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We consider a rate-type constitutitve law given by an implicit nonlinear differential equation in the space of second order symmetric tensors on R d , in which the unknowns are the stress and the linearized strain fields. We list the assumptions on the constitutive functions then we state and prove its well-posedness with respect to two different Tykhonov triples. We use these well-posedness properties in order to deduce two convergence results. Finally, we provide the mechanical interpretation of these results as well as some concluding remarks.

Introduction

Rate-type viscoelastic or viscoplastic constitutive laws have been used in the literature in order to model the properties of metals, rubbers, polymers, rocks and soils, among others. Usually, they are expressed in terms of differential equations in which the unknowns are the stress and the strain field. References in the field include the books [START_REF] Cristescu | Dynamic Plasticity[END_REF][START_REF] Cristescu | Viscoplasticity[END_REF][START_REF] Drozdov | Finite Elasticity and Viscoelasticity-A Course in 305 the Nonlinear Mechanics of Solids[END_REF][START_REF] Han | Plasticity: Mathematical Theory and 310 Numerical Analysis[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF]. A relevant example is given by the constitutive law

σ = Eε + G(σ, ε), (1) 
where σ denotes the stress tensor, ε represents the linearized strain tensor, E is a fourth order elasticity tensor and G is a viscoplastic constitutive function, respectively. In [START_REF] Cristescu | Dynamic Plasticity[END_REF] and everywhere in this paper the dot above 5 a variable represents the derivative of that variable with respect to the time.

Constitutive laws of the form (1) have been introduced by Cristescu in [START_REF] Cristescu | Dynamic Plasticity[END_REF] and then used by many authors. Various examples and mechanical interpretations can be found in [START_REF] Cristescu | Rock Rheology[END_REF][START_REF] Cristescu | Viscoplasticity[END_REF][START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF]. A concrete example is the Perzyna constitutive law

ε = E -1 σ + 1 µ (σ -P K σ). (2) 
in which E is a fourth order invertible tensor, E -1 denotes its inverse, µ > 0 is a viscosity constant, K is a nonempty closed convex subset of the space of symmetric second order tensors and P K represents the projection operator on K. Note that in this case the function G does not depend on ε and is given by

G(σ, ε) = - 1 µ E(σ -P K σ). (3) 
Since σ = P K σ iff σ ∈ K, from [START_REF] Cristescu | Rock Rheology[END_REF] we see that viscoplastic deformations could occur only for the stress tensors σ which do not belong to K. A relatively simple one-dimensional example of constitutive law of the form [START_REF] Cristescu | Dynamic Plasticity[END_REF] in which a full coupling of the stress and the strain is involved in the function G is given by

σ = E ε + G(σ, ε), (4) 
where E > 0 is the Young modulus and G : R × R → R is the function

G(σ, ε) =            -k 1 F 1 (σ -f (ε)) if σ > f (ε), 0 if g(ε) ≤ σ ≤ f (ε), k 2 F 2 (g(ε) -σ) if σ < g(ε).
(5) Here k 1 , k 2 > 0 are viscosity constants, f, g : R → R are Lipschitz continuous functions such that g(ε) ≤ f (ε) for all ε ∈ R, and F 1 , F 2 : R + → R are increasing func-10 tions which satisfy F 1 (0) = F 2 (0) = 0. More details on the constitutive law (4), ( 5) can be found in [3, p. 35].

Note that the domain of elastic behavior is characterized by the inequalities g(ε) ≤ σ ≤ f (ε). Assume now that g(ε) < 0 < f (ε) for all ε ∈ R. In this case viscoplastic deformations occur only for σ > f (ε), in traction, and for σ < g(ε), in compression. Therefore, since the yield limit (in traction and in compression) depends on the deformation, we conclude that the viscoplastic constitutive law (4), ( 5) describes a hardening property of the material.

The variational analysis of mathematical models which describe the contact of materials with a constitutive laws of the form (1) was carried out in [START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and, more recently, in [START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF]. There, existence, uniqueness and convergence results have been obtained, by using various functional methods. The numerical analysis of the corresponding contact models, including error estimates and numerical modelling, can be found in [START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Han | Numerical analysis of hemivariational inequalities in Contact Mechanics[END_REF] and the references therein.

