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Snow cover models such as Crocus or Snowpack have been designed to simulate the detailed stratigraphy of snow properties. This is relevant, for instance, to assess snowpack stability in support of avalanche forecasting. However, such models have generally been evaluated on bulk or surface properties, such as snow depth, water equivalent of snow cover or surface albedo, but not on the detailed stratigraphy. The large number of snow profiles collected in observer networks have thus not been assimilated in such models hitherto. This study introduces a new method to (1) directly compare simulated and observed snow layering and (2) allow for the insertion of observed profile to initialize a snow cover model. This method is mainly based on a scheme to convert observations into state variables of snow cover models and matching observed and simulated layering, accounting for potential depth shifts. The developed methodology was applied to the Crocus snow cover model at three sites in the French Alps, for 15 winter seasons between 2000 and 2015. The performance of Crocus initialized with a bare ground at the end of the summer was evaluated against 739 observed profiles. The model performance varied with the considered winter season and sites. On average, Crocus reproduced snow depth with a median error of 12 cm, layer density with a median error of 50 kg m -3 , layer grain shape with an error of 0.31 according to a specially developed metric. The re-initialization of the model with observed profiles during winter season enabled to reduce these simulation errors. One week after the direct insertion of a manual profile, the median error of the simulation decreased to 6.8 cm for snow depth, 39 kg m -3 for density and 0.25 for grain shape. However, the improvement provided by this re-initialization almost completely vanished one month after the insertion.

Introduction 1

Accurately simulating the evolution of the snow cover in time and space is critical for many applications such 2 as climate change assessment, weather forecasting, water resource management, snow management in ski resorts or 3 avalanche hazard forecasting. Depending on the application and desired precision, models of different complexity are 4 used to simulate the snow cover: single-layer snow schemes [e.g. [START_REF] Douville | A new snow parameterization for the meteo-france climate model[END_REF][START_REF] Bazile | Improvement of the snow parametrisation in arpege/aladin[END_REF], scheme of 5 intermediate complexity [e.g. [START_REF] Loth | Modeling the snow cover in climate studies: 1. long-term integrations under different climatic conditions using a multilayered snow-cover model[END_REF][START_REF] Boone | An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Localscale evaluation at an alpine site[END_REF] and detailed snow cover models with 6 an explicit representation of the vertical layering [e.g. [START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF][START_REF] Bartelt | A physical snowpack model for the swiss avalanche warning[END_REF]. These classes 7 of models differ by the vertical resolution, representation of physical properties and parameterizations of physical 8 processes [START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF].

Snow stratigraphy, i.e. the vertical layering of the snowpack, has long been identified as a major factor for avalanche formation [START_REF] Schweizer | Snow avalanche formation[END_REF]. For instance, a pre-requisite for slab avalanche release is the presence of a weak layer below a more cohesive slab. Avalanche hazard assessment thus requires high-resolution information on stratigraphy, which can be estimated by detailed snow cover models. Detailed snow models include Crocus originally developed in France [START_REF] Brun | An energy and mass model of snow cover suitable for operational avalanche forecasting[END_REF][START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF], Snowpack in Switzerland [START_REF] Bartelt | A physical snowpack model for the swiss avalanche warning[END_REF][START_REF] Lehning | A physical snowpack model for the swiss avalanche warning: Part ii. snow microstructure[END_REF] and Sntherm in the United States [START_REF] Jordan | A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM 89[END_REF]. Some avalanche forecasting services use these models in support of their activities and an increasing number of such services intend to use such models [START_REF] Morin | Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future[END_REF]. Numerical models provide estimates of the snowpack stratigraphy at a subdaily time resolution (commonly 3 hours) with a more comprehensive spatial coverage than any manual observation. Yet, these estimates can suffer from large deviations because of errors in the meteorological forcing [START_REF] Raleigh | Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework[END_REF] and limited accuracy in simulating complex but essential physical processes such as drifting and blowing snow or liquid water percolation [START_REF] Vionnet | Operational implementation and evaluation of a blowing snow scheme for avalanche hazard forecasting[END_REF][START_REF] Table | Snow density (kg.m -3 ) associated with grain shape, taking into account the main grain shape and the secondary one[END_REF][START_REF] Wever | Solving richards equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model[END_REF].

In addition to the information provided by numerical models, avalanche forecasting services rely on large networks of observers regularly reporting observed snow profiles [START_REF] Pahaut | Avalanche risk forecasting in france: results and prospects[END_REF]. For instance, about 36,000 profiles were reported between 1990 and 2015 in French mountains. Manual stratigraphy observations provide a direct snapshot of the snowpack at the pit scale, with a specific attention to layers of interest for the assessment of snowpack stability. However, manual observations are time-consuming and only capture the snowpack evolution at a given time.

Moreover, while these observations provide reliable information on a given point, it is difficult to spatially extrapolate at a regional scale [START_REF] Lafaysse | Towards a new chain of models for avalanche hazard forecasting in french mountain ranges, including low altitude mountains[END_REF][START_REF] Revuelto | Multicriteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF].

Combining numerical simulations and observed stratigraphy could provide a better representation of snowpack evolution. However, studies and methods addressing the benefits of jointly using stratigraphy observations and numerical modelling are rather scarce. Only measured meteorological quantities, such as precipitation amount or snow depth are used to adjust the meteorological forcing or model output. [START_REF] Giraud | Crocusmeprapc software: a tool for local simulations of snow cover stratigraphy and avalanche risks[END_REF] developed the computer program Crocus_PC, which simulates the snowpack evolution initialized by a profile fully described in terms of the Crocus state variables and a time series of meteorological forcing. Snow depth data can be used to drive the model Snowpack [START_REF] Bartelt | A physical snowpack model for the swiss avalanche warning[END_REF]. [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF] and [START_REF] Larue | Simulation and assimilation of passive microwave data using a snowpack model coupled to a calibrated radiative transfer model over northeastern canada[END_REF] showed the potential of assimilating snow surface reflectance into Crocus. [START_REF] Magnusson | Assimilation of point swe data into a distributed snow cover model comparing two contrasting methods[END_REF] introduced a method to assimilate measured water equivalent of snow cover or bulk snow density. [START_REF] Piazzi | A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an alpine environment[END_REF] and [START_REF] Smyth | Particle filter data assimilation of monthly snow depth observations improves estimation of snow density and swe[END_REF] assimilate other sources of data, such as snow surface temperature or surface albedo. Even if obvious deviations between simulated and observed profiles are noticed, there is currently no method to correct the snow simulation during the winter season from detailed observed stratigraphy. This paper introduces a method for direct insertion of observations into snowpack simulations, as a first step towards more sophisticated assimilation methods.

