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Abstract

We consider a rate-type constitutitve law given by an implicit nonlinear differential equation in the space of second
order symmetric tensors on Rd, in which the unknowns are the stress and the linearized strain fields. We list the
assumptions on the constitutive functions then we state and prove its well-posedness with respect to two different
Tykhonov triples. We use these well-posedness properties in order to deduce two convergence results. Finally, we
provide the mechanical interpretation of these results as well as some concluding remarks.
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1. Introduction

Rate-type viscoelastic or viscoplastic constitutive
laws have been used in the literature in order to model
the properties of metals, rubbers, polymers, rocks and
soils, among others. Usually, they are expressed in
terms of differential equations in which the unknowns
are the stress and the strain field. References in the field
include the books [1, 3, 4, 6, 7, 10]. A relevant example
is given by the constitutive law

σ̇ = Eε̇ + G(σ, ε), (1)

where σ denotes the stress tensor, ε represents the lin-
earized strain tensor, E is a fourth order elasticity ten-
sor and G is a viscoplastic constitutive function, respec-
tively. In (1) and everywhere in this paper the dot above5

a variable represents the derivative of that variable with
respect to the time.

Constitutive laws of the form (1) have been intro-
duced by Cristescu in [1] and then used by many au-
thors. Various examples and mechanical interpretations
can be found in [2, 3, 10]. A concrete example is the
Perzyna constitutive law

ε̇ = E−1σ̇ +
1
µ

(σ − PKσ). (2)

in which E is a fourth order invertible tensor, E−1 de-
notes its inverse, µ > 0 is a viscosity constant, K is

a nonempty closed convex subset of the space of sym-
metric second order tensors and PK represents the pro-
jection operator on K. Note that in this case the function
G does not depend on ε and is given by

G(σ, ε) = −
1
µ
E(σ − PKσ). (3)

Since σ = PKσ iff σ ∈ K, from (2) we see that vis-
coplastic deformations could occur only for the stress
tensors σ which do not belong to K. A relatively sim-
ple one-dimensional example of constitutive law of the
form (1) in which a full coupling of the stress and the
strain is involved in the function G is given by

σ̇ = Eε̇ + G(σ, ε), (4)

where E > 0 is the Young modulus and G : R ×R→ R
is the function

G(σ, ε) =


−k1F1(σ − f (ε)) if σ > f (ε),
0 if g(ε) ≤ σ ≤ f (ε),
k2F2(g(ε) − σ) if σ < g(ε).

(5)
Here k1, k2 > 0 are viscosity constants, f , g : R → R
are Lipschitz continuous functions such that g(ε) ≤ f (ε)
for all ε ∈ R, and F1, F2 : R+ → R are increasing func-10

tions which satisfy F1(0) = F2(0) = 0. More details on
the constitutive law (4), (5) can be found in [3, p. 35].
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Note that the domain of elastic behavior is characterized
by the inequalities g(ε) ≤ σ ≤ f (ε). Assume now that
g(ε) < 0 < f (ε) for all ε ∈ R. In this case viscoplas-15

tic deformations occur only for σ > f (ε), in traction,
and for σ < g(ε), in compression. Therefore, since the
yield limit (in traction and in compression) depends on
the deformation, we conclude that the viscoplastic con-
stitutive law (4), (5) describes a hardening property of20

the material.
The variational analysis of mathematical models

which describe the contact of materials with a constitu-
tive laws of the form (1) was carried out in [7, 14] and,
more recently, in [15]. There, existence, uniqueness and25

convergence results have been obtained, by using vari-
ous functional methods. The numerical analysis of the
corresponding contact models, including error estimates
and numerical modelling, can be found in [7, 8] and the
references therein.30

