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Adaptive Observer Design for Wave PDEs With Nonlinear Dynamics and Parameter Uncertainty

We consider the problem of state observer design for wave PDEs containing Lipschitz nonlinearities in the domain and parameter uncertainties in the domain and at the boundaries. Using the decoupling-transformation design approach, we develop an adaptive boundary observer consisting of a state observer, a least-squares type parameter adaptive law, and a hyperbolic auxiliary filter. Using Lyapunov stability analysis, we show that the observer is exponentially convergent under a persistent excitation condition. The novelty is twofold: (i) the class of systems is much wider than those studied in previous works, it particularly accounts for structured disturbances acting on the domain and all boundaries; (ii) the proposed adaptive observer is quite different from existing ones for wave-type PDEs.

INTRODUCTION

Designing state observers for PDEs has received an increasing interest over the last decade, e.g. [START_REF] Smyshlyaev | Boundary control of an antistable wave equation with anti-damping on the uncontrolled boundary[END_REF][START_REF] Vazquez | Magnetohydrodynamic state estimation with boundary sensors[END_REF][START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2-2 linear hyperbolic system[END_REF][START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF][START_REF] Fridman | Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method[END_REF][START_REF] Meurer | On the extended Luenberger-type observer for semilinear distributed-parameter systems[END_REF][START_REF] Fridman | New stability and exact observability conditions for semilinear wave equations[END_REF]Ahmed-Ali et al., 2015a;2016a-b, 2017a-b, 2018a-b, Karafyllis et al., 2017)). Most existing works proposed nonadaptive observers assuming the system model to be fully known. Results on adaptive observer design for PDEs are much less common (compared to nonadaptive observers). Furthermore, a certain portion of the available results were implicitly derived in the framework of output-feedback adaptive controllers [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], 2007a-b, 2010;[START_REF] Krstic | Adaptive control of an anti-stable wave PDE[END_REF][START_REF] Aamo | Disturbance rejection in 2 x 2 linear hyperbolic systems[END_REF][START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF]Guo, 2014;[START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF]Anfinsen andAamo, 2015, 2018;Guo et al., 2018). In that context, state and/or parameter online estimations are needed because the control is performed at the boundary. Also, the convergence of the parameter estimates to their true values is not required for the achievement of the control objectives (e.g. typically output-reference tracking). Wave PDEs were considered in [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] and (Guo et al., 2018) but only the former involved an adaptive observer. The problem of designing adaptive observers for PDEs, outside the framework of output feedback control, has recently received interest. The problem has been addressed in (Ahmed-Ali et al., 2016c-d) where exponentially convergent adaptive observers have been designed for linear and semilinear parabolic PDEs involving unknown parameters both in the domain and the boundary. In (Ahmed-Ali et al., 2017b), an adaptive observer design has been developed for cascade systems with parabolic PDE sensing. A similar result has been achieved in (Ahmed-Ali et al., 2016e) in the case of 1 st order hyperbolic PDE sensing. In [START_REF] Aamo | Leak Detection, Size Estimation and Localization in Pipe Flows[END_REF], [START_REF] Anfinsen | An Adaptive Observer Design for n+1 Coupled Linear Hyperbolic PDEs Based on Swapping[END_REF], adaptive observers have been designed for coupled first order linear hyperbolic PDEs involving unknown parameters in the boundaries. The case of 2×2 first-order hyperbolic PDEs has been addressed in [START_REF] Anfinsen | Adaptive Stabilization of 2 × 2 Linear Hyperbolic Systems With an Unknown Boundary Parameter From Collocated Sensing and Control[END_REF]. In the light of the above description, it is seen that quite a few previous works have been devoted to adaptive observer design for hyperbolic PDEs of wave type. In the present study, we develop a new adaptive observer design that applies to wave PDEs with Lipschitz nonlinear dynamics in the domain and unknown parameters in both the domain and the boundaries. The introduction of parameter uncertainty makes it possible to account for uncertain characteristics of the system or of external disturbances acting on its domain or its boundaries. We extend the (finite-dimensional) decoupling-transformation design technique [START_REF] Zhang | Adaptive Observer for Multiple-Input-Multiple-Output (MIMO) Linear Time-Varying Systems[END_REF] to (infinite-dimensional) systems described by hyperbolic PDEs. The first generalization to infinite-dimensional systems has been made in (Ahmed-Ali et al., 2015b, 2016a,c) for systems involving heat type linear PDEs. The novelty of the present study is not only the extension of the approach to wave type PDEs, it is also its generalization to the case where the PDE includes Lipschitz nonlinearities and parameter uncertainty entering all (domain and boundary) equations. The resulting observers include three main components: (i) a state observer which is a copy of the system, augmented with domain and boundary feedback actions; (ii) a parameter adaptive law of the leastsquares type; (iii) an auxiliary filter defined by a hyperbolic PDE, that generates a vector signal defining the search direction for the parameter adaptive law. Finally, we show that the adaptive observer is exponentially stable, provided that the vector signal generated by the filter is persistently exciting. Compared to the conference version [START_REF] Benabdelhadi | Adaptive Boundary Observer Design for a Class of Nonlinear Wave PDEs with Uncertain Domain and Boundary Parameters[END_REF], the present paper includes all technical proofs which were missing in the former. The paper is organized as follows: the considered observation problem is stated in Section 2; the adaptive observer design is presented in Section 3 and its analysis is dealt with in Section 4. To alleviate the exposition, all technical proofs are given in the Appendix.

