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Abstract

Snow cover models such as Crocus or Snowpack have been designed to simulate the detailed stratigraphy of snow properties.
This is relevant, for instance, to assess snowpack stability in support of avalanche forecasting. However, such models have generally
been evaluated on bulk or surface properties, such as snow depth, water equivalent of snow cover or surface albedo, but not on
the detailed stratigraphy. The large number of snow profiles collected in observer networks have thus not been assimilated in
such models hitherto. This study introduces a new method to (1) directly compare simulated and observed snow layering and (2)
allow for the insertion of observed profile to initialize a snow cover model. This method is mainly based on a scheme to convert
observations into state variables of snow cover models and matching observed and simulated layering, accounting for potential
depth shifts. The developed methodology was applied to the Crocus snow cover model at three sites in the French Alps, for 15
winter seasons between 2000 and 2015. The performance of Crocus initialized with a bare ground at the end of the summer was
evaluated against 739 observed profiles. The model performance varied with the considered winter season and sites. On average,
Crocus reproduced snow depth with a median error of 12 cm, layer density with a median error of 50 kg m−3, layer grain shape
with an error of 0.31 according to a specially developed metric. The re-initialization of the model with observed profiles during
winter season enabled to reduce these simulation errors. One week after the direct insertion of a manual profile, the median error
of the simulation decreased to 6.8 cm for snow depth, 39 kg m−3 for density and 0.25 for grain shape. However, the improvement
provided by this re-initialization almost completely vanished one month after the insertion.

Keywords: snow, snow cover simulation, Crocus, snow stratigraphy, direct insertion

1. Introduction1

Accurately simulating the evolution of the snow cover in time and space is critical for many applications such2

as climate change assessment, weather forecasting, water resource management, snow management in ski resorts or3

avalanche hazard forecasting. Depending on the application and desired precision, models of different complexity are4

used to simulate the snow cover: single-layer snow schemes [e.g. Douville et al., 1995; Bazile et al., 2002], scheme of5

intermediate complexity [e.g. Loth and Graf, 1998; Boone and Etchevers, 2001] and detailed snow cover models with6

an explicit representation of the vertical layering [e.g. Vionnet et al., 2012; Bartelt and Lehning, 2002]. These classes7

of models differ by the vertical resolution, representation of physical properties and parameterizations of physical8

processes [Vionnet et al., 2012].9
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Snow stratigraphy, i.e. the vertical layering of the snowpack, has long been identified as a major factor for10

avalanche formation [Schweizer et al., 2003]. For instance, a pre-requisite for slab avalanche release is the presence of11

a weak layer below a more cohesive slab. Avalanche hazard assessment thus requires high-resolution information on12

stratigraphy, which can be estimated by detailed snow cover models. Detailed snow models include Crocus originally13

developed in France [Brun et al., 1989; Vionnet et al., 2012], Snowpack in Switzerland [Bartelt and Lehning, 2002;14

Lehning et al., 2002] and Sntherm in the United States [Jordan, 1991]. Some avalanche forecasting services use these15

models in support of their activities and an increasing number of such services intend to use such models [Morin et al.,16

2019]. Numerical models provide estimates of the snowpack stratigraphy at a subdaily time resolution (commonly17

3 hours) with a more comprehensive spatial coverage than any manual observation. Yet, these estimates can suffer18

from large deviations because of errors in the meteorological forcing [Raleigh et al., 2015] and limited accuracy in19

simulating complex but essential physical processes such as drifting and blowing snow or liquid water percolation20

[Vionnet et al., 2018; D’Amboise et al., 2017; Wever et al., 2014].21

In addition to the information provided by numerical models, avalanche forecasting services rely on large networks22

of observers regularly reporting observed snow profiles [Pahaut and Giraud, 1995]. For instance, about 36,000 profiles23

were reported between 1990 and 2015 in French mountains. Manual stratigraphy observations provide a direct snap-24

shot of the snowpack at the pit scale, with a specific attention to layers of interest for the assessment of snowpack25

stability. However, manual observations are time-consuming and only capture the snowpack evolution at a given time.26

Moreover, while these observations provide reliable information on a given point, it is difficult to spatially extrapolate27

at a regional scale [Lafaysse et al., 2013; Revuelto et al., 2018].28

Combining numerical simulations and observed stratigraphy could provide a better representation of snowpack29

evolution. However, studies and methods addressing the benefits of jointly using stratigraphy observations and nu-30

merical modelling are rather scarce. Only measured meteorological quantities, such as precipitation amount or snow31

depth are used to adjust the meteorological forcing or model output. Giraud et al. [2002] developed the computer32

program Crocus_PC, which simulates the snowpack evolution initialized by a profile fully described in terms of the33

Crocus state variables and a time series of meteorological forcing. Snow depth data can be used to drive the model34

Snowpack [Bartelt and Lehning, 2002]. Charrois et al. [2016] and Larue et al. [2018] showed the potential of assim-35

ilating snow surface reflectance into Crocus. Magnusson et al. [2014] introduced a method to assimilate measured36

water equivalent of snow cover or bulk snow density. Piazzi et al. [2018] and Smyth et al. [2019] assimilate other37

sources of data, such as snow surface temperature or surface albedo. Even if obvious deviations between simulated38

and observed profiles are noticed, there is currently no method to correct the snow simulation during the winter season39

from detailed observed stratigraphy. This paper introduces a method for direct insertion of observations into snowpack40

simulations, as a first step towards more sophisticated assimilation methods.41

Evaluations of detailed snow cover models have been mostly carried out using bulk or surface properties. For42

instance, the model Crocus was evaluated using snow depth [Brun et al., 1989], surface temperature [Brun et al.,43

2012], water equivalent of snow cover, bulk snow density or albedo [Lafaysse et al., 2017] but never quantitatively on44

2
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its detailed simulated stratigraphy. Morin et al. [2013]; Domine et al. [2013] and Carmagnola et al. [2014] compared45

observed and simulated profiles of specific surface area but their evaluation remained qualitative. To our knowledge,46

