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Reduced order models in reactor kinetics: a comparison
between point kinetics and multipoint kinetics

G. Valocchi, J. Tommasi and P. Ravetto

Abstract

Due to the heavy computational burden of full reactor kinetics modeling,
reduced-order models are usually employed to simulate transients. Among
those, point and multipoint kinetics have small computation time and pro-
vide satisfying results for many applications. We implemented point and
multipoint kinetics (Avery’s and Kobayashi’s models) in the APOLLO3 code.
Then these models are applied to study two simple transients, one in a cou-
pled fast-thermal configuration, the other in a fast reactor. As at present we
focus on the neutronic response only (neutron and precursor populations),
the study is limited to step-change transients with no thermal feedback. This
work permits to better delineate the potential of these methods and opens in-
teresting perspectives. As an example, multipoint kinetics allows accounting
for very fast shape transients that, depending on the coupling of the system,
may result in global population changes occurring before the conventional
prompt jump and altering significantly its quantitative value.

Keywords: Point kinetics; Multipoint kinetics; APOLLO3; Avery and
Kobayashi models; Coupled reactors.

1. Introduction

In this paper, we investigate the main reduced-order approaches to tran-
sient analysis in reactor physics. In particular we focus on point kinetics
(hereafter PK) [1] and multipoint kinetics (hereafter MPK) [2, 3, 4]. MPK is
an advanced zero-dimensional modeling technique that allows to subdivide
the reactor in different regions and still consider them as point-like but cou-
pled with each other. In this way we allow for a relative degree of freedom
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among them and the neutron population is not forced to evolve rigidly. Sev-
eral versions of MPK exist [2] but in this paper, we focus on two of them,
the one proposed by Avery [3] and the one proposed by Kobayashi [4]. Aside
from the theoretical motivation [3, 4] | very few applications of MPK can be
found in literature [2, 5] and its interest over PK remains unclear. The pur-
pose of this paper is to stress the differences between those two techniques to
better characterize their descriptive capabilities. The novelty of this study is
a more precise analysis of behaviors that MPK is able to model but that PK
can’t reproduce; this is particularly important since some of those behavior
can be associated with important changes in the total neutron populations.
Thanks to our developments in the neutronic platform APOLLO3 [6] we
were able to apply these modeling techniques to two transients. In order to
focus on neutronics and on the kinetic response of the systems, the two tran-
sients are chosen to be step changes without thermal feedback. In section 2
we briefly describe the various models from the mathematical point of view,
trying to focus on their differences; the purpose is to provide an overview
of the methods and reference notations. For more complete expositions the
reader can consult [1, 3, 4, 5]. To stress the differences between the two
modeling approaches we designed a 1D model that, despite being geomet-
rically simple and allowing for a fast calculation of needed quantities, has
non-homogeneous properties and permits to test the limit of PK. This model
is detailed in section 3. In section 4 we present some results about an early
version of the ASTRID reactor [7] that were already obtained in [5] using the
code ECCO/ERANOS [8] but that we recompute using the neutronic plat-
form APOLLO3 [6] and a more accurate Sy solver (MINARET [9]). Finally,
we present our conclusions and perspectives about these methods based on
the experience acquired so far.

2. Mathematical description and notation

The purpose of this section is to fix the notation and give a global overview
of the models. Rigorously the neutron flux in a nuclear reactor can be de-
scribed by the Boltzmann equation:

100+ Ay = Fpp + 32, £ NG
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47 dt

: (1)

where F is the fission production operator, A is the operator containing
the transport, removal and scattering term, y; is the spectrum and \; the



decay constant of the i — th delayed neutron family, ¢ is the time dependent
neutron flux and C; is the concentration of precursors of the i-th family.
When dealing with the fission operator the convention adopted in this paper
is that F without subscript refers to the total fission operator, with subscript
p to the prompt one, with subscript di to the ¢ — th delayed family and with
subscript d to the total delayed operator.