Notation. Euclidean norms in

n R and m n R (with 0  n ) are denoted  . ] , 0 [ 2 D L
is the Hilbert space of square integrable functions

n D R  ] , 0 [ :  , for some integer 0  n and real 0  D , and  is the associated 2 L -norm. ) 1 , 0 ( 1 H (resp. ) 1 , 0 ( 2 H
) is the Sobolev space of absolutely continuous functions

n D R  ] , 0 [ :  , some integer 0  n , with ] , 0 [ / 2 2 2 D L d d    (resp. ] , 0 [ / 2 D L d d   
). The following Wirtinger's inequality holds, for any scalar function )
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by the following class of wave PDEs:
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The various notation in (2a-c) have the following meaning: . 0  D is the known domain length; .

)
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.

i m i q R  ( 4 , 3 , 2 , 1  i ) are unknown vector parameters. . 1 2  m and    i m 1 ( 4 , 3 , 1  i ) are known integers.
For convenience, we introduce the following augmented (unknown) parameter vector:

  n T T T q q q q R   4 3 2 1  , with 4 3 2 1 m m m m n     (2e) 
The goal of the study is to design an adaptive observer that (3) Remark 1. 1) As pointed out in [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] 

  t x t u u t x u u u f 1 0 , , , ,     and ) 4 1 ( 0    i q i
, equation (2a) reduces to the so-called damped sine-Gordon equation [START_REF] Kobayash | Boundary feedback stabilization of the sine-gordon equation without velocity feedback[END_REF].

2) Compared to [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] where an adaptive observer has been proposed for linear hyperbolic PDEs of wave type, the present study is more general in the sense that the domain equation includes nonlinear dynamics and parameter uncertainty is in the domain and both boundaries. In (Guo et al., 2018) an adaptive output-feedback controller was proposed that only involved a parameter adaptive law (no adaptive state estimation was required there) 

ADAPTIVE OBSERVER DESIGN

Observer structure and error system

Consider the following observer structure, which is a copy of the system model (2a-c) with additional inputs: (i.e. they are set to zero in the case of known  ). The gain a , the couple of feedback functions, and the parameter adaptive law will be selected so that the following state and parameter estimation errors vanish exponentially:
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For convenience, introduce the following notations:
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Then, it readily follows from (2e) and (5b-c) that:
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The error system is obtained by subtracting, side by side, equations (2a-c) and the corresponding ones in (4a-c). Doing so, we obtain the following error system: are identified first. These are obtained from (7a) using (6a): 
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) , ( 1 t x v
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Doing so, equation (8a) boils down to:
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Using the mean value theorem, (6b), ( 6d) and (7a) give:
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where the i  's denote the Lipschitz coefficients of f with respect to the arguments , , t u u and ,

x u respectively. To set the boundary conditions for PDEs (8) and (10), let

D x  in equation (7a):   ) ( ) , ( ) ( ) , ( 4 t t D t t D z      using (6c), where   ) ( 0 ) ( 4 4 4 t t T m n    
. Then, we let:
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For 0 

x , equation ( 7a) and (6b) yield:
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suggests the following definition and boundary condition:
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Doing so, equation (14a) reduces to:
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Adaptive parameter law

