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ABSTRACT 10 
 
The present study investigates the determinants of the volatility of passenger demand for 

paratransit services and explores the feasibility of a data-driven model for medium-term forecast of 
the daily demand. Medium-term demand forecasting is a significant insight to optimise resource 
allocation (staff and vehicles) and reduce operations costs. Using operational data from the 15 
reservation platform of the paratransit services in Toulouse, France, and enriching them with 
exogenous information, the study derives statistical and deep learning models for medium-term 
forecast. These models include a seasonal ARIMAX model with rolling forecast, a Random Forest 
Regressor, a LSTM neural network with exogenous information and a CNN neural network with 
independent variables. The seasonal ARIMAX model yields the best performance, suggesting that 20 
when linear relationships are considered, econometric models and deep learning models do not have 
significant differences in their performance. All the models show limited ability to grasp unique 
events with multi-day impacts such as strikes. Albeit a highly volatile demand and limited knowledge 
ahead of the forecast, these models suggest the volume of early reservations is a good proxy for the 
daily demand.  25 

 
1 INTRODUCTION  

 
The United Nations (UN, 2018) project that by 2050 the world population living in urban 

areas will grow to 68% compared to 2018 where the urban population of 4,2 billion accounts to 55% 30 
of world population. This increase is believed to increase urban passenger transport by 60-70% by 
2050 (OECD-ITF, 2018), while the car remains the main mode of transport. Various initiatives exist 
to develop mass transit systems, mainly in dense areas where high passenger flows can justify the 
investment and operation expenditures.  

To provide an adequate alternative to private cars it is essential to complement the high 35 
performance transportation network with services which are better adapted to these particular cases: in 
low-density areas, during certain periods of the day and week (night hours, weekend, …) and for users 
with specific needs (seniors, reduced mobility, …). That can be addressed with demand-responsive 
transportation (DRT) services, where small- and medium- sized vehicles adapt the services to the 
specific demand (Alonso-Gonzalez et al., 2018). The sanitary context in 2020 urged various transit 40 
networks replace the fixed-route services with demand-responsive ones. Changing mobility patterns 
and caution with high-occupancy vehicles lays ground for the emergence of Mobility as a Service and 
demand-responsive services.  

In addition, current technology trends new information technologies and app-based 
reservation platforms increase the service reactivity with real-time reservation and vehicle location 45 
tracking. Attard et al (2020) suggest the three-part IT architecture for the deployment of efficient 
demand responsive transit. These technologies, combined with Mobility as a Service (MaaS), drive 
the reinvention of transit services as a whole (Shaheen and Cohen, 2020). The combination of public 
policy towards shared mobility and technological development makes DRT service ideal to fill the 
gap of First-Mile-Last-Mile (FMLM) and paratransit services, providing an almost seamless inclusive 50 
urban transportation system. Coutinho et al (2020) compare fixed routes and DRT services in a real 
case study to show that the latter offer a better operational performance as of vehicular kilometers, 
operational cost and greenhouse gas (GHG) emissions per passenger.  

Demand Responsive Transportation services are subject by definition to a volatile demand, 
more so if they are focused on non-constraint journeys, such as the ones motivated by leisure 55 
activities or purchases. Rahimi et al (2018) establish a link between the cost efficiency of large-scale 
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DRT operations and the demand, the service area and the demand density. Palmer et al (2008) suggest 
a positive impact on productivity when using automatic grouping of the requests. A DRT operator, in 
regards to the Level of Service Agreement with its clients (B2C) or public authorities (B2G), needs to 
anticipate the size of the operational fleet and the number of the employees needed to meet the 
demand. Overestimating them, leads to slack resources and increased production costs. An 5 
underestimation of the daily demand may lead to non-captured revenues, a loss of the customer image 
or specific penalties from the transportation authorities. Having a better knowledge on travel demand 
behavior of the potential customers and improving the forecast tools of passenger demand allows a 
near to real-time optimization of the vehicle fleet, along with the vehicle maintenance planning and 
the drivel and personnel scheduling.  10 

The paper seeks to shed some light to the main variables affecting demand variability. In 
addition, it seeks to examine the feasibility of an operational model able to provide, via endogenous 
information, reservation trends and exogenous information (holidays, weather, etc.), an adequate 
forecasting of the number and type of reservations 7 days in advance or prior, when crew scheduling 
is done according to the transit network collective agreement. The direct and indirect impacts of an 15 
improved forecast are translated operationally to:  

• A reduction of production costs through a reduction of the number of idle drivers
• An increase of commercial revenue, by reducing the refusal rate for late reservations
• A guarantee of a good image to the local transport authorities, therefore better

chances to maintain the contract20 
The present paper is structured in 6 parts as follows: After a brief introduction, section 2 

reviews existing research on short-term forecast in traffic flow and passenger transportation networks. 
Section 3 describes the site and the demand data used for the modelling, as well as the pre-processing 
and feature engineering processes. Section 4 formalizes the modelling architecture, while section 5 
explores the specification and validation of the set of predictive models used for the short-term 25 
forecast. In conclusion, section 6 interprets and compares the main outcomes of the models and sets 
out some areas of future research.  

2 BACKGROUND ON SHORT TERM FORECASTING MODELS 
30 

The short-term forecasting in transportation is a vivid research area, especially in recent years. 
The main topics address flow and travel time forecast in road traffic and public transportation context. 
In Vlahogianni et al (2014) the authors do an extensive review of neural network approaches in road 
traffic modelling and they set the main challenges in that area. The authors suggest the model 
interpretability, or lack of thereof, is one of the barriers for adopting more sophisticated deep learning 35 
models in traffic operations.  

Karlaftis and Vlahogianni (2011) lay out a thorough comparison between statistical and 
neural networks in transportation, focusing mainly in road traffic. Karlaftis and Vlahogianni (2009) 
examine long-term processes for ARIMA models captured through fractional integration. Their study 
points out that over-differentiation tends to over-inflate the MA component of the model, thus 40 
weakening the quality of the results. Novel approaches in short-term forecasting of traffic flow speeds 
include Polson and Sokolov (2017) who develop a deep learning approach based on a regularization 
process to reduce the non-linearity of the traffic state transitions and Wang et al (2014) who propose 
Bayesian combination approach factoring the prediction errors in order to improve the prediction. In 
the public transportation setting, Farid et al (2016), among multiple data-driven models, suggest the 45 
Support Vector Regression (SVR) model is more accurate in the short-term forecast of bus travel 
times. Lin et al (2018a) introduces a Particle Swarm Optimization and Extreme Learning Machine 
(PSO-ELM) neural network to quantify the uncertainty in short-term traffic prediction by examining 
the reliability and the sharpness of the Prediction Interval (PI).  

