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CNRS, INSERM, PSL Research University, Paris, France8

3: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), UMR 8001, CNRS, Sorbonne9
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Abstract13

Only 6% of known species have a conservation status. Methods that assess conservation14

statuses are often based on individual counts and are thus too laborious to be generalized15

to all species. Population genomics methods that infer past variations in population size16

are easy to use but limited to the relatively distant past. Here we propose a population ge-17

nomics approach that tests for recent population decline and may be used to assess species18

conservation statuses. More specifically, we study Maximal Recombination Free (MRF)19

blocks, that are segments of a sequence alignment inherited from a common ancestor with-20

out recombination. MRF blocks are relatively longer in small than in large populations.21

We use the distribution of MRF block lengths rescaled by their mean to test for recent22

population decline. However, because MRF blocks are difficult to detect, we also consider23

Maximal Linkage Disequilibrium (MLD) blocks, which are runs of single nucleotide poly-24

morphisms compatible with a single tree. We develop a new method capable of inferring25

a very recent decline (e.g. with a detection power of 50% for populations which size was26

halved to N , 0.05 ×N generations ago) from rescaled MLD block lengths. Our framework27

could serve as a basis for quantitative tools to assess conservation status in a wide range28

of species.29
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1 Introduction30

The severe and rapid changes imposed by human activities upon living organisms are31

suspected to be a major factor leading to short-term mass extinctions (Barnosky et al.,32

2011).The most comprehensive list of endangered species is the Red List of the International33

Union for Conservation of Nature (IUCN) (Rodrigues et al., 2006). Criteria used in the34

list to assess the species conservation status are based on geographical range, population35

trends, threats to habitat and ecology. Despite being very robust and reliable, these36

criteria are hard to establish for many species.To quantify the ongoing crisis for a wider37

range of organisms, there is a crucial need to develop quantitative measures of extinction38

risk to efficiently monitor species in real time and at a global scale. Previous attempts39

were developed to estimate quantitatively extinction rates, including by two of the present40

authors, based on occurrence data (Régnier et al., 2015; Ceballos et al., 2017; Sánchez-41

Bayo and Wyckhuys, 2019) or genetic data (from museum specimen Dı́ez-del Molino et al.42

(2018); van der Valk et al. (2019)). The genetic methods measure the genetic diversity43

at different time to estimate the population size at these times and conclude on a general44

trend. The limitation of these methods is the difficulty to obtain time series data.45

A handful of genomes sampled in a population at a single time point can help infer46

the past demography of this population (Gutenkunst et al., 2009; Li and Durbin, 2011;47

Excoffier et al., 2013; Harris and Nielsen, 2013; Sheehan et al., 2013; Schiffels and Durbin,48

2014; Lapierre et al., 2017; Ringbauer et al., 2017; Terhorst et al., 2017; Beichman et al.,49

2018). In standard population genetic inferences, the periods when variations of population50

size can be estimated are of the order of Ne generations back in time. Ne denotes the so-51

called effective population size (Wright, 1931). Recent methods such as MSMC (Schiffels52

and Durbin, 2014) can provide inferences on more recent past but hardly scale up to large53

datasets of complete genomes because of their computational load. With the development54

of next generation sequencing, complete genomes from multiple individuals of the same55

species are now released routinely (Gibbs et al., 2015; Alonso-Blanco et al., 2016). Actual56

methods can not be applied to test for recent decline of populations, the models and57

methods we present in this manuscript specifically target very recent past when considering58

small populations and are meant to be applied to datasets of arbitrary size.59

Methods using whole genome sequences to infer demography use different measures of60

genomic polymorphism. One of these measures is the so-called Site Frequency Spectrum,61

2



or SFS (Fu, 1995). The SFS, that is the genome wide distribution of the frequencies of62

polymorphic alleles in a sample of the population, is strongly distorted by the demographic63

history of the species (Adams and Hudson, 2004; Marth et al., 2004). SFS-based methods64

(e.g. Gutenkunst et al. (2009)) can handle arbitrarily large numbers of loci and genomes65

but disregard correlations between sites caused by genetic linkage. Using genetic linkage66

information may help overcoming the SFS-based methods limitations (e.g. difficulty to67

discriminate between different scenarios Lapierre et al. (2017) and to infer recent demog-68

raphy).69

Recombination is the process by which two DNA sequences are intermixed to create70

a new sequence that combines segments of different ancestries. When two homologous71

regions of the genome are inherited from the same ancestor without having undergone72

recombination, they are said IBD: Identical By Descent. The probability distribution and73

the length of IBD regions passed through generations have been studied (Stam, 1980;74

Chapman and Thompson, 2003; Stefanov, 2000).75

Recombination patterns are also characterized by Linkage Disequilibrium (LD). LD76

arises when individuals of a finite population share chunks of DNA inherited from a com-77

mon ancestor (IBD blocks). Specifically, two variants located at two distinct sites are78

in linkage disequilibrium (LD) when their joint frequency differs from what is expected79

under independence. More specifically, LD is defined as the covariance fA1B1 − fA1fB1 ,80

where fA1 is the frequency of allele 1 at locus A (Lewontin and ichi Kojima, 1960). When81

fA1 × fB1 = fA1B1 , the two variants are said in complete linkage equilibrium. On average,82

LD decreases exponentially with genetic distance due to recombination. The pattern of83

