glucose Level Prediction Challenge in 2018, the OhioT1DM
dataset has been collected on 6 T1D patients [31] (2M/4F,
age between 40 and 60 years old, BMI not disclosed). The
patients wore MiniMed® 530G insulin pumps (Medtronic),
Enlite® CGM sensors (Medtronic), and Basis Peak fitness
bands for a duration of 8 weeks in real-life environments.
In this study, we solely use the glucose signals (in mg/dL),
the insulin infusions (in units), and the CHO intakes (in g),
sampled every 5 minutes, to remain consistent with the other
datasets.

3) T1DMS Dataset (T): The T1DMS dataset is made of
10 in-silico T1D adults. The data have been generated by the
Type 1 Diabetes Metabolic Simulator (T1DMS) [26], approved
by the FDA as a substitute for pre-clinical animal testing,
and thus widely used in the glucose prediction community
[33]. The virtual patients were subject to a 8-week-long open-
loop simulation following a 3-meal daily scenario. At the start
of every meal, an insulin infusion is taken by the patient.
More details of the simulation’s scenario can be found in our
previous work [33]. In the end, the glucose values (in mg/dL),
the insulin infusion (in pmol), the CHO intakes (in g/min for
the duration of the meal which lasted 15 minutes) have been
collected with a sample every minute.

B. Preprocessing

The objective of the preprocessing stage is to prepare the
data for the training, and evaluation of the deep models. The
following paragraphs describe the different steps that have
been carried out in this regard.

1) Reshaping and Rescaling: In order to have models
interoperable between datasets, the data need to have the
same shape and scale across them. Here, while the IDIAB
and Ohio datasets use the same units, the T1DMS dataset,
in particular for the insulin infusions and CHO intakes, does
not. The T1DMS’ insulin infusions have been divided by 6000
to convert the values from pmol to insulin units. The CHO
intakes of every meal have been accumulated and timed at the
start of the meal.

Furthermore, the three datasets have a different sampling
frequency. We resampled the IDIAB and T1DMS datasets
to one sample every 5 minutes (sampling frequency of the
Ohio dataset), resulting in an upsampling and a downsampling
respectively. The downsampling of the T1DMS dataset has
been done by taking the mean of the glucose signals and by
summing up the insulin infusions and CHO intakes.

2) Samples Creation: The data samples used in the training
and evaluation of the models are created by sliding a window
made of the 3-hour history of input data, as well as the 30
minutes ahead glucose value (the prediction ground truth).
When the ground truth is not known, the sample is discarded
to prevent the model from training on artificial data.

3) Recovering Missing Values: The OhioT1DM and IDIAB
datasets have a lot missing glucose values due to sensor errors
or the upsampling of the IDIAB glucose signal. Those values
can be artificially recovered by interpolating the missing values
when they are surrounded by known values within the sample,
and by extrapolating them if not. This ensures that values from
the future, not available in a real environment, are not used to
recover the missing values.

4) Splitting: The OhioT1DM dataset is originally split into
training and testing sets with the last 10 days of a given patient
forming the testing set, and the remaining the training set.
Similarly, we split the T1DMS and the IDIAB datasets having
the last 10 and 5 days as the testing sets respectively. While
the T1DMS dataset has roughly the same amount of data as
the OhioT1DM dataset, this is not the case for the IDIAB
dataset which has around half its amount.

Every training set is then split into a training and a valida-
tion set following a 80%/20% distribution. Whereas the goal
of the training set is to train the models, the validation set is
used as a prior evaluation of the model when optimizing its
hyperparameters. This ensures that no data from the testing
sets is used when building the models.

5) Standardization: Every patient’s data signals have been
standardized (zero mean and unit variance) w.r.t. their training
set. Standardizing the data is a mandatory step for the training
of neural-network-based models. It has the advantage of also
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making the data of different patients more similar, which
should help the building of more general, and thus better
transferable models.

C. Models

We present here the models that we have used in this
study, most of which being based on fully convolutional neural
networks (FCN). The source code is available in our GitHub
repository [15]. Furthermore, we also released the weights
of the models trained on the source patients (before their
finetuning to the target patient), so they can be used by anyone
to build better glucose predictive models.

1) Baseline Models: In this study, we use three baseline
models: a SVR model, and two FCN models, namely FCN #1
and FCN #2. The three models are solely trained and evaluated
on the target patients.