Consider equation (7a) and write it at 0 

x so that we get ) , 0 ( ) ( ) , 0 ( ) , 0 ( ~t z t t t u     . Since ) , 0 ( ~t u and ) , 0 ( t  are known
quantities, the above equations turns out to be affine in the unknown vector ) ( ~t  . Therefore, the following least-squares algorithm is a suitable estimator:

T T t t t u t t R t t ) , 0 ( ) , 0 ( 1 ) , 0 ( ) , 0 ( ) ( ) ( ) ( ˆ           (15a) T T t t t R t t t R t R t R ) , 0 ( ) , 0 ( 1 ) ( ) , 0 ( ) , 0 ( ) ( ) ( ) (          (15b)
with initial value ) 0 (  and 0   a forgetting factor both set by the user, where

n n t R   R ) (
is a matrix gain that is expected to be positive definite. To this end, we let 0

) 0 ( ) 0 (   T R R
and assume the following persistent excitation condition to be true:

PE assumption. The vector signal ) , 0 ( t  is persistently exciting (PE), in the sense that, 0 , 0 , 0     t   : I ds s s s s t t T T 0 ) , 0 ( ) , 0 ( 1 ) , 0 ( ) , 0 (           (16)
where I denotes the identity matrix of the matrix space n n R . Technically, ( 16) ensures the existence and positive definiteness of the inverse 1 ) (  t R [START_REF] Ioannou | Robust Adaptive Control[END_REF].

Specifically, there exist scalars

    1 0 0 r r such that: t I r t R I r     , ) ( 1 1 0 (17) It is checked using (15b) that 1 ) (  t R
satisfies the ODE:

T T t t t t t R t R ) , 0 ( ) , 0 ( 1 ) , 0 ( ) , 0 ( ) ( ) ( 1 1             (18) where ) ( 1 t R   denotes the time derivative of ) ( 1 t R  .

Complete adaptive observer

The full adaptive observer is constituted of the state estimator defined by (4a-c), ( 9) and (14b), the parameter adaptive law defined by (15a-b), and the filter defined by (10) and the boundary conditions (13a) and (14c). For convenience, the whole observer thus defined is recapitulated in Table 1. 
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, with any 0  a and initial condition satisfying

u H u ) 0 (., ˆ , ) , 0 ( ) 0 (., ˆ2 D L u t  with  ; ) 0 ( ) 0 ( ) 0 ( ) ( / ) , 0 ( 4 4 1 ˆq U D D H H u         ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 ( 3 3 2 q q x       Parameter estimator: ) , 0 ( ) , 0 ( ) , 0 ( 1 ) , 0 ( ) ( ) ( ˆt u t t t t R t T T         ; n t R  ) (  (19d) ) , 0 ( ) , 0 ( 1 ) ( ) , 0 ( ) , 0 ( ) ( ) ( ) ( t t t R t t t R t R t R T T          ; n n t R   R ) ( (19e) with 0   , ) 0 (  , 0 ) 0 ( ) 0 (   T R R
arbitrary.

Filter:

) , ( ) , ( ) , ( 1 t x t x t x xx tt      ; n   1 R  (19f) ) , 0 ( ) ( ) , 0 ( 2 t a t t t x      , (19g) 0 ), ( ) , ( 4    t t t D   (19h) with n T m n t x t     1 1 1 ] 0 ) , ( [ ) ( 1 R   (19i) n T m T m t t u t     1 3 2 ] 0 ) ( ) , 0 ( 0 [ ) ( 4 1 R   (19j)   n T m n t t     1 4 4 ) ( 0 ) ( 4 R   (19k) and   H  ) 0 (., , ) , 0 ( ) 0 (., 2 D L t   with  ; ) 0 ( ) ( / ) , 0 ( 4 1        D D H H  ) 0 ( ) 0 ( ) 0 ( 3 4 q x    Remark 2.
Like the adaptive observers in [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] and (Guo et al., 2018), the present adaptive observer requires both ) , 0 ( t u and ) , 0 ( t u t