Transit systems, TNC and micromobility operators pursue the digitalization of the production 50 
and client outreach processes, accumulating large amount of data. These are often used in the 
development of short term demand prediction models for mass transit services and micromobility 
schemes. Lin et al (2018b) explore various Graph Convolutional Neural Networks with Data-driven 
Graph Filter (GCNN-DDGF) models to predict station-level hourly demand in a large-scale bike-
sharing network. The graph approach of these models with the associate neural network architecture 55 
captures efficiently hidden correlations among bike-sharing stations.  
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The use of smart card data for demand forecasting is widely explored. Van Oort et al. (2015) 
propose a smartcard data-driven model for the analysis of transit service variations. Dai et al (2018) 
build on smartcard tap-on and tap-off date to develop short-term metro passenger flow forecast 
through a combination of a probabilistic model selection and random forest classification model. In 
Gong et al. (2014) the authors develop a three step model based on seasonal ARIMAX model, an 5 
event-based method and a Kalman Filter based method to forecast short-term passenger flow at bus 
stops. Moreira-Matias and Cats (2016) propose a model through local constrained regression to infer 
passenger loads through automatic vehicle location data (AVL). Ma et al. (2013) specify an 
Interactive Multiple Model-based Pattern Hybrid approach for short-term demand forecast by 
developing pattern model based on historical demand data and dynamically optimize the interaction 10 
between them using real-time observations.  

Noursalehi et al (2018) propose a two-level approach for the short term prediction of 
passenger flows in transit stations. On the station level the authors opt for a univariate state-space 
model. A hierarchical clustering algorithm identifies similarities between stations and regroups them. 
Within each cluster, a dynamic factor model grasps the interdependencies between the stations. Toque 15 
et al. (2017) use LSTM and Random Forest models for short-term (15 and 30 minutes windows for 
rail and buses) and long-term (one-year) for demand forecasting in multimodal transportation 
facilities. Guo et al (2019) use an approach based on the fusion of Support Vector Regression (SVR) 
and long short-term memory (LSTM) neural network to predict abnormal passenger flows in a metro 
station. Ke et al (2017) propose a fusion convolutional long short-term memory architecture (FCL-20 
Net), integrating spatio-temporary and non-spatial time-series variables for short-term forecasting of 
passenger demand of demand-responsive services.  

Short-term prediction of demand-responsive transit schemes is a topic most frequently 
overlooked. However, the digitalization of the operations is a major driver for the creation of new 
categories of models in a real-time setting. Koffman and Lewis (1997) make the argument of the 25 
importance of adequately forecasting the demand for the optimal design of paratransit services. 
Benjamin et al (1998) explore the determinants of choice of paratransit services and develop an 
econometric model to address mode choice. Furthermore, Deka and Gonzales (2014) provide a spatial 
structure of paratransit trips, by identifying potential trip generators.  

The present study builds on previous scientific contributions both in short-term predictive 30 
models and in demand-responsive paratransit services. It expands the scope of the existing models, 
and provides a comparison of existing and novel models for short-term demand forecast. These 
contributions improve the understanding of the determinants of the demand variability and contribute 
on the understanding of theoretical and practical implications of machine learning and deep learning 
models on demand-responsive transit operations. 35 

 
3 SITE AND DATA DESCRIPTION  

 
The paper is focused in the paratransit services (Tisseo, Mobibus) in Toulouse, France. This 

service is operated through a Public Service Obligation Contract. The company has 58 vehicles of 40 
various sizes (from 3 to 12 passengers) and 75 employers (of which 60 drivers). It is operating during 
weekdays from 7:00 am to 0:30 am and weekends and bank holidays from 9:00 am to 0:30 am. The 
reservations open 28 days prior (D-28) and can be made at the latest 2 hours (H-2) before the 
departure. No reservation is accepted if the period between the reservation and the trip is shorter than 
2 hours. Furthermore, once a reservation is made (from D-28 to H-2), the client can modify or cancel 45 
it for free up to 2 hours (H-2) before the departure. These reservations are subject to grouping, in 
order to optimize the services and reduce production cost. The drivers’ collective agreement stipulates 
the drivers’ shifts are determined 7 days in advance (D-7). Further tuning of drivers schedules up to 
D-1 is based on negotiation and mutual agreement, but usually incur high marginal costs.  

 50 
3.1 The initial database 

The data acquired correspond to the data of reservation platform of the paratransit operations. 
This relational database stocks all data relevant to reservations management, staff and vehicle 
scheduling and service optimisation. The initial operational database may contain personal data 
subject to the General Data Protection Regulation (GDPR). However, the data extracted are 55 
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anonymous. Further analysis and treatment is grouped in such ways as to not be able to determine any 
personal data of the clients. 

The relevant demand data are further extracted into a plain table, where each observation 
corresponds to a reservation, completed or cancelled. The data concern a period of roughly 4 years 
(1478 days from 25/05/2015 to 10/06/2019) and total 736 019 observations. Further transformation of 5 
the database includes the identification of the service category (mode), through the tariff rate. The 
structure of the reservation data is illustrated in Table 1.  
 

Table 1. Data structure 

Column Type Description 

REFCON Int Reservation Unique ID 

JOUR (DAY)                                Datetime Trip date 
IDCLIENT Int Client Id 
IDSERVICE Int Id of the service 
IDMAITRE (IDPRIMARY) Int Id of primary client (in case of 

grouped trips) 
ADRDEB_ID (ADRDEP_ID) Int Id of the departure address (closest 

node of the route graph)  
ADRDEB_CP (ADRDEP_ZIP) Int ZIP Code of departure.  
ADRDEB_VILLE (ADRDEP_CITY) Char Departure borough name 
ADRFIN_ID (ADRARR_ID) Int Id of the arrival address (closest node 

of the route graph) 
ADRFIN_CP (ADRARR_ZIP) Int ZIP Code of arrival. Float 

transformed to Integer  
ADRFIN_VILLE (ADRARR_CITY) Char Arrival borough name 
HDEB_PLANIFIEE (TOD_PLANNED) Datetime Planned time of departure 
HFIN_PLANIFIEE (TOA_PLANNED) Datetime Planned time of arrival  
DATE_CREATION (DATE_INIREQUEST) Datetime Date the initial reservation was made  
DATE_MODIFICATION Datetime Date of last modification of the 

request 
IDAUTORISATION Int Tariff Id  
IDCATEGORIE (IDCATEGORY) Int Trip purpose 
KMS_MISSION_DIRECT Float Distance of a direct trip 
KMS_MISSION_REEL 
(KMS_MISSION_REAL) 