The SVR model is based on our benchmark study [33], in
which it stands out from the other models, and in particular
deep models, by being the overall best model for glucose
prediction. As the overall methodology is identicaly, it is con-
sidered as our gold standard. Using a model that is not based
on deep learning for comparison is particularly interesting as it
can show, whether or not, the proposed approach enables deep
models to surpass traditional machine-learning-based ones.

As for the FCN #1 and #2 models, while they share the same
architecture, they differ in their training hyperparameters. They
are made of 2 modules: a features extractor and a glucose
predictor. Whereas the features extractor module is made
of 3 layers (1-dimensional convolution of size 3 → ReLU
activation function → batch normalization → dropout), with
64, 128, and 64 channels respectively, the predictor module is
made of a single convolution of 2048 channels and of size
30 (making it behave like a fully connected layer). While
both baseline models use the Adam optimizer to minimize
the mean-squared error (MSE) loss function with an early
stopping patience of 250 epochs, FCN #1 uses a learning
rate of 10−4 and a dropout rate of 50%, and FCN #2 uses
a learning rate of 10−3 and a dropout rate of 90%. The reason
behind using both architectures as baselines is that, while FCN
#1 shares the same hyperparameters as the models used for
transfer (see below), the performances were not as good as
expected because of the weak regularization given the amount
of available data without transfer. By using FCN #2, we make
sure that our FCN baseline is strong enough.

2) Standard Transfer Models: We call standard transfer
learning models (TL), the models that have been trained on
source patients (global TL) and then finetuned to the target
patient (finetuned TL). All the TL models are identical to
FCN #1. During finetuning, the learning rate and the early
stopping patience have been decreased to 10−5 and 50 epochs
respectively.

3) Adversarial Transfer Models: The adversarial transfer
learning models (ATL, both global and finetuned) and the
TL models share the exact same architecture and training

methodology, at the exception of the presence of the domain
classifier module and the gradient reversal layer in the former
(see Section II-C). The domain classifier is made of a single
convolution of 2048 channels and a size of 30 (identical to its
predictor module). It minimizes the multi-class cross-entropy
weighed by λ = 10−0.75 with the Adam optimizer. The value
of λ has been chosen among 9 values between 10−2 and
101 in a logarithmic scale [14]. Moreover, to account for
the imbalanced representation of the patients in the training
sets, the loss associated with samples from a given patient
are weighed inversely proportionally to the total number of
samples of this patient.

Fig. 2 provides a graphical representation of the ATL model.

D. Evaluation
The models have been evaluated for every target patient on

their testing set (last 10 days for the OhioT1DM and T1DMS
datasets, and last 5 days for the IDIAB dataset). The results
are averaged over the training/validation sets permutations
(5-fold cross-validation, see Section IV-B4) and over the
target dataset. Standard deviations are computed on the target
population’s average results.

Two metrics are used to measure the accuracy of the models:
the root-mean-squared error (RMSE), and the mean percentage
absolute error (MAPE). Whereas the RMSE provides a real-
scale measure of the average error, the MAPE is less sensitive
to data distribution between the patients in the target domain.

Besides, we evaluate the clinical acceptability of the models
with the Point-Error Grid Analysis (P-EGA), also known as
the Clarke Error Grid [39]. Given the known ground truth, a
glucose prediction is given a mark from A to E depending
on its clinical accuracy. Whereas an A prediction means the
prediction is clinically accurate, an E prediction is a life-
threatening prediction. The number of predictions that have
either an A or B mark (A+B) is also often reported, as those
predictions a deemed to have an acceptable clinical accuracy.

In the analysis of the results, we provide the significance
tests of the performance ratio of one model, M2, over another
reference model M1. We report the 99% confidence interval
(CI) of the paired ratio between M2 and M1 in MAPE.
With such CI, the performance ratios shall fall outside the
intervals only one time out of 100. The analysis of the intervals
themselves depends on whether the chosen metric needs to
be minimized or maximized. For instance, when it needs to
be minimized (e.g., RMSE, MAPE), if the interval comprises
1, the results are not significant. However, if it does not,
the results are significant, an interval below 1 denoting the
significant improvement of M2 over M1, and an interval above
1 denoting the significant deterioration of M2 over M1.