Evaluations of detailed snow cover models have been mostly carried out using bulk or surface properties. For instance, the model Crocus was evaluated using snow depth [START_REF] Brun | An energy and mass model of snow cover suitable for operational avalanche forecasting[END_REF], surface temperature [START_REF] Brun | Le modèle de manteau neigeux crocus et ses applications[END_REF], water equivalent of snow cover, bulk snow density or albedo [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF] but never quantitatively on its detailed simulated stratigraphy. [START_REF] Morin | Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack[END_REF]; [START_REF] Domine | Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions[END_REF] and [START_REF] Carmagnola | Implementation and evaluation of prognostic representations of the optical diameter of snow in the surfex/isba-crocus detailed snowpack model[END_REF] compared observed and simulated profiles of specific surface area but their evaluation remained qualitative. To our knowledge, [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF] developed the first method to evaluate simulations of snow stratigraphy, with an illustration on the model Snowpack. To this end, [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF] used a specific mapping between observed and simulated layers to account for potential shifts in the layering. The very large set of traditional snowpack observations available could also be used to evaluate the model, bringing complementary information to classical evaluations, especially on the detailed stratigraphy [START_REF] Pahaut | Avalanche risk forecasting in france: results and prospects[END_REF][START_REF] Calonne | The rhossa campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack[END_REF].

This paper introduces a method to evaluate detailed snow cover model output against snow pit observations and to correct model stratigraphy with these observations. The first pillar of this method is the identification and computation of common variables between simulation and observation and inferring simulation variables from observations. The second pillar is a mapping between observed and simulated layers. With these two fundamental pillars, the simulation can be explicitly evaluated using observed profiles and those can be used to build a new initial model stratigraphy along the winter season.

Material

The data used in this study consists of observed snow profiles describing the snowpack stratigraphy and snowpack simulations, at three different sites in the French Alps for a 15-year period from 2000 to 2015.

Study sites

Snowpack observations by trained observers are essential information to estimate avalanche hazard. Therefore, avalanche warning services maintain extensive networks of observers at dedicated sites [START_REF] Pahaut | Avalanche risk forecasting in france: results and prospects[END_REF]. In the French mountains, the network of observers operated by Météo-France and its partners in ski resorts is composed of about 120 observation points at elevations between 1100 m and 3000 m above sea level (Figure 1, for the French Alps). Around 1300 observed snow profiles are reported each year. For this study, three sites were selected, from three different massifs, based on their high rate of reporting and low exposure to wind: Col de Porte (Chartreuse, 1325 m, slope 5 • , aspect N, [START_REF] Morin | An 18-yr long (1993-2011) snow and meteorological dataset from a mid-altitude mountain site (col de porte, france, 1325 m alt.) for driving and evaluating snowpack models[END_REF][START_REF] Lejeune | 57 years (1960-2017) of snow and meteorological observations from a mid-altitude mountain site (col de porte, france, 1325 m of altitude)[END_REF]), Tignes (Haute-Tarentaise, 2400 m, 5 • , E) and La Plagne (Vanoise, 2160 m, 5 • , NE). These three sites are highlighted in Figure 1. For the study period and for the selected sites, 709 complete traditional snow profiles were reported, i.e. about one profile per week during winter.

Snowpack observations

The snow stratigraphy, i.e. snow physical properties determined layer by layer, is reported in a standardized manner [START_REF] Fierz | The international classification for seasonal snow on the ground[END_REF] as follows. Firstly, a measurement of penetration resistance is performed with the ramsonde (ram measurement not used in this study). Then, after excavating the snowpack down to the ground, the observer divides the snowpack up to individual homogeneous layers. Each layer is characterized by its vertical position, grain shape and size, density, hand hardness and wetness according to a standard procedure (see [START_REF] Fierz | The international classification for seasonal snow on the ground[END_REF] for details). Grain shape and size are determined by visual inspection using a crystal card and a magnifying glass (8 x magnification).

Snow density is measured by weighing a defined snow volume extracted horizontally using a cylinder-type cutter (generally 6 cm diameter). Density measurements are usually limited to snow layers thicker than the cutter diameter.

Hand hardness is measured by pushing the fist (F), four fingers (4F), one finger (1F), a pen (P) or a knife (K) into the snowpack. The hand hardness corresponds to the biggest element that can be inserted into snow while not exceeding a force of about 10 N. Snow wetness is reported using five classes: dry (D), moist (M), wet (W), very wet (V) and soaked (S) according to the snow behaviour if pressed in the glove. In addition to this layer-by-layer observations, a temperature profile is measured on an independent vertical grid adjusted by the observer according to temperature gradient. In the layer-by-layer characterization, grain shape and layer thickness are always reported but information on other characteristics (grain size, hand hardness, wetness and density) can be missing. An example of an observed snow profile is shown in Figure 2a.

Snowpack simulations

The snowpack evolution was simulated using the model SAFRAN-SURFEX/ISBA-Crocus [START_REF] Durand | A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting[END_REF][START_REF] Lafaysse | Towards a new chain of models for avalanche hazard forecasting in french mountain ranges, including low altitude mountains[END_REF] at the selected sites.

The SAFRAN weather analysis model provides the atmospheric forcing data to drive the snowpack evolution, on an hourly basis [START_REF] Durand | Reanalysis of 44 yr of climate in the french alps (1958-2002): Methodology, model validation, climatology, and trends for air temperature and precipitation[END_REF]. This model adjusts a guess from numerical weather prediction model at 40 km grid spacing using meteorological observation data available (but no snow observations are included). For the French Alps, the analysis is performed on 23 areas (so-called massifs) within which the spatial variability of meteorological represented according to the international classification of seasonal snow on the ground [START_REF] Fierz | The international classification for seasonal snow on the ground[END_REF].

and snow conditions are assumed to depend only on elevation, aspect and slope. For the snowpack simulation at the 95 sites selected for this study, the atmospheric forcing was interpolated at the exact site elevation and the incoming 96 radiation components were adjusted in order to take into account local shading. This large scale meteorological input 97 is also used at Col de Porte site, despite the availability of local measurements [START_REF] Lejeune | 57 years (1960-2017) of snow and meteorological observations from a mid-altitude mountain site (col de porte, france, 1325 m of altitude)[END_REF], for consistency 98 with the other sites.
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The model SURFEX/ISBA-Crocus (referred to as Crocus hereafter) is a one-dimensional multi-layer physical 100 snowpack model [START_REF] Brun | An energy and mass model of snow cover suitable for operational avalanche forecasting[END_REF][START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF] the soil scheme ISBA-DIF [START_REF] Decharme | Local evaluation of the interaction between soil biosphere atmosphere soil multilayer diffusion scheme using four pedotransfer functions[END_REF] to account for energy exchanges at the bottom of the snowpack.
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An example of a simulated snow stratigraphy is shown in Figure 2b. 