Lehning et al. [2001] developed the first method to evaluate simulations of snow stratigraphy, with an illustration on47

the model Snowpack. To this end, Lehning et al. [2001] used a specific mapping between observed and simulated48

layers to account for potential shifts in the layering. The very large set of traditional snowpack observations available49

could also be used to evaluate the model, bringing complementary information to classical evaluations, especially on50

the detailed stratigraphy [Pahaut and Giraud, 1995; Calonne et al., 2020].51

This paper introduces a method to evaluate detailed snow cover model output against snow pit observations and to52

correct model stratigraphy with these observations. The first pillar of this method is the identification and computation53

of common variables between simulation and observation and inferring simulation variables from observations. The54

second pillar is a mapping between observed and simulated layers. With these two fundamental pillars, the simulation55

can be explicitly evaluated using observed profiles and those can be used to build a new initial model stratigraphy56

along the winter season.57

2. Material58

The data used in this study consists of observed snow profiles describing the snowpack stratigraphy and snowpack59

simulations, at three different sites in the French Alps for a 15-year period from 2000 to 2015.60

2.1. Study sites61

Snowpack observations by trained observers are essential information to estimate avalanche hazard. Therefore,62

avalanche warning services maintain extensive networks of observers at dedicated sites [Pahaut and Giraud, 1995]. In63

the French mountains, the network of observers operated by Météo-France and its partners in ski resorts is composed64

of about 120 observation points at elevations between 1100 m and 3000 m above sea level (Figure 1, for the French65

Alps). Around 1300 observed snow profiles are reported each year. For this study, three sites were selected, from66

three different massifs, based on their high rate of reporting and low exposure to wind: Col de Porte (Chartreuse,67

1325 m, slope 5◦, aspect N, [Morin et al., 2012; Lejeune et al., 2019]), Tignes (Haute-Tarentaise, 2400 m, 5◦, E) and68

La Plagne (Vanoise, 2160 m, 5◦, NE). These three sites are highlighted in Figure 1. For the study period and for the69

selected sites, 709 complete traditional snow profiles were reported, i.e. about one profile per week during winter.70

2.2. Snowpack observations71

The snow stratigraphy, i.e. snow physical properties determined layer by layer, is reported in a standardized manner72

[Fierz et al., 2009] as follows. Firstly, a measurement of penetration resistance is performed with the ramsonde (ram73

measurement not used in this study). Then, after excavating the snowpack down to the ground, the observer divides the74

snowpack up to individual homogeneous layers. Each layer is characterized by its vertical position, grain shape and75

size, density, hand hardness and wetness according to a standard procedure (see [Fierz et al., 2009] for details). Grain76

3
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Figure 1. Map of the observer network of Météo-France in the French Alps. The three sites used for this study, namely Col de Porte, Tignes and

La Plagne, are highlighted in yellow.

shape and size are determined by visual inspection using a crystal card and a magnifying glass (8 x magnification).77

Snow density is measured by weighing a defined snow volume extracted horizontally using a cylinder-type cutter78

(generally 6 cm diameter). Density measurements are usually limited to snow layers thicker than the cutter diameter.79

Hand hardness is measured by pushing the fist (F), four fingers (4F), one finger (1F), a pen (P) or a knife (K) into the80

snowpack. The hand hardness corresponds to the biggest element that can be inserted into snow while not exceeding81

a force of about 10 N. Snow wetness is reported using five classes: dry (D), moist (M), wet (W), very wet (V) and82

soaked (S) according to the snow behaviour if pressed in the glove. In addition to this layer-by-layer observations,83

a temperature profile is measured on an independent vertical grid adjusted by the observer according to temperature84

gradient. In the layer-by-layer characterization, grain shape and layer thickness are always reported but information85

on other characteristics (grain size, hand hardness, wetness and density) can be missing. An example of an observed86

snow profile is shown in Figure 2a.87

2.3. Snowpack simulations88

The snowpack evolution was simulated using the model SAFRAN-SURFEX/ISBA-Crocus [Durand et al., 1999;89

Lafaysse et al., 2013] at the selected sites.90

The SAFRAN weather analysis model provides the atmospheric forcing data to drive the snowpack evolution, on91

an hourly basis [Durand et al., 2009]. This model adjusts a guess from numerical weather prediction model at 40 km92

grid spacing using meteorological observation data available (but no snow observations are included). For the French93

Alps, the analysis is performed on 23 areas (so-called massifs) within which the spatial variability of meteorological94
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Figure 2. Measured (a) and simulated (b) snow stratigraphy at Col de Porte on February 15th 2005. Grain shape, hand harness and wetness are

represented according to the international classification of seasonal snow on the ground [Fierz et al., 2009].

and snow conditions are assumed to depend only on elevation, aspect and slope. For the snowpack simulation at the95

sites selected for this study, the atmospheric forcing was interpolated at the exact site elevation and the incoming96

radiation components were adjusted in order to take into account local shading. This large scale meteorological input97

is also used at Col de Porte site, despite the availability of local measurements [Lejeune et al., 2019], for consistency98

with the other sites.99

The model SURFEX/ISBA-Crocus (referred to as Crocus hereafter) is a one-dimensional multi-layer physical100

snowpack model [Brun et al., 1989; Vionnet et al., 2012]. Crocus represents the snowpack as a set of up to 50101

snow layers. Each layer is characterized by its density, age, enthalpy, mass and two variables representing the snow102

microstructure: sphericity and specific surface area (SSA). An additional state variable, the historic variable, indicates103

whether liquid water or faceted crystals have been present in the layer. SSA represents the total surface area per104

unit of ice mass. Sphericity varies between 0 and 1 and describes the ratio between rounded and angular shapes.105

Crocus reproduces the time-evolution of these state variables by accounting for new snow deposition, metamorphism,106

settlement, heat exchanges, melting and refreezing for each layer, at a time step of 15 minutes. Crocus is coupled to107

the soil scheme ISBA-DIF [Decharme et al., 2011] to account for energy exchanges at the bottom of the snowpack.108

An example of a simulated snow stratigraphy is shown in Figure 2b.109
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3. Methods110

As shown in Figure 2, and described above, the characterization of the snowpack stratigraphy differs between111

observations and simulations. In order to evaluate the model or to compute a model initial state from observations,112

methods to relate observed and simulated variables as well as to associate observed and simulated layers are required.113

3.1. Relating simulations and observations114

3.1.1. Relating observed and simulated snow layer properties115

The observed layers are described in terms of depth, grain shape and size, density, wetness and hardness. A116

temperature profile is also provided, and the temperature profile is assumed to be linear between two measurement117

points (Figure 2a). The simulated layers are described in terms of mass, density, SSA, historic variable, sphericity,118

enthalpy and age (Figure 2b). To evaluate snow cover model output against observations, simulated variables have to119

be converted to observed variables. Conversely, computing an initial model stratigraphy from observations requires a120

method to convert observed variables into model state variables.121

Using a common set of variables. The model Crocus already makes it possible to compute layer thickness, density,122

grain shape and size, liquid water content and temperature from the simulated state variables [Vionnet et al., 2012].123

