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Abstract

Magnetic induced strain is an important source of vibration in electromagnetic components and
electrical machines. This magneto-mechanical behavior is identified using a non-destructive
experimental technique that consists in measuring in a Single Sheet Tester the time dependent
acceleration at the free end of a fixed-free magnetic sheet and its corresponding magnetic field
and induction signals. The determination of this property in the longitudinal direction is invest-
igated using an inverse application of the longitudinal vibration equation. The strain dependence
on the exciting frequency as function of the resonance frequency is also evaluated. The apparent
strain that includes the inertia effect is distinguished from the magnetic-induced strain. Both
strains are identified and analyzed for different frequencies lower and higher than the sample’s
natural frequency. We also investigated the effect of excitation’s harmonics on the mechanical
response.

1. Introduction
This papers presents an experimental procedure to identify the magnetic induced strain in soft magnetic materials.

This magneto-mechanical effect measurable at the macroscopic scale is due to the microscopic intrinsic magneto-
striction effect in magnetic materials [1]. In fact, magnetostriction is an important source of vibration and noise in
electromagnetic components such as transformers, inductors or electrical machines. It is widely considered by re-
searchers and its contribution in the noise generation is largely studied [2, 3, 4, 5, 6, 7]. Magnetostriction is defined by
the local strain of a medium subjected to a magnetic field [8]. In fact, the application of a magnetic field in electrical
steels generates the rotation of magnetic domains and the displacement of magnetic walls in the domain structure. This
induces a deformation of the domains called magnetostriction and eventually the deformation of the grains containing
this domains.
One of the main challenges is to understand the relationship between this mechanical behavior and the magnetization.
For this, an identification technique of the magneto-mechanical behavior must first be adopted. The identification of
the magnetostriction in electrical steels requires both modeling and measurement of the magneto-mechanical behavior.
Model based on the Helmholtz free energy can couple statistically magnetic to mechanical behavior [1, 9, 10, 11, 12].
Mudivarthi et al. [13] studied the magneto-mechanical coupling based on energy minimization at the domain’s scale.
As for the measurement, strain gauges are mainly used to determine the local deformation in both longitudinal and
transverse directions [14, 15, 16, 17]. Another technique, the heterodyne laser interferometry, is adopted to measure
the magnetostriction [18]; it is less disturbed by noise than strain gauges. This technique is also used to measure the
elastic modulus based on the resonance and anti-resonance frequencies [19, 20]. Another measurement technique uses
accelerometers instead of strain gauges and requires a new experimental setup [21, 22].
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This paper covers the identification of magnetostriction in grain-oriented electrical steels using a piezoelectric accel-
erometer. It is considered as a macroscopic local strain due to the magnetization process and that eventually includes
microscopic phenomena at magnetic domains scale. An experimental procedure is performed inside the Single Sheet
Tester (SST); a uniform magnetic field is applied parallel to the surface of the magnetic sample in the longitudinal dir-
ection. A piezoelectric accelerometer is used for measurement of the acceleration’s time response at the free end of the
fixed-free sample in parallel with the magnetic measurement. This setup is a non-destructive experimental technique
that provides an homogenized analysis by calculating the magnetic induced strain that is averaged through the whole
structure. Based on the measured acceleration signal, the strain is identified using an inverse method of the longitud-
inal vibration equation. Two equivalent identified strains are distinguished; the apparent strain that includes the inertia
effect and that characterizes the noise and vibration for a specific geometric configuration, and the magnetic induced
strain that excludes the inertia effects and characterizes the intrinsic magneto-mechanical behavior. The frequency
dependence on the identified strains is also developed.