Methods

As shown in Figure 2, and described above, the characterization of the snowpack stratigraphy differs between observations and simulations. In order to evaluate the model or to compute a model initial state from observations, methods to relate observed and simulated variables as well as to associate observed and simulated layers are required. The observed layers are described in terms of depth, grain shape and size, density, wetness and hardness. A temperature profile is also provided, and the temperature profile is assumed to be linear between two measurement points (Figure 2a). The simulated layers are described in terms of mass, density, SSA, historic variable, sphericity, enthalpy and age (Figure 2b). To evaluate snow cover model output against observations, simulated variables have to be converted to observed variables. Conversely, computing an initial model stratigraphy from observations requires a method to convert observed variables into model state variables.

Using a common set of variables. The model Crocus already makes it possible to compute layer thickness, density, grain shape and size, liquid water content and temperature from the simulated state variables [START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF].

Layer thickness, density and temperature are common variables of simulations and observations. In contrast, liquid water content is represented as a continuous variable in the simulation whereas the observer reports a wetness index between dry and soaked. As the observed class is very subjective, only three classes are retained to compute a common variable : a class of dry snow corresponding to the observed dry class or to a zero simulated liquid water content, a class of moist snow corresponding to the observed class moist and simulated liquid water content under 3 kg m -3 , and a saturated class when reported humidity class is wet, very wet or soaked or simulated liquid water content is above 3 kg m -3 . Both variables are converted into a three-class variable (dry, moist, saturated) called wetness class and denoted WetC, according to Appendix A.

Comparing simulated and observed properties. Comparisons between snow profiles, observed or simulated, are done on the common set of variables presented in the previous paragraph. The comparison between variables described by numerical values, namely snow depth, layer thickness, grain size and temperature is straightforward using standard metrics such as the deviation (difference between two values) and the error (the absolute value of this difference). However, a specific metric is required to quantitatively compare grain shapes (categorical variable) and wetness classes (ordinal variable). To compare grain shapes, we adapted the metric introduced by Lehning et al.

[ 2001]. We introduced additional grain shapes and consider a distance instead of a score (a distance of 0 means a perfect agreement). The corresponding distance metric is presented in Table 1. The distance between two mixed grain shapes (p1, s1) and (p2, s2) is defined as 0.5

• min(d(p1, p2) + d(s1, s2), d(p1, s2) + d(p2, s1))
, where d is the distance defined in the Table 1 between two "pure" grain shapes. The min function is used so that we do not account for the order between primary and secondary grain shapes in mixed grain shapes as Crocus does not have such a hierarchical Table 1. Distance between two grain shapes, adapted from [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF] (with PPgp added with arbitrary values). Snow grain shape abbreviations correspond to the international classification of seasonal snow on the ground [START_REF] Fierz | The international classification for seasonal snow on the ground[END_REF].

way of representing mixed grain shapes (e.g. if the model results indicate DF+FC and the observer reports FC/DF, we want to identify this as a perfect agreement as Crocus does not make any difference between DF+FC or FC+DF). To compare liquid water classes, an arbitrary value is associated to each class (dry:0, moist:1, saturated:2), which enables using standard metrics for the comparison.

Relating observed and simulated layer boundaries

The layer boundaries, i.e. the set of the layer vertical limits, are different between observed and simulated profiles.

In general, the simulated profile has a much higher resolution and finer structure than the observed profile and layers can be shifted vertically between these two profiles. Therefore, it is necessary to perform a mapping between observed and simulated layers to obtain a common layer boundary set [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF]. The mapping used in this study is described below.

First, the thickness of the simulated layers is uniformly scaled so that the simulated snow depth corresponds to the observed snow depth. The observed and adjusted simulated profiles are then re-sampled on the same vertical layer grid of 1 mm (or up to 0.1 mm if some layers are thinner than 1 mm in the simulation) thickness and both expressed with common variables (Figure 3a andb). Overall adjustment of layer thicknesses is generally not sufficient to obtain a consistent mapping between simulated and observed profiles [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF]Hagenmuller and Pilloix, 2016].

Additional processing is thus required to account for local depth shifts. Following the work of Hagenmuller et al.

[2018] and [START_REF] Schaller | A representative density profile of the north greenland snowpack[END_REF], layer thicknesses are adjusted so that a certain distance D between the profiles is minimized, considering the observed profile as reference. This distance D is based on the layer metric described in detail in Section 3. not really reduce the general error substantially. Weights are chosen so that each variable equally contribute to D, 163 accordingly to the following equation:

D D D D D D D D D D D D D D D D W W W W W W W W W W W W W W W W W W W
164 D = 1 h tot h tot 0 1 α d • d d + 1 α wc • d wc + 1 α g • d g + 1 α h • |δh| dh (1)
where h is the depth, h tot the snow depth, δh is the depth shift (in m). d d , d wc and d g are defined in Section 3.1.1.
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Weights are α d = 413 kg m -3 , α wc = 1, α g = 1 and α h = 1 m. Note that since the layer properties are often correlated 166 with each other, the layer matching based on D is not very sensitive to the arbitrary weights chosen in Equation 1.

167

In addition, the layer thickness extension or reduction is constrained to -50% and +100% to avoid very large depth 168 shifts. This constraint prevents very large layer dilation or complete removal of some layers. the observation of Figure 3d as a reference. In this example, the transition between precipitation and decomposing particles and melt forms of the scaled simulated profile (Figure 3b) was moved from 0.3 m to 0.6 m (Figure 3c) by 175 the matching algorithm to fit the observed profile (Figure 3d).

accounting for potential depth shifts. To this end, the simulation layer boundaries are re-defined so that they match 179 the observed layer boundaries, according to the procedure described in Section 3.1.2. The comparison between simulation and observation is performed at each depth, on the common variables described in Section 3.1.1. Instead of considering D, the distance used for the matching (Equation 1), as an overall metric for snow profiles, we rather present differences between profiles on individual variables (depth, grain shape, density, WetC...). Then, the mean error is defined as the averaged error on the snow depth. A mean error was also computed on one or several seasons averaging the error of each comparison point (typically at each observation).