Layer thickness, density and temperature are common variables of simulations and observations. In contrast, liquid124

water content is represented as a continuous variable in the simulation whereas the observer reports a wetness index125

between dry and soaked. As the observed class is very subjective, only three classes are retained to compute a common126

variable : a class of dry snow corresponding to the observed dry class or to a zero simulated liquid water content, a127

class of moist snow corresponding to the observed class moist and simulated liquid water content under 3 kg m−3,128

and a saturated class when reported humidity class is wet, very wet or soaked or simulated liquid water content is129

above 3 kg m−3. Both variables are converted into a three-class variable (dry, moist, saturated) called wetness class130

and denoted WetC, according to Appendix A.131

Comparing simulated and observed properties. Comparisons between snow profiles, observed or simulated, are132

done on the common set of variables presented in the previous paragraph. The comparison between variables de-133

scribed by numerical values, namely snow depth, layer thickness, grain size and temperature is straightforward using134

standard metrics such as the deviation (difference between two values) and the error (the absolute value of this dif-135

ference). However, a specific metric is required to quantitatively compare grain shapes (categorical variable) and136

wetness classes (ordinal variable). To compare grain shapes, we adapted the metric introduced by Lehning et al.137

[2001]. We introduced additional grain shapes and consider a distance instead of a score (a distance of 0 means a138

perfect agreement). The corresponding distance metric is presented in Table 1. The distance between two mixed grain139

shapes (p1, s1) and (p2, s2) is defined as 0.5 · min(d(p1, p2) + d(s1, s2), d(p1, s2) + d(p2, s1)), where d is the distance140

defined in the Table 1 between two "pure" grain shapes. The min function is used so that we do not account for the141

order between primary and secondary grain shapes in mixed grain shapes as Crocus does not have such a hierarchical142
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Grain shape PP DF RG FC DH MF IF SH PPgp

PP 0.0 0.2 0.5 0.8 1.0 1.0 1.0 1.0 0.8

DF 0.2 0.0 0.2 0.6 1.0 1.0 1.0 1.0 0.6

RG 0.5 0.2 0.0 0.6 0.9 1.0 0.0 1.0 0.5

FC 0.8 0.6 0.6 0.0 0.2 1.0 0.0 1.0 0.2

DH 1.0 1.0 0.9 0.2 0.0 1.0 0.0 1.0 0.3

MF 1.0 1.0 1.0 1.0 1.0 0.0 0.2 1.0 1.0

IF 1.0 1.0 0.0 0.0 0.0 0.2 0.0 1.0 1.0

SH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0

PPgp 0.8 0.6 0.5 0.2 0.3 1.0 1.0 1.0 0.0

Table 1. Distance between two grain shapes, adapted from [Lehning et al., 2001] (with PPgp added with arbitrary values). Snow grain shape

abbreviations correspond to the international classification of seasonal snow on the ground [Fierz et al., 2009].

way of representing mixed grain shapes (e.g. if the model results indicate DF+FC and the observer reports FC/DF, we143

want to identify this as a perfect agreement as Crocus does not make any difference between DF+FC or FC+DF). To144

compare liquid water classes, an arbitrary value is associated to each class (dry:0, moist:1, saturated:2), which enables145

using standard metrics for the comparison.146

3.1.2. Relating observed and simulated layer boundaries147

The layer boundaries, i.e. the set of the layer vertical limits, are different between observed and simulated profiles.148

In general, the simulated profile has a much higher resolution and finer structure than the observed profile and layers149

can be shifted vertically between these two profiles. Therefore, it is necessary to perform a mapping between observed150

and simulated layers to obtain a common layer boundary set [Lehning et al., 2001]. The mapping used in this study is151

described below.152

First, the thickness of the simulated layers is uniformly scaled so that the simulated snow depth corresponds to the153

observed snow depth. The observed and adjusted simulated profiles are then re-sampled on the same vertical layer154

grid of 1 mm (or up to 0.1 mm if some layers are thinner than 1 mm in the simulation) thickness and both expressed155

with common variables (Figure 3a and b). Overall adjustment of layer thicknesses is generally not sufficient to obtain156

a consistent mapping between simulated and observed profiles [Lehning et al., 2001; Hagenmuller and Pilloix, 2016].157

Additional processing is thus required to account for local depth shifts. Following the work of Hagenmuller et al.158

[2018] and Schaller et al. [2016], layer thicknesses are adjusted so that a certain distance D between the profiles is159

minimized, considering the observed profile as reference. This distance D is based on the layer metric described in160

detail in Section 3.1.1. It is defined as the mean over depth of the weighted sum of the errors on density (dd), liquid161

water class (dwc), grain shape (dg) and depth. Depth is taken into account in D to limit depth shifts when those do162
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Figure 3. Relationship between the simulated (a, b, c) and observed (d) stratigraphy for 15th February 2005 at Col de Porte. (a) Simulated

profile. (b) The simulated snow depth is adjusted and all properties expressed as common variables. (c) Local shifts are adjusted with the matching

procedure, so that the stratigraphic features of the simulated profile are at the same depth as the observed profile (d).

not really reduce the general error substantially. Weights are chosen so that each variable equally contribute to D,163

accordingly to the following equation:164

D =
1

htot

∫ htot

0

(
1
αd
· dd +

1
αwc
· dwc +

1
αg
· dg +

1
αh
· |δh|

)
dh (1)

where h is the depth, htot the snow depth, δh is the depth shift (in m). dd, dwc and dg are defined in Section 3.1.1.165

Weights are αd = 413 kg m−3, αwc = 1, αg = 1 and αh = 1 m. Note that since the layer properties are often correlated166

with each other, the layer matching based on D is not very sensitive to the arbitrary weights chosen in Equation 1.167