This formulation of the Boltzmann equation, however, is used to study
nuclear reactors that operate in time dependent condition. In the case of
steady state conditions, the second equation in system (1) can be substituted
in the first one and we have an homogeneous problem. To allow for a positive
non zero solution we have to introduce an eigenvalue or, as is usually done in
reactor physics, its reciprocal that is called k-effective (k.s¢). The resulting

equation is:
<A _r ) 6=0 @)
Kers

At this point it is worth introduducing also the adjoint formulation of Eq. 2

that is: P
(A* - ) g =0 3)
Kers

where the superscript * denotes the adjoint operator or flux. This adjoint
flux can be interpreted as the importance of the neutrons relatively to their
capability to participate in the chain reaction [10].

A huge effort is devoted to the optimization of the steady state (or critical)
calculation and the addition of the time variable leads to very expensive
calculations for which significant simplifying assumptions are usually made.
The most popular model used in reactor kinetics is PK, that is dealing with
the reactor as if it were point-like. In this paper, we are going to analyze how
this compares with two others reduced-order models that go under the name
of MPK. The MPK approach also consists of dealing with a zero-dimensional
model but, instead of using just one point as in the previous method, we
split the reactor into different zones and we use a point for each one of them.
The consequence of this modeling is that the ordinary differential equation
describing the evolution of each region is coupled with the other ones. How
to describe this coupling depends on which version of the MPK method we
are using.
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Table 1: Point kinetics parameters

2.1. Point Kinetics

The PK equations were proposed initially by Fermi by means of physical
considerations [11] but can be obtained rigorously introducing a factorization
of the flux in an amplitude (scalar) and a shape (phase-space distribution),
multiplying the time dependent Boltzmann equation by a weight function
(usually the adjoint flux), integrating on all variables except time and impos-
ing constraints over the time dependence of the flux shape [1]. The equations
that we obtain at the end are the following:

{% = 28T (1) + 32, Mt (t)

% — Na(t) + BT(t) ’

(4)

where T is the total amplitude of the flux and the other parameters can be
found in Table 1.

As we can see, Eq. (4) is a system of ordinary differential equations.
From the computational point of view, the solution of these equations is not
a critical task and this problem can be tackled with good accuracy and small
computation time [5, 12].

The main issue left is the computation of the kinetic parameters that
can be obtained as in Table 1. In our convention, (.) is the integration over
the energy, space, and angular variables and ¢* is the static adjoint flux at

= (. Even though any weight function could be used, the standard practice
is to use the adjoint flux due to its physical meaning [10] and mathematical
properties. No approximation would have been introduced if the forward
flux used in the formulas in Table 1 were the time depended flux v as it
appears in Eq. 1. However, since all the coefficients are obtained through a
ratio of fluxes and therefore do not depend on the flux amplitude but just
on its shape, the standard way to proceed, in order to avoid to compute the
direct time dependent flux, is to use always the direct flux at time 0 and
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therefore to neglect any shape change (PK approximation). In conclusion,
to implement this method it is enough to compute the critical forward and
adjoint fluxes and use them to compute kinetic parameters. Thanks to the
solver MINARET [9] we were already able to compute forward and adjoint
fluxes but we had to implement a fast method to compute integrals and
we had to introduce a delayed nuclear data model to properly define the
needed operators [13]. Once all the parameters were obtained the ordinary
differential equations were solved thanks to scipy modules [14].

2.2. Multipoint kinetics

2.2.1. Avery’s model

The first version of MPK has been proposed by Avery [3] using mainly
physical considerations. In this case, we define the partial direct flux and the
partial adjoint flux of each region as follows:

1 * [k 1 %k
= Kff]:j(b A*¢) = keff]:¢ : (5)

Ad; j
where partial fluxes are defined over the whole reactor and the source term is
obtained by restricting the multiplication operator to region j and by using
the total flux computed previously (Eq. 2 and Eq. 3). In this case, if we
split the reactor in n regions, we have n? equations for the evolution of the
neutron population and n times the number of precursor families equations
for the precursor concentrations. The resulting system is the following

Chi = —XCli + Bri Do Skm ’ ©)
where each parameter can be expressed as in Table 2, again with the approx-
imation that the time-dependent fluxes are replaced with the static ones of
Eq. 2 and Eq. 3.