LD is distorted by demography (Hill and Robertson, 1968) and thus can be used to infer84

the past demography of a population (Hollenbeck et al., 2016; Patin et al., 2014).85

Importantly, despite the fact that breakpoints between IBD blocks are usually not86

observable when comparing two homologous regions, “long enough” IBD blocks can be87

retrieved by applying one of several recent methods to a pair of sequences (Purcell et al.,88

2007; Gusev et al., 2009; Browning and Browning, 2010). These methods are based on89

detecting long identical shared segments (Gusev et al., 2009) or shared regions that harbor90

multiple rare variants (Purcell et al., 2007; Browning and Browning, 2010). If two individ-91

uals share the same rare variant, they may also share the surrounding chromosomal region,92

particularly because rarer variants are more likely to be relatively recent. Most methods93

take sequencing errors into account, allowing IBD blocks to not be totally identical. The94
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accuracy of IBD block detection depends on the algorithm used (Browning and Browning,95

2013).96

Some demographic inference methods are based on the distribution of lengths of inferred97

pairwise IBD blocks in a population. Palamara et al. (2012) have calculated the distribution98

of expected lengths of pairwise IBD blocks for a given parameterized demographic model.99

Browning and Browning (2015) have calculated the expected time to the most recent100

common ancestor (TMRCA) of an IBD block as a function of its length. Then they use101

the empirical density of IBD block lengths to estimate the distribution of TMRCA and102

thus the variations of effective population size through time.103

Other methods use the length of identical shared segments of chromosome within a104

diploid individual (Hayes et al., 2003). Two identical shared segments may be inherited105

from a common ancestor without recombination event (and then be IBD) or may not be106

IBD as there are invisible recombination events that may have occurred within it. The107

probability that the two haplotypes of an individual share identical alleles for a given108

number of adjacent positions can be predicted (Hayes et al., 2003; MacLeod et al., 2009).109

Tools have been developed to apply these methods to infer demographic inference from110

genomic data (MacLeod et al., 2013; Harris and Nielsen, 2013).111

Yet another approach to infer demographic history from IBD blocks is to reconstruct112

the genome-wide distribution of the TMRCA between two haploid genomes. In PSMC,113

Li and Durbin (2011) devised a Hidden Markov Model that infers the TMRCA from the114

positions of heterozygous sites along a pair of sequences and then estimate a step-wise115

demographic pattern. MSMC, the extension of PSMC (Schiffels and Durbin, 2014), ana-116

lyzes the heterozygosity pattern from multiple individuals and uses first coalescence events117

between any two haploid genomes of the sample. These methods are computationally118

intensive (as of today, MSMC cannot infer the demographic history of more than 8 indi-119

viduals) and pool the diversity on windows of 100 bp, that are assumed to form a single120

locus with two states, heterozygous or homozygous.121

Importantly, the previous methods infer stepwise changes of the “effective population122

size” (Ne(t)) that are estimated from the density of coalescence events. This motivated123

Mazet et al. (2015, 2016); Chikhi et al. (2018); Rodŕıguez et al. (2018) to propose to replace124

Ne(t) by the more explicit Inverse Instantaneous Coalescence Rate. IICR only matches the125

instantaneous population size when the population is panmictic. It is nonetheless always126

possible to find a population model with constant size but spatial structure that corre-127

4



sponds to any IICR of a size-changing population for the TMRCA of 2 sequences (Chikhi128

et al., 2018). For larger samples, the joint distribution of coalescence events [T2, T3, · · ·]129

can be used, in theory, to disentangle structure from demography (Grusea et al., 2019).130

Existing methods for demographic inference using recombination information often use131

the whole genome of few individuals (less than 10) or use a smaller part of the genome.132

These methods only consider the joint history of two individuals (e.g. the pairwise IBD133

length distribution or the time of the first coalescence event between any two haploid134

genomes) which algorithmic complexity increases drastically with the number of individuals135

(e.g. detection of pairwise IBD blocks is quadratic) and generates a computational load136

limiting in most cases the application of the methods to a larger number of individuals. On137

the other hand, with few individuals, demographic inferences are unable to detect recent138

changes of population size.139

Following the idea of Tiret and Hospital (2017), we decided to study the IBD concept140

extended to a multilocus segment and a larger number of individuals (n > 2). Some studies141

have been conducted on the amount of genetic material shared IBD with n > 2, consider-142

ing closely related individuals (Donnelly, 1983; Ball and Stefanov, 2005). We extend the143

concept at a population level while relaxing the need for identical sequence (without mu-144

tation), which is why we decided to define a new term. We call ‘MRF blocks’ homologous145

segments that are entirely inherited from the same ancestor without recombination; these146

segments may or may not harbour different alleles, because of mutations. An MRF block147

is a segment of an alignment of haploid genomes that share the same coalescent tree. A148

recombination event along the sequence cuts the genome alignment into two MRF blocks,149

one on each side of the recombination point. By definition there is no recombination150

within MRF blocks so that all variants located within an MRF block are necessarily in151

complete linkage disequilibrium. The reciprocal is not true, as variants in complete LD do152

not necessarily belong to the same MRF block. MRF blocks carry the information of any153

recombination event that happened among the sampled individuals. As for IBD blocks,154