2. Magnetostriction and Magnetic-Inducted Strain
At the microscopic scale, magnetic materials are constituted of magnetic domains oriented each in a specific dir-

ection. Even if the material is not globally magnetized, each magnetic domain is magnetized in different orientation in
a way that the sum of the different magnetization vectors is equal to zero in a grain. The non-magnetized state has also
an initial deformation. When a magnetic field is applied in a specific direction, the material begins to magnetize by
promoting the increase of the domains size which orientation is parallel to the applied magnetic field and decreasing the
domains size that are in the opposite direction. In general, when no mechanical stress is applied, a magnetic induced
strain called magnetostriction increases in the same direction of the magnetic field and decreases in the transverse
direction. Fig. 1 illustrates the magnetization and the deformation of a grain constituted of 4 magnetic domains: 2 of
them are horizontally oriented in an opposite orientation (180◦ domains) and 2 others are vertically oriented also in an
opposite direction each (90◦ domains). This deformation generates a magnetic induced strain "ms at the macroscopic
scale.

H

H

(a) (b) (c)

Figure 1: Stress-free magnetostriction generation in the domain structure with (a) No magnetic �eld applied (b) Magnetic
�eld applied parallel to the 180◦ domains (c) Magnetic �eld applied parallel to the 90◦ domains. - - - Before magnetization,
�� After magnetization.

3. Magneto-Mechanical Measurement Procedure
3.1. Magnetic Setup

The proposed experiments are performed in the SST illustrated in Fig. 3. This apparatus, designed by "Dr. Brock-
haus Messtechnik GmbH & Co. KG Company" for magnetic measurement of iron losses and the hysteresis, provides
time dependent signals of the average induction B(t) versus the uniform surface magnetic field H(t) by measuring
respectively the voltage in the secondary coils system and the current in the primary coils [23]. In fact, the secondary
voltage is digitally or analog controlled to obtain the user defined amplitude of sinusoidal polarization/induction at a
specific magnetic field. Measurements are performed in a 1-D longitudinal direction parallel to the applied magnetic
field, considered as the principal magnetization direction. The magnetic measurements are supposed uniform in this
direction and on the magnetized zone of the sample. However, the local magnetic field and induction vary in the cross
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section (z− direction):

B(t) =< B(z, t) >= 1
ℎ ∫

ℎ
2

−ℎ
2

B(z, t)dz (1)

The average induction B(t)measured in the SST is horizontally directed (x−direction). However, for a Grain-Oriented
sheet, induction components are also obtained in the other direction due to the material’s magnetic anisotropy. These
directions are not considered in this study because the tester’s limitations are in the x direction. Therefore, a one
dimensional analysis of the strain is performed in the SST.

3.2. Strain gauges vs Accelerometers for Mechanical Measurements
Strain measurement is sensitive to any disturbance in the experimentation. In fact, the use of strain gauges needs

special bonding skills on the sheet’s surface, otherwise the collected data contain noise and disturbance [18]. In
addition, strain gauges are single-use components and require a large bonding surface, and once removed, bonding is
left on the surface, not to forget the sensitivity to sheet’s surface coating and the time consumption that requires the
wires welding.
Due to those disadvantages, a piezoelectic accelerometer (Fig. 2) is used instead of strain gauges. The sensors are
provided by"DJB instruments", that are easily bonded on the surface and that can be reused on the other sheets which
constitutes a non-destructive testing technique.

Figure 2: Piezoelectric accelerometer used for measurement (voltage sensitivity= 1 mV/g).

3.3. Mechanical Setup
The average strain generated from the magnetization is calculated from the measured acceleration. Therefore, the

SST requires somemodifications regarding the boundary conditions in a way tomeasure the acceleration and determine
the strain in the longitudinal direction with the simplest possible model. Therefore, the upper yoke is removed and
the sample is clamped at one end on a fixture frame and free at the other end where a piezoelectric accelerometer
is bonded in order to measure the transient response of the global longitudinal acceleration signal a(t) [21]. A non-
magnetic plate is placed under the magnetic sheet in the magnetized region in order to prevent the friction and the out
of plane vibration coming from the yoke poles. In parallel, the mean induction B(t) and the surface magnetic field
H(t) signals are determined synchronously with the acceleration (Fig. 6). Eventually, the magneto-mechanical signals
are collected inside a specific amplifier and integrated in a computer for data acquisition using a dedicated software
(Catman). The global experimental setup is illustrated in Fig. 3.