To ease the analysis of the results, we will consider de
following transfer scenario groups:

• intra: the source and target patients belong to the same
dataset (i.e., I→I, O→O);

• inter: the source and target patients do not belong to the
same dataset and the source patients are not virtual (i.e.,
O→I, I→O);

• synth: the source patients come from a virtual dataset
(i.e., T→I, T→O);
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Fig. 2: CNN-based adversarial transfer learning model for glucose prediction. A first model is trained on source patients that may come
from different datasets and is then finetuned to the target patient. Thanks to the gradient reversal layer, the patient classifier module makes
the feature extractor learn a feature representation that is general across the source patients.

TABLE I: Accuracy of the baseline models with mean (standard
deviation) for both IDIAB and OhioT1DM populations.

Dataset Model RMSE MAPE

IDIAB
SVR 20.32 (6.02) 8.66 (0.44)

FCN #1 21.06 (5.14) 9.66 (1.00)
FCN #2 20.64 (5.20) 9.62 (1.27)

OhioT1DM
SVR * 20.10 (2.34) 9.08 (2.12)
FCN #1 21.51 (1.89) 9.82 (2.08)
FCN #2 20.61 (2.09) 9.34 (2.07)

* These results have been presented in our previous work [33]

• and any combination of these single-dataset scenarios
(e.g., intra+inter denoting IO→I and IO→O).

V. EXPERIMENTAL RESULTS

The experimental numerical results are described by Table
I, Table II and III representing, respectively, the accuracy of
the baseline models, the accuracy of the global and finetuned
models using transfer learning, and the clinical accuracy of all
of them.

A. Results Analysis

The baseline results displayed in Table I are consistent with
the findings in our benchmark study, where deep models are
outclassed by standard machine-learning models, and in par-
ticular, by the SVR model [33]. While the added regularization
in FCN #2 improves upon the FCN #1 results, it is still not
enough. This suggests that data for a given patient are not in
sufficient quantities.

The performances of the global TL models, displayed by
Table II, are variable, depending on the source and target
patients. First, all the scenarios that show a better accuracy
than our reference model FCN #2 use intra data (IO→I,
IOT→I, O→O, IO→O, IOT→O). Only the I→I transfer does
not have good results. This is explained by the lack of data
within the IDIAB dataset, lack that is less important for the
scenarios IO→I or O→O for example. Furthermore, using
synthetic data seems to be effective only when they are used in
combination with real data in sufficient quantities (i.e., when
the source is IOT).

The use of the adversarial transfer learning methodology
generally improves these initial global results. Additionally,
it makes the I→I transfer work. In addition, the scenario
intra+inter (IO→I and IO→O) stands out by having better
and equivalent results than FCN #2 and SVR respectively.
However, we can note that the efficiency of the global transfer
highly depends on the origin of the source and target patients.
If no intra patient is used as the source, then the global transfer
is quite ineffective. Also, the use of additional synthetic data
is less effective than for global TL models. Overall, the global
ATL results suggest that the models make a better use of the
data, even when present in low quantities, reducing the need
of adding highly dissimilar data.

Compared to the standard global results, the standard
finetuned results show clear improvements for all transfer
scenarios. In addition, these performances are significantly
better than those obtained by our reference model FCN #2
(see Figure 3a). By finetuning the model to the target patient,
we also enable the transfer from synthetic data to work.
Overall, the best transfer scenarios are those that use intra
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TABLE II: Accuracy of the global and finetuned models after transfer for every Source (S) / Target (T) combinations with mean (standard
deviation), averaged on the target population.

Dataset Standard Transfer Adversarial Transfer Standard Transfer Adversarial Transfer
(global) (global) (finetuned) (finetuned)