In addition, the layer thickness extension or reduction is constrained to -50% and +100% to avoid very large depth168

shifts. This constraint prevents very large layer dilation or complete removal of some layers. To solve the optimization169

problem, i.e. finding the best thickness adjustments according to distance D, we use Dynamic Time Warping [Sakoe170

and Chiba, 1978], commonly used in audio or video fields. Dynamic Time Warping finds a global minimum of171

distance D, with previously described constraints. Details of this optimization procedure for snow profiles can be172

found in [Schaller et al., 2016]. An example of the local depth adjustment is shown in Figures 3c, considering173

the observation of Figure 3d as a reference. In this example, the transition between precipitation and decomposing174

particles and melt forms of the scaled simulated profile (Figure 3b) was moved from 0.3 m to 0.6 m (Figure 3c) by175

the matching algorithm to fit the observed profile (Figure 3d).176

3.2. Evaluation of snow cover models177

With the previously described methods, the snowpack simulations can be compared to observed profiles while178

accounting for potential depth shifts. To this end, the simulation layer boundaries are re-defined so that they match179

the observed layer boundaries, according to the procedure described in Section 3.1.2. The comparison between180
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simulation and observation is performed at each depth, on the common variables described in Section 3.1.1. Instead181

of considering D, the distance used for the matching (Equation 1), as an overall metric for snow profiles, we rather182

present differences between profiles on individual variables (depth, grain shape, density, WetC...). Then, the mean183

error is defined as the averaged error on the snow depth. A mean error was also computed on one or several seasons184

averaging the error of each comparison point (typically at each observation).185

3.3. Direct insertion of snowpack observations in snowpack simulation186

In order to generate a model initial state from observed snow profiles, simulation layer boundaries are first mapped187

to the observed layer boundaries according to the procedure described in Section 3.1.2. This mapping is necessary to188

be able to combine observed and simulated variables.189

Second, observed variables are converted to model state variables. The relationships between the model state vari-190

ables and their observed equivalents, implemented in Crocus, are not directly invertible and additional relationships191

were developed. Observed and simulated layer density represent the same physical quantity. Enthalpy is a function of192

temperature, liquid water content and density [Boone and Etchevers, 2001, Equation 7]. Liquid water content was es-193

timated from wetness class as follows: 0, 2.5 and 5 % of pore volume for dry, moist and saturated classes, respectively.194

The snow microstructure variables, namely sphericity, historic variable and SSA, were computed from grain shape195

according to the tables shown in Appendix B. Then, the new model initial state is obtained by combining variables196

from observations and simulated ones. By default, we used density, enthalpy and grain characteristics (SSA, spheric-197

ity and historic) variables computed from observation when available and age from simulation. This set of variable198

will be referred to as the basic set. This choice was tested and corresponding results are provided in Section 4.3.3.199

In the case when there is no snow in the simulated profile but snow in the observed profile with some observed200

properties missing (this case appears only once in our data), the new model initial state can not be computed directly.201

In this case, a layering compatible with Crocus requirements (maximum 50 layers, thinner layer on top to correctly202

solve energy budget, see [Vionnet et al., 2012, sect. 3.2] for details) is produced from observation layering and age203

is inferred from grain shape (1 day for precipitation particles as main shape, 6 days for decomposing and fragmented204

particles as main shape or precipitation particles as secondary shape and 20 days for other grain shapes).205

3.4. Error metrics206

The Crocus model is generally driven by meteorological data and initialized with a bare ground in August. In this207

case, no snow observation is used. This type of simulation is called hereafter MMOD. Evaluating MMOD consists in208

comparing the simulated profile to the corresponding observed profile (used as a reference) and computing the error209

on each variable as described in Section 3.2. The associated score is hereafter denoted ERRMOD.210

Model simulations corresponding to the direct insertion of observations into the model each time an observation is211

available is referred to as MMIX. The error of this simulation configuration, considering observations as the reference212

is called ERRMIX. Each time a direct insertion is performed, we compute the evolution of the snowpack until the end213

9
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of the season without any further insertion in order to be able to evaluate the persistence over time of the correction.214

ERRMIX can thus be computed at different time steps after direct insertion: immediately after, i.e. 3 h after insertion,215

one week later (1w), typically when the next observation is available, or one month (1m) later, that is four observations216

later. This is then denoted ERRMIX(time since direct insertion).217

To evaluate the interest of direct insertion, ERRMOD and ERRMIX are compared. For this purpose, the score218

IMPRO(time since direct insertion) represents the improvement permitted by the direct insertion technique with219

respect to the reference run MMOD. It is computed as the difference between ERRMOD, the reference simulation220

error, and ERRMIX, the corrected model error: IMPRO(time since direct insertion) = ERRMOD - ERRMIX(time221

since direct insertion). To put these errors and improvements in perspective, we compare it to the other data available222

for avalanche hazard forecasters, which is the latest previous observation. Using the previous observation as rough ap-223

proximation of snowpack actual state is denoted LOBS and the error computed with next observation to be compared224

to ERRMOD is called ERRLOBS.225

These errors can be computed for all common variables, on every subset of the data.226

4. Results227

The result of our method are first illustrated on one season and one site, before being applied to all the dataset228

for quantitative evaluation. In particular, we investigate improvements permitted by the direct insertion, their time229

persistence, the interest of direct insertion depending on model error and the influence of the set of variables chosen230

for insertion.231

4.1. Example at Col de Porte site232

4.1.1. Winter season 2003–2004233

For illustration, we provide results using our method to a single site, Col de Porte, during the winter season234

2003–2004 (Figure 4). Here we show only the grain shape and density profiles.235

Figures 4a and 4d show all snowpack observations available at this site on the considered period (LOBS). An236

observation is reported approximately every week between mid-December and early April. The observations are here237

extended up to the next observation as they are the only data available about the snowpack during this period of time.238

As expected, the time persistence of adequacy of an observation, i.e. the duration an observation accurately represents239

the snowpack evolving with time, depends on weather conditions. For instance, the snowpack between the 21st and240

28th of January evolved rapidly due to snowfall, settlement, dry metamorphism and wet metamorphism. In contrast,241

the melt forms and thin ice layers observed on 10th March did not substantially evolve until the next observation on242

18th March. This time persistence, estimated as the distance between one observation and the next one, is indeed243

variable in time (ERRLOBS of 0.64 on grain shape and 0.51 m on snow depth between observations of 21st and 28th244

January and 0.42 and 0.47 m, respectively, between 10th and 18th March).245
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Figures 4b and 4e show MMOD simulations. This simulation, called hereafter the reference run, does not exploit246

any snowpack observation. The reference simulation exhibits a more continuous layering in time compared to the247

observed time series. Grain shape is a categorical variable, so its time evolution inherently presents discontinuities248

(jumps from a class to another). Snow depth is substantially underestimated by the simulation during this season by249

about 80 cm at the maximum on the 28th January and by 10.5 cm on average for all observations during that winter.250

The grain shape profile is reproduced with an error (ERRMOD) of 0.32 to observations. In this test case, Crocus251

tends to over-estimate the presence of faceted crystals compared to observations at the beginning of the season and252

melt forms mixed with depth hoar at the end where observations mainly indicated melt forms. In addition, Crocus253

simulates melt at the snowpack surface in early March, leading to a very high density layer, which is not reported by254

any observation.255

Figures 4c and 4f show the simulated snowpack with the model re-initialized with all observations available256