Direct insertion of snowpack observations in snowpack simulation

In order to generate a model initial state from observed snow profiles, simulation layer boundaries are first mapped to the observed layer boundaries according to the procedure described in Section 3.1.2. This mapping is necessary to be able to combine observed and simulated variables.

Second, observed variables are converted to model state variables. The relationships between the model state variables and their observed equivalents, implemented in Crocus, are not directly invertible and additional relationships were developed. Observed and simulated layer density represent the same physical quantity. Enthalpy is a function of temperature, liquid water content and density [Boone and Etchevers, 2001, Equation 7]. Liquid water content was estimated from wetness class as follows: 0, 2.5 and 5 % of pore volume for dry, moist and saturated classes, respectively.

The snow microstructure variables, namely sphericity, historic variable and SSA, were computed from grain shape according to the tables shown in Appendix B. Then, the new model initial state is obtained by combining variables from observations and simulated ones. By default, we used density, enthalpy and grain characteristics (SSA, sphericity and historic) variables computed from observation when available and age from simulation. This set of variable will be referred to as the basic set. This choice was tested and corresponding results are provided in Section 4.3.3.

In the case when there is no snow in the simulated profile but snow in the observed profile with some observed properties missing (this case appears only once in our data), the new model initial state can not be computed directly.

In this case, a layering compatible with Crocus requirements (maximum 50 layers, thinner layer on top to correctly solve energy budget, see [Vionnet et al., 2012, sect. 3.2] for details) is produced from observation layering and age is inferred from grain shape (1 day for precipitation particles as main shape, 6 days for decomposing and fragmented particles as main shape or precipitation particles as secondary shape and 20 days for other grain shapes).

Error metrics

The Crocus model is generally driven by meteorological data and initialized with a bare ground in August. In this case, no snow observation is used. This type of simulation is called hereafter MMOD. Evaluating MMOD consists in comparing the simulated profile to the corresponding observed profile (used as a reference) and computing the error on each variable as described in Section 3.2. The associated score is hereafter denoted ERRMOD.

Model simulations corresponding to the direct insertion of observations into the model each time an observation is available is referred to as MMIX. The error of this simulation configuration, considering observations as the reference is called ERRMIX. Each time a direct insertion is performed, we compute the evolution of the snowpack until the end of the season without any further insertion in order to be able to evaluate the persistence over time of the correction.

ERRMIX can thus be computed at different time steps after direct insertion: immediately after, i.e. 3 h after insertion, one week later (1w), typically when the next observation is available, or one month (1m) later, that is four observations later. This is then denoted ERRMIX(time since direct insertion).

To evaluate the interest of direct insertion, ERRMOD and ERRMIX are compared. For this purpose, the score IMPRO(time since direct insertion) represents the improvement permitted by the direct insertion technique with respect to the reference run MMOD. It is computed as the difference between ERRMOD, the reference simulation error, and ERRMIX, the corrected model error: IMPRO(time since direct insertion) = ERRMOD -ERRMIX(time since direct insertion). To put these errors and improvements in perspective, we compare it to the other data available for avalanche hazard forecasters, which is the latest previous observation. Using the previous observation as rough approximation of snowpack actual state is denoted LOBS and the error computed with next observation to be compared to ERRMOD is called ERRLOBS.

These errors can be computed for all common variables, on every subset of the data.

Results

The result of our method are first illustrated on one season and one site, before being applied to all the dataset for quantitative evaluation. In particular, we investigate improvements permitted by the direct insertion, their time persistence, the interest of direct insertion depending on model error and the influence of the set of variables chosen for insertion. For illustration, we provide results using our method to a single site, Col de Porte, during the winter season 2003-2004 (Figure 4). Here we show only the grain shape and density profiles.

Figures 4a and4d show all snowpack observations available at this site on the considered period (LOBS). An observation is reported approximately every week between mid-December and early April. The observations are here extended up to the next observation as they are the only data available about the snowpack during this period of time.

As expected, the time persistence of adequacy of an observation, i.e. the duration an observation accurately represents the snowpack evolving with time, depends on weather conditions. For instance, the snowpack between the 21st and 28th of January evolved rapidly due to snowfall, settlement, dry metamorphism and wet metamorphism. In contrast, the melt forms and thin ice layers observed on 10th March did not substantially evolve until the next observation on 18th March. This time persistence, estimated as the distance between one observation and the next one, is indeed variable in time (ERRLOBS of 0.64 on grain shape and 0.51 m on snow depth between observations of 21st and 28th

January and 0.42 and 0.47 m, respectively, between 10th and 18th March).

Figures 4b and4e show MMOD simulations. This simulation, called hereafter the reference run, does not exploit any snowpack observation. The reference simulation exhibits a more continuous layering in time compared to the observed time series. Grain shape is a categorical variable, so its time evolution inherently presents discontinuities (jumps from a class to another). Snow depth is substantially underestimated by the simulation during this season by about 80 cm at the maximum on the 28th January and by 10.5 cm on average for all observations during that winter.

The grain shape profile is reproduced with an error (ERRMOD) of 0.32 to observations. In this test case, Crocus tends to over-estimate the presence of faceted crystals compared to observations at the beginning of the season and melt forms mixed with depth hoar at the end where observations mainly indicated melt forms. In addition, Crocus simulates melt at the snowpack surface in early March, leading to a very high density layer, which is not reported by any observation.

Figures 4c and4f show the simulated snowpack with the model re-initialized with all observations available (MMIX). In this case, the simulation is reinitialized every week with a new initial state computed by all observed variables. The insertion introduces discontinuities in the simulated profiles. However, these discontinuities are smoother than in the observed time series since Crocus simulates snowpack evolutions, such as the effects of new precipitation or fast settlement. By re-setting the model snow depth every week, the error on snow depth is, as expected, substantially reduced from an average of more than 35 cm (MMOD) to 0.3 cm (MMIX) immediately after and 5.7 cm one week after the insertion. The improvement on grain shapes is smaller: the mean error reduces from 0.32 (MMOD) to 0.14 (MMIX) immediately after and 0.20 one week after. The erroneous simulation of faceted crystals and depth hoar and the high density layer after an important simulated melting event (see previous paragraph) are corrected by the direct insertion.

Winter seasons 2000-2001 to 2014-2015

Here, we report on evaluation results spanning multiple years. The scores of the different snowpack prediction methods exhibit a high inter-annual variability. Figure 5 shows the evaluation of the different methods on snow depth, density and grain shape, at Col de Porte for the whole studied period 2000-2015. The three errors ERRLOBS, ERRMOD and ERRMIX(1w) (the direct insertion is performed one week before the evaluation date) are compared.