The concept of Tykhonov well-posedness (well-
posedness, for short) was introduced in [18] for a mini-
mization problem and then it has been generalized for
different mathematical problems, including optimiza-
tion, fixed point and various inequality problems. It35

is based on two main ingredients: the existence and
uniqueness of solution and the convergence to it of any
approximating sequence. References in the field include
[5, 9, 11, 12, 13, 19]. A general framework which uni-
fies the view on well-posedness for abstract problems in40

metric spaces was recently considered in [16]. There,
the well-posedness concept has been introduced by us-
ing approximating sequences which are defined by a
family of subsets {Ω(ω)}ω indexed upon a positive pa-
rameter ω > 0. The results in [16] have been extended45

in [20], where a more general concept of well-posedness
was introduced, based on the notion of Tykhonov triple
T = (I,Ω,C). Here I is set of parameters, Ω represents
a family approximating sets and C is a set which defines
a criterion of convergence.50

As mentionned above, the concept of well-posedness
was used in the literature in the study of many prob-
lems. Nevertheless, at the best of our knowledge, it has
not been used in the study of constitutive laws for de-
formable solids. Our aim in this paper is to fill this gap.55

Thus, we study here the well-posedness of the rate-type
constitutive laws (1) by using the mathematical tools
provided in [20], based on the properties of Tykhonov
triples. Proving that, under appropriate assumptions on
E and G, the rate-type constitutive law (1) is well-posed60

in the sense of Tykhonov represents the main trait of
originalty of this work. It allows us to obtain existence,
uniqueness and convergence results for which we pro-
vide the corresponding mechanical interpretation.

The rest of the manuscript is structured as follows. In65

Section 2 we list the assumptions on the data, then we
prove an existence and uniqueness result, Theorem 1. In
Section 3 we introduce the concept of well-posedness
for the constitutive law (1), then we state and prove our
main results, Theorems 6 and 8. In Section 4 we use70

these theorems in in order to deduce two convergence
results and, finally, in Section 5 we present some con-
cluding remarks.

We end this Introduction with some notation and pre-
liminaries. Everywhere in this paper d ∈ {1, 2, 3}, the75

indices i, j, k, l run form 1 to d and the convention sum-
mation upon a repreated index is used. We denote by N
the set of positive integers, i.e., N = {1, 2, 3, . . .} and R+

will represent the set of nonnegative real numbers, i.e.,
R+ = [0,+∞). We use Sd for the space of second order80

symmetric tensors on Rd, endowed with the canonical
inner product and the Euclidean norm given by

(σ, τ) = σi jτi j, ‖τ‖ = (τ · τ)1/2 (6)
∀σ = (σi j), τ = (τi j) ∈ Sd.

We also use C(R+;Sd) and C1(R+;Sd) for the space of
continuous and continuously differentaible functions on
R+ with values in Sd, respectively. The convergence of
a sequence {τn} in the space C(R+;Sd) is described as
follows:

τn → τ in C(R+;Sd) as n→ ∞

if and only if

max
t∈[0,m]

‖τn(t) − τ(t)‖ → 0 as n→ ∞, ∀m ∈ N.
(7)

Moreover, the convergence of a sequence {τn} in the
space C1(R+;Sd) is described in the following way:

τn → τ in C1(R+;Sd) as n→ ∞

if and only if

max
t∈[0,m]

‖τn(t) − τ(t)‖ + max
t∈[0,m]

‖τ̇n(t) − τ̇(t)‖ → 0

as n→ ∞, ∀m ∈ N.

(8)

It follows from (7) and (8) that τn → τ in C1(R+;Sd)
if and only if τn → τ in C(R+;Sd) and τ̇n → τ̇ in
C(R+;Sd).85

2. An existence and uniqueness result

In the study of the constitutive law (1) we assume
that the elasticity tensor E is symmetric and positively
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defined and the viscoplastic functionG is Lipschitz con-
tinuous, i.e.,90 

E = (Ei jkl) : Sd → Sd is such that

(a) Ei jkl = Ekli j = E jikl , 1 ≤ i, j, k, l ≤ d,

(b) there exists mE > 0 such that
(Eτ, τ) ≥ mE‖τ‖2 for all τ ∈ Sd.

(9)



G : Sd × Sd → Sd and there exists LG > 0
such that

‖G(σ1, ε1) − G(σ2, ε2)‖
≤ LG(‖σ1 − σ2‖ + ‖ε1 − ε2‖)

for all σ1, σ2, ε1, ε2 ∈ Sd.