3.4. Discrepancy Analysis
Since the experimental magneto-mechanical setup has just been designed, a discrepancy analysis is considered to

evaluate the measurements accuracy and precision. First, measurements are repeated 7 times for the same experimental
conditions with specific induction amplitudes (0.5 T, 1 T and 1.5 T) and exciting frequencies (250 Hz, 500 Hz, 1,500
Hz and 3,000 Hz). The accuracy calculation is obtained by repeating the same measurement without changing any
experimental condition. It shows a maximal discrepancy of 2.5 % between the difference repeated measurements.
Next, a precision analysis is performed to study the sensitivity of the experimental conditions (clamping force, sensor’s
bonding, plate’s positionning) on the certainty of the results. The experimental procedure is repeated by applying and
removing the clamping at the first end and by bonding and removing the accelerometer at the other end. Results are
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Figure 3: Experimental setup.

illustrated in Fig. 4 for (1 T, 3,000 Hz), and in Table 1 for different inductionmagnitudes and frequencies. Themaximal
discrepancy due to the precision is much higher than the accuracy error, reaching 9%.

Frequency (Hz) Induction (T) Total discrepancy (%)
250 Hz 1 T 3.18%
250 Hz 1.5 T 4.76%
1,500 Hz 0.5 T 2.99%
1,500 Hz 1 T 2.22%
3,000 Hz 0.5 T 9.08%
3,000 Hz 1 T 9.91%

Table 1
Dispersion due to the reproducibility on the measured acceleration.
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Figure 4: Reproducibility measurements at (1 T, 3,000 Hz).

3.5. Signal Resampling
Measured signals are collected with a maximal sampling frequency of 38,400 Hz. This frequency respects the

Nyquist-Shannon Sampling Theorem, considering that the highest signal frequency reaches 6,000 Hz. However, the
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higher the exciting frequency is, the worse the signal becomes. For example, at 1,500 Hz magnetic frequency a mech-
anical response is obtained at 3,000 Hz, corresponding to 38,400 / 3,000 ≈ 13 samples per cycle (Fig. 5). This
information is acceptable as long as no integration is needed. However, the derivation of the strain as explained later
on requires a double integration of the acceleration signal and the induction requires a simple integration of a voltage
signal. Therefore, a resampling of the signals is performed with smaller time sampling size (Fig. 5). Considering the
sampled signal a1[n], n = 1, 2, ..., N with N samples and a sampling frequency Fs, the Discrete Fourier Transform
A1[k], (k = 1, 2, ...N − 1) of a1[n] at a frequency f is given by:

A1[k] =
N−1
∑

n=0
a1[n]e

−2�jkn
N (2)

where n is the index of the signal a1 for a specific time tn = n∕Fs, and k is the index of the frequency signal A1 for
a specific frequency f where k = Nf

Fs
and 0 ≤ f ≤ N−1

N Fs. Now we consider a2 the resampled signal of a1 with a
sampling frequency �Fs where � is the sample frequency amplification. The �N samples of a2 are determined by the
Inverse Discrete Fourier Transform of A1,

a2[n] =
K
∑

k=0
A1[k]e

2�jkn
�N (3)

Based the Nyquist-Shannon Theorem, K is chosen in a way that to cancel in a1’s spectrum the contribution of fre-
quencies that are higher than Fs∕2. Therefore, K = (N − 1)∕2.
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(t), Measurement
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a(t), Filtering
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ref
, Integration

u
meas

(t)/u
ref
, Integration

Figure 5: Comparison the di�erent signals: measured acceleration a1(t), resampled acceleration a2(t), �ltered acceleration
a(t), integrated velocity v(t) and integrated displacement umeas(t).

3.6. Signal Filtering
The acceleration at the free end is measured by the piezoelectric sensor. The strain identification procedure (Fig.