(MMIX). In this case, the simulation is reinitialized every week with a new initial state computed by all observed vari-257

ables. The insertion introduces discontinuities in the simulated profiles. However, these discontinuities are smoother258

than in the observed time series since Crocus simulates snowpack evolutions, such as the effects of new precipitation259

or fast settlement. By re-setting the model snow depth every week, the error on snow depth is, as expected, substan-260

tially reduced from an average of more than 35 cm (MMOD) to 0.3 cm (MMIX) immediately after and 5.7 cm one261

week after the insertion. The improvement on grain shapes is smaller: the mean error reduces from 0.32 (MMOD)262

to 0.14 (MMIX) immediately after and 0.20 one week after. The erroneous simulation of faceted crystals and depth263

hoar and the high density layer after an important simulated melting event (see previous paragraph) are corrected by264

the direct insertion.265

4.1.2. Winter seasons 2000–2001 to 2014–2015266

Here, we report on evaluation results spanning multiple years. The scores of the different snowpack prediction267

methods exhibit a high inter-annual variability. Figure 5 shows the evaluation of the different methods on snow268

depth, density and grain shape, at Col de Porte for the whole studied period 2000–2015. The three errors ERRLOBS,269

ERRMOD and ERRMIX(1w) (the direct insertion is performed one week before the evaluation date) are compared.270

For the sake of brevity, only the evaluation on snow depth and density are shown, but the behaviour is the same for271

other variables and other sites.272

During winter 2003–2004, the model exhibits a large deviation from observations in terms of snow depth so that273

raw observations from one week before are largely better except during the large snowfall of late January 2004. In274

contrast, during winter 2011–2012 the snow depth corresponds better to the observations in the model MMOD and275

past observations (LOBS) do not reflect well the current state. Considering only LOBS and MMOD, there is not a276

clear signal of which is the better, for these metrics, as model MMOD outperforms in 50.6% of cases for snow depth,277

47.6% for density and 40.7% on grain shape on the 231 dates used. However, the corrected model MMIX has lower278

deviations in the majority of cases, with regard to observations LOBS (76% on snow depth, 71% on density and 63%279
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Figure 4. Application on the simulation of the snowpack evolution at Col de Porte during winter season 2003–2004. The subplots (a, b, c) represent

the grain shape profiles obtained by different methods, and (d, e, f) the density. (a, d) Measured snow profiles LOBS. (b, e) Reference simulation

MMOD. (c, f) MMIX with direct insertion each time an observed profile was available (almost each week). Grey values (referred to as "?")

correspond to layers where density values have not been reported.
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Figure 5. Evaluation of the different snowpack prediction methods at Col de Porte on the period 2000–2015. Top of the bars represent ERRLOBS

in red, ERRMOD in green and ERRMIX(1w) in blue. On x-axis are juxtaposed different observations in the chronological order, season by season.

Years are labelled between seasons, so observations for winter 2008-2009 are between ticks 2008 and 2009. These errors are plotted here for two

variables: (a) snow depth, (b) snow density and (c) grain shape (mean over snowpack depth for density and grain shape).

on grain shape) and reference run MMOD (73% on snow depth, 76% on density and 78% for grain shape).280

4.2. Evaluation of the Model281

ERRMOD error is presented in Figure 6 for different parameters. The median error on snow depth is around282

12 cm, 50 kg m−3 on density, 0.3 on grain shape and 0.075 on water class. To put these values in perspective, we283

compare ERRMOD to ERRLOBS, for which median error is around 13 cm on snow depth, 40 kg m−3 on density,284

0.2 on grain shape and 0.03 on water class. Sometimes, ERRLOBS is much higher than ERRMOD, especially when285

snowfall, rainfall events or strong melting occurs between the previously available observation and the evaluation286

time step. However, on average during the whole season, ERRMOD and ERRLOBS are of the same magnitude. In287

other words, the current snowpack is, in average, as well represented by the previous observation collected one week288

before as by the model initialized with a bare ground in the summer. Over all sites and seasons, the errors using the289

latest previous observation are of the same order of magnitude, quite similar for snow depth and snow density and290

the median error is even lower for grain shape and WetC. To put this analysis in perspective, we need to consider291

that observations are more scarce in early winter and at the end of the season during melting, when the snowpack292
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Figure 6. Evaluation of the model (MMOD, in black) error on all sites on the period 2000–2015, compared to the error made using the last available

observation (LOBS, in red). The boxes span the inter-quartile range from the 1st to 3rd quartile with the horizontal line showing the median. The

whiskers show the range of observed values that fall within 1.5 times the interquartile range and the black crosses are outliers above or below it.

experiences its most important evolutions and considering that snow cover models have shown to be relevant when293

major changes occur in the snowpack [Brun et al., 1989, 2012; Lafaysse et al., 2017].294

4.3. Evaluation of direct insertion295

4.3.1. Time evolution of the improvement allowed by direct insertion296

To evaluate the impact of direct insertion, ERRMIX is computed at different time steps after insertion (3h, one297

week, one month) and compared to the reference run (ERRMOD), as presented in Figure 7. The error one week after298

insertion gives an idea of the maximum improvement while the error one month after informs on the time persistence299

of potential improvements due to the insertion of observations.300

The values of ERRMIX(3h) on snow depth, density after insertion are very low compared to ERRMOD, which301

means that the model can be almost perfectly adjusted on these variables. The little difference comes from the time302

between insertion and evaluation of error called immediately after, which corresponds to the output time step of the303

model (three hours). In this period of time, the model simulates settling of the snowpack and melting occurs in the304

snowpack with incoming radiation and heat exchange. In contrast, only partial adjustment of grain shape is possible.305

The difficulty to correct grain shape is partly due to grain shapes which are not coded in Crocus such as ice formations,306

surface hoar and graupel, which represents 27.4% of all observed layers and 11.1% in terms of overall snow layer307

thickness. It is also influenced by error on liquid water content as grains are identified differently by Crocus whether308

the snowpack is dry or not. For WetC, an intermediate level of adjustment is reached after three hours.309

The impact of a direct insertion into the snow cover model on deviation with observations tends to decrease310

with time. For all considered variables the error is much lower than in reference run immediately after, highlighting311

the interest of correcting the model with observations, but this improvement decreases with time. One month after,312
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Figure 7. ERRMOD (black) and ERRMIX immediately after the insertion (3 h after, green), one week (next observation, blue) and one month (4th
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shown (brown). Dataset of the three stations and 15 seasons (2000–2015). For box plot definition, see Figure 6.