In this model, the partial neutron populations Sj; represent neutrons
produced in region j by neutrons born in region k£ and we have an equation
for each of them.

{ljkdi—i’“ = k(1 = Bj) 2o Sem — S + 2, ki i MiChi

2.2.2. Kobayashi’s model

Kobayashi’s version of MPK has been derived more recently focusing more
on a mathematical rigorous approach to the problem [4]. The resulting im-
portances used as weight functions are closer to the Green function definition
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Table 2: Avery’s MPK parameters
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Table 3: Kobayashi’s MPK parameters
and are defined as follows:
AG; = viy , (7)

where the partial importance here is computed by using as a source the total
production cross section restricted to region j, and without using the adjoint
flux.

The resulting system of equations is:

{lj% = 2k k(L = Bik) Sk = S5 4 32 Mi 2oy ki Co

i — —N\iChi + BinSk ,

(8)

where the unknown neutron populations S; are the populations of each region
independently from where the neutrons which generate them were coming.
Therefore the resulting system has fewer equations for the population evo-
lution (as many as the number of regions) but the same amount for the
precursors concentrations. Parameters can be computed as in Table 3.

2.8. Comments

The main differences among the methods described so far result from
the weight functions selected. PK uses the adjoint flux that is a measure
of the importance of neutrons relative to their capability to participate in
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the chain reaction [10]. Avery’s MPK uses a partial version of forward and
adjoint fluxes (Eq. (5)) that add to total the respective fluxes used in PK.
Kobayashi’s importances instead can be seen as the capability of the neutron
to reproduce neutrons, but at the next generation only, not over the total
chain reaction [5]. The calculation of these importance functions has been
implemented in APOLLOS3.

We would like also to add that all the methods described so far can be
expressed in the compact form:

ds

where the size of vector S and of matrix M depends on the method we are
using, in particular, if S is vector of length n, M is a n X n square matrix.
In our case, since we are using the JEFF 3.1.1 nuclear data library, we use 8
precursor families [15]. Therefore for PK the S vector has 9 elements (8 for
the precursor families and one for the neutron population). For Kobayashi’s
MPK, if the number of regions in which we are subdividing our reactor is n,
the S vector has 9n elements, n for the neutron populations, and 8n for the
precursors in each region. For Avery’s MPK, S has (8 + n)n elements, n? for
the neutron populations, and 8n for the precursors in each region. The study
of the eigenvalues of M can provide useful information about the transient,
as it is discussed in the next sections. Finally we would like to define the
prompt sub-matrix as the square matrix that we obtain from the total one
(M) by eliminating lines and columns concerning precursors. This matrix
will be the one associated to a model in which precursors do not exist. To
clarify this definition we make the example for the associated model in the
Kobayashi’s case:

ds,;
i = Y k(1= Bi)Se—S; (10)
k

The comparison between the eigenvalues of the prompt sub-matrix and of
the total one can help us to identify the source of the different behaviors.

3. 1D Model

The first system we choose to model is a simplified 1D model of a coupled
thermal-fast reactor. Although being an extremely simplified configuration,



this model aims at having short computation time while retaining some het-
erogeneity that can highlight the differences among the modeling techniques
presented so far. The description of this system can be found in [16] and
a synthetic description of the materials and its properties can be found in
[17]. Originally it was described by an RZ geometry but we preferred to
adopt a 1D geometry since it is simpler and can be handled by our solver
(MINARET [9]). The core is divided into 6 regions as can be seen in Fig. 1
where reflection condition is applied to the left boundary and vacuum condi-
tion to the right one; from left to right there is a central fast zone (Fast, F), a
filter to absorb thermal neutron (Absorber, A), a natural uranium transition
zone (Buffer, B), an enriched uranium plate (Converter, C), a thermal zone
(Thermal, T) and a water reflector (Water, W).