9) includes filtering and integration of the acceleration signal in order to obtain the displacement then developing a
dynamic vibrational inverse model.
The obtained data a(t) = )2umeas

)t2 , B(t) and H(t) are analyzed in a way to draw a butterfly loop that characterizes the
magneto-mechanical behavior. The acceleration is twice integrated giving the sheet’s longitudinal displacement u(t) at
the accelerometer’s position. We note that the displacement (and eventually the strain) is positioned in a way to have
a minimum equal to zero.

umeas(t) = û(t, x = L) = ∫ ∫ a(t)dt2 (4)

The integration is performed numerically, but the initial signal a(t) contains low frequency information due to the
measurement’s drift which induces divergence of the displacement signal (Fig. 7). The strategy consists in filtering
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the signal by removing the low frequencies and keeping the high frequencies (High pass filtering). The cutoff frequency
is 1.4 times the magnetic exciting frequency and 0.7 times the mechanical frequency. In fact, as explained in Section
5.1, the magnetic fundamental exciting frequency generates a mechanical response with a double frequency. Fig. 8
shows the integration results after filtering. Signal should not lose information after filtering; the less the energy is at
low frequency before filtering, the less the losses are. However, the velocity and the displacement between the filtered
and unfiltered signals are way different due to the integration even if the filtered acceleration changes slightly.

0.4 0.6 0.8 1
⋅10−3

−1

−0.5

0

0.5

1

t (s)

a(t)/a
ref

B(t)/B
ref

H(t)/H
ref

Figure 6: Time response of the three measured signals.
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Figure 7: Acceleration integration without �ltering: (a) acceleration (m.s−2); (b) velocity (m.s−1); (c) displacement (m),
as function of time t (s).

4. Inverse Mechanical Model
4.1. Description and Modeling

We consider a magnetic sheet in the longitudinal direction. It is characterized by a modulus of elasticity E = 160
GPa, a density � = 7, 650 kg.m−3, a length 280 mm, a width b = 30 mm and a thickness ℎ = 0.26 mm. The sample is
fixed at one end and free at the other, and the equivalent free length isL = 265mm. The sheet is uniformly magnetized
within a specific region called magnetization zone determined by position L1 and L2 (Fig. 3). Furthermore, a uniform
local magnetic strain "ms, is locally generated, having a similar behavior of the thermal expansion. The considered
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Figure 8: Acceleration integration with �ltering: (a) acceleration (m.s−2); (b) velocity (m.s−1); (c) displacement (m), as
function of time t (s).
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Figure 9: Identi�cation of the local magnetostriction based on the acceleration measurements.

strain is unifomly applied in the magnetized length and is averaged in the cross section (z−direction). The stress �ms
that is equivalent to the magnetic strain is given by,

"ms(t) =
�ms(t)
E

(5)

The stress is uniform along the magnetized length (between L1 and L2) and equal to zero in the region between 0 to
L1 and L2 to L. An equivalent concentrated axial load Fms = −

)�ms
)x is obtained at positions L1 and L2. As a result,

the dynamic mechanical behavior of the fixed-free sample represented by the longitudinal displacement û(x, t) in the
x− direction is modeled by the following differential equation and boundary conditions [24],

�)
2û
)t2

+ c )û
)t
= Fms + E

)2û
)x2

(6)

û(0, t) = 0 (7)

)û
)x
(L, t) = 0 (8)

c is a damping constant that represents the mechanical dissipation of the material (in kg/s).
We define "a the apparent strain directly resulting from the displacement û(t) solution of Eq. (6).

"a(t) =
)û
)x
(t) (9)

It contains information concerning the magnetostriction, but also the inertia effect. It represents the apparent strain
that is locally measured when using a strain gauge. In the case where the inertia effect is negligible compared to the
stiffness, the apparent strain is equal to "ms. Furthermore, "a describes the observed behavior related to vibrations and
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noise due to the combination of the geometric conditions and the magneto-mechanical properties. Both "a and "ms are
averaged through the cross section (z independent) but they are potentially x-dependent. However, the SST gives a uni-
form strain in the magnetized area through the x direction which makes the identification of local magneto-mechanical
properties easier.

4.2. Discretization
The sample is discretized using the 1D Finite Element Method (FEM) with quadratic elements. Combining Eq.