Float Distance of planned trip (with 
grouping) 

DUREE_MISSION_DIRECT 
(DUR_MISSION_DIRECT) 

Float Direct trip length in minutes 

DUREE_MISSION_REEL 
(DUR_MISSION_REAL) 

Float Planned trip length in minutes 

COMPLETED Boolean The reservation is completed 
MODE Char Service category 

 10 
3.2 The spatial distribution of the data  

The density of the departures and arrivals per ZIP code is further explored. Furthermore, 22% 
of the trips are made within the same ZIP code. This ratio approaches 49% if the municipality 
boundary is considered as a level of aggregation. That illustrated the short distance of the trips which 
makes the trip aggregation harder. Figure 1 illustrates the ratio of departure and arrival addresses per 15 
ZIP code. That highlights the volumes of the Toulouse municipality in the center, as it corresponds to 
61% of departing trips. Furthermore, the data show some symmetry between departures and arrivals 
for each ZIP code area.   
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Figure 1. Density of departures and arrivals per ZIP code 

 
3.3 The temporality of the data 

Due to the inherent volatility of the demand, the data are explored with respect to their 5 
temporal structure. The weekly demand, as illustrated in Figure 2(a), suggests a positive linear trend 
of the demand, as well as some seasonality, accounting for Christmas, summer holidays and spring 
holidays in May, along with a significant effect of bank and school holidays. The day-to-day variation 
of the demand (Figure 2(b)) during a 4 month period shows to a greater extent the variability during 
weekday and weekend. Since the initial data at the moment of the extraction included future dates of 10 
trips, the analysis is limited to the period until 30/04/2019. 
 

 

 
Figure 2. Volume of (a) weekly completed reservations during the simulation period (top) and (b) daily 

completed reservations during October-2018 – February 2019 period (bottom) 

 15 
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Further analysis seeks to identify whether this profile is sensible to the type of service and 
type of day (weekday, weekend, … ). The data analysis focuses on within-day dynamics of 
reservation. Figure 3 illustrates reservation volumes per 15 minute time-step per day of the week. It 
suggests significant difference with respect to the day of the week and an important variability per 
type of day throughout the years. Nevertheless, some within-day patterns of the demand per type of 5 
day are visible.  

Figure 3. Reservation volume per 15 minute time-steps per day of the week for individual days (grey) 

and mean (red) 10 
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3.4 The qualitative attributes of the data 
Addressing the qualitative characteristics of the demand, the acceptance ratio is roughly 71%, 

while a slight variation of this ratio is observed throughout the year and within the day, as illustrated 
in Figure 4. 

 5 

 
Figure 4. Reservation acceptance rate per day  

 
The mode variable accounts for the service type demanded are illustrated below. The “Le Lien” 

service has a very low number of observations, making their characteristics non-representative in 10 
statistical sense at that level of aggregation.  

 
Table 2. Service characteristics 

ID Name Characteristics Price # Observations 

(Tot = 736 069) 

A2A Address-to-
Address 

Pick-up and drop-off are 
made at the desired address 

1,10 – 1,35 whether it’s 
peak or off-peak  

239 116 

D2D Door-to-Door Like A2A, where the driver 
accompanies the client up to 
the door 

Like A2A with 
additional charge for 
accompany person 

494 983 

Le 
Lien 

Metro 
connection 

Connection to metro or BRT 
transit services 

Free of charge 1 920 

 
The journey duration with 15 minute time steps is further described, with respect to the 15 

volume of departures. Travel times have an average value of 00:27:24 and standard deviation of 
00:15:48. The travel time per reservation seems to be sensible to morning and evening peak hours, 
since vehicles are subject to general traffic. Nevertheless, the travel times do not seem to be impacted 
by the number of reservations. The average travel times seem to be lower during the noon off-peak 
period compared to the evening off-peak one. Differences in travel times may be attributed to longer 20 
route distances. Nonetheless, travel time is an appropriate proxy of service production per reservation, 
since the size of the service is marginal and it does not impact general car traffic.  

The average travel time per commercial trip (reservation travel time) per service type and day 
of the week are illustrated in Table 3. The D2D service has a more important travel time than A2A 
type. The 4 minutes difference can be accounted to the additional time needed for accompanying the 25 
client from the door of the origin and destination to the vehicle. Furthermore, the commercial trip 
travel time during the weekend are lower than those from weekdays. Characteristics of the “Le Lien” 
service should be considered with extreme caution due to their limited sample.  

 
 30 
 
 
 
 
 35 
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Table 3. Average travel time (in minutes) per commercial trip with respect to the service type and the 

day of the week 

Service 

Type 

Monday 

(0) 

Tuesday 

(1) 

Wednesday 

(2) 

Thursday 

(3) 

Friday 

(4) 

Saturday 

(5) 

Sunday 

(6) 

Mean 

A2A 25.6 25.4 25.6 25.3 24.4 21.5 22.6 24.9 

D2D 22.2 30.2 28.9 29.1 28.5 26.2 27.0 28.9 

Le Lien 23.5 23.3 26.5 22.8 27.7 22.0 24.4 25.3 

Mean 27.9 28.6 27.8 27.8 27.2 24.7 25.9 26.7 

 
The trips cover a variety of purposes. The main trip purposes for the use of the service, of the 

users that informed on the relevant trip purposes when making the reservation by phone of internet,, 5 
are medical visits, professional trips (to and from work accounting to 25%) and leisure (45% of trips 
with known purpose). As of the concentration of the reservations to some clients, the volume of 
reservations per unique client is analyzed. It is observed that 30% of the most frequent clients, make 
for 50% of all requested reservations. On the other hand 40% of the least frequent clients make for 
only 20% of all requested reservations. That suggests a frequent use of the service by a given set of 10 
clients, although the frequent clients are not a dominant group. Hence, that should have a 
straightforward impact on the volatility of the demand. 