MRF blocks are usually not observable.155

Outline We have developed a new test to detect very recent population declines of en-156

dangered species. We first consider the full length distribution of MRF blocks in a sample157
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of haploid genomes (n ≥ 2). Second, as MRF blocks are not directly observable from158

sequence alignments, we devised a simple and efficient algorithm to chop an alignment of159

n ≥ 4 haploid genomes in Maximal Linkage Disequilibrium (MLD) blocks, that are seg-160

ments which variants are in complete LD. From the length distributions of MRF blocks161

or MLD blocks, we devised a summary statistic to test whether a population has been162

declining in the very recent past. Our method is not limited by the number of genomes in163

the sample.164

2 Model and Methods165

In the absence of recombination, ancestral relationships between genomes can be repre-166

sented in the form of a genealogical tree. Individual haploid genomes at present time are167

the leaves of the tree, the MRCA of these individuals is the root. The fusion of two lin-168

eages into one (a common ancestor) is named coalescence event (Kingman, 1982), hence169

the name of “coalescent tree”. The sum of all branch lengths that separates two genomes170

up to their common ancestor is the time of divergence between them, usually expressed in171

generations. In the Wright-Fisher model with constant population size N , branch lengths172

measured in number of generations scale like N . In particular, if we define T as the total173

length of the coalescent tree, the expectation of T is proportional to N . Large popula-174

tions generate coalescent trees with deep nodes, whereas small populations have shallow175

coalescent trees.176

In the presence of recombination, two loci of an alignment have the same coalescent177

tree only if no recombination event happened since their MRCA. We name MRF block,178

a maximal interval along the alignment of sites sharing the same coalescent tree. MRF179

blocks are consequently separated by recombination points, corresponding to recombination180

events. It is standard to assume that conditional on the total length T of the coalescent181

tree of a site, the length L of its MRF block is exponentially distributed with rate ρT ,182

where ρ is the recombination rate (expressed in a arbitrary unit proportional to Morgan).183

Then for a fixed ρ, T and L are negatively correlated: recombination is more likely to184

occur in deep trees, which thus are carried by shorter blocks. As mentioned above, as T185

is proportional to N , MRF blocks are also shorter in larger populations. More accurately,186

because the law of T/N does not depend on N , neither does the law of NL (for n = 2187

it alludes to results of Carmi et al. (2014)). In other words, if population 1 has size N1188
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and population 2 has size N2, the distribution of MRF block lengths in population 2 can189

be deduced from that in population 1 by a scaling factor N1/N2, both populations having190

identical demography otherwise. For example if N2 = 2N1, the MRF blocks in population191

2 are twice smaller than those of population 1.192

Note that for a given N the lengths (L1, L2, . . .) of successive adjacent blocks have the193

same distribution, but they are not independent, because the coalescent trees of adjacent194

MRF blocks are not. The dependencies between these trees is encoded in the so-called195

Ancestral Recombination Graph (ARG) (Griffiths and Marjoram, 1997). Because these196

dependencies have a complex structure (Wiuf and Hein, 1999), a popular way of approxi-197

mating them is the Sequentially Markovian Coalescent (SMC) (McVean and Cardin, 2005;198

Marjoram and Wall, 2006). This approximation neglects coalescences between lineages199

with no overlapping ancestral material and assumes Markovian dependencies of coalescent200

trees along the sequence: the genealogy of an MRF block only depends on the genealogy201

of the adjacent ones.202

Although genealogies of different MRF blocks are not independent, they are asymptot-203

ically independent as the distance between them increases.204

Throughout this article, we use msprime to generate MRF blocks directly from the205

ARG (Kelleher et al., 2016) but very similar results were obtained with a local SMC206

implementation. We assume constant recombination and mutation rate along the genome.207

We simulated the alignment of n = 10 haploid genomes at present time.208

Demographic scenario. We consider a single change of population size (Fig 1a). Here209

Nt represents the population size at time t, t = 0 is the present time and positive values210

represent the past. We denote by κ the ratio of the two sizes: κ = N∞/N0, and by τ the211

time at which the population size changes in coalescent units of N0 generations. If κ = 1,212

N∞ = N0: there is no change. If κ = 10, N∞ = 10N0: the population size has been divided213

by 10, τN0 generations in the past.214

3 MRF blocks215
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3.1 Distribution of block lengths216

Impact of population decline on tree length. For declining populations (κ > 1), the217

coalescent trees have two distinct time scales: a first one for the shallow part of the tree218

(t < τ), expressed in N0 generations, and a second one for the deep part of the tree (t > τ)219

that is expressed in κN0 generations. When the declining population tree is compared to a220

standard coalescent tree (constant population size), it has shorter external branches if the221

reference time scale is expressed in κN0 generations or longer internal ones if the reference222

time scale is expressed in N0 generations. When it is compared to a reference tree with223

population size chosen so as to have the same TMRCA, its external branches are too short224

and its internal branches are too long. Similarly, the distribution of the total length T of225

the tree is overdispersed when compared to the length of the standard coalescent tree with226

the same mean.227

Impact of population decline on lengths of MRF blocks. For a declining population,228

the distribution of the length L of MRF blocks will depend not only on ρ and N0 but also229

on κ and τ . As the tree relative branch lengths are distorted and the distribution of T230

is overdispersed, so is the distribution of L. In a declining population, the distribution231

of L can be seen as a mixture of the two distributions that correspond to the two pop-232

ulation sizes, N0 and κN0. The strength of the decline (κ) tunes the difference between233

the distributions; the date of decline (τ) tunes in what proportion the two distributions234

are mixed. When τ → 0 (practically, τ < 10−4 times N0 generations for a sample size235

n ∈ [10, 100]), the distribution of L is indistinguishable from that of block lengths in a236

population with constant size equal to κN0. At the opposite, for τ → ∞ (practically,237