(10)

Note that these assumptions guarantee that the stress
function σ and the strain function ε play a symmetric
role, since (1) is equivalent with the rate-type constitu-
tive law

ε̇ = Ẽσ̇ + G̃(σ, ε). (11)

where Ẽ = E−1 represents the inverse of the tensor E and
G̃ = −E−1G. Moreover, note that if (9) and (10) hold,
then Ẽ satisfies condition (9) and G̃ satisfies condition
(10), too. Finally, note that assumption (9) implies that
there exists LE > 0 and LE−1 > 0 such that95

‖Eε1 − Eε2‖ ≤ LE‖ε1 − ε2‖, (12)

‖E−1ε1 − E
−1ε2‖ ≤ LE−1‖ε1 − ε2‖, (13)

(Eε1 − Eε2, ε1 − ε2) ≥ mE‖ε1 − ε2‖
2 (14)

for all ε1, ε2 ∈ Sd.
Next, we consider a stress function σ and an initial

data ε0 such that

σ ∈ C1(R+;Sd), (15)
ε0 ∈ Sd. (16)

Under these assumptions, we consider the following
problem.100

Problem P. Find a strain function ε ∈ C1(R+;Sd) such
that

σ̇(t) = Eε̇(t) + G(σ(t), ε(t)) ∀ t ∈ R+, (17)
ε(0) = ε0. (18)

Our main result in this section is the following.

Theorem 1. Assume that (9), (10), (15) and (16) hold.105

Then Problem P has a unique solution.

Proof. We use a fixed point argument. To this end, we
consider the operator Λ : C(R+;Sd) → C(R+;Sd) de-
fined by

Λη(t) = ε0 − E
−1σ(0) (19)

−

∫ t

0
E−1G(σ(s), η(s) + E−1σ(s)) ds

for each t ∈ R+ and η ∈ C(R+;Sd). Then, using as-110

sumption (10) and inequality (13) it follows that there
exists a constant L > 0 such that

‖Λη1(t) − Λη2(t)‖V ≤ L
∫ t

0
‖η1(s) − η2(s)‖ ds

∀ η1, η2 ∈ C(R+;Sd), t ∈ R+.

This inequality shows that Λ is a so-called history
history-dependent operator, and, therefore, using The-
orem 26 in [15] we deduce that there exists a unique el-
ement η∗ ∈ C(R+;Sd) such that η∗ = Λη∗. This equality
combined with (19) shows that η ∈ C1(R+;Sd). Denote
by ε the function

ε = η∗ + E−1σ (20)

and note that, obviously, ε ∈ C1(R+;Sd). Moreover,
(20), equality η∗ = Λη∗ and (19) imply that

ε(t) = E−1σ(t) −
∫ t

0
E−1G(σ(s), ε(s)) ds (21)

+ε0 − E
−1σ(0) ∀ t ∈ R+

or, equivalently,115

σ(t) = Eε(t) +

∫ t

0
G(σ(s), ε(s)) ds (22)

+σ(0) − Eε0 ∀ t ∈ R+.

Equalities (22) and (21) show that (17) and (18) hold
and, therefore, ε is a solution of ProblemP. This proves
the existence part in Theorem 1. The uniqueness is a
consequence of the uniqueness of the fixed point of the
operator Λ, guaranteed by Theorem 26 in [15]. �120

3. Tykhonov well-posedness

Everywhere in this section we assume that (9), (10),
(15) and (16) hold, even if we do not mention it explic-
itly. As already mentioned in the Introduction, the con-
cept of well-posedness for Problem P is associated to a125

so-called Tykhonov triple which is defined as follows.
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Definition 2. A Tykhonov triple is a mathematical ob-
ject of the form T = (I,Ω,C) where I is a given
nonempty set, Ω : I → 2X − {∅} and C ⊂ S(I) is a
nonempty set, where X = C1(R+;Sd), 2X is the power130

set of X and S(I) denotes the set of sequences whose
elements belongs to I.