I N O O ——
. F .A. B ICI T W )

24cm 1.5cm 85cm L5cm 10.5cm 29 cm

Figure 1: 1D model of a coupled fast-termal reactor

The material used for the fast zone is the cell used in the ERMINE V
program of the MINERVE experimental reactor, in the center of the ZONA-1
core [18]. This cell is composed of 6 MOx rodlets, 2 natural UOx rodlets,
and 8 sodium rodlets, combined in a 2 inch square. The filter to absorb
thermal neutron is made up of natural B,C rodlets and the natural uranium
in the transition zone is in the form of UQOs rodlets. The UQOs rodlets in
region C are enriched at 30% in U and the the UQO, in the thermal zone
has 3.7% enrichment. Water is present only in the thermal zone and in the
reflector. All the materials have been homogenized by ECCO/ERANOS [§]
and provided to APOLLO3® using a 33 groups energy mesh (more detail can
be found in [16, 17]).

The basic idea behind this configuration is that the absorber, the buffer
and the converter help to decouple the fast zone from the thermal one, being
these the two zones where most of the fissions take place.

We can then introduce a perturbation, removing the absorber and the
converter. In this way, we change the kinetic parameters of the reactor keep-
ing the reactivity insertion positive but below prompt criticality (=586pcm
and p=284pcm). In order to do so we artificially replace the material in the
converter zone (enriched uranium) with the one in the buffer zone (natural
uranium) and remove 92% of the B in the absorber zone.



PK (k.sy) 1.11706

[0.88923  0.29334 0.15291 0.05134]
0.03203 0.12125 0.07372 0.02288
0.12134 0.28680 0.38487 0.19834

10.16048  0.41637 0.56683 0.77045

Kobayashi (k;;)

[0.89357 0.28779 0.15006 0.05032]
0.03211 0.12127 0.07364 0.02286
0.12139 0.28695 0.38502 0.19824

10.16864 0.43211 0.58580 0.75710

AVGI‘y (kl] )

Table 4: kcsy and k;; of the nominal configuration (before division by keyy)

In order to keep the transient simple and to focus on the neutronics,
we simulate an instantaneous change without considering thermal feedback.
The system is supposed to be at t=0 in steady state in the nominal configu-
ration and to shift instantaneously to the perturbed configuration. In order
to have a steady state system at t=0, we divide all the coupling matrices

and generation times by the k-effective of the nominal configuration, that is
1.11706.

3.1. Results

In this section, we present five sets of results. One set is obtained by
applying PK, and four are obtained by applying MPK. For MPK we have 2
sets using four regions, one for each homogeneous fissile zone, that are F, B,
C and T in Fig. 1, both with Kobayashi’s and with Avery’s models, and two
sets using 6 regions, where we split in half the 2 main fissile regions that are
F and T.

As an example, we present the main kinetic parameters and coupling
matrices we obtained for the nominal case. The k.sy and k;; are listed in
Table 4, mean generation time and relative MPK versions in Table 5 and
beta effective and 3;; in Table 6. A first observation can immediately be
made on the data presented in Table 4, the first of the four eigenvalues of

9



PK (A) [ps]

9.9915

Kobayashi ([;) [ps]

0.3125
0.4241
3.7227
28.232

Avery (l;;) [ps]

0.2465
0.2938
2.8120
17.8861 18.8878 19.1796 25.4637

0.3491
0.1370
2.5776

0.3935
0.2646
2.4007

0.4495
0.6829
4.2755

Table 5: A, I; and [;; of the nominal configuration (before division by k.ys)

PK (Berr) [pem]

586.9

Kobayashi (3;;) [pcm]

332.4
119.3
339.8

304.2

209.2]
194.4
715.0
807.3]

1097.1
289.9
1486.3
1371.8

497.3
170.0
776.3
727.6

Avery (3;;) [pem]