This service accepts reservations up to 28 days in advance to the trip date. In addition, it is 
possible to pre-plan reservations that are repetitive for certain days per week or a period. These 
reservations are injected into the system 21 days before. Once the reservation is created, it can be 15 
subject to modifications, cancellation or rejection up to the trip day. Figure 5(a) illustrates the part of 
all the reservations, with respect to the number of days in advance they were made. Indeed more than 
half the reservations are made 14 days prior to departure. Roughly 2/3 of the reservations are made 7 
days before the departure.  

Current cancellation policy accepts free cancellations up to 2 hours before the departure, 20 
adding to the volatility of the final demand. Figure 5(b) illustrates the cancellations per day prior to 
the trip. Whereas the cancellations amount to 30% of total reservations, roughly 70% of them occur 
during the last week, while 35% occur the last two days prior to the trip.  

The reservation policy in place, lacking incentives for early reservation and for avoiding late 
cancelations, is a major source of demand volatility and cost inefficiency. However, this must be 25 
interpreted by the desire of the transport authority for a responsive service, thus facilitating mobility 
and inclusion for this particular client group.  
 

Figure 5. (a) Volume of reservations based on the number of days reserved prior to trip – left (b) 

Volume of reservations cancelled with respect to the day before the trip a cancellation occurs  30 
 
3.5 The exogenous information 

 Additional features are added to the days, namely related to weather, bank and school 
holidays. In addition to bank and school holidays, the “pont”, or extensive weekend, variable is 
determined: this dummy variable characterizes a Monday followed by a bank holiday, or a Friday 35 
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following a bank holiday, where the demand is assumed to be closer to that of a bank holiday rather 
than of a weekday. As of the type of day, the following 5 categorical variables were added:  

• TypeOfDay : categorical, corresponding to the day of the week : 1, …, 7 for Monday 
through Sunday, That is further transformed into three one-hot encoders :  

o isMoWeFr 5 
o isTuTh 
o isSa  

• IsWE : categorical, corresponding to weekend 
• IsJF: categorical, corresponding to bank holidays 
• isShoolHoliday, categorical, corresponding to school holidays  10 
• isPont : categorical, corresponding to extended weekends  

 
Historic hourly weather data of Toulouse are retrieved starting from 01/09/2016 from on-line 

weather archives. These data are transformed and the information on the mean, max and min 
temperature during each day and the number of hours with a rain fall is introduced as an exogenous 15 
information.  

 

 
Figure 6. Local weather data and main exogenous information 

 20 
4 MODELLING PIPELINE  
 

The various models are compared within a standard modelling pipeline, as illustrated in Figure 7. 
The following section details the data preparation process and the evaluation metrics used for the 
calibration and comparison of the models.  25 

 
Figure 7. The modelling pipeline used for the model specification and comparison 

 
4.1 Data preparation  

The final dataset is obtained from the combination of the endogenous and exogenous 30 
information for the period from 01/09/2016 to 30/04/2019. Each observation accounts to a specific 
date of that period. Two datasets are further specified into two distinct datasets:  

• Y (972,1) contains the time-series volumes to be predicted  

Train data

Validation data

Test data

Model

Loss

fit

Fitted Model

Best Fitted Model Model Loss

evaluate

evaluate

GridSearch
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• X_exogenous (972, 13) contains the exogenous data. These are described in the 

following table. The TypeOfDay is further transformed into a one-hot encoding 

(isMoWeFr, isTuTh, isSa) combined with the isWE variable.  
 
Table 4. Descriptive statistics of the input variables 5 

Variable Type  Descriptive Statistics 

ResBef_14d Continuous Mean=226.2  stddev=132.0 
ResBef_10d Continuous Mean=259.9  stddev=141.1 
ResBef_7d Continuous Mean=299.1  stddev=156.6 
isMoWeFr One-hot F(1) = 0.43 
isTuTh One-hot F(1) = 0.29 
isSa One-hot F(1) = 0.14 
isWE One-hot F(1) = 0.28 
isJF&Pont One-hot F(1) = 0.03 
isSchoolHoliday One-hot F(1) = 0.31 
MeanTemp Continuous Mean=13.6    stddev=6.8 
MaxTemp Continuous Mean=18.3    stddev=7.7 
MinTemp Continuous Mean=9.5      stddev=6.4 
RainDuration Continuous Mean=1.7      stddev=3.2 

 
In addition to the exogenous information, the input variables include the volume of 

reservations made 14, 10 and 7 days prior to the day of the trip, referring to the ResBef_14d, 
ResBef_10d and ResBef_7d respectively. These values do not take into consideration further 
modifications or cancellations.  10 

The datasets (Y, X_exogenous) are separated into three distinct datasets. To ensure 
comparability of the results, the following datasets are used by all the algorithms:  

• A training dataset, used for the training of the models  
• A validation dataset, used for the selection of the best model  
• A test dataset used for the unbiased appreciation of the model precision 15 

 
4.2 Evaluation metrics  

The quality of the models is evaluated through it is proximity to observed data. The 
evaluation metrics, summarized in Table 5, allow for the comparison of the forecast accuracy. While 
the RMSE is the most usual metric, used when large errors are undesired, the MAE is most robust to 20 
the outliers. The MASE allows for the comparison of the forecast with the MAE produced by a naïve 
forecast. Finally, the MAPE metrics address the forecast error as a proportion of the actual values.  
 

Table 5. Description of the evaluation metrics 

Evaluation metrics  Loss function  

Mean Absolut Error (MAE) ��� =  1� � |
� − 
�| �
���  

Root Mean Square Error (RMSE)  ���� =  �1� � �
� − 
����
���  

Mean Average Scaled Error (MASE) ���� =  ��������� ������ �������!� ������ �  

Mean Average Percentage Error (MAPE) ��"� =  1� � |
� − 
�|
� . 100% �
���  

 25 
5 MODELLING FRAMEWORK 

 
Various families of models can be specified to deal with modelling time-series with 

exogenous data. The experiment platform uses Python 3.7 with scikit-learn (Pedregosa et al, 2011), 
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statsmodel (Seabold et al, 2010), tensorflow (Abadi et al, 2015) and keras (Chollet, 2015) for 
comparing the models. 

The present study explores different model families, related to forecasting univariate time-
series of as a standard regression model. The exploration phase of the present study included a 
multitude of relevant machine learning and deep learning models. For simplicity, it was chosen to 5 
pursue with a limited number of representative models from each category, with the selection criteria 
covering both practical and theoretic aspects. In addition it provides a naïve model to serve as a 
baseline forecast. The following table resumes the main families examined.  
 