S T RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

I

I

21.47 (7.50) 9.67 (1.48) 19.61 (6.27) 8.95 (1.00) 20.25 (5.02) 8.96 (1.50) 18.51 (5.48) 8.44 (1.07)
O 21.70 (5.75) 10.22 (1.85) 19.87 (6.01) 9.01 (1.52) 19.26 (4.97) 9.13 (1.26) 18.84 (5.75) 8.57 (1.11)
T 25.47 (6.00) 11.11 (1.60) 29.57 (6.01) 14.53 (3.14) 20.08 (4.94) 9.26 (0.85) 19.50 (5.14) 9.02 (1.16)
IO 20.20 (5.90) 9.51 (1.49) 19.66 (6.48) 8.90 (1.52) 19.10 (5.04) 8.95 (1.00) 18.75 (6.01) 8.50 (1.23)
IT 22.25 (8.28) 10.61 (2.91) 22.96 (8.22) 10.52 (1.98) 19.45 (5.08) 9.03 (1.16) 19.70 (6.21) 8.93 (1.10)
OT 22.25 (8.28) 10.61 (2.91) 23.16 (6.44) 10.20 (1.61) 19.45 (5.31) 9.04 (1.20) 19.47 (6.60) 8.79 (1.13)
IOT 20.72 (6.34) 9.45 (2.02) 22.46 (9.40) 9.87 (2.07) 19.44 (5.24) 9.02 (1.07) 18.79 (5.82) 8.59 (1.05)

I

O

24.01 (2.24) 11.62 (1.85) 21.45 (1.50) 10.15 (1.70) 20.52 (2.08) 9.49 (2.18) 19.74 (2.13) 8.96 (2.02)
O 21.95 (1.98) 10.20 (2.10) 20.22 (1.48) 9.18 (1.83) 19.92 (2.02) 9.09 (2.14) 19.27 (1.78) 8.68 (1.97)
T 30.17 (4.64) 14.18 (4.30) 36.63 (7.99) 18.16 (5.35) 20.20 (1.99) 9.20 (2.03) 19.93 (1.74) 9.13 (1.87)
IO 21.17 (2.16) 9.81 (2.04) 19.58 (1.65) 9.04 (2.10) 19.91 (2.01) 9.06 (2.08) 18.94 (1.66) 8.50 (1.87)
IT 23.46 (2.60) 11.58 (2.75) 26.44 (5.25) 13.37 (2.86) 20.03 (1.88) 9.25 (2.08) 19.57 (2.02) 8.81 (1.85)
OT 21.39 (2.16) 9.72 (2.16) 19.88 (1.26) 9.36 (1.55) 19.72 (2.04) 8.97 (2.18) 19.16 (1.73) 8.64 (1.94)
IOT 20.68 (2.12) 9.58 (2.14) 19.45 (1.78) 9.19 (1.91) 19.57 (2.02) 8.93 (2.13) 18.99 (1.72) 8.56 (1.89)

TABLE III: Clinical accuracy (P-EGA) of the baseline models and the best finetuned models after transfer for every Source (S) / Target
(T) combinations with mean (standard deviation), averaged on the target population.

Dataset Model Point Error-Grid Analysis (P-EGA)

A+B A B C D E

IDIAB (I)

SVR 99.30 (0.33) 95.03 (1.41) 4.28 (1.21) 0.04 (0.10) 0.65 (0.39) 0.00 (0.00)
FCN #1 98.43 (1.58) 92.12 (2.58) 6.32 (1.62) 0.00 (0.00) 1.57 (1.58) 0.00 (0.00)
FCN #2 98.21 (1.71) 92.59 (3.37) 5.61 (2.09) 0.00 (0.00) 1.79 (1.71) 0.00 (0.00)

TL * 98.57 (1.18) 93.73 (2.68) 4.84 (1.81) 0.00 (0.00) 1.43 (1.18) 0.00 (0.00)
ATL † 98.77 (1.30) 94.96 (2.59) 3.81 (1.67) 0.00 (0.00) 1.23 (1.30) 0.00 (0.00)

OhioT1DM (O)

SVR 99.08 (0.87) 93.38 (3.10) 5.70 (2.31) 0.01 (0.02) 0.89 (0.86) 0.01 (0.03)
FCN #1 98.67 (1.18) 91.67 (3.47) 7.01 (2.38) 0.00 (0.00) 1.33 (1.18) 0.00 (0.00)
FCN #2 98.67 (1.07) 92.71 (3.32) 5.96 (2.29) 0.00 (0.00) 1.33 (1.07) 0.00 (0.00)
TL ** 98.89 (1.13) 93.69 (3.63) 5.20 (2.52) 0.00 (0.01) 1.11 (1.12) 0.00 (0.01)
ATL ‡ 99.20 (0.76) 94.44 (2.83) 4.77 (2.12) 0.00 (0.00) 0.80 (0.76) 0.00 (0.00)