For the sake of brevity, only the evaluation on snow depth and density are shown, but the behaviour is the same for other variables and other sites.

During winter 2003-2004, the model exhibits a large deviation from observations in terms of snow depth so that raw observations from one week before are largely better except during the large snowfall of late January 2004. In contrast, during winter 2011-2012 the snow depth corresponds better to the observations in the model MMOD and past observations (LOBS) do not reflect well the current state. Considering only LOBS and MMOD, there is not a clear signal of which is the better, for these metrics, as model MMOD outperforms in 50.6% of cases for snow depth, 47.6% for density and 40.7% on grain shape on the 231 dates used. However, the corrected model MMIX has lower deviations in the majority of cases, with regard to observations LOBS (76% on snow depth, 71% on density and 63% 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 0 on grain shape) and reference run MMOD (73% on snow depth, 76% on density and 78% for grain shape).

Evaluation of the Model

ERRMOD error is presented in Figure 6 for different parameters. The median error on snow depth is around 12 cm, 50 kg m -3 on density, 0.3 on grain shape and 0.075 on water class. To put these values in perspective, we compare ERRMOD to ERRLOBS, for which median error is around 13 cm on snow depth, 40 kg m -3 on density, 0.2 on grain shape and 0.03 on water class. Sometimes, ERRLOBS is much higher than ERRMOD, especially when snowfall, rainfall events or strong melting occurs between the previously available observation and the evaluation time step. However, on average during the whole season, ERRMOD and ERRLOBS are of the same magnitude. In other words, the current snowpack is, in average, as well represented by the previous observation collected one week before as by the model initialized with a bare ground in the summer. Over all sites and seasons, the errors using the latest previous observation are of the same order of magnitude, quite similar for snow depth and snow density and the median error is even lower for grain shape and WetC. To put this analysis in perspective, we need to consider that observations are more scarce in early winter and at the end of the season during melting, when the snowpack experiences its most important evolutions and considering that snow cover models have shown to be relevant when major changes occur in the snowpack [START_REF] Brun | An energy and mass model of snow cover suitable for operational avalanche forecasting[END_REF][START_REF] Brun | Le modèle de manteau neigeux crocus et ses applications[END_REF][START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF].

Evaluation of direct insertion

Time evolution of the improvement allowed by direct insertion

To evaluate the impact of direct insertion, ERRMIX is computed at different time steps after insertion (3h, one week, one month) and compared to the reference run (ERRMOD), as presented in Figure 7. The error one week after insertion gives an idea of the maximum improvement while the error one month after informs on the time persistence of potential improvements due to the insertion of observations.

The values of ERRMIX(3h) on snow depth, density after insertion are very low compared to ERRMOD, which means that the model can be almost perfectly adjusted on these variables. The little difference comes from the time between insertion and evaluation of error called immediately after, which corresponds to the output time step of the model (three hours). In this period of time, the model simulates settling of the snowpack and melting occurs in the snowpack with incoming radiation and heat exchange. In contrast, only partial adjustment of grain shape is possible.

The difficulty to correct grain shape is partly due to grain shapes which are not coded in Crocus such as ice formations, surface hoar and graupel, which represents 27.4% of all observed layers and 11.1% in terms of overall snow layer thickness. It is also influenced by error on liquid water content as grains are identified differently by Crocus whether the snowpack is dry or not. For WetC, an intermediate level of adjustment is reached after three hours.

The impact of a direct insertion into the snow cover model on deviation with observations tends to decrease with time. For all considered variables the error is much lower than in reference run immediately after, highlighting the interest of correcting the model with observations, but this improvement decreases with time. One month after, (2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015). For box plot definition, see Figure 6.

ERRMIX( 1m) is close to ERRMOD, and even higher for snow depth and WetC; in other words the improvement of direct insertion is lost. Two main differences between the metrics could nevertheless be noted: the initial improvement and the evolution rate of error over weeks.

The time evolutions of the error values depends on the considered variable. For grain shape, the initial improvement is limited but it reduces more slowly with time (longer persistence) than for snow depth or WetC. For snow depth, even though correction is partially conserved after one week, it is completely lost after one month. Improvement on WetC is lost more quickly as there is no substantial improvement on average after one week and the model without any correction MMOD exhibits a lower error after one month, which highlights a quick evolution of this variable improvement in time.

After one month, the direct insertion does not reduce the error of the model. However, this does not mean that after one month the MMIX simulation is similar to the reference one (MMOD). To investigate this, the distance between MMIX and MMOD after one month is plotted on Figure 7 (brown bars). The behaviour depends on the considered variables. For WetC, the MMIX simulated snowpack approaches simulations without insertion. For grain shape and density, the state of the MMIX simulated snowpack is closer to the reference run one month after insertion but the simulated snowpack remains different from the reference one. In contrast, snow depth of the corrected model is on average very different from the reference.

Impact of direct insertion as a function of model error

In this study, a direct insertion is performed each time an observation is available, including when the model state variables are very close to observations. However, direct insertion induces its own uncertainty sources, because it does not account for observation errors, and because of filling values for unknown properties (see Section 3.3). Figure 8 shows an evaluation of the interest of the direct insertion depending on the reference simulation error. The improvement indicator IMPRO is plotted immediately after, one week and one month after for two variables: snow depth and density. The larger the initial error, the larger the improvement, both one week and one month after. When re-initializing with low initial error, the improvement could be low or even highly negative one month after. For instance, MMIX reduced deviations with observations (I MPRO > 0) in 75% of cases one week after if re-initialized for error larger than 2 cm on snow depth and 130 kg m -3 for density.

Selection of variables for direct insertion

For all previous results, all state variables of the model were inferred from observation, except age inferred from simulation, that is to say density, sphericity, historic variable, SSA and enthalpy, called basic set. The influence of each variable has been studied on the mean error on liquid water class, grain shape, density, snow depth, immediately after and one week after as shown in Figure 9. Insertion of SSA and density have not much cross impact on other variables: errors on other variables are not substantially modified. On the contrary, enthalpy has a wider impact, as it determines whether dry or wet metamorphism can take place. We also evaluated the result of using only snow depth (and matching of layer boundaries) for correcting model results. This insertion corrects successfully the snow depth, even better than with other variables after one week, but does not substantially improve the other variables considered.