ERRMIX(1m) is close to ERRMOD, and even higher for snow depth and WetC; in other words the improvement of313

direct insertion is lost. Two main differences between the metrics could nevertheless be noted: the initial improvement314

and the evolution rate of error over weeks.315

The time evolutions of the error values depends on the considered variable. For grain shape, the initial improve-316

ment is limited but it reduces more slowly with time (longer persistence) than for snow depth or WetC. For snow depth,317

even though correction is partially conserved after one week, it is completely lost after one month. Improvement on318

WetC is lost more quickly as there is no substantial improvement on average after one week and the model without319

any correction MMOD exhibits a lower error after one month, which highlights a quick evolution of this variable320

improvement in time.321

After one month, the direct insertion does not reduce the error of the model. However, this does not mean that after322

one month the MMIX simulation is similar to the reference one (MMOD). To investigate this, the distance between323

MMIX and MMOD after one month is plotted on Figure 7 (brown bars). The behaviour depends on the considered324

variables. For WetC, the MMIX simulated snowpack approaches simulations without insertion. For grain shape and325

density, the state of the MMIX simulated snowpack is closer to the reference run one month after insertion but the326

simulated snowpack remains different from the reference one. In contrast, snow depth of the corrected model is on327

average very different from the reference.328

4.3.2. Impact of direct insertion as a function of model error329

In this study, a direct insertion is performed each time an observation is available, including when the model330

state variables are very close to observations. However, direct insertion induces its own uncertainty sources, because331

it does not account for observation errors, and because of filling values for unknown properties (see Section 3.3).332
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Figure 8. Scatter plot of the improvement IMPRO for different time after insertion depending on ERRMOD at the time of direct insertion. Green

crosses represent improvements immediately after (IMPRO(3h)), blue ones refer to one week after (IMPRO(1w)) and red ones refer to one month

after (IMPRO(1m)). Solid lines corresponds to linear regressions for each group of symbols. The solid black line represents the maximum

improvement (1:1 line). The plot represents (a) snow depth and (b) density. All observations of the dataset considered in this study (3 sites, 15

seasons) are used here.

Figure 8 shows an evaluation of the interest of the direct insertion depending on the reference simulation error. The333

improvement indicator IMPRO is plotted immediately after, one week and one month after for two variables: snow334

depth and density. The larger the initial error, the larger the improvement, both one week and one month after. When335

re-initializing with low initial error, the improvement could be low or even highly negative one month after. For336

instance, MMIX reduced deviations with observations (IMPRO > 0) in 75% of cases one week after if re-initialized337

for error larger than 2 cm on snow depth and 130 kg m−3 for density.338

4.3.3. Selection of variables for direct insertion339

For all previous results, all state variables of the model were inferred from observation, except age inferred from340

simulation, that is to say density, sphericity, historic variable, SSA and enthalpy, called basic set. The influence of341

each variable has been studied on the mean error on liquid water class, grain shape, density, snow depth, immediately342

after and one week after as shown in Figure 9. Insertion of SSA and density have not much cross impact on other343

variables: errors on other variables are not substantially modified. On the contrary, enthalpy has a wider impact, as it344

determines whether dry or wet metamorphism can take place. We also evaluated the result of using only snow depth345
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Figure 9. Mean ERRMIX error for a set of variables, immediately after insertion and one week after for different set of inserted variables: in black,

nothing inserted (ERRMOD), in blue our basic set chosen (density, sphericity, historic, SSA and enthalpy), in yellow the basic set without density,

in pink without enthalpy, in green without SSA and in dark red, with only snow depth and adjusting layer boundaries (thickness). Data generated

from averaging absolute errors on seasons 2000 to 2015 on the three stations.

(and matching of layer boundaries) for correcting model results. This insertion corrects successfully the snow depth,346

even better than with other variables after one week, but does not substantially improve the other variables considered.347

5. Discussion and conclusion348

Detailed snow cover models are commonly evaluated on surface or bulk variables, whereas they are designed to349

represent the detailed stratigraphy. Moreover, models used in support to operational avalanche hazard forecasting are350

commonly driven with meteorological data without use of snowpack observations during a whole season, so errors351

accumulate and the simulation increasingly deviates from observations. We contribute in this paper to reduce these two352

limitations. A method for evaluating detailed snow cover models with respect to snow pit observations is introduced353

and direct insertion of observations into snowpack modelling is implemented and used to analyze some key features354

of snow cover dynamics.355
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5.1. Model evaluation356

The evaluation procedure presented in this study provides a fully automated, flexible and reproducible way to357

evaluate snow cover model results, and it is complementary to evaluations generally conducted on bulk or surface358

variables. Potential depth shifts between observed and simulated snow profiles are corrected with the developed359

matching algorithm (Figure 3). In particular, the matching allows to decompose differences between snow profiles360

into differences in layer position and differences in layer properties. We did not provide an overall agreement score361

as proposed by Lehning et al. [2001], but we decompose the snow cover evaluation on a set of physical and tangible362

variables, shared between simulated and observed data, such as snow depth, density, grain shape and wetness classes363

(Figure 6).364

We applied this evaluation to the snow cover model Crocus and conventional snow measurements from three sites365

in the French Alps, on seasons from 2000–2001 to 2014–2015. The model performance varied with the considered366

winter season and sites (Figure 5). On average, Crocus reproduced snow depth with a median error of 12 cm, layer367

density with an error of 50 kg m−3, layer grain shape with an error of 0.31 according to a previously developed heuristic368

metric and wetness classes with an error of 0.075 (Figure 6). It remains difficult to evaluate whether these levels of369

agreement between Crocus and observations can be considered as bad, fair or good. Firstly, this qualitative evaluation370

will depend on the considered application [Fierz et al., 2014]. For instance, the assessment of the avalanche danger371

and the snowpack mechanical stability will strongly depend on the ability of the snow cover model to accurately372

simulate the grain shape (e.g. depth hoar and faceted crystals). For hydrology and predicting run-off, simulating the373

grain shape will not be critical but accurately simulating the wetness of the snowpack will be important. Secondly,374

these scores have to be put in perspectives with the limited sources of information on the snowpack available. We375

showed that the current snowpack is, on average, as well represented by the previous observation collected one week376

before as by the model initialized with a bare ground in the summer (Figure 6). Nevertheless, the model remains the377

only forecasting method. Besides, the quantitative evaluation of Crocus highlighted some strengths and weaknesses378

of the model. Snow depth tended to be better represented by the reference run (Crocus initialized in August) than379

the previously available manual observation (Figure 6), consistently with the known ability of Crocus to correctly380

simulate snow depth [Revuelto et al., 2018; Vionnet et al., 2019]. In contrast, the liquid water content was better381

represented by the previous observation compared tho the reference run (MMOD) (Figure 6). The low performance382

of the model on liquid water content is consistent with known shortcomings of snow cover models to represent the383

complex process of liquid water infiltration with simple bucket schemes [Lafaysse et al., 2017].384