* IO→I, ** IOT→I, † I→I, ‡ IO→O scenarios
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(a) Standard Transfer over FCN #2
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0.85 0.9 0.95 1 1.05 1.1

intra+inter+synth
inter+synth
intra+synth
intra+inter

synth
inter
intra

(c) Adversarial Transfer over Standard Transfer

0.85 0.9 0.95 1 1.05 1.1

intra+inter+synth
inter+synth
intra+synth
intra+inter

synth
inter
intra

(d) Adversarial Transfer over SVR

Fig. 3: 99% confidence intervals of the paired performance ratio in MAPE of one model over another for every possible transfer scenarios.
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(not exclusively). Overall, these results show the advantage
of transferring knowledge between patients for the prediction
of glucose. While using closely related data works better,
the transfer can also work even when the data have different
natures (type 1 or type 2, various experimental conditions or
systems). We note, however, that some global ATL results
are equivalent or better than those of finetuned TL models,
suggesting a potential use of general models for predicting
blood glucose using the multi-source adverse transfer training
methodology without finetuning them to the target patient.

Using the adversarial methodology is showed to further
improve upon the results obtained with the standard finetuned
models, and this for almost all transfer scenarios (some scenar-
ios, such as IT or OT→I show equivalent results). As shown in
Figure 3c, the improvements related to the use of the adverse
methodology are statistically significant and are particularly
effective for the used real data (intra, inter, or both). Although
the confidence interval of the synth scenario prevent us from
concluding on the significance of the improvement, we can ap-
preciate the improvement by comparing the intervals of TL and
ATL against FCN #2 with Figures 3a and 3b. Finally, Figure
3d indicates that the ATL results are significantly better than
our gold standard SVR model for the transfer scenarios intra,
intra+inter and intra+inter+synth. This shows that transfer
learning, and in particular the proposed adversarial multi-
source methodology, alleviates the data issue deep models have
and enables them to outperform state-of-the-art models based
on standard machine learning.

Overall, even though transferring knowledge (standard or
adverse) works for all the scenarios studied, its effectiveness
is variable. Within the transfer scenarios using a single source
dataset (intra, inter or synth), the most efficient transfer is,
not surprisingly, the transfer intra. Adding new source data
(e.g., intra+inter compared to intra, or inter+synth compared
to inter) does not always improve the results. While it appears
to be profitable in the case of a transfer to the OhioT1DM
dataset, the best results for a transfer to IDIAB remain those
of the scenario intra. We hypothesize this is due to the lack
of IDIAB data in comparison with the other two datasets.
Augmenting the source IDIAB data with all the OhioT1DM
or T1DMS data could drown the IDIAB data which remain
the most important data for a transfer to another patient from
the IDIAB dataset.

Table III allows us to focus on the clinical acceptability of
the results. In order to simplify its reading, we have chosen
to only represent the clinical acceptability of the baseline
models and the best (in MAPE) finetuned models in Table II.
Unsurprisingly, the results obtained by ATL models show a
clear improvement over our baselines FCN #1 and #2 as well
as over TL models. Only the SVR model seems to remain
competitive from the point of view of clinical acceptability.
Indeed, it has particularly low prediction rates in the D and E
regions, especially for the IDIAB dataset.

We can thus conclude on the importance of transfer learning,
and in particular of the adverse transfer learning methodology
for the training of glucose-predictive models based on deep
learning. Although transferring knowledge is effective with
data from different origins (real or simulated data, data from

type 1 or 2 diabetics, or from various experimental conditions),
it is preferable to use data intra, data which can be augmented
if necessary with inter data. While the synth transfer scenario
is the least efficient here, it remains interesting in a situation
of total or almost total absence of real data.

B. Behavior Analysis

Algorithm 1: Computation of the LDP metric
Data: features F and domain of S samples,

neighbourhood size N, number of domains D
Result: Local Domain Perplexity (LDP)

1 for i = 1→ S do
2 Fi ← features of sample i;
3 neighi ← the N samples that minimize the

Euclidian distance of their features with Fi;
4 P (d), d ∈ [1..D]← 1/N ·

∑N
1 count(neighi = d);

5 LDPi ← 1/D · 2
∑

d P (d)·log2(P (d));
6 end
7 LDP ← 1/S ·

∑S
i=1 LDPi ;

8 return LDP ;

In this subsection, we aim at shedding some light on
how the adversarial methodology manages to improve the
performances of the model over a standard one. First, through
Fig. 4, we can look at the t-SNE 2-D representations of the
features [41] outputted by the feature extractor module (see
Section 2), in the IOT→I and O→I transfer scenarios. Then,
we propose a new metric to quantify, on the raw features, the
observations we make on the t-SNE representations.