τ > 10 times N0 generations for a sample size n ∈ [10, 100]), the distribution of L is indis-238

tinguishable from that of block lengths in a population with constant size equal to N0. As239

a result for τ ∈ [10−4, 10], the distribution of L has an excess of MRF blocks smaller than240

the N0 reference and an excess of MRF blocks longer than the N∞ reference (Fig 1b). The241

small blocks correspond to the trees which total length T is mostly driven by the distant242

N∞ time scale and the long ones to the trees which total length T is mostly driven by the243

recent N0 time scale.244

As mentioned in the previous section, in a population with constant size N , the dis-245

tribution of L, briefly denoted LN , scales like 1/N , in the sense that the distribution of246

L̃ := NLN does not depend on N . In particular, the distribution of L′ := L/E[L] does not247
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(a) Model

(b) Length distribution
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(c) Normalized length distribution
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Figure 1: Impact of the demography on the distribution of MRF block lengths. (a) The
demography considered here is a sudden size change tuned by 3 parameters : N0, the
actual population size, τ the date of decline (in backward time) and κ the strength of
decline. Time is expressed in N0 generations. (b) Distribution of L for ρ = 1, κ = 3 with
τ = {0, 1,∞}. When τ = 0 (grey) or τ = ∞ (white), population size is constant. (c)
Distribution of L′ = L/E[L] under the same values of ρ = 1, κ and τ . In case of a decline,
the distribution is overdispersed, with an excess of both short and long normalized MRF
blocks.
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Figure 2: Detection of recombination in three MRF blocks. The four lines represent
four haploid genomes, circles and triangles are mutation events, red lines are the true
recombination events delimiting MRF blocks and above each MRF block is represented its
true tree. Mutation events occur on certain lineages as represented on the trees. The first
recombination event generates an incompatibility between the blue branches of the first
two MRF blocks, but as no mutation occurs on the second MRF block, this recombination
event cannot be detected. The second recombination event does not change the topology
of the tree and thus this second event cannot be detected either. However, the first and
the third MRF blocks carry mutations that are not compatible; thus a minimum of one
recombination event can be inferred between the two mutations, as indicated by a vertical
thick black line arbitrarily placed in the middle.

depend on N in a population with constant size and follows the law of L̃/E[L̃]. However,248

the distribution of L′ is distorted when there is a size change. For a declining population,249

the distribution of L′ is overdispersed, it has an excess of small blocks (i.e. less than 0.2)250

and an excess of long blocks (i.e. more than 5), as can be seen on Fig 1c.251

Note that we always have E[L′] = 1, but here E[L] has252

1
N∞

E[L̃] = E[LN∞ ] < E[L] < E[LN0 ] = 1
N0

E[L̃].

As the block distribution of LN is a mixture of the one of LN0 and LN∞ , E[L] is bounded253

by E[LN∞ ] and E[LN0 ] that depend on the population size.254

4 MLD blocks255

4.1 Definition256

All recombination events are not directly visible in a genome alignment. First, adjacent257

MRF blocks may have coalescent trees sharing the same topology and the same branch258

lengths, so that mutations occurring on either tree show exactly the same pattern on259

either block. Second, adjacent MRF blocks may have coalescent trees sharing the same260
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topology but not the same branch lengths, so that mutations occurring on either tree261

display the same bipartitions (compare the second and third tree in Figure 2). Third, even262

if two adjacent MRF blocks have trees with different toplogy, it is possible that branches263

distinguishing these topologies do not carry mutations (see the second block in Figure 2).264

Importantly, recombination events that happen between the two oldest lineages do not265

impact the topology of the tree, so are never detectable because they do not impact the266

possible bipartitions.267

A possibility used in the literature to detect breakpoints between MRF blocks is to268

detect the changes in the density of polymorphic sites along the sequence due to the269

change of coalescent tree (like in PSMC, Li and Durbin (2011)).270

Here we used instead the incompatibilities between bipartitions displayed by polymor-271

phic sites to place the minimal number of recombination events on the alignment. Two272

bipartitions are said incompatible when they are not compatible with a common tree.273

In what follows, we will assume that the mutation rate µ is constant through time and274

along the genome.275

4.1.1 The four-gamete test276

From now on, we assume that each site can be hit at most once by a mutation, so that277

a polymorphic site is always bi-allelic, an assumption known as the “infinitely-many sites278

model”. The four-gamete test (Hudson and Kaplan, 1985) serves to detect incompatibilities279

between bipartitions displayed by two polymorphic sites. For any two biallelic sites (A/a280

and B/b) there are at most four gamete haplotypes in the population (A-B A-b a-B and a-281

b). Under the infinitely-many sites model, the four possible haplotypes cannot be observed282

in a sample if the two sites share the same genealogy. Then if the four possible haplotypes283

are observed in the sample, a recombination event must have occurred between them –284

but not necessarily the other way round. This property can be used to compute a lower285

bound for the number of recombination events in a genome alignment (Hudson and Kaplan,286

1985) or even to estimate the recombination rate (Hey and Wakeley, 1997). We used it to287

compute and place the minimal number of breakpoints in a genome alignment.288

Two polymorphic sites are said incompatible if the four possible haplotypes are present289

in the sample. When a sequence of adjacent polymorphic sites contains no pairwise incom-290

patibility, we speak of a sequence of compatible sites. Note that a sequence of compatible291

sites are in complete linkage disequilibrium. We thus define an MLD block, for Maximal292
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Figure 3: The incompatibility matrix and the chopping algorithm. X and Y-axis are
positions on the genome alignment. Blue dots represent a pair (x,y) of incompatible sites.
The red squares are the true positions of recombination events (MRF breakpoints) and the
black squares are MLD breakpoints inferred by the chopping algorithm.