(6) with the boundary conditions (Eqs. (7) and (8)), a dynamic system of n equations with massM , damping C and
stiffness K matrices and excitation vector "msf is obtained. A discretized displacement vector u and a discretized
acceleration vector ü:

Mü + Cu̇ +Ku = "msf (10)

The determination of the damping matrix C is performed in section 5.2.
From a static point of view, using Eq. (10), one gets the static displacement vector us from the static excitation vector fs
(us = "msK−1.fs). The shape of the deformed sample and its deformation are illustrated in Fig. 10. Three regions are
distinguished: between the clamping and the position L1 no deformation or displacement are shown, between L1 and
L2 the displacement linearly increases and the deformation is uniform, and in the free region a constant displacement
is observed with no deformation. However, for the dynamic behavior, the shape function is modified, specially when
the study is near the resonance as explained in section 5.3. Considering a uniform strain and a linear displacement,

0 L1 LL2

u

"

(a)

(b)

0 L1 LL2

Figure 10: Displacement and strain versus sheet's length under static conditions.

the apparent strain defined in Eq. (9) can be expressed as a function of the measured displacement umeas(t) in the
magnetized length by,

"a(t) =
)û
)x
(t) = Δu

ΔL
=
umeas(t)
L2 − L1

(11)

The experimental measurement gives the displacement at the free end of the sample. Hence, the last element of the
vectors u, u̇ and ü is known and it corresponds to the measured acceleration, the integrated velocity and the integrated
displacement at the free end. The other n − 1 components of the vectors and the equivalent strain "ms are unknown;
n equations and n unknowns are obtained. The identification of the unknowns is performed by developing an inverse
solving method. We split vertically the mass, the damping and stiffness matrices in two parts: M1, C1 and K1 with
n × n − 1 dimensions andM2, C2 and K2 with n × 1 dimensions.

M =
[

M1 M2
]

n×n (12)
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C =
[

C1 C2
]

n×n (13)

K =
[

K1 K2
]

n×n (14)

In a similar way, we split horizontally the displacement, the velocity and the acceleration vectors into u1, u̇1 and ü1 the
unknown components of dimensions n− 1 × 1 and umeas, u̇meas and ümeas the known components of dimension 1 × 1:

ü =
[

ü1
ümeas

]

n×1
(15)

u̇ =
[

u̇1
u̇meas

]

n×1
(16)

u =
[

u1
umeas

]

n×1
(17)

The following n × n system of equation is obtained:

M1ü1 + C1u̇1 +K1u1 − "msf = −M2ümeas − C2u̇meas −K2umeas (18)

Mü + Cu̇ +Ku = F (19)

where F = −M2ümeas − C2u̇meas − K2umeas, M =
[

M1 0n×1
]

, C =
[

C1 0n×1
]

, K =
[

K1 −f
]

and

u =
[

u1
"ms

]

Eq. (19) is time discretized with a time step Δt using a four-point backward difference approximation of the Taylor
series development for the second derivative (acceleration) and a three-point backward difference approximation for the
first derivative (velocity). The displacement, the velocity and acceleration unknown vectors are then time discretized
by:

ü(tn) =
1
Δt2

[2u(tn) − 5u(tn−1) + 4u(tn−2) − u(tn−3)] (20)

u̇(tn) =
1
2Δt

[3u(tn) − 4u(tn−1) + u(tn−2)] (21)

Combining Eqs. (19) and (21), one gets:
(

2
Δt2

M + 3
2Δt

C +K
)

u(tn) = F +
5u(tn−1) − 4u(tn−2) + u(tn−3)

Δt2
M +

4u(tn−1) − u(tn−2)
2Δt

C (22)

An incremental linear system of n equations ũ(t) and n unknowns is obtained as follows:

u(t) = A−1B(tn−1, tn−2, tn−3) (23)

with A = 2
Δt2

M + 3
2Δt

C +K and B = F +
5u(tn−1) − 4u(tn−2) + u(tn−3)

Δt2
M +

4u(tn−1) − u(tn−2)
2Δt

C
The last term of solved time vector u(t) corresponds to "ms(t), taking into consideration the geometric and mechanical
properties and the boundary conditions in the SST. The presented inverse mechanical modeling is developed using
Matlab.
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5. Modal analysis
5.1. Natural, Magnetic and Mechanical Frequencies