Within Figure 4a, we can notice that the features of a given
patient (the same shade of a given color) are often grouped
in clusters. It shows that the model maps data from a given
patient to very specific regions in the feature space. This means
it manages to discriminate the patients by extracting very
patient-specific features. This behavior is learnt by the model

TABLE IV: Mean (with standard deviation) Local Domain Perplexity
(LDP) of the features extracted by the global models for every Source
(S) / Targer (T) datasets combinations.

Dataset Standard
Transfer
(global)

Adversarial
Transfer
(global)

Relative
Change
(in %)S T

I

I

0.72 (0.04) 0.79 (0.01) +11.06 (6.58)
O 0.50 (0.02) 0.68 (0.01) +36.93 (5.20)
T 0.72 (0.01) 0.73 (0.01) +1.15 (2.09)
IO 0.34 (0.01) 0.53 (0.01) +54.28 (7.00)
IT 0.47 (0.00) 0.51 (0.01) +10.29 (2.58)
OT 0.38 (0.00) 0.46 (0.02) +21.53 (5.70)
IOT 0.29 (0.00) 0.40 (0.01) +38.99 (3.03)

I

O

0.67 (0.01) 0.78 (0.01) +15.48 (1.71)
O 0.55 (0.04) 0.71 (0.02) +29.05 (915)
T 0.72 (0.00) 0.72 (0.01) +0.28 (2.01)
IO 0.35 (0.02) 0.52 (0.01) +47.51 (7.02)
IT 0.43 (0.00) 0.49 (0.01) +13.84 (3.10)
OT 0.41 (0.00) 0.49 (0.03) +21.80 (7.86)
IOT 0.29 (0.01) 0.40 (0.01) +35.63 (4.92)
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(a) O→I : Standard Transfer (b) O→I : Adversarial Transfer

(c) IOT→I : Standard Transfer (d) IOT→I : Adversarial Transfer

Fig. 4: t-SNE visualization of the features for the transfer scenarios O→I (top) IOT→I (bottom) and for a standard (left) and adversarial
transfer (right). The features represented are those of the source patients, the patient IDIAB #1 having been arbitrarily chosen as the target
patient. The two-dimensional representation of the features was obtained by t-SNE after reducing the original dimension to 50 through
principal component analysis (PCA). Each color represents a patient and each shade of color represents a dataset (red for the IDIAB, blue
for OhioT1DM and green for T1DMS). The colors have been chosen according to [40].

in order to make better predictions on these patients. While this
might be useful for predictions made on those patients, it is not
necesserarily the case when transferring the model to a new,
unseen, patient. Conversely, the t-SNE representation of the
features computed by the adversarial methodology displayed
by Figure 4b is much more diffuse indicating more general
features within the source patients.

By looking at transfers with several source datasets through
Figure 4c and 4d, we observe the same behavior which is,
this time, more pronounced. While the three datasets occupy
very delimited regions in the 2D space in the case of standard
transfer, they become interlaced using adversarial transfer. This
shows that the extracted features are much more general for
patients within the same dataset, but also more general across

datasets. By being thus more general in general, these features
are therefore more easily transferable to a new unknown
patient. This also validates our initial hypothesis: in the non-
adversarial multi-source transfer scenario, if it is beneficial,
the model will learn to tell the domains apart and specialize
its processing to the patients it identifies.

In order to quantify the observations made in the 2D space
in the original feature space, we propose a new metric named
Local Domain Perplexity (LDP). It measures in average, from
0 to 1, how uniform the distribution of the features’ domains
(here the patients) is in their close neighborhood. Whereas
a high LDP implies that the features are general across all
the domains, a low LDP means that the features are very
specialized to the domains. It is computed following these
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steps, for which Algorithm 1 provides the pseudo-code:
1) The distances between all pairs of feature samples are

computed;
2) For each sample, the N closest samples are identified

as the neighbors, neighi, i ∈ [1, N ], of this sample (in
this study, N = 50);

3) For each sample, the domain probability distribution
of the neighbors is computed : P (d) = 1/N ·∑N

1 count(neighi = d);
4) The LDP is computed as the perplexity,

2
∑

d P (d)·log2(P (d)), rescaled between 0 and 1, and
averaged over all the samples.