Linkage Disequilibrium block, as any maximal sequence of compatible sites.293

We now explain how to extend this notion originally designed for haploid genomes (or294

phased diploid genomes) to an unphased diploid genome, that is, a diploid sequence lacking295

the linkage information. For an unphased diploid genome, the two original haplotypes can296

be determined if the diploid genome is homozygous at at least one the two sites:297

• When the genome is homozygous at both loci (A/A-B/B), both haplotypes must be298

A-B.299

• When the genome is homozygous at one locus and heterozygous at the second one300

(A/A-B/b), the haplotypes must be A-B and A-b.301

The four-gamete test can then be extended to a sample of unphased diploid genomes302

by saying that two sites are incompatible in this sample if they are incompatible in the303

subsample of haplotypes that have been inferred thanks to the previous remark. When304

the haplotype is ambiguous, the sites are considered compatible and do not bring more305

information about a recombination event.306
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4.1.2 The chopping algorithm307

We used the four-gamete test to detect incompatibilities in the genome alignment and to308

chop it into MLD blocks (Fig 3). To avoid computing the full matrix of pairwise incompati-309

bilities between all polymorphic sites of the genome, we only compute the incompatibilities310

for sequences of P adjacent polymorphic sites (by default P = 150). Each pair of incom-311

patible sites (i, j) defines an interval that contains at least one MLD breakpoint. To place312

the MLD breakpoint, we seek the shortest interval that is sufficient to explain the incom-313

patibilities.314

Algorithm: We retrieve all intervals and sort them in increasing order of site positions315

along the genome (first by i the first site position and when equal, by j the second site316

position). As we scan two times the list of intervals, the algorithm complexity is linear317

with the number of polymorphic sites:318

1. Discarding and shortening. For this step, we scan the list in reverse order, from319

the last (N) to the first interval. (The algorithm can be done in the forward order,320

the distribution will be slightly different but it will not affect the study.) Each321

interval containing another entire interval is discarded: for two intervals (iN , jN)322

and (iN−1, jN−1), if iN ≤ iN−1 ≤ jN−1 ≤ jN , then (iN , jN) is discarded. When two323

intervals overlap, they are replaced by their intersection (the two original ones are324

discarded): for the two intervals (iN , jN) and (iN−1, jN−1), if iN−1 ≤ iN ≤ jN−1 ≤ jN ,325

both are replaced by a new interval (iN , jN−1), that is then compared to (iN−2, jN−2)...326

2. Positioning. From the final list of disjoint intervals, we place an MLD breakpoint327

at the middle of each interval.328

MLD breakpoints partition the genome alignment into MLD blocks.329

4.2 Length distribution330

The distribution of the length Lc of a typical MLD block does not only depend on the331

distribution of L (MRF block length) but also on the fraction p of recombination events332

that are detected. This fraction increases with the ratio µ/ρ, as illustrated in Figure 4a.333

When many mutations occur in two different MRF blocks (µ � ρ), the probability that334

they occur on incompatible branches of their respective coalescent trees increases and so335
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Figure 4: Detection of recombination events and its impact on MLD block length (Lc)
distribution under a constant population. (a) Fraction of recombination events that are
detected as a function of µ/ρ for different sample sizes (n = 100, dashed lines and n = 10
plain lines) and for phased (purple) or unphased (green) diploid genomes. (b) Distribution
of MLD block lengths for phased (purple) and unphased (green) diploid genomes in a
population of constant size (µ = 10, ρ = 1, n = 10).

does the detection efficiency, up to a point of saturation due to cases when these MRF336

blocks share the same tree topology. The number of sampled individuals also impacts the337

efficiency of detection (Fig 4a): the larger the sample size, the higher the probability to338

observe incompatible mutations. The four-gamete test for unphased diploid genomes has339

obviously less power to detect recombination than for phased genomes (Fig 4a).340

The lower the power to detect recombination, the longer the MLD blocks. In particular,341

phased genomes have smaller MLD blocks than unphased ones (Fig 4b). Furthermore342

increasing the sample size results in more detectable recombination points and thus smaller343

MLD blocks. In Figure 4b, the average block length, in our arbitrary unit for n = 10 phased344

haploid genomes is L̄c = 0.497 (µ = 10, ρ = 1). Considering smaller sample size will result345

in larger MLD blocks (e.g. L̄c = 1.32 for n = 5). This implies that the total number of346

blocks can be limiting for small sample size, and that these long blocks will be harder to347

detect in scaffolds of partial genomes. In (very) large samples, MLD blocks are shorter:348

L̄c = 0.132 for n = 600 (ten times smaller than for n = 5) and L̄c = 0.103 for n = 6, 000.349

On a side note, the theoretical pitfall of having too small “undetectable” blocks can always350
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Figure 5: Distribution of L′c for a population of constant size (white, N = N0 = 1 and
grey, N = κN0=3) and for a declining population (black for τ = 1) with ρ = 1, µ = 10
and n = 10.