The concept of Tykhonov well-posedness (wellposedness, for short) was introduced in [START_REF] Tykhonov | On the stability of functional optimization prob-345 lems[END_REF] for a minimization problem and then it has been generalized for different mathematical problems, including optimization, fixed point and various inequality problems. It is based on two main ingredients: the existence and uniqueness of solution and the convergence to it of any approximating sequence. References in the field include [START_REF] Dontchev | Well-posed Optimization Problems[END_REF][START_REF] Huang | Generalized Levitin-Polyak wellposedness in constrained optimization[END_REF][START_REF] Lucchetti | Convexity and Well-posed Problems[END_REF][START_REF] Lucchetti | A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities[END_REF][START_REF] Lucchetti | Some properties of "wellposed-330 ness" variational inequalities governed by linear operators[END_REF][START_REF] Xiao | Well-posedness of hemivariational inequalities and inclusion problems[END_REF]. A general framework which unifies the view on well-posedness for abstract problems in metric spaces was recently considered in [START_REF] Sofonea | On the well-posedness concept in the sense of Tykhonov[END_REF]. There, the well-posedness concept has been introduced by using approximating sequences which are defined by a family of subsets {Ω(ω)} ω indexed upon a positive parameter ω > 0. The results in [START_REF] Sofonea | On the well-posedness concept in the sense of Tykhonov[END_REF] have been extended in [START_REF] Xiao | Tykhonov triples, well-posedness 350 and convergence results[END_REF], where a more general concept of well-posedness was introduced, based on the notion of Tykhonov triple T = (I, Ω, C). Here I is set of parameters, Ω represents a family approximating sets and C is a set which defines a criterion of convergence.

As mentionned above, the concept of well-posedness was used in the literature in the study of many problems. Nevertheless, at the best of our knowledge, it has not been used in the study of constitutive laws for deformable solids. Our aim in this paper is to fill this gap.

Thus, we study here the well-posedness of the rate-type constitutive laws (1) by using the mathematical tools provided in [START_REF] Xiao | Tykhonov triples, well-posedness 350 and convergence results[END_REF], based on the properties of Tykhonov triples. Proving that, under appropriate assumptions on E and G, the rate-type constitutive law (1) is well-posed in the sense of Tykhonov represents the main trait of originalty of this work. It allows us to obtain existence, uniqueness and convergence results for which we provide the corresponding mechanical interpretation.

The rest of the manuscript is structured as follows. In 65 Section 2 we list the assumptions on the data, then we prove an existence and uniqueness result, Theorem 1. In Section 3 we introduce the concept of well-posedness for the constitutive law (1), then we state and prove our main results, Theorems 6 and 8. In Section 4 we use 70 these theorems in in order to deduce two convergence results and, finally, in Section 5 we present some concluding remarks.

We end this Introduction with some notation and preliminaries. Everywhere in this paper d ∈ {1, 2, 3}, the 75 indices i, j, k, l run form 1 to d and the convention summation upon a repreated index is used. We denote by N the set of positive integers, i.e., N = {1, 2, 3, . . .} and R + will represent the set of nonnegative real numbers, i.e., R + = [0, +∞). We use S d for the space of second order 80 symmetric tensors on R d , endowed with the canonical inner product and the Euclidean norm given by

(σ, τ) = σ i j τ i j , τ = (τ • τ) 1/2 (6) ∀ σ = (σ i j ), τ = (τ i j ) ∈ S d .
We also use C(R + ; S d ) and C 1 (R + ; S d ) for the space of continuous and continuously differentaible functions on R + with values in S d , respectively. The convergence of a sequence {τ n } in the space C(R + ; S d ) is described as follows:

               τ n → τ in C(R + ; S d ) as n → ∞ if and only if max t∈[0,m] τ n (t) -τ(t) → 0 as n → ∞, ∀ m ∈ N. (7)
Moreover, the convergence of a sequence {τ n } in the space C 1 (R + ; S d ) is described in the following way:

                     τ n → τ in C 1 (R + ; S d ) as n → ∞ if and only if max t∈[0,m] τ n (t) -τ(t) + max t∈[0,m] τn (t) -τ(t) → 0 as n → ∞, ∀ m ∈ N. (8) 
It follows from ( 7) and ( 8) 

that τ n → τ in C 1 (R + ; S d ) if and only if τ n → τ in C(R + ; S d ) and τn → τ in C(R + ; S d ).