[332.7
119.2
339.8

3077

208.4]
194.3
714.7
809.4 |

1097.1
289.9
1486.1
1390.7

496.7
170.0
776.2
738.7

Table 6: Bers and S;; of the nominal configuration
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both k;; matrices is equal to kesy, as it should be by construction. This is
a first verification of our implementation and shows how, in MPK, k;; has
a role similar to the one that k.;y has in PK. Regarding the data in Table
5 they represent the mean neutron generation life time. These data are
mainly sensitive to the neutron spectrum and show how the spectrum gets
softer moving towards the thermal zone (last line). We can also observe that,
looking at the Avery’s [;;, discriminating the various regions where neutrons
are generated (different columns represent different departing regions) has
limited effects with respect to the importance that has the region where
the neutrons end (different lines represent different ending regions). Finally
looking at data in Table 6 we can see how the delayed neutron fraction
has a very heterogeneous distribution, mainly depending on where neutrons
are produced (therefore presenting similar values along each column). We
can also notice, in the second line, how the neutrons ending in the natural
uranium zone (zone B in Fig. 1) have considerably smaller effective delayed
fraction with respect to the neutrons born from the same region but ending
in a different one. This can be explained thanks to the 238U fission threshold
that prevents most of the delayed neutrons from any region (that have a
softer spectrum compared to the prompt ones) to participate in the chain
reaction by inducing fission in the buffer region containing mainly 2**U as
fissile nuclide.

The first quantity on which we would like to focus on is the total neutron
population evolution during the transient that can be seen in Fig. 2.

On a short time scale, as we can notice, there is a huge difference between
the results obtained with PK and those obtained with MPK, while all the
MPK cases provide similar results. In particular, all the MPK curves have a
bump before 10~°s that is completely absent in the PK one. After that, there
is the classical prompt jump that, however, in the MPK cases has a bigger
amplitude. Looking at the differences among the various MPK, subdividing
the main regions has virtually no effect on the Avery modeling and leads to a
slight increase of the total neutron population modeled by Kobayashi MPK.
Compared to Avery, Kobayashi has a slightly bigger population before the
prompt jump and slightly smaller afterwards, although all these are minor
differences and can be due to the various approximations made during the
modeling.

Looking at Fig. 3 we can see the relative distribution of the neutron
population in the various regions. We can notice how the redistribution of
the neutron population takes place at the same time as the first bump in the

11
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Figure 2: Total neutron population evolution - 1D model
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Figure 3: Relative neutron population evolution - 1D model

total population evolution and is almost complete before the prompt jump.
We can also notice that no major difference appears between Kobayashi’s
and Avery’s models.

Concerning the long time scale (Fig. 4), all models present a coherent
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exponential behavior with Kobayashi’s model having a slightly different time
constant with respect to the other results and that changes slightly with
the further subdivision of the main fissile zones. This effect, even though of

—— Avery 4 regions
——— Avery 6 regions
—— Kobayashi 4 regions
—— Kobayashi 6 regions
— PK

101 4

[arbitraty unit]

Time [s]

Figure 4: Asymptotic neutron population behavior - 1D model

second order, could be due to the approximations made (e.g. the use of the
k-modes instead of the alpha-modes) and should be further investigated.

To conclude we can look at the eigenvalues of the matrix M (Eq. 9) in
the different models, plotted in Fig. 5 where on the horizontal axis we have
the real part of the eigenvalues on a symmetric log scale. We have to remark
that all the eigenvalues are real, except for Avery’s MPK with 6 regions that
has a few complex eigenvalues; in all the cases however the real part is much
larger than the imaginary part meaning that the damping effect is dominant
with respect to the oscillating behavior and therefore we focus only on real
parts.

In the first line we plotted the decay constant of each precursor family,
so to show how some of the various eigenvalues cluster around the eight
(—A;) with a multiplicity equal to the region number (as already discussed
by Henry [19]). As expected, in all the cases, we have one positive eigenvalue
with similar value for all the methods (with the biggest discrepancy being
between Avery’s and Kobayashi’s models of about 7%) Then, for MPK, we
have the appearance of several eigenvalues all on a very short timescale. For

13
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Figure 5: Eigenvalues of the 1D model

all the MPK models, if we compare these eigenvalues (those < —10% s71)
with the ones of the relative prompt sub-matrix, we notice that we obtain
the same eigenvalues (maximum relative error below 107%), except for the
one relative to the prompt jump (around —5-10? s71) for which we have, in
all the models, a relative error of 0.3%. This shows how the bump noticed
in Fig. (2) is mainly due to the prompt behavior of the system.