be overcome by subsampling.351

Here, we consider the block lengths normalized by the average length L′c = Lc/Lc.352

Similarly to the MRF blocks, the distribution of L′c does not depend on the value of N but353

does depend on the demographic scenario (Fig 5). However, it still depends on our ability354

to detect recombination and so on the ratio µ/ρ and n the number of sampled individuals.355

To compare distributions, it is then important that they have the same ratio µ/ρ and the356

same n.357

Similar to what we have observed for MRF blocks, a declining population exhibits both358

an excess of small blocks (L′c < 0.2) and large blocks (L′c > 5) (Fig 5). The shape of the359

distribution of L′c (Fig 5) differs from the one for L′ (Fig 1c): MLD blocks are longer than360

MRF blocks. Indeed, they contain a variable number of MRF blocks and below a certain361

size, MRF blocks are not detectable as recombination points at the edges of an MRF block362

can be detected only when mutations have occurred inside the block. MLD blocks are363

always longer than MRF blocks.364
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Figure 6: Power to detect population decline. The test based on MRF blocks (f) is pictured
in red, whereas the one based on MLD blocks (fc) is represented in black. We assess the
power of the two tests for κ = 2 (plain line) and κ = 10 (dashed line) with τ ∈ [0.0001, 100].

5 Statistical tests for population decline365

5.1 Test366

To test for population decline, we use the excess of small and large blocks that we observe367

when comparing samples from a declining vs a constant population size. More specifically,368

we compute the fraction of blocks which normalized length is either smaller than 0.2 or369

larger than 5, both in the case of MRF blocks (f = fL′<0.2 + fL′>5) and of MLD blocks370

(fc = fL′
c<0.2 + fL′

c>5) . To set an empirical threshold value under H0, we simulate 10,000371

genomes of 105 MRF blocks under a constant population size for 10 haploid genomes372

and compute both f 5% and f 5%
c as upper limits for one-tailed tests: f 5% = 0.214236373

and f 5%
c = 0.075824. As the threshold is empirical, simulations need to be redone for374

a change in sampled size or in null model. Time needed for simulations depends on the375

algorithm/software used and the specific features of the model.376
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5.2 Power377

To assess the power of this test, we simulated 1,000 replicates under population decline378

(H1 with various τ and κ) and report the fraction of runs where fH1 > f 5% for MRF blocks379

or fH1
c > f 5%

c for MLD blocks. When the power is 1, the decline was significant in all runs.380

When the power is 5%, the decline is not detectable, the test can not differentiate H0 and381

H1.382

Without surprise, results show that the power of the test to detect population decline383

depends on both the decline strength (κ) and the date of decline (τ) (Fig 6). For both384

tests based either on MRF or on MLD blocks, the power outreaches the 5% risk only for385

a range of τ . The type I error of the test is 5% as expected. For both tests, the range386

of detection is wider when the decline is stronger (compare dashed to solid lines in Fig387

6). The surprise is that the test based on MLD blocks (fc) detects more recent declines388

than the test based on MRF blocks (f). Therefore, we recommend using the fc test when389

searching for very recent decline even if MRF blocks are known (which is generally not the390

case).391

6 Application to data: the case of the western lowland392

Gorillas393

6.1 Handling the low quality of real genomes394

Genomic data sets often include sequencing errors and regions that are not genotyped.395

Consequently, the fc test cannot be run as is on these data sets. We present some mod-396

ifications to our test to handle the poor quality of data. We show in this section that397

adjustments can be made to get the information from the L′c distribution.398

Simulations with lower quality399

Difficulties in applying the fc test to real data sets can stem from the low quality of400

DNA sequences. We replicated in the simulated genomes the two main issues, namely401

the interruptions of DNA tracts and the absence of genotyping for some SNPs in some402

individuals.403

DNA tract interruptions truncate MLD blocks and make their detection difficult. The404
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number, size and location of these interruptions will have an effect on the detection of405

MLD blocks and thus will alter the L′c distribution. To handle the effect of interruptions,406

we placed the interruptions at the same positions in our simulated chromosome as in the407

real chromosome.408

As for the partial genotyping issue, we artificially lowered the genotyping quality in the409

simulated chromosomes. We used the empirical distribution of missing individuals (e.g.410

chr1 of Gorilla gorilla, Fig 7) to pick random positions in the simulated chromosome and411

erase the genotypes of some individuals.412
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Figure 7: Distribution of the number of individuals not genotyped per SNP on chromosome
1 of the Gorillas dataset (Prado-Martinez et al., 2013).

Mutation rate and recombination rate413

To cope properly with the issue of genotyping, we simulated chromosomes with the same414

number of mutations and the same MLD length mean as in the studied data set. We use the415

Watterson estimator (Watterson, 1975) for the mutation rate and fixed the recombination416

rate so that simulated and real chromosomes had the same average length of MLD block.417

6.2 Application to Chr1 of Gorilla gorilla gorilla418

We applied this methodology on chromosome 1 of twenty-three unrelated western lowland419