An existence and uniqueness result

In the study of the constitutive law (1) we assume that the elasticity tensor E is symmetric and positively defined and the viscoplastic function G is Lipschitz continuous, i.e., 90

                   E = (E i jkl ) : S d → S d is such that (a) E i jkl = E kli j = E jikl , 1 ≤ i, j, k, l ≤ d, (b) there exists m E > 0 such that (Eτ, τ) ≥ m E τ 2 for all τ ∈ S d . (9) 
                     G : S d × S d → S d and there exists L G > 0 such that G(σ 1 , ε 1 ) -G(σ 2 , ε 2 ) ≤ L G ( σ 1 -σ 2 + ε 1 -ε 2 ) for all σ 1 , σ 2 , ε 1 , ε 2 ∈ S d . (10) 
Note that these assumptions guarantee that the stress function σ and the strain function ε play a symmetric role, since ( 1) is equivalent with the rate-type constitutive law

ε = E σ + G(σ, ε). ( 11 
)
where E = E -1 represents the inverse of the tensor E and G = -E -1 G. Moreover, note that if ( 9) and ( 10) hold, then E satisfies condition [START_REF] Huang | Generalized Levitin-Polyak wellposedness in constrained optimization[END_REF] and G satisfies condition [START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF], too. Finally, note that assumption [START_REF] Huang | Generalized Levitin-Polyak wellposedness in constrained optimization[END_REF] implies that there exists

L E > 0 and L E -1 > 0 such that 95 Eε 1 -Eε 2 ≤ L E ε 1 -ε 2 , (12) 
E -1 ε 1 -E -1 ε 2 ≤ L E -1 ε 1 -ε 2 , (13) 
(Eε 1 -Eε 2 , ε 1 -ε 2 ) ≥ m E ε 1 -ε 2 2 (14) for all ε 1 , ε 2 ∈ S d .
Next, we consider a stress function σ and an initial data ε 0 such that

σ ∈ C 1 (R + ; S d ), ( 15 
) ε 0 ∈ S d . ( 16 
)
Under these assumptions, we consider the following problem.

100 Problem P. Find a strain function ε ∈ C 1 (R + ; S d ) such that σ(t) = Eε(t) + G(σ(t), ε(t)) ∀ t ∈ R + , (17) ε(0) = ε 0 . ( 18 
)
Our main result in this section is the following.

Theorem 1. Assume that (9), ( 10), ( 15) and ( 16) hold.
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Then Problem P has a unique solution.

Proof. We use a fixed point argument. To this end, we consider the operator Λ : C(R + ; S d ) → C(R + ; S d ) defined by

Λη(t) = ε 0 -E -1 σ(0) (19) 
- t 0 E -1 G(σ(s), η(s) + E -1 σ(s)) ds
for each t ∈ R + and η ∈ C(R + ; S d ). Then, using as-110 sumption [START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF] and inequality [START_REF] Lucchetti | Some properties of "wellposed-330 ness" variational inequalities governed by linear operators[END_REF] it follows that there exists a constant L > 0 such that

Λη 1 (t) -Λη 2 (t) V ≤ L t 0 η 1 (s) -η 2 (s) ds ∀ η 1 , η 2 ∈ C(R + ; S d ), t ∈ R + .
This inequality shows that Λ is a so-called history history-dependent operator, and, therefore, using Theorem 26 in [START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF] we deduce that there exists a unique element η * ∈ C(R + ; S d ) such that η * = Λη * . This equality combined with [START_REF] Xiao | Well-posedness of hemivariational inequalities and inclusion problems[END_REF] shows that η ∈ C 1 (R + ; S d ). Denote by ε the function