 Univariate Time Series  Standard Regression  

Machine 

Learning  

Seasonal ARIMA model with 
exogenous information 
(SARIMAX) 

Random Forest Regression 
(RFR)  

Deep 

Learning  

Long Short Term Memory 
neural network (LSTM) 

Convolutional Neural 
Network (CNN) 

 10 
5.1 A naïve model for the baseline forecast  

A naïve forecast model is built to serves as a baseline estimate. The naïve model assumes for 
each day the forecast of the reservations corresponds to the average values of the training set values, 
with respect to the type of day within the week. The evaluation metrics suggest that the forecast 
cannot grasp the difference on the level of reservations due to the within-year seasonality and the 15 
unique events.  

 
5.2 An Autoregressive model to address a univariate time series 

Addressing the dataset as a univariate time series with exogenous data, an Autoregressive 
Integrated Moving Average (ARIMA) model (Box and Pierce, 1970) is used. It is a model that is 20 
adapted to short-term real-time forecasting provided addressing issues such as complexity of model 
specification, estimation and maintenance (Williams, 2001). The analysis of the data and their 
seasonal decomposition suggest seasonality based on the period of the year and the day of the week. 
In addition exogenous data relevant to the type of day and the temperature are added to a seasonal 
ARIMA model.  25 

As long as the time-series data are considered, the Dickey-Fuller Test suggests the time series 
is stationary at a 1%. The autocorrelation function suggests a strong autocorrelation for the 
autoregressive part for a small lag and some strong seasonality every 7 time-steps. The partial 
autocorrelation function shows a lag greater than a week.  

The seasonal ARIMAX (SARIMAX) is characterized by non-seasonal (p, d, q) and seasonal 30 
(P, D, Q, s) hyper-parameters as well as the use of the exogenous data, The non-seasonal hyper-
parameters are:  

• The autoregression (p) denoting the past values included in the regression  

• The differencing (d) defining the differencing transformations  

• The moving average (q) denoting the lag of the error  35 
The trend parameter can take the following values: none, constant, linear, linear & constant. 

The seasonal parameters (P, D, Q) represent the same hyper-parameters for the seasonal part of the 
time series. Finally, s corresponds to the number of timesteps in the season.  

The calibration of the SARIMAX model needs the exploration of the space around 8 
hyperparameters, with a walk forward validation, more adapted to a time-series context. The final 40 
dataset used for the gridsearch is limited to the 292 days, of which the forecast is limited to 73 days. 
For each time-step a forecast of 7 days ahead is made, to account for the operating lag between 
schedule optimization and operations.  

An exhaustive Gridsearch of the hyper-parameters suggestions the parameter combination [ (1, 
0, 1), (1, 0, 0, 7), linear trend ] yields the optimal score. The first results indicate that for the best fitted 45 
model the variables relative to the weather conditions are not significant. The non-significant 
variables are excluded from the final model. Hence the results of the final SARIMAX are summarized 
in Table 6.  
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Table 6. Summary of the results of the final SARIMAX model. 

============================================================== 
Dep. Variable:                                 y     No. Observations:           292 
Model:             SARIMAX(1, 0, 1)x(1, 0, 0, 7)    Log Likelihood              -1224.286 
      AIC                            2468.572 5 

BIC                            2505.340 
Sample:                                        0 -292   HQIC                             2483.300 
Covariance Type:                             opg                                          
============================================================== 
                  coef          std err        z             P>|z|          [0.025       0.975] 10 
-------------------------------------------------------------------------------------------------- 
intercept            -0.0113       0.023       -0.499       0.617      -0.056         0.033 
Res_Bef7d     1.0854        0.015       73.326      0.000       1.056          1.114 
isWE                 53.4241      4.307       12.404      0.000       44.982        61.866 
isJF&Pont        -19.2174     5.233       -3.673      0.000       -29.473       -8.962 15 
isMoWeFr         63.3974      6.812       9.307        0.000       50.046        76.749 
isTuTh               59.0542      7.663       7.707        0.000       44.035        74.073 
ar.L1           0.8252        0.348       2.373        0.018       0.144          1.507 
ma.L1          -0.7859       0.379       -2.072       0.038      -1.529         -0.042  
ar.S.L7         0.2894        0.065       4.464        0.000       0.162           0.416 20 
sigma2        252.3721    22.014     11.464      0.000       209.225       295.520 
============================================================== 
Ljung-Box (Q):                       99.44     Jarque-Bera (JB):            0.23 
Prob(Q):                                    0.00    Prob(JB):                         0.89 
Heteroskedasticity (H):             0.85    Skew:                             -0.03 25 
Prob(H) (two-sided):                 0.43    Kurtosis:                          2.88 
============================================================== 
 
These results suggest that weather conditions are not significant to the prediction of the 

volume of reservations. That may be attributed to the presence of constrained trip purposes (work, 30 
medical visits …). Furthermore, the volume of reservations 10 (Res_Bef10d) and 14 (Res_Bef14d) 
days before is not significant. It shows that the presence of the variable Res_Bef7d, for the volume of 
reservation 7 days prior to the trip, is probably a sufficient proxy for this evaluation. Finally, the non-
significance of the isHolidays variable, integrating school holidays periods, may be attributed to the 
characteristics of the service’s clients, with a large proportion of seniors, and the presence of variables 35 
as the volume of reservations 7 and 14 days.  

The exploration of the residuals, plotted in Figure 8, shows non-auto-correlated and normally 
distributed residuals. The plot of the standardized residual seems to take random values around 0. 
However, it may be showing some cyclical structure of the residuals. The forecast errors seem to be 
normally distributed around a zero mean. The Q-Q plot with residual quantiles vs the theoretical 40 
normal quantiles shows a slight tail, Nevertheless, it is deemed satisfactory. Finally the 
autocorrelation of the residual error does not show any significant correlation between the residuals.  
 