The considered magnetic sheet is clamped at one end and free at the other. Therefore, the itℎ theoretical natural
frequency of the structure for this mechanical configuration is given by [22]:

fi =
(2i + 1)
4L

√

E
�

(24)

Furthermore, the natural frequencies vector can also be calculated using the derived mass and stiffness matrices. The
eigenvectors matrix � = with �i vectors and the eigenvalues diagonal matrix 
 = diag(!i) are obtained using the
following classical eigen-equation:

(−!2iM +K)�i = 0 (25)

The natural frequency is obtained by calculating the eigenvalues of Eq. (25):


2 = eig(M−1.K) (26)

fi =
!i
2�

(27)

The first 4 natural frequencies in the studied case are presented in Table 2. Identical results are obtained using Eq.
(24) and (26). On the other hand, we define fmag the exciting fundamental frequency of the induction. The generated

Table 2
Longitudinal vibration's natural frequencies of the magnetic sheet in the studied setup.

Mode 1 2 3 4

Frequency (Hz) 4,314 12,943 21,572 30,201

mechanical response is performed with a fundamental mechanical frequency fmecℎ equal the double of fmag frequency.
In fact, magnetic forces, stresses or strains are equal to a linear combination of squared induction powers |"ms| =
∑n
i=1 �i||B

2i
|| [1]. We note that due to the magnetic non-linearity (n > 1), the mechanical response can present next

to the fundamental frequency fmecℎ, some harmonics (2fmecℎ, 3fmecℎ...).
In this experimental setup, when applying a magnetic frequency of fmag = 2, 100 Hz corresponding to the mechanical
frequency fmecℎ = 4, 200 Hz that is close to the fundamental natural frequency (of 4,300 Hz), a peak is obtained for
the apparent strain "a as shown in Fig. 17. This resonance phenomenon appears for different induction amplitudes as
illustrated in Fig. 11.

5.2. Damping Effect Identification
Once the eigenvectors and the eigenvalues are calculated, and using a modal transformation, the diagonal matrices

�, �
2 and 2��
 are respectively defined as [25]:
Modal mass matrix:

� = diag(�i) = �TM� (28)

Modal stiffness matrix:

�
2 = diag(�i!2i ) = �
TK� (29)

Modal damping matrix:

2��
 = diag(2�i�i!i) = �TC� (30)
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Figure 11: Peak-To-Peak analysis of the apparent strain with respect to the applied frequency.

�, 
 are already known, � = diag(�i) is the damping ratios matrix that is experimentally identified. Therefore the
damping matrix C can be calculated:

C = 2�T −1��
�−1 (31)

The identification of the damping ratio is obtained experimentally by magnetizing the clamped-free plate. At the
moment where the magnetic field signal is cut, the excitation is removed; an underdamped oscillatory response is
obtained (Fig. 12). The damping ratio �1 at the first mode is identified by measuring the overshoots of the response.
Considering an initial overshoot of yi and a final overshoot of yf afterNc cycles, a logarithmic decrement � is defined
as follows:

� = 1
Nc

ln
(

yi
yf

)

(32)

The damping ratio for the first mode is then given by:

�1 =
�

√

(2�)2 + �2
(33)

It is shown from the calculation that the first mode damping ratio �1 is between 0.025-0.035, which is the damping
ratio range for electrical steels. Considering this value for estimation of the damping matrix in Eq. (31), we notice
that the damping effect, even at high frequencies (up to 6,000 Hz), is still negligible in the identification of "ms and the
identification discrepancy with4 and without damping consideration is equal to 1% in average (Fig. 13). Therefore, the
analysis can be performed without taking into consideration the damping matrix when dealing with electrical steels.