ε = η * + E -1 σ (20) 
and note that, obviously, ε ∈ C 1 (R + ; S d ). Moreover, [START_REF] Xiao | Tykhonov triples, well-posedness 350 and convergence results[END_REF], equality η * = Λη * and (19) imply that

ε(t) = E -1 σ(t) - t 0 E -1 G(σ(s), ε(s)) ds (21) +ε 0 -E -1 σ(0) ∀ t ∈ R + or, equivalently, 115 σ(t) = Eε(t) + t 0 G(σ(s), ε(s)) ds (22) +σ(0) -Eε 0 ∀ t ∈ R + .
Equalities ( 22) and (21) show that ( 17) and ( 18) hold and, therefore, ε is a solution of Problem P. This proves the existence part in Theorem 1. The uniqueness is a consequence of the uniqueness of the fixed point of the operator Λ, guaranteed by Theorem 26 in [START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF]. 120

Tykhonov well-posedness

Everywhere in this section we assume that ( 9), ( 10), ( 15) and ( 16) hold, even if we do not mention it explicitly. As already mentioned in the Introduction, the concept of well-posedness for Problem P is associated to a 125 so-called Tykhonov triple which is defined as follows. Definition 2. A Tykhonov triple is a mathematical object of the form T = (I, Ω, C) where I is a given nonempty set, Ω : I → 2 X -{∅} and C ⊂ S(I) is a nonempty set, where X = C 1 (R + ; S d ), 2 X is the power set of X and S(I) denotes the set of sequences whose elements belongs to I.

Below in this paper, for any ω ∈ I, we refer to the sets Ω(ω) ⊂ C 1 (R + ; S d ) as the approximating sets. Next, following our work [START_REF] Xiao | Tykhonov triples, well-posedness 350 and convergence results[END_REF], we consider the following definitions. Definition 3. Given a Tykhonov triple T = (I, Ω, C), a sequence {ε n } n ⊂ S d is called a T -approximating sequence if there exists a sequence {ω n } n ∈ C, such that ε n ∈ Ω(ω n ) for each n ∈ N.

Note that approximating sequences always exist, since, by assumption, C ∅ and, moreover, for any sequence {ω n } ∈ C and any n ∈ N, the set Ω(ω n ) is not empty. In other words, Problem P is well-posed with respect to T if there exists a unique function ε ∈ C 1 (R + ; S d ) which satisfies [START_REF] Sofonea | Tykhonov Well-posedness of a Viscoplastic Contact Problem[END_REF] and [START_REF] Tykhonov | On the stability of functional optimization prob-345 lems[END_REF] and, moreover, for any Tapproximating sequence {ε n } n , we have

ε n → ε in C 1 (R + ; S d ) as n → ∞. (23) 
Note that the concept of well-posedness defined above depends on the Tykhonov triple T . A relevant example of such triple is the following. Example 5. Keep the assumption in Theorem 1 and take T = (I, Ω, C) where

I = { ω = ({θ m } m , θ) : θ m > 0 ∀ m ∈ N, θ > 0 }, (24) C = {ω n } : ω n = ({θ m n } m , θ n ) ∈ I ∀ n ∈ N, (25) 
θ m n → 0 as n → ∞ ∀ m ∈ N, θ n → 0 as n → ∞
and, for each ω = ({θ m } m , θ) ∈ I, the set Ω(ω) is defined as follows:

Ω(ω) = ε ∈ C 1 (R + ; S d ) : (26) σ(t) -Eε(t) -G(σ(t), ε(t)) ≤ θ m ∀ t ∈ [0, m], m ∈ N, (27) 
ε(0) -ε 0 ≤ θ .
Note that for each ω ∈ I the solution ε obtained in Theorem 1 belongs to Ω(ω) and, therefore, Ω(ω) ∅, which shows that T satisfies Definition 2.