Discussion and conclusion

Detailed snow cover models are commonly evaluated on surface or bulk variables, whereas they are designed to represent the detailed stratigraphy. Moreover, models used in support to operational avalanche hazard forecasting are commonly driven with meteorological data without use of snowpack observations during a whole season, so errors accumulate and the simulation increasingly deviates from observations. We contribute in this paper to reduce these two limitations. A method for evaluating detailed snow cover models with respect to snow pit observations is introduced and direct insertion of observations into snowpack modelling is implemented and used to analyze some key features of snow cover dynamics.

Model evaluation

The evaluation procedure presented in this study provides a fully automated, flexible and reproducible way to evaluate snow cover model results, and it is complementary to evaluations generally conducted on bulk or surface variables. Potential depth shifts between observed and simulated snow profiles are corrected with the developed matching algorithm (Figure 3). In particular, the matching allows to decompose differences between snow profiles into differences in layer position and differences in layer properties. We did not provide an overall agreement score as proposed by [START_REF] Lehning | An objective snow profile comparison method and its application to snowpack[END_REF], but we decompose the snow cover evaluation on a set of physical and tangible variables, shared between simulated and observed data, such as snow depth, density, grain shape and wetness classes (Figure 6).

We applied this evaluation to the snow cover model Crocus and conventional snow measurements from three sites in the French Alps, on seasons from 2000-2001 to 2014-2015. The model performance varied with the considered winter season and sites (Figure 5). On average, Crocus reproduced snow depth with a median error of 12 cm, layer density with an error of 50 kg m -3 , layer grain shape with an error of 0.31 according to a previously developed heuristic metric and wetness classes with an error of 0.075 (Figure 6). It remains difficult to evaluate whether these levels of agreement between Crocus and observations can be considered as bad, fair or good. Firstly, this qualitative evaluation will depend on the considered application [START_REF] Fierz | Comparison of modelled and measured point snow profiles: a tool for validating snow-cover models of the next generation?[END_REF]. For instance, the assessment of the avalanche danger and the snowpack mechanical stability will strongly depend on the ability of the snow cover model to accurately simulate the grain shape (e.g. depth hoar and faceted crystals). For hydrology and predicting run-off, simulating the grain shape will not be critical but accurately simulating the wetness of the snowpack will be important. Secondly, these scores have to be put in perspectives with the limited sources of information on the snowpack available. We showed that the current snowpack is, on average, as well represented by the previous observation collected one week before as by the model initialized with a bare ground in the summer (Figure 6). Nevertheless, the model remains the only forecasting method. Besides, the quantitative evaluation of Crocus highlighted some strengths and weaknesses of the model. Snow depth tended to be better represented by the reference run (Crocus initialized in August) than the previously available manual observation (Figure 6), consistently with the known ability of Crocus to correctly simulate snow depth [START_REF] Revuelto | Multicriteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF][START_REF] Vionnet | Sub-kilometer precipitation datasets for snowpack and glacier modeling in alpine terrain[END_REF]. In contrast, the liquid water content was better represented by the previous observation compared tho the reference run (MMOD) (Figure 6). The low performance of the model on liquid water content is consistent with known shortcomings of snow cover models to represent the complex process of liquid water infiltration with simple bucket schemes [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF].

Direct insertion

We showed that direct insertion of snow observations enables to correct snow cover simulations. The improvements provided by the insertion depended on the time between the insertion and the evaluation. Its typical time persistence was around one week. A perfect agreement between the model and the observation could not be reached immediately after insertion (Figure 7). This discrepancy was partly due to the absence of some grain shapes in Crocus code and the fact that some observed profiles are not numerically stable according to Crocus empirical parameterizations. On the considered sites and time period, the median error of the simulation decreased to 6.8 cm for snow depth, 39 kg m -3 for density and 0.25 for grain shape, one week after the direct insertion of a full manual profile (Figure 7).

In general, the improvement almost vanished one month after the insertion (Figure 7) but remained positive when the model error was large enough before the insertion (Figure 8).

This ineffective correction beyond one month might be due to different sources of errors. Firstly, erroneous meteorological forcing is known to be an important source of error [START_REF] Raleigh | Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework[END_REF], especially because the spatial scale of meteorological analysis (about 1 000 km 2 ) cannot represent the local meteorology and because of the scarcity and uncertainties of assimilated observations. Secondly, many processes in snowpack modelling are represented by uncertain empirical parameterizations [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF]. Due to the impossibility to observe independently each individual process, these parameterizations are only constrained by the commonly available observations such as snow depth or water equivalent of snow cover. However, different sets of parameterizations lead to similar overall skill of the model on these data due to error compensation between parameterizations [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF][START_REF] Essery | A comparison of 1701 snow models using observations from an alpine site[END_REF][START_REF] Krinner | Esm-snowmip: assessing snow models and quantifying snow-related climate feedbacks[END_REF]. For instance, the choice of an optimal parameterization for snow compaction highly depends on the choice of the parameterization of the density of falling snow. In our case, it is known that the parameterization of falling snow overestimates the observed density [START_REF] Helfricht | Obtaining sub-daily new snow density from automated measurements in high mountain regions[END_REF] because it compensates the absence of an explicit dependence of the compaction velocity on snow microstructure. Therefore, adjusting the simulated density with measured density profile immediately after a snowfall event can highly degrade the score of the model as the weeks goes by (Figure 7) because of the parameterization of compaction. The error observed on WetC in Figure 7 could also be explained by erroneous water retention and percolation in the snowpack. Last, observations were here considered as the reference of the snowpack state in this study. Most of these observations are inevitably prone to errors: even density measurements carry uncertainties [START_REF] Proksch | Intercomparison of snow density measurements: bias, precision, and vertical resolution[END_REF]. This uncertainty is increased because different observers are involved, introducing another source of variability for some variables. Moreover, at the study plot scale (typically 10 m), spatial variability is unavoidable [START_REF] Harper | Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools[END_REF], even if the plots used for this study were selected based on their low exposure to wind. Note also that observation errors are not only a limitation for the efficiency of direct insertion but also for the relevance of model evaluation without insertion.

The variables used for the direct insertion were chosen on the basis of available information from conventional snowpack observations. In general, we used all data available from these observations to re-initialize the model. We showed that this could be adapted to data available, even with more simple observations which are easier to collect. We evaluated the impact of the choice of the inserted property on the simulation improvements (Figure 9). For instance, using only snow depth with adjusted layer boundaries (thickness) enabled to reduce the simulation error one week after the insertion, but mainly on the snow depth, with a limited cross impact on the other properties (Figure 9).