. Except for this similarity, the present adaptive observer is quite novel. In effet, the main objective in (Guo et al., 2018) was to design a boundary output-feedback control of a wave PDE where parameter uncertainty came in solely through a structured boundary disturbance. Accordingly, the proposed controller only involved a parameter estimator (as no state observer was necessary). A nearly similar control problem was studied in [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF], but the output-feedback controller proposed did involve an adaptive state observer. Again, parameter uncertainty entered only one boundary disturbance, unlike in the present study where parameter uncertainty comes in the domain and both boundary equations. Furthermore, Table 1 shows that the present observer is quite different from existing ones because it involves two innovation actions entering the domain and one boundary equation, while the adaptive observer in e.g. [START_REF] Guo | Parameter estimation and noncollocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] only involved an innovation action in one of the boundary equations 

ADAPTIVE OBSERVER ANALYSIS

The analysis will mainly consist in proving that the observer error system ) , ( 

D t x M x t              with ) (D M  a polynomial satisfying 0 ) 0 (  M   See Appendix A for the proof of this lemma.
For convenience, let us rewrite equations ( 11), (13b), (14d), (15a) and ( 18) which describe the ) , ( 

z -system:   t x f t x z t x z xx tt , ) , ( ) , (   (20a) t t D z   , 0 ) , ( (20b) 
) , 0 ( ) , 0 ( t az t z t x  (20c) T T T T t t t z t t R t t t t t t R t ) , 0 ( ) , 0 ( 1 ) , 0 ( ) , 0 ( ) ( ) , 0 ( ) , 0 ( 1 ) ( ) , 0 ( ) , 0 ( ) ( ) ( ~               (20d) T T t t t t t R t R ) , 0 ( ) , 0 ( 1 ) , 0 ( ) , 0 ( ) ( ) ( 1 1             (20e)
where ( 20d) is obtained from (15a), using (7a). The analysis of the above error system is performed by making use of the following Lyapunov functional and function:

    D t D x z dx t x z dx t x z t V 0 2 0 2 ) , ( 2 
1 ) , ( 2 
1 ) (     D t x dx t x z t x z D x 0 ) , ( ) , ( ) 2 (  (21) ) ( ) ( ) ( 2 1 ) ( 1 ~t t R t t V T      ( 22 
)
with any scalar 2 / 1 0    . It is readily checked that the functional ( 21) and the function ( 22) has the following properties:

      D t D x dx t x z dx t x z 0 2 0 2 ) , ( ) , ( ) 2 1 (          D t D x z dx t x z dx t x z t V 0 2 0 2 ) , ( ) , ( ) 2 1 ( ) (  (23) 2 1 2 0 ) ( 2 ) ( ) ( 2 t r t V t r      (using 18b)) (24) 
To state the main result, we also introduce the following notations:

2

) ( 2 2 1 1 1 D D M def         2 3 2 2 3       (25) 2 1 2 1 3 1 2 2 0 2 2 1 2 2 ) ( 4 2 ) ( 2 2                       D D D Dr D D M M def 3 2 2 0 2 3 )) ( 2 1 (        D D r M (26) 2 ) ( ) ( ) ( ) ( 2 ) ( 3 2 1 2 0 3 2 1 3 D D D D r D D D D M M M M M def                  ) ( 2 ) ( ) ( 2 3 2 3 2 0 2 D D D D r M M M           ( 27 
)
where  is as in (21). Then, the main result states as follows:

Theorem 1. Consider the system described by (2a-d) subject to PE assumption ( 16) and the adaptive observer of Table 1. Let us further assume that the system parameters ) , , , (

3 2 1    D
and the parameter a are such that the following inequalities hold: 