Our main result in this section is the following. Theorem 6. Assume (9), ( 10), ( 15) and (16 

= ({θ m n } m , θ n ) ∈ I such that θ m n → 0 as n → ∞ ∀ m ∈ N, (28) θ n → 0 as n → ∞ (29)
and, moreover, for each n ∈ N, the following properties hold:

170 ε n ∈ C 1 (R + ; S d ), (30) 
σ(t) -Eε n (t) -G(σ(t), ε n (t)) ≤ θ m n (31) ∀ t ∈ [0, m], m ∈ N, ε n (0) -ε 0 ≤ θ n . ( 32 
)
Let n, m ∈ N be fixed and let t ∈ [0, m]. We use ( 14) and [START_REF] Sofonea | Tykhonov Well-posedness of a Viscoplastic Contact Problem[END_REF] to write

m E εn (t) -ε(t) 2 ≤ (Eε n (t) -Eε n (t), εn (t) -ε(t)) ≤ Eε n (t) -Eε(t) εn (t) -ε(t) ≤ Eε n (t) -σ(t) + G(σ(t), ε(t)) εn (t) -ε(t) ≤ Eε n (t) + G(σ(t), ε n (t)) -σ(t) εn (t) -ε(t) + G(σ(t), ε(t)) -G(σ(t), ε n (t)) εn (t) -ε(t) .
Then, using (31) and assumption [START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF] it follows that

m E εn (t) -ε(t) ≤ θ m n + L G ε n (t) -ε(t) . ( 33 
)
On the other hand, the initial condition [START_REF] Tykhonov | On the stability of functional optimization prob-345 lems[END_REF] implies that

ε n (t) -ε(t) = t 0 (ε n (s) -ε(s)) ds + ε n (0) -ε 0
and, using (32) yields

ε n (t) -ε(t) ≤ t 0 εn (s) -ε(s) ds + θ n . ( 34 
)
We now combine inequalities (33) and (34) to deduce that

εn (t) -ε(t) ≤ θ m n + L G θ n m E + L G m E t 0 εn (s) -ε(s) ds
and, after using the Gronwall argument we find that

εn (t) -ε(t) ≤ θ m n + L G θ n m E e L G m E t .
We now use the convergences ( 28) and ( 29) to obtain that

max t∈[0,m] εn (t) -ε(t) → 0 as n → ∞. (35) 
Next, inequality (34) combined with convergences (29) and (35) guarantees that max

t∈[0,m] ε n (t) -ε(t) → 0 as n → ∞. (36) 
Finally, it follows from (35), ( 36) and ( 8) that the convergence (23) holds, which concludes the proof.

We now consider a second example of Tykhonov Therefore, Theorem 6 and Definition 4 guarantee that the convergences (42) hold, which ends the proof.

In additional to the mathematical interest in the convergence (42) it is important from mechanical point of view since it provides a continuous dependence result for the rate-type constitutive equation [START_REF] Cristescu | Dynamic Plasticity[END_REF]. Indeed, it shows that small perturbations on the stress function together with small perturbations on the initial strain give rise to small perturbations of the solution to Problem P.

We now remark that Theorem 9 cannot be proved by using Theorem 8 instead of Theorem 6. A counterexample which proves this statement is the following.

Example 10. Assume that (9), ( 10), ( 15) and ( 16) hold and denote by ε the solution of Problem P obtained in Theorem 1. Moreover, for each n ∈ N, consider the function σ n ∈ C 1 (R; S d ) and the element ε 0n defined by

σ n (t) = σ(t) + t 2 n I d ∀ t ∈ R + , (49) 
ε 0n = ε 0 + 1 n I d (50) 
where I d ∈ S d represents the identity tensor. Note that, (49), (50) imply that conditions (40) and (41) hold, respectively. Denote by ε n the solution of Problem P for the data σ n , ε 0n . Therefore, it follows from Theorem 9 that the convergences (42) hold. Nevertheless, we claim that the sequence {ε n } n is not a T -approximating sequence for Problem P where, here and below in this example, T represents the Tykhonov triple (37)-(39).