Below in this paper, for any ω ∈ I, we refer to the sets
Ω(ω) ⊂ C1(R+;Sd) as the approximating sets. Next,
following our work [20], we consider the following def-135

initions.

Definition 3. Given a Tykhonov triple T = (I,Ω,C), a
sequence {εn}n ⊂ Sd is called a T -approximating se-
quence if there exists a sequence {ωn}n ∈ C, such that
εn ∈ Ω(ωn) for each n ∈ N.140

Note that approximating sequences always exist,
since, by assumption, C , ∅ and, moreover, for any
sequence {ωn} ∈ C and any n ∈ N, the set Ω(ωn) is not
empty.

Definition 4. Problem P is said to be well-posed with145

respect to the Tykhonov triple T = (I,Ω,C) if it has
a unique solution and every T -approximating sequence
for Problem P converges in C1(R+,Sd) to the solution.

In other words, Problem P is well-posed with respect
to T if there exists a unique function ε ∈ C1(R+;Sd)
which satisfies (17) and (18) and, moreover, for any T -
approximating sequence {εn}n, we have

εn → ε in C1(R+;Sd) as n→ ∞. (23)

Note that the concept of well-posedness defined
above depends on the Tykhonov triple T . A relevant150

example of such triple is the following.

Example 5. Keep the assumption in Theorem 1 and take
T = (I,Ω,C) where

I = {ω = ({θm}m, θ̃) : θm > 0 ∀m ∈ N, θ̃ > 0 }, (24)

C =
{
{ωn} : ωn = ({θm

n }m, θ̃n) ∈ I ∀ n ∈ N, (25)

θm
n → 0 as n→ ∞ ∀m ∈ N,
θ̃n → 0 as n→ ∞

}
and, for each ω = ({θm}m, θ̃) ∈ I, the set Ω(ω) is defined
as follows:155

Ω(ω) =
{
ε ∈ C1(R+;Sd) : (26)

‖σ̇(t) − Eε̇(t) − G(σ(t), ε(t))‖ ≤ θm

∀ t ∈ [0,m], m ∈ N, (27)

‖ε(0) − ε0‖ ≤ θ̃
}
.

Note that for each ω ∈ I the solution ε obtained in The-
orem 1 belongs to Ω(ω) and, therefore, Ω(ω) , ∅, which
shows that T satisfies Definition 2.

Our main result in this section is the following.

Theorem 6. Assume (9), (10), (15) and (16). Then160

Problem P is well-posed with respect to the Tykhonov
triple in Example 5.

Proof. We start by recalling that the existence of a
unique solution ε ∈ C1(R;Sd) to Problem P was pro-
vided in Theorem 1. To proceed, we consider a T -165

approximating sequence for the Problem P, denoted by
{εn}n. Then, according to Definition 3, there exists a
sequence {ω}n ⊂ C with ωn = ({θm

n }m, θ̃n) ∈ I such that

θm
n → 0 as n→ ∞ ∀m ∈ N, (28)
θ̃n → 0 as n→ ∞ (29)

and, moreover, for each n ∈ N, the following properties
hold:170

εn ∈ C1(R+;Sd), (30)

‖σ̇(t) − Eε̇n(t) − G(σ(t), εn(t))‖ ≤ θm
n (31)

∀ t ∈ [0,m], m ∈ N,

‖εn(0) − ε0‖ ≤ θ̃n. (32)

Let n, m ∈ N be fixed and let t ∈ [0,m]. We use (14)
and (17) to write

mE‖ε̇n(t) − ε̇(t)‖2 ≤ (Eε̇n(t) − Eε̇n(t), ε̇n(t) − ε̇(t))

≤ ‖Eε̇n(t) − Eε̇(t)‖‖ε̇n(t) − ε̇(t)‖

≤ ‖Eε̇n(t) − σ̇(t) + G(σ(t), ε(t))‖‖ε̇n(t) − ε̇(t)‖

≤ ‖Eε̇n(t) + G(σ(t), εn(t)) − σ̇(t)‖‖ε̇n(t) − ε̇(t)‖

+‖G(σ(t), ε(t)) − G(σ(t), εn(t))‖‖ε̇n(t) − ε̇(t)‖.