   2 1 a a , 0 1   , 0 2   , 1 0 4    (28) with      0 0 3 4 2 ) 2 1 ( 4 r D   , ) , min( 2 1 0     (29)
D D H H u        ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 ( 3 3 2 q q x       
The proof of Theorem 1 includes three parts. First, using ( 21 

  D x x dx t x z t z 0 2 2 ) , ( ) (., ,   D t t dx t x z t z 0 2 2 ) , ( ) (., (31) 
Then, using ( 22) and ( 24), we show that the mapping (inverse)

) ( )] (., ) (., [ t t z t z t x  
is also ISS. Finally, invoking a smallgain-theorem like argument, we establish the result of Theorem 1. Being a bit long, the detailed proof is placed in Appendix B.

Remark 3. 1) In view of ( 25)-( 27), the last three inequalities in (28) entail conditions on the system characteristics ) , , , (

3 2 1    D . Accordingly, we cannot have D and ) , , max( 3 2 1   
simultaneously large. If the former is large, the latter must be small and vice-versa. In the particular case of linear systems, i.e. when f is null in (2a-c), then ) , , max(

3 2 1   
is zero and, consequently, D is allowed to be arbitrarily large. Of course, Theorem 1 provides sufficient conditions for the observer exponential convergence. No formal analysis is currently available of whether the conditions are necessary.

2) The above comment highlights the fact that the presence of the nonlinearity f entails a limitation on the admissible domain length D . This limitation stands even in the absence of parameter uncertainty, see e.g. the LMIs in [START_REF] Fridman | Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method[END_REF][START_REF] Fridman | New stability and exact observability conditions for semilinear wave equations[END_REF][START_REF] Terushkin | Sampled-data observers for semilinear damped wave equations under spatially sampled state measurements[END_REF].

3) The first inequality in (28) entails a condition on the observer gain a . Accordingly, the gain must be positive. The value 1  a is particularly interesting as then the condition is satisfied for all 2 / 1 0    

SIMULATION

Throught this section, the finite difference method is used to simulate both the system and observer, with time step and space step of 0.01 and 0.011, respectively. We used spatial grid size . 91  N

To illustrate the theoretical result of Theorem 1, we consider the following system, which is of the form (2a-e):

1 1 ) , ( ) , ( ( ) , ( ) , ( q t x t x u f t x u t x u xx tt     , 1 0  
x , 0  t with the mixed boundary conditions:

3 3 2 ) ( ) , 0 ( ) , 0 ( q t t u q t u x     , 0  t 4 4 ) ( ) ( ) , 1 ( q t t U t u    , 0  t where )) , ( sin( ) , ( ( 1 t x u t x u f   ,          t t D x A t x ) sin( ) sin( ) , ( 13 12 11 1 1     ,   ) 4 , 3 ( ) sin( ) sin( ) 2 1    i t t A t i i i i    ,   ) sin( ) sin( ) ( 2 1 0 t t A t U    
. For simulation purpose, the parameters of the system and associated signals are given the following values: 8

. 0 1  q , 1 2  q , 5 . 0 3  q , 2 4  q ,   3 1  ,   2 . 1 2  1 , 2 , 2 4 3 0 1 1      A A A A  , , 2 . 0 , 24 . 0 , 2 . 0 13 12 11                  5 . 1 , 2 , 5 . 0 , 2 . 0 42 41 32 31     .
The system initial conditions are 2 ) ( ) 0 , (

0   x u x u , 0 ) 0 , ( ) 0 , (   x u x u x t , for all ) 1 , 0 [  x and 0 ) 0 ( ) 0 ( ) 0 , 1 ( 4 4    q U u  .
We apply the adaptive observer of Fig. 1 shows the time evolution of the state estimate ) , ( t x u at two particular positions in the domain, as well as the corresponding estimates. Clearly, the estimates get very close to their true variables after a transient period of

). ( 4s Fig. 2 shows that the result holds for the state ) , ( t x u , for all 1 0   x . Fig. 3 shows that the parameter estimation quality is also quite satisfactory as the estimates are accurate after just a transient period of

). ( 4s The above observations confirm the theoretical asymptotic performance stated in Theorem 1. 