4. ASTRID

The second system we modeled is an early sodium-cooled fast reactor
ASTRID CFV core design [7] shown in Fig. 6. The core has a 27/3 rotational
symmetry and for the application of the MPK we chose symmetric regions
as shown in Fig. 6. The transient we analyzed is a step change where the
red-circled rod in region 1 is instantaneously removed from the core. The
same transient has been analyzed in [5] with the ECCO/ERANOS code [§].

Also here we are below prompt criticality (f=369pcm and p=349pcm)
but with much smaller margin.

4.1. Results

In this case, we present three sets of results, one for the PK and two
for the MPK, one for Avery’s model and one for Kobayashi’s model. The

14



Figure 6: ASTRID CFV-V1 - Color code: Yellow: inner fuel - Red: outer fuel - Light blue:
reflector - Grey: shielding - Dark blue and black: control rods - White: inert sub-assemblies

total population evolution is plotted in Fig. 7. Here, as opposed to what
happens in the previous case, there is no major difference between the various
modeling techniques for what concerns the total population.

However, if we look at the population repartition in Fig. 8 we can see in
the MPK models quick changes in the neutron population distribution taking
place in the same timescale as the previous case and before the prompt jump.
The main difference is that, in this case, the redistribution of the neutron
population is not associated with a change in the total amplitude.

For what concerns the asymptotic behavior (Fig. 9) no major differences
exist among the various models, with existing discrepancies that, also in this
case, we think can be explained by the different approximations we did.

Looking at the eigenvalues of the matrix M (Eq. 9) in Fig. 10 we can
see how, also in this case, some eigenvalues cluster around the opposites of
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Figure 7: Total neutron population evolution - ASTRID model
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Figure 8: Relative neutron population evolution - ASTRID model

the decay constants of precursor families. We notice also the single positive
eigenvalue with similar value for all the models (with the biggest discrep-
ancy being between PK and Kobayashi’s MPK of about 8%) and that MPK
presents a set of smaller eigenvalues enabling shape changes on a very short
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Figure 9: Asymptotic neutron population behavior - ASTRID model
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Figure 10: Eigenvalues of the ASTRID model

timescale. Also here, for all the MPK models, if we compare these eigenval-
ues (those < —10? s7!) with the ones from the one of the prompt sub-matrix
we notice that we get the same eigenvalues (maximum relative error below
107%), except for the eigenvalue around —5 - 10* s~! for which we have a rel-
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ative error of 2%. This seems to show that, as the reactor approach prompt
criticality, the leading prompt eigenvalue is more influenced by the total sys-
tem and we have higher deviation from the one of the prompt sub-matrix
alone.

5. Conclusions and perspectives

The discussion of the results presented shows that in the cases considered,
there are minor differences between Avery’s and Kobayashi’s formalisms. We
also show how a further subdivision of homogeneous zones, in the cases con-
sidered, has a small impact on the overall description of the system. However,
in the heterogeneous case, MPK is able to model total flux changes that PK is
not able to reproduce and therefore MPK constitutes an important improve-
ment in transient modeling. These results seem to show that, concerning the
region subdivision in MPK] it is important to separate regions with differ-
ent kinetic proprieties but further subdivision of homogeneous regions has a
minor impact.

We also noticed that, after a step perturbation, the repartition of the neu-
tron distribution anticipates the prompt jump and the following exponential
behavior of the total amplitude.

While in this work we focused on the characterization of PK and MPK,
limiting our analysis on the capabilities of the two methods, further work
should be done to validate the results presented so far; this can be done by
comparison against direct kinetic calculation, either deterministic or Monte
Carlo, or against experimental data.

As perspectives, we think it is interesting to further investigate the evo-
lution of the eigenvalues with respect of different criticality situations, in-
cluding more accurate analyses around prompt criticality. We also think it
is interesting to reproduce these results using fluxes different from the ones
obtained using the k-modes from Eq. (2) and (3) [e.g. alpha modes (tempo-
ral eigenvectors) or even dynamic fluxes if MPK is included in a quasi-static
space-time kinetic scheme] that could be more representative of the analyzed
cases. Finally we would like to combine these results with the work done
in [20] to predict the flux shape evolution and to optimize shape calculation
time step during transients.
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