  
Figure 8. Final SARIMAX model residual evaluation 45 
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The test process of the final model is made through an adaptation of the previous algorithm 
and the use of a different set of data. The test set covers an entire year prior to the data used for the 
selection of the best model. The model forecasts 73 days, corresponding to 20% of a year. A rolling 
forecast of the 7th day ahead for each timestep is made on the basis of the previous reservations and 
the exogenous variables.  5 

The analysis of the residuals of the fitted model on the test dataset allows to show non-
correlated and fairly normal distribution of the residuals. The Q-Q plot with the residual vs the 
theoretical quartiles shows a slight trail. However, the autocorrelation of the residual error seems to 
show some correlation with 7 day lag of the residuals. That could be attributed to the weekly 
periodicity of the initial demand.   10 

 

  
Figure 9. Evaluation of the residuals of the test dataset of the SARIMAX model 

 
5.3 A Random Forest Regressor 15 

A Random Forest regressor (Ham, 1995) is designed to address the demand forecast as a 
regression problem addressing in an independent way each daily prediction. In such case, the input 
variables are limited to the exogenous information of the dataset. The regression model is based on 
the scikit-learn algorithm (Pedregosa et al, 2011). An exhaustive Gridsearch algorithm explores the 
main parameters of the Random Forest Regression: number of decision trees and max depth. The 20 
training step suggests 1000 decision trees with up to 5 splits.  

The analysis of the residuals of the fitted model of the test dataset shows non-auto-correlated 
and normally distributed residuals, corresponding to a white noise. The plot of residuals vs fitted 
values suggests the residuals take random values. 

 25 

 
Figure 10. Evaluation of the residuals of the test dataset of the Random Forest Regressor 
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5.4 A Long Short Term Memory neural network model, adapted to time-series 
A Long Short-Term Memory neural network (Hochreiter and Schmidhuber, 1997) is specified 

for the regression problem of a time-series with exogenous information. This architecture includes a 
pre-processing phase necessary for the adaptation to the data structure of the LSTM model. The data 
are transformed into 3D ndarrays with the following dimensions [nb_of_samples, look_back 5 
timesteps, nb of features], as well as the output data which are transformed into 3D ndarrays with the 
following dimensions [nb_of_samples, look_back values] (Figure 11). The target data, as well as 
input data relevant to reservations, are scaled to a (0,1) range by a MinMax scaler. 

Figure 11. Representation of the shapes of the X and Y arrays used with keras 10 

The design of the model follows a standard architecture. In addition to the LSTM layer, dense 
layers with a time distributed wrapper are considered. Table 7 resumes the design of the model with 
500 epochs. 

15 

Table 7. Description of the LSTM model 

_____________________________________________________ 

Layer (type)  Output Shape  Param # 20 
===================================================== 

lstm_1 (LSTM)  (None, 100) 43200 

_____________________________________________________ 

repeat_vector_1 (RepeatVecto (None, 7, 100) 0 

_____________________________________________________ 25 
lstm_2 (LSTM)  (None, 7, 100) 80400 

_____________________________________________________ 

time_distributed_1 (TimeDist (None, 7, 200) 20200 

_____________________________________________________ 

time_distributed_2 (TimeDist (None, 7, 50)  10050 30 
_____________________________________________________ 

time_distributed_3 (TimeDist (None, 7, 1) 51 

===================================================== 

Total params: 153 901 

Trainable params: 153 901 35 
Non-trainable params: 0 

_____________________________________________________ 

A rolling forecast is used to predict the reservation values. For each step throughout the 
validation and test dataset, the historic data of current forecast are added to the input data and used for 40 
the forecast of the following time-step.  

The analysis of the residuals on the test datasets suggests non-auto correlated and normally 
distributed residuals. The residuals vs fitted values plot suggests constant variance and the presence of 

# sample - #days 

#days 

#features 

#days #1 

X – input array Y – output/target array 

# sample - #days
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some outliers. The Q-Q plot shows a slight tail on both extremities. Overall, it shouldn’t impact the 
quality of the model. 

 

 
Figure 12. Evaluation of the residuals of the test dataset of the LSTM model 5 

 
5.5 A Convolutional Neural Network model 

A convolutional neural network (Krizhevsky et al., 2012) is designed for the forecast of 
reservation values on the basis of a particular day’s features. The particularity of this model is that it is 
not modelled as a time-series; rather each observation (day) is considered independently from the 10 
others. The CNN model is built with: 

• An input layer: a 1D convolutional layer  
• Four Hidden layers, a 1D convolutional layer, followed by 1D average pooling and 

flattening, and 3 dense layers,  
• An output dense layer with one unit 15 

 
In addition a dropout ratio of 0.25 is chosen between the dense layers to avoid overfitting 

during the training phase. The activation layers correspond to relu, sigmoid and linear functions. The 
CNN model uses the Adam optimization algorithm (Kingma and Ba, 2015). A Gridsearch suggests 
the use of 500 epochs for the final CNN model. The characteristics of the layers are as follows: 20 
 

Table 8. Description of the CNN model 
____________________________________________________ 

Layer (type)                Output Shape    Param #  

==================================================== 25 
conv1d_1 (Conv1D)           (None, 2, 64)   448      

____________________________________________________ 

average_pooling1d_1 (Average(None, 1, 64)   0        

____________________________________________________ 

flatten_1 (Flatten)         (None, 64)      0        30 
____________________________________________________ 

dense_1 (Dense)             (None, 400)     26000    

____________________________________________________ 

dropout_1 (Dropout)         (None, 400)     0        

____________________________________________________ 35 
dense_2 (Dense)             (None, 80)      32080    

____________________________________________________ 

dense_3 (Dense)             (None, 1)       81       

==================================================== 

Total params: 58 609 40 
Trainable params: 58 609 

Non-trainable params: 0 

____________________________________________________ 
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The input data is reshaped with respect to the 2D ndarary [sample, nb of features] needed and 
a MinMax scaler is used to scale target date to a (0,1) range. The futures included correspond to the 
input variables used in all the models. With respect to the insight of the SARIMAX model, the input 
data omit the weather-related features (min, average and max temperature and rain duration).  5 

The analysis of the residuals of the test dataset suggests non-auto-correlated and normally 
distributed residuals. The plot of the residuals vs the fitted values, suggests some outliers. 
Nevertheless, they seem to have a zero mean and a constant variance. The Q-Q plot of the residuals vs 
theoretical normal quantiles shows a slight tail.  

10 

Figure 13. Evaluation of the residuals of the test dataset of the CNN model 

6 MODEL COMPARISON AND CONCLUDING REMARKS 15 

The paper explores the determinants of the volatility of passenger demand of paratransit 
services and the feasibility of a data-driven model to accurate forecast future passenger demand and to 
improve operations scheduling. In addition to a naïve model, four models are developed: a seasonal 
ARIMAX model with a rolling forecast, a Random Forest Regressor with independent variables, a 20 
LSTM neural network with exogenous variables and a rolling forecast and a CNN model with 
independent variables. The results on the test dataset are illustrated in Figure 14. 