5.3. Frequency Dependent Shape function
Taking into account the different frequencies presented in the previous section, we consider several input magnetic

frequencies that excite the structure with mechanical frequency lower, higher and near the resonance. Applying Eq.
(10) for a random strain "ms and for different magnetic frequencies, the length dependent displacement at a random
time is obtained in Fig. 14 showing that the inclusion of the inertia effect modifies the shape function obtained in Fig.
10. Furthermore, at low frequency (500 Hz), the inertia effect is negligible which leads to the same shape function of
the static case (Fig. 10). For a higher frequency (1,050 Hz), the shape function is distorted but still presents a singular
transition at L1 and L2 with lower effect. At the resonance, the shape function looks more continuous. At higher
frequencies (3,000 Hz), the shape function is totally modified showing a decreasing displacement in the magnetized
region due to the inertia effect that becomes more important than the stiffness effect.
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for one cycle of 1,500 Hz and at 1 T.

6. Results
Different magnetic excitation magnitudes (Bm =0.25 T, 0.5 T, 0.75 T, 1 T, 1.25 T and 1.5 T) and magnetic excit-

ation frequencies (fmag = 500 Hz, 1,050 Hz, 1,500 Hz, 2,100 Hz, 3,000 Hz) are considered. Frequencies are chosen
a way to cover a large region of the frequency spectrum with respect to the resonance frequency. 500 Hz and 1,500
Hz are random magnetic frequencies lower than the resonance magnetic frequency, 2,100 Hz is close to resonance and
3,000 Hz is a random value chosen higher than the resonance frequency. As for 1,050 Hz frequency, it corresponds to
the quarter of the resonance frequency.

Before the resonance (fmag = 500 Hz, 1,500 Hz)
We first consider magnetic excitations of fmag = 500 Hz and 1,500 Hz magnetic excitation. The identification tech-
nique developed above gives the magnetic induced strain and the apparent strain. Coupling results are illustrated using
a " = f (B) by removing the time variable; a butterfly loop is obtained showing the amplitude ratio between the
mechanical and magnetic properties, the time delay due to the loop’s width, and a parabolic shape due to the squared-
relation. Figs. 15 and 16 show respectively the butterfly loops obtained for fmag = 500 Hz and fmag = 1,500 Hz using
both strains "ms and "a calculated in Eqs. (23) and (11). At 500 Hz, it is noticed that "ms is almost equal to "a. In this
case, the inertia effect is negligible compared to the stiffness and the excitating mechanical frequency (fmecℎ = 1,000
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Figure 14: Displacement shape function for di�erent exciting frequencies.

Hz) is much lower than the natural frequency (f1 = 4,300 Hz). Contrariwise at fmag = 1,500 Hz, "ms is much lower
than "a due to the more effective inertia for a mechanical frequency (fmecℎ = 3,000 Hz) closer to resonance. On the
other hand, it is noticed that the higher the induction is, the higher the strain and the time delay are. For an induction
of 0.75 T, we reach an amplitude of "a around 8 �m/m and of "ms around 4 �m/m, and for an induction of 1.25 T, "a
is around 13 �m/m and "ms around 7 �m/m.
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Figure 15: Butter�y loop at fmag = 500 Hz of the apparent strain "a (with the inertia e�ect), and the magnetic induced
strain "ms (removing the inertia e�ect) (±5% error).

Near the resonance (fmag = 2,100 Hz)
The mechanical resonance occurs around 4,300 Hz corresponding to a 2,150 Hz frequency. A 2,100 Hz induction
frequency is then considered for measurement. It is clearly noticed that the deformation amplitude highly increases
at fmag = 2,100 Hz in comparison with the other frequencies as shown in the butterfly loops of Fig. 17 and in the
Peak-To-Peak analysis of Fig. 11. We must avoid this frequency when measuring and identifying the magnetic strain
because the model’s accuracy decreases at the critical resonance point.

After the resonance (fmag = 3,000 Hz)
Fig. 18 plots "a and "ms at fmag = 3,000 Hz, corresponding to fmecℎ =6,000 Hz that is higher than the resonance
frequency. "a shows a negative delay with the induction due to the inertia dominance. Removing the inertia effect, the
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(±5% error).

real "ms is obtained showing a positive delay between the magneto-mechanical variables. This delay is relatively high
due to the high frequency.