Table IV provides the LDP measurements for each transfer
scenario of the global models. The use of the adversarial
methodology is shown to increase the LDP for all the transfer
scenarios. The improvement are the strongest for the inter,
intra+inter, and intra+inter+synth scenarios and the weakest
for the synth scenario, in accordance with the accuracy im-
provements displayed by Figure 3c.

C. Comparison with state-of-the-art

Generally, the cross-study comparison of glucose predictive
models is not very relevant because of the use of different ex-
perimental data. However, through the use of the OhioT1DM
dataset, we share the same testing data as the study of Zhu
et al. and Mirshekarian et al. [34], [35]. Table V reports their
results as well as some of ours.

In their work, Zhu et al. proposed a dilated recurrent neural
network (DRNN). Compared to standard recurrent neural
network (RNN), it possesses connections between neurons of
non-consecutive time steps. While they use a standard transfer
learning procedure to train their model, their method differs
from ours in that they include the target patient within the
source dataset. As for Mirshekarian et al., they studied a RNN
with Long Short-Term Memory units (LSTM). In addition,
they use a variational dropout, which, contrary to standard
dropout, drops the same units for every time-steps in RNN.

Both of them report competitive results with ours. Our best
model (adversarial transfer in a IO→ setting), matches du
RMSE of Zhu et al. with a lower standard deviation, and has
a better MAPE. It means there is less performance variance
between the subjects, which is important towards the adoption
of such a tool. As for the results of Mirshekarian et al.,
while they seem to be slightly better, they do not report the
MAPE metric nor the same standard deviation, which makes
the comparison difficult.

Overall, this comparison shows that the adversarial transfer
learning methodology enables the FCN model, through the
addition of the IDIAB dataset, to match state-of-the-art results.
It also shows that there is room for improvement, as the
models proposed by Zhu et al. and Mirshekarian et al. are
able to have the same performance without using the proposed
methodology.

VI. CONCLUSION

In this study, we proposed a multi-source adversarial train-
ing methodology for transfer learning in healthcare, field

where deep learning struggles to perform due to the lack of
data. We demonstrate its interest for the challenging task of
glucose forecasting for diabetic people, characterized by the
high inter-/intra variability of its population and the need of
personalized models.

We evaluate the proposed approach by comparing it to
a standard transfer methodology with three highly diverse
datasets (different diabetes types, experimental settings, real
and virtual patients). First, we show that transfer learning is an
effective way to solve the lack of data for the training of deep
models in the field of glucose prediction, even if the source
patients are of a different diabetes type or have their data
collected in different experimental settings. Then, we demon-
strate the statistical and clinically significant superiority of our
adversarial transfer methodology. While the transfer is mostly
successful when the source data are closely related to the target
data (e.g., same datasets), it can be improved by augmenting
the source data with other, less related data (similar disease,
different experimental settings, or even synthetic data).

Furthermore, we analyzed the behavior of the adversarial
training methodology in the learning of the model’s fea-
ture representation. We show visually and empirically that it
improves the generality of the extracted features across the
source patients, from which the improved performances, after
finetuning to the target patient, are derived. To this end, we
have introduced a new metric, called Local Domain Perplexity
(LDP), that measures how uniform the domain distribution is
in the locality of the samples’ features.

Looking forward, given the slight disparity between the
results obtained on the IDIAB and the OhioT1DM dataset,
we think that the results could be improved by working on
the meticulous selection and balancing of the source data.
Also, we could improve the use of synthetic data as the source
(or part of) of the transfer by designing specific simulation
scenarios in this regard. Finally, it would be interesting to
investigate the use of adversarial transfer learning with other
deep learning models such as RNN variants as they already
show promising results in the literature.

We hope that these findings will open new ways of tackling
challenges related to the forecasting of glucose for diabetic
people, and those related to healthcare in general, which is
characterized by its highly heterogenous data.
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