5.2. Direct insertion385

We showed that direct insertion of snow observations enables to correct snow cover simulations. The improve-386

ments provided by the insertion depended on the time between the insertion and the evaluation. Its typical time387

persistence was around one week. A perfect agreement between the model and the observation could not be reached388

immediately after insertion (Figure 7). This discrepancy was partly due to the absence of some grain shapes in Crocus389
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code and the fact that some observed profiles are not numerically stable according to Crocus empirical parameteriza-390

tions. On the considered sites and time period, the median error of the simulation decreased to 6.8 cm for snow depth,391

39 kg m−3 for density and 0.25 for grain shape, one week after the direct insertion of a full manual profile (Figure 7).392

In general, the improvement almost vanished one month after the insertion (Figure 7) but remained positive when the393

model error was large enough before the insertion (Figure 8).394

This ineffective correction beyond one month might be due to different sources of errors. Firstly, erroneous395

meteorological forcing is known to be an important source of error [Raleigh et al., 2015], especially because the spatial396

scale of meteorological analysis (about 1 000 km2) cannot represent the local meteorology and because of the scarcity397

and uncertainties of assimilated observations. Secondly, many processes in snowpack modelling are represented by398

uncertain empirical parameterizations [Lafaysse et al., 2017]. Due to the impossibility to observe independently each399

individual process, these parameterizations are only constrained by the commonly available observations such as snow400

depth or water equivalent of snow cover. However, different sets of parameterizations lead to similar overall skill of the401

model on these data due to error compensation between parameterizations [Lafaysse et al., 2017; Essery et al., 2013;402

Krinner et al., 2018]. For instance, the choice of an optimal parameterization for snow compaction highly depends403

on the choice of the parameterization of the density of falling snow. In our case, it is known that the parameterization404

of falling snow overestimates the observed density [Helfricht et al., 2018] because it compensates the absence of an405

explicit dependence of the compaction velocity on snow microstructure. Therefore, adjusting the simulated density406

with measured density profile immediately after a snowfall event can highly degrade the score of the model as the407

weeks goes by (Figure 7) because of the parameterization of compaction. The error observed on WetC in Figure 7408

could also be explained by erroneous water retention and percolation in the snowpack. Last, observations were here409

considered as the reference of the snowpack state in this study. Most of these observations are inevitably prone to410

errors: even density measurements carry uncertainties [Proksch et al., 2016]. This uncertainty is increased because411

different observers are involved, introducing another source of variability for some variables. Moreover, at the study412

plot scale (typically 10 m), spatial variability is unavoidable [Harper and Bradford, 2003], even if the plots used for413

this study were selected based on their low exposure to wind. Note also that observation errors are not only a limitation414

for the efficiency of direct insertion but also for the relevance of model evaluation without insertion.415

The variables used for the direct insertion were chosen on the basis of available information from conventional416

snowpack observations. In general, we used all data available from these observations to re-initialize the model. We417

showed that this could be adapted to data available, even with more simple observations which are easier to collect. We418

evaluated the impact of the choice of the inserted property on the simulation improvements (Figure 9). For instance,419

using only snow depth with adjusted layer boundaries (thickness) enabled to reduce the simulation error one week420

after the insertion, but mainly on the snow depth, with a limited cross impact on the other properties (Figure 9).421
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5.3. Outlooks422

The operational modelling system in French mountains areas used by avalanche forecasters is based on the MMOD423

configuration, that is to say the simulation of the snowpack is only driven during the whole season by a meteorolog-424

ical forcing which only assimilates meteorological observations but no snowpack observations. Errors on snow-rain425

elevation limit, snowfall amount or wetting can impact these snowpack simulations during the season. For instance,426

we showed that the model chain did not provide substantially better results than using the latest available observation.427

However, model performance was variable in time and space. Forecasters using the model should first have to evaluate428

the relevance of the model for the planned application before using the simulated snowpack in their analysis. Cur-429

rently, there is no existing tool for that purpose. In this context, real-time evaluations of the model, with the presented430

metrics, on locations where observations are available, could provide relevant information to the forecaster about the431

relevance of the model for the current specific situation. Such real-time evaluations are already performed for Crocus432

model on snow depth, but not on any stratigraphic feature.433

When large errors are noticed, the direct insertion method could reduce errors by re-initializing the snowpack to434

a more realistic state and prevent from maintaining large systematic errors for the rest of the season. Even if these435

observations only represent the point where they are performed and could hardly be spatialized, modelling snowpack436

evolution on these points with a smaller error, or at least limited to a known magnitude, remains interesting. Indeed,437

the snow cover model provides an interpolator between observations, with smaller errors compared to a free simulation438

— note that this was the initial intent driving the original development of the Crocus snow cover model [Morin et al.,439

2019].440

The evaluation and direct insertion methods are here applied to the Crocus model and conventional snow observa-441

tions conducted in a snow pit. However, this method is highly modular and could be straightforwardly adapted to other442

detailed snow cover models or other snow observations. In particular, more detailed observations could also be used,443

as SnowMicroPen (SMP [Hagenmuller et al., 2016; Pielmeier and Schneebeli, 2003]) data or SSA profiles [Arnaud444

et al., 2011], as the ones conducted on a daily to weekly basis at some sites [e.g. Calonne et al., 2020]. Moreover,445

the evaluation method could be used to compare and evaluate the stratigraphies simulated by different snow cover446

models. Similarly to Krinner et al. [2018], intercomparison and evaluations of detailed snow cover models could also447

include an evaluation on the detailed stratigraphy based on an extensive set of conventional snowpack measurements.448