To prove this claim we assume in what follows that the function G does not depend on σ. Arguing by contradiction, assume that {ε n } n is a T -approximating sequence. Then, using (39) we deduce that there exists a sequence {θ n } n such that θ n → 0 and, for each n ∈ N, and t ∈ R + , the following inequality holds:

σ(t) -Eε n (t) -G(ε n (t)) ≤ θ n . ( 51 
)
On the other hand, Eε n (t) + G(ε n (t)) = σn (t) and, therefore, (51) yields

σ(t) -σn (t) ≤ θ n . ( 52 
)
We now combine (49) and (52) to deduce that

2t n I d ≤ θ n . ( 53 
)
Recall that this inequality holds for each n ∈ N and t ∈ R + . Thus, taking t = n we deduce that 2d ≤ θ n for each n ∈ N which contradicts the convergence θ n → 0. We conclude from above that the sequence {ε n } n is not a Tapproximating sequence for Problem P and, therefore, Theorem 8 cannot be used to obtain the convergence (42), as claimed.

We end this section with a second convergence result. It concerns a versiom of the constitutive law [START_REF] Cristescu | Dynamic Plasticity[END_REF] given by σ = Eε + µG(σ, ε),

where µ is a given viscosity coefficient. Our aim is to show that for µ ∈ R small enough (54) can be approached by the elastic constitutive law σ = Eε. To this end let {µ n } n ⊂ R and consider the following additional assumptions.

       G : S d × S d → S d and there exists M G > 0 such that G(σ, ε) ≤ M G ∀ σ, ε ∈ S d . ( 55 
)
µ n → 0 as n → ∞. (56) 
Theorem 11. Assume (9), ( 10), ( 15), ( 16), (55) and denote by ε the function defined by ε = E -1 σ. Then,
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for each n ∈ N there exists a unique function

ε n ∈ C 1 (R + ; S d ) such that σ(t) = Eε n (t) + µ n G(σ(t), ε n (t)) ∀ t ∈ R + , (57) ε n (0) = ε 0 . (58) 
Moreover, if σ(0) = Eε 0 and (56) hold, then the convergence (42) holds, too.

Proof. The existence of a unique solution ε n ∈ C 1 (R; S d ) to problem (57), (58) follows from Theorem 1. Assume now that σ(0) = Eε 0 and (56) holds. Let n ∈ N and t ∈ R + . Then, we use (57) and assumption (55) to write

σ(t) -Eε n (t) = µ n G(σ(t), ε n (t)) ≤ M G |µ n | and, using notation θ n = M G |µ n |, we find that σ(t) -Eε n (t) ≤ θ n . (59) 
Let θ n = 1 n and note that the initial conditions (58), and equalities σ(0) = Eε(0), σ(0) = Eε 0 show that ε n (0) = ε(0) = ε 0 and, therefore,

ε n (0) -ε(0) ≤ θ n . (60) 
Consider now the sequence {ω n } n defined by ω n = 250 (θ n , θ n ). Then, (59) and (60) show that ε n ∈ Ω(ω n ) where the multivalued function Ω is defined by (39) with G ≡ 0. On the other hand assumption (56) show that θ n → 0 as n → ∞ and, obviously, θ n → 0 as n → ∞. We conclude from Definition 3 that {ε n } n is an approximating sequence for Problem P, with respect to the Tykhonov triple in Example 7. Therefore, Theorem 8 and Definition 4 guarantee that the convergence (42) holds, which concludes the proof.

In additional to the mathematical interest in the con-260 vergence in Theorem 11, it is important from mechanical point of view since it shows that the viscoplastic constitutiver law (54) can be approached by the elastic constitutive law σ = Eε for a small coefficient of viscosity.

265

Conclusion

In this paper we proved the well-posedness of the rate-type constitutive law (1) with respect to two Tykhonov triples. Then, we used the well-posedness in order to prove two convergence results. We also 270 showed that, on this matter, the choice of an appropriate Tykhonov triples plays a crucial role. The material presented in this paper leads to a better knowledge of ratetype consitutive law of the form (1) since, besides the mathematical interest in our results, they lead to inter-275 esting mechanical interpretations. Moreover, their analysis reveals some subjects for future research, which could represent a continuation of this paper.