(a) Naïve

(b) SARIMAX (c) Random
Forest

(d) LSTM (e) CNN



E. Chandakas, 2020 
 

17 
 

 

 

 
Figure 14. Predicted vs, observed value of reservation with (a) top-left: naïve model (b) center-left: 

SARIMAX model, (c) center-right: Random Forest regression model (d) bottom-left : LSTM model (e) bottom-

right: LSTM model 

 
The evaluation metrics, summarized in Table 9, suggest the SARIMAX model performs well 5 

on most metrics, suggesting it is more robust to outliers, while large errors are limited. The 
SARIMAX underperforms on the MAPE metric, where the Random Forest Regressor performs best. 
This may be attributed to less accuracy when forecasting days with lower volumes. SARIMAX 
slightly outperforms the Deep Learning models, although the precision level is similar. This comes in 
line with Karlaftis and Vlahogianni (2011) who suggest that statistical and deep learning models have 10 
similar performance when addressing phenomena with linear relationships.  

 
Table 9. Evaluation metrics 

Model type MAE RMSE MASE MAPE 

Naïve Model 49.80 69.11 0.3537 14.87 % 

SARIMAX model 14.03 17.85 0.1034 4.24 % 

Random Forest Regressor 14.16 18.36 0.1006 3.89 % 

LSTM model 13.73 18.44 0.0974 4.08 % 

CNN model 14.63 17.87 0.1039 4.27 % 

 
A qualitative interpretation of the results of the fitted models suggests they adequately 15 

forecast the volume of demand for typical days and predictable events, such as weather episodes. 
However, all the models present a significant error of roughly 10% on March 19th, which was the day 
of an interprofessional strike in Toulouse.  

The time-series based simulations, as well as the other models, suggest that only a limited 
number of variables are necessary for an accurate forecast of daily demand. For a DRT service with 20 
prior reservation, these variables can be limited to the number of reservations seven days ahead of the 
departure, as well as the type of the day (day of the week and holidays). Additional variables, such as 
specific events (strikes etc.) could improve the forecast. These variables do not include weather 
related variables, such as the temperature, and the rain fall, as they do not seem significant for 
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forecasting the demand. However, they may be significant for measuring the operational performance 
of the service.  

Future work will address the specification and maintenance issues involved in including this 
SARIMAX architecture to the production chain. It will include model variation for D-10 and D-4 in 
order to provide some insight for resources planning. Future research will include the exploration of 5 
additional features, with respect to exceptional events, such as strikes, and will focus on the 
forecasting of multivariate time series, in order to address the within-the-day temporality of the 
demand. It will also seek to expand the medium-term forecasting to the human and vehicle resources 
needed. Additional model will include CNN-LSTM model architectures and a variation of the 
SARIMAX model with Kalman filters in order to grasp the hidden Markov chains of the time-series.  10 
 

ACKNOWLEDGEMENT 
 
The author would like to thank Transdev for supplying the data used in this study, and in 

particular Thierry CHIOCCA for his valuable remarks in the analysis of the T-PRM dataset and the 15 
inspiration behind this paper.  

 
REFERENCES 
 

(1) Alonzo-Gonzalez M., Liu T., Cats O., Van Oort N., Hoogendoorn S. (2018) The Potential of 20 
Demand-Responsive Transport as a Complement to Public Transport: An assessment 
Framework and an Empirical Evaluation, Transportation Research Record, Vol 2672(8), pp. 
879-889 

(2) Attard M, Camilleri M, Muscat A (2020) The technology behind a shared demand responsive 
transport system for a university campus, Research in Transportation Business & Management, 25 
In press 

(3) Benjamin J., Kurauchi S., Moriwaka T., Polydoropoulou A., Sasaki K., Ben-Akiva M. (1998) 
Forecasting Paratransit Ridership Using Discrete Choice Models with Explicit Consideration of 
Availability, Transportation Research Record, Vol, 1618, Issue 1, pp. 60-65 

(4) Box G.E., Pierce D.A. (1970) Distribution of residual autocorrelations in autoregressive-30 
integrated moving average time series, Journal of American Statistical Association vol. 65, pp. 
1509-1526 

(5) Chollet, F. (2015) keras, GitHub, https://github.com/fchollet/keras 
(6) Coutinho F.M., van Oort N. Christoforou Z., Alonso-González M.J., Cats O. and Hoogendoorn 

S. (2020). Impacts of Replacing a Fixed Public Transport Line by a Demand Responsive 35 
Transport System: Case Study of a Rural Area in Amsterdam. Research in Transportation 
Economics. In press. 

(7) Deka D, Gonzales E (2014) The generators of paratransit trips by persons with disabilities, 
Transportation Research Part A, Vol. 70, pp. 181-193 

(8) Durbin J, Koopman SJ (2012) Time Series Analysis by State Space Methods: Second Edition, 40 
Oxford University Press 

(9) Farid Y.Z., Christofa E., Paget-Seekins L. (2016) Evaluation of Short-Term Bus Travel Time by 
using Low-Resolution Automated Vehicle Location Data, Transportation Research Record, Vol. 
2539, Issue 1, pp. 113-118 

(10) Gong M., Fei X., Wang Z.H., Qiu Y.J. (2014) Sequential Framework for Short-Term Passenger 45 
Flow Prediction at Bus Stop, Transportation Research Record, Vol. 2417, Issue 1, pp. 58-66 

(11) Guo J., Xie Z., Qin Y., Jia L., Wang Y. (2019) Short-Term Abnormal Passenger Flow 
Prediction Based on the Fusion of SVR and LSTM, IEEE Access 

(12) Ho, Tin Kam (1995) Random Decision Forests, Proceeding of the 3rd International Conference 
on Document Analysis and Recognition, Montreal, pp. 278-282 50 

(13) Hochreiter S., Schmidhuber J. (1997) Long short-term memory, Neural Computation, vol. 9, pp. 
1735-1780 

(14) Hyndman R.J., Athanasopoulos G. (2018) Forecasting: principles and practice, 2nd edition, 
OTexts: Melbourne, Australia, OTexts.com/fpp2,  