Outlooks

The operational modelling system in French mountains areas used by avalanche forecasters is based on the MMOD configuration, that is to say the simulation of the snowpack is only driven during the whole season by a meteorological forcing which only assimilates meteorological observations but no snowpack observations. Errors on snow-rain elevation limit, snowfall amount or wetting can impact these snowpack simulations during the season. For instance, we showed that the model chain did not provide substantially better results than using the latest available observation. However, model performance was variable in time and space. Forecasters using the model should first have to evaluate the relevance of the model for the planned application before using the simulated snowpack in their analysis. Currently, there is no existing tool for that purpose. In this context, real-time evaluations of the model, with the presented metrics, on locations where observations are available, could provide relevant information to the forecaster about the relevance of the model for the current specific situation. Such real-time evaluations are already performed for Crocus model on snow depth, but not on any stratigraphic feature.

When large errors are noticed, the direct insertion method could reduce errors by re-initializing the snowpack to a more realistic state and prevent from maintaining large systematic errors for the rest of the season. Even if these observations only represent the point where they are performed and could hardly be spatialized, modelling snowpack evolution on these points with a smaller error, or at least limited to a known magnitude, remains interesting. Indeed, the snow cover model provides an interpolator between observations, with smaller errors compared to a free simulation -note that this was the initial intent driving the original development of the Crocus snow cover model [START_REF] Morin | Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future[END_REF].

The evaluation and direct insertion methods are here applied to the Crocus model and conventional snow observations conducted in a snow pit. However, this method is highly modular and could be straightforwardly adapted to other detailed snow cover models or other snow observations. In particular, more detailed observations could also be used, as SnowMicroPen (SMP [Hagenmuller et al., 2016;[START_REF] Pielmeier | Stratigraphy and changes in hardness of snow measured by hand, ramsonde and snow micro penetrometer: a comparison with planar sections[END_REF]) data or SSA profiles [START_REF] Arnaud | Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation[END_REF], as the ones conducted on a daily to weekly basis at some sites [e.g. [START_REF] Calonne | The rhossa campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack[END_REF]. Moreover, the evaluation method could be used to compare and evaluate the stratigraphies simulated by different snow cover models. Similarly to [START_REF] Krinner | Esm-snowmip: assessing snow models and quantifying snow-related climate feedbacks[END_REF], intercomparison and evaluations of detailed snow cover models could also include an evaluation on the detailed stratigraphy based on an extensive set of conventional snowpack measurements.

In addition, different parameterizations of the same model, such as [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF], could be evaluated in order to improve snow cover models based on quantitative appraisal of the deviations of model results to observations and to guide future development efforts.

A method to quantify errors between model and observations was developed. The direct insertion of observations improved most often the simulations, with fluctuations depending on amplitude of model error and availability of observations. Our method only injects observations in the model by direct insertion, forgetting most of the simulation results and ignoring observation errors or uncertainties. For instance, injecting an observation when the model error is very low induced a degradation of the model scores (Figure 8). Direct insertion, a very simple assimilation technique, does not either take into account model uncertainty. Furthermore, the method, as presented, can only be implemented on points where observations are performed. More advanced assimilation methods such as using ensemble algorithms [START_REF] Magnusson | Assimilation of point swe data into a distributed snow cover model comparing two contrasting methods[END_REF][START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF] are known to be able to solve these limitations of direct insertion. However, they have only been applied to the assimilation of bulk or surface properties of the snowpack [START_REF] Helmert | Review of snow data assimilation methods for hydrological, land surface, meteorological and climate models: Results from a cost harmosnow survey[END_REF][START_REF] Largeron | Toward snow estimation in mountains areasusing modern data assimilation methods: A review[END_REF]. Our work is a first step towards the possibility to assimilate observed profiles with such algorithms because it provides a distance metric between observed and simulated profiles. Nevertheless, the use of this method in spatialized simulations remains difficult due to the lack of observations. In spatialized simulations, the assimilation of satellite observations of surface properties might be more straightforward [START_REF] Cluzet | Towards the assimilation of satellite reflectance into semi-distributed ensemble snowpack simulations[END_REF] but they do not provide all the modelled variables, so the use of snow pit observations could be complementary to the assimilation of remote sensing data. surface area. Snow shape abbreviations correspond to the international classification of seasonal snow on the ground [START_REF] Fierz | The international classification for seasonal snow on the ground[END_REF]. For the historic variable (b), the value in brackets is used when the observed layer is wet. Sphericity and historic variables were determined to be coherent with grain identification implemented in Crocus code [START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF]. Specific surface area ranges are determined the same way but Crocus having only three classes, relative value between grains in the same class are determined by measurements from [START_REF] Carmagnola | Mesure, analyse et modélisation des processus physiques du manteau neigeux sec[END_REF]Domine et al., 2007. This last 
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Figure 1 .

 1 Figure 1. Map of the observer network of Météo-France in the French Alps. The three sites used for this study, namely Col de Porte, Tignes and La Plagne, are highlighted in yellow.

Figure 2 .

 2 Figure 2. Measured (a) and simulated (b) snow stratigraphy at Col de Porte on February 15th 2005. Grain shape, hand harness and wetness are
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3. 1 .

 1 Relating simulations and observations 3.1.1. Relating observed and simulated snow layer properties

1 . 1 .

 11 It is defined as the mean over depth of the weighted sum of the errors on density (d d ), liquid water class (d wc ), grain shape (d g ) and depth. Depth is taken into account in D to limit depth shifts when those do

Figure 3 .

 3 Figure 3. Relationship between the simulated (a, b, c) and observed (d) stratigraphy for 15th February 2005 at Col de Porte. (a) Simulated profile. (b) The simulated snow depth is adjusted and all properties expressed as common variables. (c) Local shifts are adjusted with the matching procedure, so that the stratigraphic features of the simulated profile are at the same depth as the observed profile (d).
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4. 1 .

 1 Example at Col de Porte site 4.1.1. Winter season 2003-2004

Figure 4 .

 4 Figure 4. Application on the simulation of the snowpack evolution at Col de Porte during winter season 2003-2004. The subplots (a, b, c) represent the grain shape profiles obtained by different methods, and (d, e, f) the density. (a, d) Measured snow profiles LOBS. (b, e) Reference simulation MMOD. (c, f) MMIX with direct insertion each time an observed profile was available (almost each week). Grey values (referred to as "?") correspond to layers where density values have not been reported.

Figure 5 .