Then, using (31) and assumption (10) it follows that

mE‖ε̇n(t) − ε̇(t)‖ ≤ θm
n + LG‖εn(t) − ε(t)‖. (33)

On the other hand, the initial condition (18) implies that

εn(t) − ε(t) =

∫ t

0
(ε̇n(s) − ε̇(s)) ds + εn(0) − ε0

and, using (32) yields

‖εn(t) − ε(t)‖ ≤
∫ t

0
‖ε̇n(s) − ε̇(s)‖ ds + θ̃n. (34)

4



We now combine inequalities (33) and (34) to deduce
that

‖ε̇n(t) − ε̇(t)‖ ≤
θm

n + LGθ̃n

mE
+

LG
mE

∫ t

0
‖ε̇n(s) − ε̇(s)‖ ds

and, after using the Gronwall argument we find that

‖ε̇n(t) − ε̇(t)‖ ≤
θm

n + LGθ̃n

mE
e

LG
mE

t
.

We now use the convergences (28) and (29) to obtain
that

max
t∈[0,m]

‖ε̇n(t) − ε̇(t)‖ → 0 as n→ ∞. (35)

Next, inequality (34) combined with convergences (29)
and (35) guarantees that

max
t∈[0,m]

‖εn(t) − ε(t)‖ → 0 as n→ ∞. (36)

Finally, it follows from (35), (36) and (8) that the con-
vergence (23) holds, which concludes the proof. �

We now consider a second example of Tykhonov175

triple with whom Problem P is also well-posed.

Example 7. Keep the assumption in Theorem 1 and take
T = (I,Ω,C) where

I = {ω = (θ, θ̃) : θ > 0, θ̃ > 0 }, (37)

C =
{
{ωn} : ωn = (θn, θ̃n) ∈ I ∀ n ∈ N, (38)

θn → 0, θ̃n → 0 as n→ ∞
}

and, for each ω = (θ, θ̃) ∈ I, the set Ω(ω) is defined as
follows:180

Ω(ω) =
{
ε ∈ C1(R+;Sd) : (39)
‖σ̇(t) − Eε̇(t) − G(σ(t), ε(t))‖ ≤ θ ∀ t ∈ R+,

‖ε(0) − ε0‖ ≤ θ̃
}
.

Note that, again, using Theorem 1 it follows that Ω(ω) ,
∅, for each ω ∈ I.

We have the following well-posednes result.

Theorem 8. Assume (9), (10), (15) and (16). Then
Problem P is well-posed with respect to the Tykhonov185

triple T in Example 7.

The proof of this theorem is similar to that of Theo-
rem 6 and, therefore, we skip it. Note that, in contrast
with the proof of Theorem 6, in the proof of Theorem 6
some estimates are simpler since they do not depend on190

m ∈ N.

4. Continuous dependence results

The solution of Problem P depends on the data σ and
ε0. Its continuous dependence with respect these data is
provided by the following convergence result.195

Theorem 9. Assume (9), (10), (15), (16), denote by ε
the solution of Problem P and, for each n ∈ N, denote
by εn the solution of Problem P for the data σn, ε0n

which satisfy σn ∈ C1(R+;Sd), ε0n ∈ Sd. Moreover,
assume that200

σn → σ in C1(R+;Sd), (40)
ε0n → ε0 in Sd (41)

as n→ ∞. Then,

εn → ε in C1(R+;Sd) as n→ ∞. (42)

Proof. Let n, m ∈ N and t ∈ [0,m]. We have

σ̇n(t) = Eε̇n(t) + G(σn(t), εn(t)), (43)
εn(0) = ε0n. (44)