(15) Karlaftis M.G., Vlahogianni E. (2009) Memory properties and fractional integration in 55 
transportation time-series, Transportation Research Part C: Emerging Technologies, vol 17, 



E. Chandakas, 2020 
 

19 
 

pp.444-453 
(16) Karlaftis M.G., Vlahogianni E. (2011) Statistics versus neural networks in transportation 

research: differences, similarities and some insights, Transportation Research Part C Emerging 
Technologies 19 (3), 387–399 

(17) Ke J., Zheng H., Yang H., Chen X. (2017) Short-term forecasting of passenger demand under 5 
on-demand ride services: A spatio-temporal deep learning approach, Transportation Research 
Part C, vol. 85, pp. 591-608 

(18) Kingma D., Ba J. (2015) Adam : A method for stochastic optimization, Published as a 
conference paper at the 3rd International Conference for Learning Representations, San Diego, 
2015 10 

(19) Koffman D., Lewis D. (1997) Forecasting Demand for Paratransit Required by the Americans 
with Disabilities Act, Transportation Research Record, Vol. 1571, Issue 1, pp. 67-74 

(20) Krizhevsky A., Sutskever I., Hinton G.E. (2012) Imagenet classification with deep 
convolutional neural networks, In: Advances in Neural Information Processing Systems, pp. 
1097-1105 15 

(21) Lin L., Handley J., Gu Y., Zhu L., Wen X., Sadek A. (2018a) Quantifying uncertainty in short-
term traffic prediction and its application to optimal staffing plan development. Transportation 
Research Part C: Emerging Technologies, vol. 92, pp. 323-348 

(22) Lin L., He Z., Peeta S. (2018b) Predicting station-level hourly demand in large-scale bike-
sharing network: A graph convolutional neural network approach. Transportation Research Part 20 
C: Emerging Technologies, vol. 97, pp. 258-276 

(23) Ma Z., Xing J., Mesbah M., & Ferreira L. (2014) Predicting short-term bus passenger demand 
using a pattern hybrid approach, Transportation Research Part C: Emerging Technologies, 
Volume 39, pp. 148–163 

(24) Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg 25 
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, 
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, 
Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, 
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul 
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, 30 
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015), TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015, Software available from 
tensorflow.org 

(25) Morriea-Matias L., Cats O. (2016) Towards an AVL-Based Demand Estimation Method, 
Transportation Research Record, 2544, pp. 141–149 35 

(26) Noursalehi P., Koutsopoulos H., Zhao J. (2018) Real time transit demand prediction capturing 
station interactions and impact of special events. Transportation Research Part C: Emerging 
Technologies, vol. 97, pp. 277-300 

(27) OECD, International Transportation Forum (2018), How to make urban mobility clean and 
green, Policy Brief, COP24, Available from https://www.itf-oecd.org/urban-mobility-clean-40 
green 

(28) Palmer K., Dessouky M, Zhou Z (2008). Factors influencing productivity and operating cost of 
demand responsive transit, Transportation Research Part A, vol. 42, pp. 503-523 

(29) Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thririon B, Grisel O, Blondel M, 
Prettehnhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, 45 
Perrot M, Duchesnay E (2011) Scikit-learn : Machine Learning in Python JMLR 12, pp. 2825-
2830 

(30) Polson N.G., Sokolov V.O. (2017) Deep Learning for short-term traffic flow prediction, 
Transportation Research Part C, vol. 79, pp. 1-17 

(31) Rahimi M, Amirgholy M, Gonzales E (2018) System modelling of demand responsive 50 
transportation services : Evaluation cost efficiency of service and coordinated taxi usage, 
Transportation Research Part E, Vol. 112, pp. 66-83 

(32) Seabold S., and Perktold J. (2010) “Statsmodels: Econometric and statistical modeling with 
python,” Proceedings of the 9th Python in Science Conference, 2010 

(33) Shaheen S, Cohen A (2020). Chapter 3 – Mobility on demand (MOD) and mobility as a service 55 
(MaaS): early understanding of shared mobility impacts and public transit partnerships. In 



E. Chandakas, 2020

20 

Antoniou C., Efthymiou D., Chaniotakis E. (eds): Demand for Emerging Transportation 
Systems – Modeling Adoption, Satisfaction, and Mobility Patterns, 2020 

(34) Toqué F., Côme E., El Mahrsi M.K., Oukhellou L. (2016) Forecasting dynamic public transport
origin-destination matrices with long-short term memory recurrent neural network, In : 19th

IEEE International Conference on Intelligent Transportation Systems, pp. 1071-10765 
(35) Toque F., Khouadjia M., Come E., Trepanier M., Oukhellou L. (2017) Short & Long term

forecasting of multimodal transport passenger flows with machine learning methods, Paper
Presented in IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

(36) United Nations, Department of Economic and Social Affairs, Population Division (2018),
World Urbanization Prospects: The 2018 Revision, Online Edition, Available from10 
https://esa.un.org/unpd/wup/Publications

(37) Van Oort N., Brands T., & de Romph E. (2015), Short-Term Prediction of Ridership on Public
Transport with Smart Card Data, Transportation Research Record, 2535, pp. 105-111

(38) VanderPlas J. (2017), Python data science handbook: Essential tools for working with data,
Sebastopol, Calif: O'Reilly,15 

(39) Vlahogianni E., Karlaftis M.G., (2013), Testing and Comparing Neural Network and Statistical
Approached for Predicting Transportation Time Series. Transportation Research Record, Vol
2399, Issue 1,  pp. 9-22

(40) Vlahogianni E., Karlaftis M.G., Gollias J. (2016) Short-term traffic forecasting: where and
where we are going, Transportation Research Part C: Emerging Technologies, vol. 43, pp. 3-1920 

(41) Williams B, (2001) Multivariate Vehicular Traffic Flow Prediction, Transportation Research
Record, Vol 1776, Issue 1, pp. 194-200

(42) Winter K., Cats O., Homem de Almeida Correia G., & van Arem B. (2018), Performance
Analysis and Fleet Requirements of Automated Demand-Responsive Transport Systems as an
Urban Public Transport Service, International Journal of Transportation Science and25 
Technology, 7(2), pp. 151-167

(43) Xiaoqing Dai, Lijun Sun, and Yanyan Xu (2018), Short-Term Origin-Destination Based Metro
Flow Prediction with Probabilistic Model Selection Approach, Journal of Advanced
Transportation, vol. 2018

30 