 5 Figure 5. Evaluation of the different snowpack prediction methods at Col de Porte on the period 2000-2015. Top of the bars represent ERRLOBS in red, ERRMOD in green and ERRMIX(1w) in blue. On x-axis are juxtaposed different observations in the chronological order, season by season. Years are labelled between seasons, so observations for winter 2008-2009 are between ticks 2008 and 2009. These errors are plotted here for two variables: (a) snow depth, (b) snow density and (c) grain shape (mean over snowpack depth for density and grain shape).

Figure 6 .

 6 Figure6. Evaluation of the model (MMOD, in black) error on all sites on the period 2000-2015, compared to the error made using the last available observation (LOBS, in red). The boxes span the inter-quartile range from the 1st to 3rd quartile with the horizontal line showing the median. The whiskers show the range of observed values that fall within 1.5 times the interquartile range and the black crosses are outliers above or below it.

Figure 7 .

 7 Figure7. ERRMOD (black) and ERRMIX immediately after the insertion (3 h after, green), one week (next observation, blue) and one month (4th observation after, red) for snow depth, density, grain shape and WetC. The distance between MMIX and MMOD one month after insertion is also shown (brown). Dataset of the three stations and 15 seasons(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015). For box plot definition, see Figure6.

Figure 8 .

 8 Figure 8. Scatter plot of the improvement IMPRO for different time after insertion depending on ERRMOD at the time of direct insertion. Green crosses represent improvements immediately after (IMPRO(3h)), blue ones refer to one week after (IMPRO(1w)) and red ones refer to one month after (IMPRO(1m)). Solid lines corresponds to linear regressions for each group of symbols. The solid black line represents the maximum improvement (1:1 line). The plot represents (a) snow depth and (b) density. All observations of the dataset considered in this study (3 sites, 15 seasons) are used here.

Figure 9 .

 9 Figure9. Mean ERRMIX error for a set of variables, immediately after insertion and one week after for different set of inserted variables: in black, nothing inserted (ERRMOD), in blue our basic set chosen (density, sphericity, historic, SSA and enthalpy), in yellow the basic set without density, in pink without enthalpy, in green without SSA and in dark red, with only snow depth and adjusting layer boundaries (thickness). Data generated from averaging absolute errors on seasons 2000 to 2015 on the three stations.

1 .

 1 Conversion of observed grain shape into the model grain morphology variables: (a) sphericity, (b) historic variable and (c) specific

  . Crocus represents the snowpack as a set of up to 50

	101	
	102	snow layers. Each layer is characterized by its density, age, enthalpy, mass and two variables representing the snow
	103	microstructure: sphericity and specific surface area (SSA). An additional state variable, the historic variable, indicates
	104	whether liquid water or faceted crystals have been present in the layer. SSA represents the total surface area per
	105	unit of ice mass. Sphericity varies between 0 and 1 and describes the ratio between rounded and angular shapes.
	106	Crocus reproduces the time-evolution of these state variables by accounting for new snow deposition, metamorphism,
	107	settlement, heat exchanges, melting and refreezing for each layer, at a time step of 15 minutes. Crocus is coupled to

  table is more simple because of the lack of data and the difference in absolute values between measured and simulated specific surface area.

	Secondary grain PP	DF RG FC DH MF	IF	SH PPgp
	Main grain			
	PP	100 150 150 100 100 180 180 100	120
	DF	150 180 230 200 200 250 250 180	180
	RG	200 230 300 250 250 350 450 200	200
	FC	180 200 250 250 280 350 450 180	200
	DH	180 200 250 280 300 350 450 180	200
	MF	180 250 350 350 350 400 450 400	350
	IF	180 250 450 450 450 450 450 450	450
	SH	100 180 200 180 180 400 450 100	250
	PPgp	120 180 200 200 200 350 450 250	250

Evaluation of snow cover models

With the previously described methods, the snowpack simulations can be compared to observed profiles while Authors thank observers of the Météo-France network for reporting almost weekly observations, especially observers of La Plagne and Tignes ski resorts. We gratefully acknowledge S. Morin for discussions and constructive comments. We also thank people of CNRM/CEN for collecting data at Col de Porte and for collecting and archiving all snowpack observations. CNRM/CEN is part of Labex OSUG@2020 (Investissements d'Avenir, grant agreement ANR-10-LABX-0056). We thank C. Fierz and A. van Herwijnen for their useful comments and suggestions.

Data and code availability

Crocus is an open-source model available at https://opensource.umr-cnrm.fr/projects/snowtools_ git/wiki/Procedure_for_new_users (version used is referenced as s2m_reanalysis_2019). The model configuration is the standard one presented in [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF] (blue cells in Figure 2). Observation data from Col de Porte have been published by [START_REF] Lejeune | 57 years (1960-2017) of snow and meteorological observations from a mid-altitude mountain site (col de porte, france, 1325 m of altitude)[END_REF]. Other processed data are available upon request to the corresponding author.

Appendix A. Wetness class definition

Liquid water content is represented as a continuous variable in the simulation whereas the observer reports a wetness class between dry and soaked. These variables have to be cast to a common format before comparison.

As the observed class is very subjective, only three classes are retained to compute a common variable: a class of dry snow corresponding to the observed dry class or to a zero simulated liquid water content, a class of moist snow corresponding to the observed index moist and simulated liquid water content under 20 kg m -3 (equivalent to 2% in volume), and a saturated class when reported wetness index is wet, very wet or soaked or simulated liquid water content is above 20 kg m -3 . This common variable is called wetness class and denoted as WetC.

Appendix B. Completion tables

Direct insertion needs to reconstruct model variables from observation. Relations between observed variables and model state variables, implemented in Crocus, are not directly invertible and additional relations were therefore defined, especially for variables describing grain morphology, namely sphericity, SSA and historic variable. Table B.1 proposes relations between grain shape identified by the observer and simulation variables. These relations have been determined from identification of grain shape in Crocus code [START_REF] Vionnet | The detailed snowpack scheme crocus and its implementation in surfex v7.2[END_REF] for sphericity and historic, picking values in the range of sphericity and historic variable for each grain shape. For SSA, as Crocus has only three classes of SSA, the values are chosen to be consistent with Crocus classes but in these classes, values for each grain shape are ordered according to measurements of SSA at Col de Porte by [START_REF] Carmagnola | Mesure, analyse et modélisation des processus physiques du manteau neigeux sec[END_REF] and [START_REF] Domine | A parameterization of the specific surface area of seasonal snow for field use and for models of snowpack evolution[END_REF]. Some variables may not have been reported for all layers in an observed profile, especially snow density, which could not be measured for thinner layers. To ensure the consistency of the re-initialized state, missing densities are filled, based on grain shape reported, with Table B.2. These densities are chosen to be compatible with Crocus grain identification.