In addition, different parameterizations of the same model, such as Lafaysse et al. [2017], could be evaluated in order449

to improve snow cover models based on quantitative appraisal of the deviations of model results to observations and450

to guide future development efforts.451

A method to quantify errors between model and observations was developed. The direct insertion of observations452

improved most often the simulations, with fluctuations depending on amplitude of model error and availability of453

observations. Our method only injects observations in the model by direct insertion, forgetting most of the simulation454

results and ignoring observation errors or uncertainties. For instance, injecting an observation when the model error is455

very low induced a degradation of the model scores (Figure 8). Direct insertion, a very simple assimilation technique,456
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does not either take into account model uncertainty. Furthermore, the method, as presented, can only be implemented457

on points where observations are performed. More advanced assimilation methods such as using ensemble algorithms458

[Magnusson et al., 2014; Charrois et al., 2016] are known to be able to solve these limitations of direct insertion.459

However, they have only been applied to the assimilation of bulk or surface properties of the snowpack [Helmert460

et al., 2018; Largeron et al., 2020]. Our work is a first step towards the possibility to assimilate observed profiles with461

such algorithms because it provides a distance metric between observed and simulated profiles. Nevertheless, the use462

of this method in spatialized simulations remains difficult due to the lack of observations. In spatialized simulations,463

the assimilation of satellite observations of surface properties might be more straightforward [Cluzet et al., 2019] but464

they do not provide all the modelled variables, so the use of snow pit observations could be complementary to the465

assimilation of remote sensing data.466
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Appendix A. Wetness class definition479

Liquid water content is represented as a continuous variable in the simulation whereas the observer reports a480

wetness class between dry and soaked. These variables have to be cast to a common format before comparison.481

As the observed class is very subjective, only three classes are retained to compute a common variable: a class of482

dry snow corresponding to the observed dry class or to a zero simulated liquid water content, a class of moist snow483

corresponding to the observed index moist and simulated liquid water content under 20 kg m−3 (equivalent to 2%484

in volume), and a saturated class when reported wetness index is wet, very wet or soaked or simulated liquid water485

content is above 20 kg m−3. This common variable is called wetness class and denoted as WetC.486
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Appendix B. Completion tables487

Direct insertion needs to reconstruct model variables from observation. Relations between observed variables488

and model state variables, implemented in Crocus, are not directly invertible and additional relations were therefore489

defined, especially for variables describing grain morphology, namely sphericity, SSA and historic variable. Table B.1490

proposes relations between grain shape identified by the observer and simulation variables. These relations have been491

determined from identification of grain shape in Crocus code [Vionnet et al., 2012] for sphericity and historic, picking492

values in the range of sphericity and historic variable for each grain shape. For SSA, as Crocus has only three classes493

of SSA, the values are chosen to be consistent with Crocus classes but in these classes, values for each grain shape are494

ordered according to measurements of SSA at Col de Porte by Carmagnola [2013] and Domine et al. [2007].495

Some variables may not have been reported for all layers in an observed profile, especially snow density, which496

could not be measured for thinner layers. To ensure the consistency of the re-initialized state, missing densities are497

filled, based on grain shape reported, with Table B.2. These densities are chosen to be compatible with Crocus grain498

identification.499
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(a) Sphericity

Secondary grain PP DF RG FC DH MF IF SH PPgp

Main grain

PP 0.50 0.50 0.75 0.25 0.00 0.99 0.50 0.50 0.45

DF 0.50 0.50 0.70 0.30 0.00 0.99 0.50 0.50 0.45

RG 0.90 0.80 0.99 0.60 0.50 0.99 0.99 0.90 0.75

FC 0.10 0.20 0.40 0.00 0.00 0.30 0.30 0.00 0.10

DH 0.00 0.00 0.60 0.00 0.00 0.50 0.25 0.00 0.50

MF 0.99 0.99 0.99 0.45 0.70 0.99 0.99 0.90 0.90

IF 0.50 0.50 0.99 0.30 0.25 0.99 0.50 0.50 0.50

SH 0.50 0.50 0.90 0.50 0.50 0.90 0.50 0.50 0.50

PPgp 0.45 0.45 0.65 0.10 0.50 0.75 0.50 0.50 0.50

(b) Historic variable

Secondary grain PP DF RG FC DH MF IF SH PPgp

Main grain

PP 0 (2) 0 (2) 0 (2) 0 (3) 1 (3) 2 (2) 2 (2) 1 (3) 0 (2)

DF 0 (2) 0 (2) 0 (2) 1 (3) 1 (3) 2 (2) 2 (2) 1 (3) 0 (2)

RG 0 (2) 0 (2) 0 (0) 0 (0) 1 (3) 2 (2) 2 (2) 1 (3) 0 (2)

FC 1 (3) 1 (3) 0 (0) 0 (0) 1 (3) 3 (3) 3 (3) 1 (3) 1 (3)

DH 1 (3) 1 (3) 1 (3) 1 (3) 1 (1) 3 (3) 3 (3) 1 (3) 1 (3)

MF 2 (2) 2 (2) 2 (2) 3 (3) 3 (3) 2 (2) 2 (2) 3 (3) 2 (2)

IF 3 (3) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)

SH 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 3 (3) 3 (3) 1 (3) 1 (3)

PPgp 0 (2) 0 (2) 0 (2) 1 (3) 1 (3) 2 (2) 1 (3) 1 (3) 0 (2)

(c) Specific surface area (m2 kg−1)

Grain shape PP DF RG FC DH MF IF SH PPgp

SSA 40 30 20 25 4 7 2 4 20

Table B.1. Conversion of observed grain shape into the model grain morphology variables: (a) sphericity, (b) historic variable and (c) specific

surface area. Snow shape abbreviations correspond to the international classification of seasonal snow on the ground [Fierz et al., 2009]. For the

historic variable (b), the value in brackets is used when the observed layer is wet. Sphericity and historic variables were determined to be coherent

with grain identification implemented in Crocus code [Vionnet et al., 2012]. Specific surface area ranges are determined the same way but Crocus

having only three classes, relative value between grains in the same class are determined by measurements from Carmagnola, 2013 and Domine

et al., 2007. This last table is more simple because of the lack of data and the difference in absolute values between measured and simulated specific

surface area.
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Secondary grain PP DF RG FC DH MF IF SH PPgp

Main grain

PP 100 150 150 100 100 180 180 100 120

DF 150 180 230 200 200 250 250 180 180

RG 200 230 300 250 250 350 450 200 200

FC 180 200 250 250 280 350 450 180 200

DH 180 200 250 280 300 350 450 180 200

MF 180 250 350 350 350 400 450 400 350

IF 180 250 450 450 450 450 450 450 450

SH 100 180 200 180 180 400 450 100 250

PPgp 120 180 200 200 200 350 450 250 250

Table B.2. Snow density (kg.m−3) associated with grain shape, taking into account the main grain shape and the secondary one.
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