Gorillas (Gorilla gorilla gorilla) from the Great Ape Genome Project (Prado-Martinez420

et al., 2013). The chromosomes have 247,249,719 base pairs. The 23.1% of sites that are421

considered “low coverage”(Prado-Martinez et al., 2013) divide the chromosome alignment422
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into 6,277,293 uninterrupted stretches. The 5,388,083 interruptions due to a single site423

were not considered as interruptions. To speed up simulations, we considered stretches424

longer than 499 sites, as smaller stretches often carry no entire MLD block. We chopped425

chromosome 1 using a window of 150 polymorphic sites, into 7,082 MLD blocks with an426

average length of 307.897 bp.427

Distribution of L′c428

The distribution of L′c for our sample of gorilla sequences has an excess of small and429

long MLD blocks compared to the L′c distribution of a constant population with the same430

characteristics (same number of mutations and same average length of MLD blocks) (Fig431

8). The excess of small blocks is even larger than what we see in simulated declines432

(see above). The truncation of long MLD blocks due to the inclusion of low quality of433

genotyping can potentially inflate this excess.434
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Figure 8: Distribution of L′c for a population of constant size (white, mutation rate=
0.000375 , recombination rate= 0.012 ) and for the chromosome 1 of the gorillas (black)

With the low quality of genotyping and the chosen mutation and recombination rates,435

the threshold value f 5%
c is 0.041627. As we measure f gor

c = 0.0631178 for the gorillas,436
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the test significantly rejects H0. However, it is possible that other designs of similar tests437

(tweaking the lower or upper bounds) may be more relevant to analyze demography from438

low quality chromosome alignments.439

However, and this may be even more important, misspecifications of the model can also440

make the test significant. Among all, we have chosen to explore the impact of recovery441

after the decline and of spatial structure.442

7 Misspecification of H1443

To appreciate how the fc test, that was specifically designed to detect population decline, is444

sensitive to other violations of H0, we explored their sensitivity to a scenario of bottleneck445

(decline followed by recovery) and to a scenario with structure but no demography.446

7.1 Bottleneck447

In the bottleneck scenario, we model a population that experienced a sudden strong decline448

(κ = 10) at time τ = 1 in the past and recovered to its original size after a duration of449

x ∈ [0, 1]. If x = 0, there is no population decline. If x = 1, the population has not450

recovered and the bottleneck scenario is identical to our original H1. When the bottleneck451

lasts long enough (x > 0.02), it is detected by the fc test (Fig 9b). On the contrary, when452

the bottleneck is too short (x < 0.02), the distribution of L′c is similar to the one under H0453

(Fig 9a). This shows that even if the population has recovered, the signal of decline will454

be observable in the excess of short and long MLD blocks.455

7.2 Island-mainland structure456

Structured populations generate signals of population size change, even when the popula-457

tion is stationary (Mazet et al., 2015). For example if the size of the sample is n = 2, for458

any population model with spatial structure, there exists a model without structure but459

specifically designed variations of population size which has the same distributions of coa-460

lescence times (Mazet et al., 2016). We consider here a larger sample size (n = 10, as in the461

other scenarios). We assume that genomes are sampled from an island with population size462

N and the island receives migrants with individual rate m from the mainland, which has463

population size 10N . The shape of the distribution of L′c is impacted by the migration rate464
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(a) Bottleneck
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Figure 9: Distribution of L′c and power of the fc test under two alternative scenarios. (a) In
the bottleneck scenario, the population size is constant equal to N except during the period
[1 − x, 1] (measured in units of N generations backwards from the present) during which
it equals N/10, with x = {0, 0.2, 0.9} (x = 1 corresponds to decline without recovery).
(b) Power of the fc test on the bottleneck population as a function of the duration of
the bottleneck, x ∈ [0, 0.18]. (c) In the island-mainland scenario, the population size is
constant equal to N (island) and receives migrants at individual rate m = {0, 0.1, 1} from
a population of size 10N (mainland). (d) Power of fc test as a function of m, the migration
rate from the mainland to the island.
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and the ratio of population sizes between the island and the mainland (data not shown).465

When the migration rate gets too small (m < 0.001) or too large (m > 10), the distribution466

of L′c is the same as under H0 (Fig 9c). For intermediate values (i.e. 0.001 < m < 10),467

an a excess of short and long blocks will be observed (Fig 9d). However, the shape of the468

distribution of L′c is visually different from the one of a declining population, that is, the469

excess of small blocks is higher than under a declining scenario. For a value of m = 0.1,470

the proportion of blocks between 0 and 0.1 times the mean is significantly higher than the471

proportion of blocks between 0.1 and 0.2 times the mean, which is not observed for the472

distribution of block lengths under decline. This suggests that the distribution could be473

used to differentiate between the effects of demography and structure.474

8 Discussion475

We have explored the impact of demography, more specifically recent population decline,476

on the pattern of recombination in a sample of n genomes, where n� 2. We have shown477

that the distribution of the distances between recombination breakpoints (MRF block478

lengths) is strongly affected by the demography. More specifically, a decline will result in479

an overdispersion of the distribution, that is, a relative excess of short and long blocks.480

As most recombination breakpoints are difficult, and sometimes impossible, to detect in a481

sequence alignment, we have proposed to restrict ourselves to the ones that can be detected482

using the four-gamete test. These detectable breakpoints delineate blocks in full linkage483

disequilibrium that we named MLD blocks.484

Although different from the distribution of MRF blocks, the distribution of MLD block485

lengths is also overdispersed when the population has been declining recently. Using simple486

tests based on an excess of small and long blocks (f and fc), one can detect declines for a487

wide range of different dates and strengths.488

Surprisingly, the fc test based on MLD blocks has more power for very recent declines489