We now use (43), (17) and assumption (10) to write

‖σ̇(t) − Eε̇n(t) − G(σ(t), εn(t))‖
= ‖σ̇(t) − σ̇n(t) + σ̇n(t) − Eε̇n(t) − G(σ(t), εn(t))‖
= ‖σ̇(t) − σ̇n(t) + G(σn(t), εn(t)) − G(σ(t), εn(t))‖
≤ ‖σ̇(t) − σ̇n(t)‖ + LG‖σ(t) − σn(t)‖

and, using notation

θm
n = max

t∈[0,m]
‖σ̇n(t)−σ̇(t)‖+LG max

t∈[0,m]
‖σn(t)−σ(t)‖, (45)

we find that

‖σ̇(t) − Eε̇n(t) + G(σ(t), εn(t))‖ ≤ θm
n . (46)

Let
θ̃n = ‖ε0n − ε0‖ (47)

and note that the initial conditions (44), (18) yield

‖εn(0) − ε(0)‖ ≤ θ̃n. (48)

Consider now the sequence {ωn}n with ωn =

({θm
n }m, θ̃n), defined by (45), (47). Then, (46) and (48)205

show that the inequalities (31) and (32) hold, which im-
plies that εn ∈ Ω(ωn) where the multivalued function Ω

is defined by (26). On the other hand, assumptions (40)
and (41) show that θm

n → 0 for each m ∈ N and θ̃n → 0
as n → ∞, respectively. We conclude from Definition210

3 that {εn}n is an approximating sequence for Problem
P, with respect to the Tykhnonov triple in Example 5.
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Therefore, Theorem 6 and Definition 4 guarantee that
the convergences (42) hold, which ends the proof. �

In additional to the mathematical interest in the con-215

vergence (42) it is important from mechanical point of
view since it provides a continuous dependence result
for the rate-type constitutive equation (1). Indeed, it
shows that small perturbations on the stress function to-
gether with small perturbations on the initial strain give220

rise to small perturbations of the solution to Problem P.

We now remark that Theorem 9 cannot be proved by
using Theorem 8 instead of Theorem 6. A counterex-
ample which proves this statement is the following.

Example 10. Assume that (9), (10), (15) and (16) hold225

and denote by ε the solution of Problem P obtained in
Theorem 1. Moreover, for each n ∈ N, consider the
function σn ∈ C1(R;Sd) and the element ε0n defined by

σn(t) = σ(t) +
t2

n
Id ∀ t ∈ R+, (49)

ε0n = ε0 +
1
n

Id (50)

where Id ∈ Sd represents the identity tensor. Note that,
(49), (50) imply that conditions (40) and (41) hold, re-230

spectively. Denote by εn the solution of Problem P for
the data σn, ε0n. Therefore, it follows from Theorem 9
that the convergences (42) hold. Nevertheless, we claim
that the sequence {εn}n is not a T - approximating se-
quence for Problem P where, here and below in this ex-235

ample, T represents the Tykhonov triple (37)–(39).
To prove this claim we assume in what follows that

the function G does not depend on σ. Arguing by con-
tradiction, assume that {εn}n is a T -approximating se-
quence. Then, using (39) we deduce that there exists a
sequence {θn}n such that θn → 0 and, for each n ∈ N,
and t ∈ R+, the following inequality holds:

‖σ̇(t) − Eε̇n(t) − G(εn(t))‖ ≤ θn. (51)

On the other hand, Eε̇n(t) +G(εn(t)) = σ̇n(t) and, there-
fore, (51) yields

‖σ̇(t) − σ̇n(t)‖ ≤ θn. (52)

We now combine (49) and (52) to deduce that

2t
n
‖Id‖ ≤ θn. (53)

Recall that this inequality holds for each n ∈ N and t ∈
R+. Thus, taking t = n we deduce that 2d ≤ θn for each
n ∈ N which contradicts the convergence θn → 0. We
conclude from above that the sequence {εn}n is not a T -240

approximating sequence for Problem P and, therefore,
Theorem 8 cannot be used to obtain the convergence
(42), as claimed.