At (fmag = 1,050 Hz)
Magneto-mechanical measurements at 1,050 Hz corresponding to the quarter of the mechanical resonance frequency
are performed. The butterfly loop presented in Fig. 19 illustrates the "a at fmag =1,050 Hz with a different butter-
fly shape. Next to the fundamental frequency of fmecℎ = 2,100 Hz, a harmonic frequency of 4,200 Hz is observed
(Fig. 20) for the mechanical response. In fact, the presence of a 3,150 Hz harmonic with a small contribution in the
magnetic field (Fig. 22) combined with the frequency of 1,050 Hz observed in the fundamental of the induction and
the magnetic field (Figs. 22 and 23) generates a fundamental mechanical frequency of 2,100 Hz, but also a 4,200 Hz
mechanical harmonic similar the energy spectrum shown in Fig. 21. In fact, although the average induction contains
only fundamental frequency of 1,050 Hz (Fig. 23), but locally, the induction distribution profile contains harmonics
due to the non-linearity provided by the magnetic field [23]. Therefore, magnetic strain harmonics are sensitive to
this non-linearity generating mechanical frequencies with the sum of the different magnetic frequencies combinations
(1,050 Hz and 3,150 Hz magnetic → 2,100 Hz, 4,200 Hz and 6,300 Hz mechanical). Furthermore, the 4,200 Hz fre-
quency contribution is amplified due to the mechanical resonance at 4,300 Hz. Therefore, the butterfly loop shape of
the apparent strain is different and internal loops are observed because of the amplification of the 4,200 Hz harmonic
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in Fig. 19. However, when applying the inverse model to remove the inertia effect, magnetic strain "ms is restituted as
shown in Fig. 24 and the 4,200 Hz effect is reduced.
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Figure 19: Butter�y loop of the apparent magnetostriction "a at fmag = 1,050 Hz (±5% error).

Frequency Dependence Magnetostriction
Fig. 24 illustrates "ms for 500 Hz, 1,050 Hz and 1,500 Hz and shows that the higher the frequency the larger the loop’s
width. In fact, the time delay between the mechanical and the magnetic signals increases with the frequency. This is
due to the presence of a damping property between the magnetization and the deformation that generates phase shifting
between both signals [14]. This is a magneto-mechanical delay in the magnetic structure constituted of magnetic do-
mains separated by magnetic walls. In fact, the presence of eddy current around the walls generates a viscous damping
force [26] responsible of the mechanical dissipation and eventually the time delay between the magnetization and the
magnetic strain.

7. Conclusion
Measurement and identification of the magnetic induced strain in electrical steels have been developed using a

non-desctructive technique. It is based on measurement using a piezoelectric accelerometer and an inverse vibrational
model that identifies the magneto-mechanical property. The one-dimensional vibrational model has been used to
calculate the magnetic strain based on the acceleration measurements at the end of the magnetic sheet magnetized
inside the Single Sheet Tester. Frequency analysis is performed showing the effect of resonance frequency on the
magneto-mechanical dynamic behavior. We also distinguish between the apparent strain dependent on the geometric

E. Salloum et al.: Preprint submitted to Elsevier Page 15 of 18



E. Salloum et al. / Journal of Sound and Vibration

1000 2000 4000 8000
0

1

2

3

4
⋅10−7

f (Hz)

|
" a
|

0.75 T, 1,050 Hz

1.25 T, 1,050 Hz

Figure 20: Frequency spectrum of the apparent magnetostriction "a when applying a magnetic excitation of fmag = 1,050
Hz.

1000 2000 4000 8000
0

50

100

f (Hz)

|
|
B
H
|
|
(N

.m
-
1
)

0.75 T, 1,050 Hz

1.25 T, 1,050 Hz

Figure 21: Magnetic energy density spectrum with an excitation of fmag = 1,050 Hz.
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and mechanical conditions and the magnetic induced strain, a characteristic of the material. The developed technique
is one important tool for analyzing the physical properties that describe the magneto-mechanical coupled behavior of
electrical steels. It is also a non-destructive technique that measures the strain before and after a certain treatment of
the same sample. This is a powerful technique for the identification and the improvement of the magneto-mechanical
behavior.
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