CONCLUSION

We have investigated the problem of adaptive observer design for the class of hyperbolic systems of wave type described by (2a-c). The complexity lies in the nonlinearity entering the domain and the parameter uncertainty entering the domain equation and both boundary equations. The proposed observer involves both domain and boundary output injection, and so differs from the other existing adaptive observers which only involve boundary correction. The present research can be pursued in many directions. One topic for possible future investigations is the extension of the proposed adaptive observer design approach to n-D domain PDEs. The case of n-D domains of regular shapes (e.g. rectangular) should not be an issue. However, it is not clear whether the approach can be extended to more general shape domains (of higher dimension).

Fig. 2. State estimation error ) , ( ) , ( ) , ( ~t x u t x u t x u   , 1 0   x Fig. 3
. Fixed value of the parameters 4 1 q q  (dashed), and their estimates (solid): 1 q (top) and 4 q (bottom).

APPENDIX A. PROOF OF LEMMA 1

To analyze the system (19f-h), we consider the following Lyapunov functional candidate (similar to (20)):

    D t D x dx t x dx t x t V 0 2 0 2 ) , ( 2 
1 ) , ( 2 
1 ) (        D t T x dx t x t x D x 0 ) , ( ) , ( ) 2 (    (A1) with any . 2 / 1 0   
It is readily checked that:

      D t D x dx t x dx t x 0 2 0 2 ) , ( ) 2 1 ( ) , ( ) 2 1 (           D t D x dx t x dx t x t V 0 2 0 2 ) , ( ) 2 1 ( ) , ( ) 2 1 ( ) (      (A2)
The time-derivation of 

V gives, using (19f):

    D tt T t D xt T x dx t x t x dx t x t x t V 0 0 ) , ( ) , ( ) , ( ) , ( ) (           D t T xt dx t x t x D x 0 ) , ( ) , ( ) 2 (        D tt T x dx t x t x D x 0 ) , ( ) , ( ) 2 (    (A3)
Applying the integration by part to the first term on the right side of (A3) becomes:

   D tx T x D xt T x dx t x t x dx t x t x 0 0 ) , ( ) , ( ) , ( ) , (       ) , 0 ( ) , 0 ( ) ( ) ( ) , ( 2 4 t t a t t t D t T t T x            D t T xx dx t x t x 0 ) , ( ) , (   0 2 4 2 0 2 0 2 ) ( ) , 0 ( ) 2 ( ) , ( 2       t t a t D t x         D t T xx dx t x t x t 0 0 2 2 ) , ( ) , ( 2 
) (     (A4) for any real scalar 0 , 0 0   
, where the first equality is obtained using similar argument as in [START_REF] Fridman | New stability and exact observability conditions for semilinear wave equations[END_REF], the second equality is obtained using an integration by part and (19g-h), the last inequality is obtained applying Young's inequality. Similarly, the remaining terms on the right side of (A3) are bounded as follows:

 D tt t dx t x t x 0 ) , ( ) , (     D xx t dx t x t x 0 ) , ( ) , (     D t dx t x 0 2 1 ) , ( 2     D dx t x 0 2 1 1 ) , ( 2 1   (A5)
for any scalar 0 1   , where the last inequality is obtained using Young's inequality. In turn, the third term on the right side of (A3) develops as follows, applying integration by part:

   D t xt dx t x t x D x 0 ) , ( ) , ( ) 2 (    ) , 0 ( ) ( 2 2 4 t t t          D t dx t x D 0 2 ) , (   (A6)
The last term on the right side of (A3) gives, using (19f):

   D tt x dx t x t x D x 0 ) , ( ) , ( ) 2 (        D xx x dx t x t x D x 0 ) , ( ) , ( ) 2 (        D t x dx t x t x D x 0 ) , ( ) , ( ) 2 (        D x dx t x t x D x 0 1 ) , ( ) , ( ) 2 (    ) ( 2 ) , 0 ( 2 ) , ( 2 2 2 2 2 2 t t a t D t x            D x dx t x D 0 2 ) , ( 2       D t D x dx t x dx t x 0 2 2 0 2 2 ) , ( ) , (          D D x dx t x dx t x 0 2 1 3 0 2 3 ) , ( ) , (      (A7)
For any real scalar 0 , 3 2   