(τ ≈ 0.01) than the f test based on MRF blocks. The past demography of the population490

impacts the distribution of the length L of MRF blocks but also the fraction p of MRF491

breakpoints that also correspond to MLD breakpoints. When recombination occurs at492

distant times when only k � n ancestor lineages are present (i.e. the most ancient times of493

the tree), it rarely produces incompatibilities detectable with the four-gamete test (never494

when k = 2). For a declining population, these ancient lineages have longer branches495
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than the ones of a constant population scenario, so that recombination events occur more496

frequently in these lineages. This results in a smaller p for declining populations and thus497

in more numerous (ancient, small) MRF blocks per MLD block. The relative abundance of498

long recent MLD blocks becomes thus more important in the distribution. This effect fades499

away for distant declines. In summary, the effect of recent declines on the Lc distribution500

is the result of both a change in the L distribution and a change in the fraction p of501

breakpoints detected, which can explain the difference in power between the f and the fc502

tests.503

We also show that using the fc statistic, the decline can still be detected even if the504

population has recently recovered its original size (bottleneck scenario). Finally, we showed505

that local sampling of a small deme with constant size also leads to rejection of H0 for fc506

but that the distribution of block lengths seems distorted in a way that can help distinguish507

the two scenarios. We leave this for future work.508

One interesting advantage of using the f and fc tests are their efficiency in computing509

time, such that they can scale up to a very large sample of long genomes. For example, the510

chopping of the entire human chromosome 1 (1,636,975 SNPs) for a sample of 10 unphased511

genomes takes 16 seconds on a laptop (with an Intel Core i7 processor running macOS High512

Sierra). This very short computing time is an interesting asset of this test compared to513

other methods based on variations (e.g. in SNP density) induced by recombination events514

(Li and Durbin, 2011; Palamara et al., 2012; MacLeod et al., 2013; Harris and Nielsen,515

2013; Browning and Browning, 2015). The main choice that influences the computation516

time of the chopping algorithm is the number of sites considered for the chopping window.517

An increase in the chopping window size will increase the number of sites to test for518

incompatibility.519

In the theoretical assessment of the fc test, we have made the assumption that the520

recombination rate is constant along the genome and that entire genomes are aligned. Let521

us discuss the limits of these assumptions.522

First, the recombination rate is known to vary along the genome, especially in regions523

of high recombination known as recombination hot-spots. It could be possible to integrate524

these variations via the knowledge of the recombination map. Indeed, if the recombination525

rate is twice higher in a given region of the genome, MRF blocks will be twice smaller, so526
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we can correct this distortion by multiplying all MRF block lengths by 2.527

Another issue of the test based on MLD block lengths is the need of whole genome528

data. For normalisation of the MLD block distribution, the average length of a block is529

needed. If the whole distribution of MLD block is not available, it can compromise the530

estimate of the average length, and so can compromise the test based on the normalised531

distribution. The test requires genome data with good SNP quality for all the individuals.532

The fc test is a genome-wide approach that can detect population decline that started533

even very recently, down to orders of τ = 0.01N0, where N0 is the current (effective)534

population size. This corresponds to very recent times, in particular when considering en-535

dangered populations. For example, there are approximately 600 mature mountain Gorilla536

individuals alive (IUCN Red List of 31 July 2018). Assuming that the current effective537

population size is a third of the mature individuals, N0 ≈ 200, the fc test will detect538

decline as recent as 0.01 ∗ 200 = 2 generations ago. Great apes populations (Bonobos,539

Chimpanzees, Orangutans) have been sequenced (Prado-Martinez et al., 2013) and are540

actively re-sequenced (Gordon et al., 2016). The coverage used to sequence the data cur-541

rently available is not high enough to apply our test. To infer MLD blocks, the sequenced542

DNA tracts need to be uninterrupted. Using these whole-genome data in higher quality,543

we will be able to confirm their decline thanks to the fc test.544

Giant pandas have a ‘vulnerable’ conservation status in the Red List. Recently they545

have seen their population increased (around 500 mature individuals, from IUCN website546

2019). Applying the fc test on some genomes of theirs (Zhao et al., 2013) sequenced in547

higher quality, will give some precise information on their demography. As the test is548

influenced by duration and strength of a bottleneck, the strength and the date of the549

increase in the population size impact the result of the test. Applying the fc test to550

mammals with approximately known demography will be interesting to verify the method.551

However, the real asset of this test is its possible application to a much wider range of552

organisms. Whole-genome data start to become more and more common for non-model,553

non-vertebrate organisms like honeybee (Wallberg et al., 2014), as well as organisms with554

no conservation status such as mimicry butterflies (Zhang et al., 2017).555

The chopping algorithm detects incompatibilities among trees along the genome. All556

the sites in a MLD block are compatible with one topology. We developed the algorithm557
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to detect a recent change in population size. However, its use is not limited to population558

demography. Conflicting genealogies are also present in phylogenetic inference (Maddison,559

1997). This algorithm could be used to partition the genome according to compatible trees560

before estimating the trees.561

Recombination and mutation events leave a joint imprint on genomes which depends562

notably on the demography of the population. Their frequency and locations carry infor-563

mation about the past history of this population (decline, bottleneck, structure...). Using564

MLD breakpoints to chop genomes gives insights into this history and may be used to565

gain further information on other aspects impacting the frequency of recombination events566

through time and along the genome (e.g. hitch-hiking due to selection).567
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