The first subject would be to extend the results presented in this paper to various clases of viscoplastic constitutive laws. One example would be the viscoplastic laws of the form σ = Eε + G(σ, ε, κ),

in which κ is a hardening parameter or an internal state variable, assumed to satisfy a differential equation of the form κ = Φ(σ, ε, κ).

Results similar to those in Theorms 6, 8 and 9 can be obtained in the study of (61), (62), under appropriate 280 assumption of the functions Φ and G.

The second subject would be to study the wellposedness of boundary value problems with rate-type constitutive laws of the form (1) and, in particular, the study of frictional or frictionless contact problems. A 285 first step in this direction was made in [START_REF] Sofonea | Tykhonov Well-posedness of a Viscoplastic Contact Problem[END_REF]. Proving the Tykhnonov well-posedness of contact problems would be a powerfull mathematical tool which could be used to obtain various convergence results that describe the behaviour of the solution with respect the data and pa-290 rameters. It also allows us to establish the link between models of contact constructed by using different constitutive laws and different interface bounday conditions.
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Definition 4 .

 4 Problem P is said to be well-posed with respect to the Tykhonov triple T = (I, Ω, C) if it has a unique solution and every T -approximating sequence for Problem P converges in C 1 (R + , S d ) to the solution.

  ). Then Proof. We start by recalling that the existence of a unique solution ε ∈ C 1 (R; S d ) to Problem P was provided in Theorem 1. To proceed, we consider a T -165 approximating sequence for the Problem P, denoted by {ε n } n . Then, according to Definition 3, there exists a sequence {ω} n ⊂ C with ω n

	160
	Problem P is well-posed with respect to the Tykhonov
	triple in Example 5.
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triple with whom Problem P is also well-posed.

Example 7. Keep the assumption in Theorem 1 and take T = (I, Ω, C) where

and, for each ω = (θ, θ) ∈ I, the set Ω(ω) is defined as follows:

180

Note that, again, using Theorem 1 it follows that Ω(ω) ∅, for each ω ∈ I.

We have the following well-posednes result. Theorem 8. Assume (9), [START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF], [START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF] and [START_REF] Sofonea | On the well-posedness concept in the sense of Tykhonov[END_REF]. Then Problem P is well-posed with respect to the Tykhonov The proof of this theorem is similar to that of Theorem 6 and, therefore, we skip it. Note that, in contrast with the proof of Theorem 6, in the proof of Theorem 6 some estimates are simpler since they do not depend on 190 m ∈ N.

Continuous dependence results

The solution of Problem P depends on the data σ and ε 0 . Its continuous dependence with respect these data is provided by the following convergence result.

195 Theorem 9. Assume (9), ( 10), ( 15), [START_REF] Sofonea | On the well-posedness concept in the sense of Tykhonov[END_REF], denote by ε the solution of Problem P and, for each n ∈ N, denote by ε n the solution of Problem P for the data σ n , ε 0n which satisfy

as n → ∞. Then,

Proof. Let n, m ∈ N and t ∈ [0, m]. We have

We now use ( 43), [START_REF] Sofonea | Tykhonov Well-posedness of a Viscoplastic Contact Problem[END_REF] and assumption [START_REF] Ionescu | Functional and Numerical Methods in Viscoplasticity[END_REF] to write

and, using notation

we find that

and note that the initial conditions (44), ( 18) yield

Consider now the sequence {ω n } n with ω n = ({θ m n } m , θ n ), defined by (45), (47). Then, (46) and ( 48)

show that the inequalities (31) and (32) hold, which implies that ε n ∈ Ω(ω n ) where the multivalued function Ω is defined by (26). On the other hand, assumptions (40) and (41) show that θ m n → 0 for each m ∈ N and θ n → 0 as n → ∞, respectively. We conclude from Definition 210 3 that {ε n } n is an approximating sequence for Problem P, with respect to the Tykhnonov triple in Example 5.