. Using (A4) to (A7) and rearranging terms, inequality (A3) gives:

) , 0 ( 2 2 ) , ( 2 2 ) ( 2 2 0 2 0 t a a t D t V t x                                      D t dx t x D 0 2 1 ) , ( 2       D x dx t x D 0 2 3 ) , ( ) 2 (    ) ( 2 1 ) ( 2 1 2 2 4 0 2 2 0 t t                                       D dx t x 0 2 1 3 1 ) , ( 2 1     (A8)
Let the free scalar  be small so that:

0 2 2    a a   (A9)
Then, we let the remaining free positive scalars be as follows (this is not a unique choice):

2 0    , 2 0 2 a a       , D    1 ,   2 2  , D 4 1 3   .
Doing so, it is readily checked that:

0 2 2 , 0 2 2 2 0 0       a a      (due to (A9)) (A10) 0 2 2 1    D D    , 0 4 2 3    D D    (A11)
where la last inequality is a consequence of the second part of (A12). In view of ( 13)-(A5), it follows from (A11) that:

   D t dx t x D t V 0 2 ) , ( 2 ) (     ) ( ) , ( 4 0 2 D dx t x D M D x       ) ( ) ( ) 2 1 ( D t V D M         (A12)
using (A2), with M  a positive real constant defined as follows:

                           2 4 2 2 2 1 ) 2 ( 2 1 2 ) ( d M M a a D                      D D D M 2 1 4 2    (A13) ), ( sup ), ( sup 2 4 2 4 2 2 2 2 t t t d t M        ) , ( sup 2 1 0 0 2 1 t x t D x M       (A14)
Applying the comparison theorem to (A12), we get that

) ( ) 2 1 ( ) ( sup lim D D t V M t        
. The rest of the proof is straightforward using (A2) and ( 1 

 (B1)

In the next lines, the different terms on the right side of (B1) will be focused on. The aim is to show that the right side of (B3) is bounded by

) (t V z  . According to Lemma 1 we have ) ( ) , ( max 1 0 D t x M x     
, for t sufficiently large. This result will be used several times in the sequel but, to alleviate the text, it will not be recalled each time that the result holds for t sufficiently large. The first term on the right side of (B1) is processed as follows:

   D tx x D xt x dx t x z t x z dx t x z t x z 0 0 ) , ( ) , ( ) , ( ) , (     D t xx t dx t x z t x z t az 0 2 ) , ( ) , ( ) , 0 ( (B2)
where the first equality is obtained using similar argument as in [START_REF] Fridman | New stability and exact observability conditions for semilinear wave equations[END_REF] and the second by applying an integration by part and the boundary conditions (20b-c).

The second term on the right side of (B3) develops as follows, using (20a), (12a-b) and Lemma 1 and applying Young's inequality several times:

 D tt t dx t x z t x z 0 ) , ( ) , (   D xx t dx t x z t x z 0 ) , ( ) , (   D t dx t x z t x z f 0 1 ) , ( ) , ( (.)   D t dx t t x t x z f 0 1 ) ( ) , ( ) , ( (.)   dx t t x t t x t x z t x f t x z D t t t           0 2 ) ( ) , ( ) ( ) , ( ) , ( ) , ( ) , (        dx t t x t x z t x f t x z D x x t    0 3 ) ( ) , ( ) , ( ) , ( ) , (     D xx t dx t x z t x z 0 ) , ( ) , (     D D t dx t x z dx t x z 0 2 1 0 2 1 ) , ( 2 ) , ( 2   2 1 0 2 1 ) ( 2 ) ( ) , ( 2 t D D dx t x z M D t M         dx t x z D t   0 2 2 ) , (  2 2 0 2 2 ) ( ) ( 2 ) , ( 2 t D dx t x z M D t        dx t x z D t   0 2 2 ) , ( 2       2 2 0 2 2 ) ( ) ( 2 ) ( 2 t r D D D M M           D x M dx t x z r D 0 2 2 0 ) , ( ) ( 2 dx t x z dx t x z D x D t     0 2 3 0 2 3 ) , ( 2 ) , ( 2 
  2 3 0 2 3 ) ( ) ( 2 ) , ( 2 t D dx t x z M D t        (B3) with ) (D M 
as in Lemma 1, where we have used the inequality:

     D x M M dx t x z D r t D r t 0 2 2 0 2 2 2 0 2 ) , ( ) ( 2 ) ( ) ( 2 ) ( ~     ( 46 
)
where we have used (20d), (20b) and (1). Applying integration by part, the third term on the right side of (25) writes as follows:

   D t xt dx t x z t x z D x 0 ) , ( ) , ( ) 2 (  ) , 0 ( 2 t z t     D t dx t x z D 0 2 ) , ( 2 
 (B5)
Using (20a), the last term on the right side of (B1) is bounded from above as follows, where the arguments of z ,  and the i f 's are omitted to alleviate the expressions:

   D tt x dx z z D x 0 ) 2 (      D xx x dx z z D x 0 ) 2 (      D x zdx f z D x 0 1 (.) ) 2 (      D x dx t f z D x 0 1 ) ( (.) ) 2 (        D t x dx z f z D x 0 2 (.) ) 2 (      D t x dx t f z D x 0 2 ) ( (.) ) 2 (        D x dx t f z D x 0 2 ) ( (.) ) 2 (         D x dx f z D x 0 3 2 (.) ) 2 (      D x x dx t f z D x 0 3 ) ( (.) ) 2 (    (B6)
The various terms on the right side of (B8) are further processed in the next lines. Applying an integration by part to the first term one gets, using the boundary conditions (20b-c):

   D xx x dx t x z t x z D x 0 ) , ( ) , ( ) 2 (  ) , 0 ( ) , ( 2 2 2 2 t z a t D z t x        D x dx t x z D 0 2 ) , ( 2 
 (B7)
Applying Young's inequality to the two terms containing (.) 1 f on the right side of (B8) and using (12b) and Lemma 1, we respectively get:

   D x dx t x z f t x z D x 0 1 ) , ( (.) ) , ( ) 2 (      D D x dx t x z dx t x z 0 2 1 0 2 1 ) , ( ) , (   (B8)    D x dx t t x f t x z D x 0 1 ) ( ) , ( (.) ) , ( ) 2 (    2 1 0 2 1 ) ( ) ( ) , ( ) ( t D D dx t x z D M D x M         (B9)
The next three terms containing (.) 2 f on the right side of (B6) are similarly handled. The first of the three gives, applying Young's inequality and using (12b):

   D t x dx t x z f t x z D x 0 2 ) , ( (.) ) , ( ) 2 (      D t D x dx t x z dx t x z 0 2 2 0 2 2 ) , ( ) , (   (B9)
The second term in (.) 2 f on the right side of (B6) yields, using Young's inequality:

   D t x dx t t x f t x z D x 0 2 ) ( ) , ( (.) ) , ( ) 2 (    2 2 0 2 2 ) ( ) ( ) , ( t D dx t x z M D x        (B10)
The last term containing (.) 2 f on the right side of (B6) implies:

2 2 0 2 2 0 2 ) ( ) , ( ) ( ) , ( (.) ) , ( ) 2 ( t D dx t x z dx t t x f t x z D x M D x D x                      D x M dx t x z D r 0 2 2 0 2 2 ) , ( 2 1   2 2 0 3 2 ) ( 2 t D r M      (B11)
where we have used (B4) in the last inequality.

The last couple terms containing (.) 3 f , on the right side of (B6), are next processed in order. First, the penultimate term is simply bounded from above, using (12b):

     D x D x dx t x z dx t x f t x z D x 0 2 3 0 3 2 ) , ( 2 ) , ( ) , ( ) 2 (   (B12)
The last term, on the right side of (B8), is bounded as follows, using (12b) and applying Young's inequality: 

   D x

Fig.

  Fig. 1. State ) , ( t x u (dashed) and its estimate ) , ( ˆt x u (solid) for 1 . 0  x (top) and 7 . 0  x (bottom)

Table 1 .

 1 Adaptive state observer

	State observer:

Table 1

 1 

	to get state