We end this section with a second convergence result.
It concerns a versiom of the constitutive law (1) given
by

σ̇ = Eε̇ + µG(σ, ε), (54)

where µ is a given viscosity coefficient. Our aim is
to show that for µ ∈ R small enough (54) can be ap-
proached by the elastic constitutive law σ = Eε. To this
end let {µn}n ⊂ R and consider the following additional
assumptions. G : Sd × Sd → Sd and there exists MG > 0

such that ‖G(σ, ε)‖ ≤ MG ∀σ, ε ∈ Sd.
(55)

µn → 0 as n→ ∞. (56)

Theorem 11. Assume (9), (10), (15), (16), (55) and de-
note by ε the function defined by ε = E−1σ. Then,245

for each n ∈ N there exists a unique function εn ∈

C1(R+;Sd) such that

σ̇(t) = Eε̇n(t) + µnG(σ(t), εn(t)) ∀ t ∈ R+, (57)
εn(0) = ε0. (58)

Moreover, if σ(0) = Eε0 and (56) hold, then the conver-
gence (42) holds, too.

Proof. The existence of a unique solution εn ∈

C1(R;Sd) to problem (57), (58) follows from Theorem
1. Assume now that σ(0) = Eε0 and (56) holds. Let
n ∈ N and t ∈ R+. Then, we use (57) and assumption
(55) to write

‖σ̇(t) − Eε̇n(t)‖ = ‖µnG(σ(t), εn(t))‖ ≤ MG|µn|

and, using notation θn = MG|µn|, we find that

‖σ̇(t) − Eε̇n(t)‖ ≤ θn. (59)

Let θ̃n = 1
n and note that the initial conditions (58), and

equalities σ(0) = Eε(0), σ(0) = Eε0 show that εn(0) =

ε(0) = ε0 and, therefore,

‖εn(0) − ε(0)‖ ≤ θ̃n. (60)

Consider now the sequence {ωn}n defined by ωn =250

(θn, θ̃n). Then, (59) and (60) show that εn ∈ Ω(ωn)
where the multivalued function Ω is defined by (39)
with G ≡ 0. On the other hand assumption (56) show
that θn → 0 as n → ∞ and, obviously, θ̃n → 0 as
n → ∞. We conclude from Definition 3 that {εn}n is255
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an approximating sequence for Problem P, with respect
to the Tykhonov triple in Example 7. Therefore, Theo-
rem 8 and Definition 4 guarantee that the convergence
(42) holds, which concludes the proof. �

In additional to the mathematical interest in the con-260

vergence in Theorem 11, it is important from mechan-
ical point of view since it shows that the viscoplastic
constitutiver law (54) can be approached by the elastic
constitutive law σ = Eε for a small coefficient of vis-
cosity.265

5. Conclusion

In this paper we proved the well-posedness of the
rate-type constitutive law (1) with respect to two
Tykhonov triples. Then, we used the well-posedness
in order to prove two convergence results. We also270

showed that, on this matter, the choice of an appropriate
Tykhonov triples plays a crucial role. The material pre-
sented in this paper leads to a better knowledge of rate-
type consitutive law of the form (1) since, besides the
mathematical interest in our results, they lead to inter-275

esting mechanical interpretations. Moreover, their anal-
ysis reveals some subjects for future research, which
could represent a continuation of this paper.

The first subject would be to extend the results pre-
sented in this paper to various clases of viscoplastic con-
stitutive laws. One example would be the viscoplastic
laws of the form

σ̇ = Eε̇ + G(σ, ε, κ), (61)

in which κ is a hardening parameter or an internal state
variable, assumed to satisfy a differential equation of the
form

κ̇ = Φ(σ, ε, κ). (62)

Results similar to those in Theorms 6, 8 and 9 can be
obtained in the study of (61), (62), under appropriate280

assumption of the functions Φ and G.
The second subject would be to study the well-

posedness of boundary value problems with rate-type
constitutive laws of the form (1) and, in particular, the
study of frictional or frictionless contact problems. A285

first step in this direction was made in [17]. Proving the
Tykhnonov well-posedness of contact problems would
be a powerfull mathematical tool which could be used
to obtain various convergence results that describe the
behaviour of the solution with respect the data and pa-290

rameters. It also allows us to establish the link between
models of contact constructed by using different consti-
tutive laws and different interface bounday conditions.
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