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This paper proposes a piecewise autoregression for general integer-valued time series. The conditional mean of the process depends on a parameter which is piecewise constant over time. We derive an inference procedure based on a penalized contrast that is constructed from the Poisson quasi-maximum likelihood of the model. The consistency of the proposed estimator is established. From practical applications, we derive a data-driven procedure based on the slope heuristic to calibrate the penalty term of the contrast; and the implementation is carried out through the dynamic programming algorithm, which leads to a procedure of O(n 2 ) time complexity. Some simulation results are provided, as well as the applications to the US recession data and the number of trades in the stock of Technofirst.

Introduction

We consider a N 0 -valued (N 0 = N ∪ {0}) process Y = {Y t , t ∈ Z} where the conditional mean

λ t = λ t (θ * t ) = E(Y t |F t-1 ) (1.1)
is a function (see below) of the whole information F t-1 up to time t -1 and of an unknown parameter θ * t belongs to a compact subset Θ ⊂ R d (d ∈ N). The inference in the cases where θ * t = θ * is constant or the distribution of Y t |F t-1 is known have been studied by many authors in several directions; see for instance, [START_REF] Fokianos | Poisson autoregression[END_REF], Fokianos andTjøstheim (2011, 2012), [START_REF] Davis | Theory and Inference for a Class of Observation-Driven Models with Application to Time Series of Counts[END_REF], [START_REF] Douc | Asymptotic properties of quasi-maximum likelihood estimators in observation-driven time series models[END_REF] among others, for some recent works. We consider here a more general setting where θ * t is piecewise constant (multiple change-point problem) and that the distribution of Y t |F t-1 is unknown. We refer to [START_REF] Franke | Changepoints in times series of counts[END_REF], [START_REF] Kang | Parameter change test for Poisson autoregressive models[END_REF], [START_REF] Doukhan | Inference and testing for structural change in general poisson autoregressive models[END_REF], [START_REF] Leung | Sequential change-point detection in time series models based on pairwise likelihood[END_REF] and the references therein for some tests for change-point detection in integer-valued time series.

Let (Y 1 , • • • , Y n ) be a trajectory generated as in model (1.1) and assume that the parameter θ * t is piecewise constant. Also, assume that ∃K * ∈ N,

θ * = (θ * 1 , • • • , θ * K * ) ∈ Θ K * and 0 < t * 1 < • • • < t * K * -1
< n such that, {Y t , t * j-1 < t ≤ t * j } is generated from the jth stationary regime ; i.e., it is a trajectory of the process {Y t,j , t ∈ Z} (which are not actually observed for j = 1, • • • , K * , see Section 2 for some details) satisfying:

E(Y t,j |F t-1 ) = f (Y t-1,j , Y t-2,j , • • • ; θ * j ), ∀ t * j-1 < t ≤ t * j (1.2)
where F t = σ(Y s,j , s ≤ t, j = 1, • • • , K * -1) is the σ-field generated by the whole information up to time t and f is a measurable non-negative function assumed to be known up to the parameter θ * t . K * is the number of segments (or regimes) of the model; the jth segment corresponds to {t * j-1 + 1, t * j-1 + 2, • • • , t * j } and depends on the parameter θ * j . t * 1 , • • • , t * K * -1 are the change-point locations; by convention, t * 0 = -∞ and t * K * = ∞. To ensure the identifiability of the change-point locations, it is reasonable to assume that θ * j = θ * j+1 for j = 1, • • • , K * -1. The case K * = 1 corresponds to the model without change. In the sequel, we assume that the random variables Y t , t ∈ Z have the same (up to the parameter θ * t ) distribution P and denote by P (•|F t-1 ) the distribution of Y t |F t-1 . For instance, for an INGARCH(p * , q * ) representation, we have

λ t = α * 0,j + q * i=1 α * i,j Y t-i + p * i=1 β * i,j λ t-i , for all t * j-1 < t ≤ t * j ,
where α * 0,j > 0, α * 1,j , • • • , α * q * ,j , β * 1,j , • • • , β * p * ,j ≥ 0. The parameters vector of the jth regime is θ * j = (α * 0,j , α * 1,j , • • • , α * q * ,j , β * 1,j , • • • , β * p * ,j ). Therefore, Θ is a compact subset of (0, ∞) × [0, ∞) p * +q * such that for all θ = (α 0 , α 1 , • • • , α q * , β 1 , • • • , β p * ) ∈ Θ, q * i=1 α i + p * i=1 β i < 1. For all j = 1, • • • , K * , we assume that θ * j ∈ Θ; hence, there exists a sequence of non-negative real numbers (ψ k (θ * j )) k≥0 such that λ t = ψ 0 (θ * j ) + k≥1 ψ k (θ * j )Y t-k . Then, f (y 1 , y 2 , • • • ; θ * j ) = ψ 0 (θ * j ) + k≥1 ψ k (θ * j )y k for any (y 1 , y 2 , • • • ) ∈ N ∞ 0 . For instance, if the distribution P is Poisson, negative binomial or binary, then we get respectively a Poisson, negative binomial, binary INGARCH process; see some examples in Section 4.

Our main focus of interest is the estimation of the unknown parameters K * , (t * j ) 1≤j≤K * -1 , (θ * j ) 1≤j≤K * in the model (1.2). This can be viewed as a classical model selection problem. Assume that the observations (1.2). Let K max be the upper bound of the number of segments (note that For any ϑ ∈ S, set

Y 1 , • • • , Y n are generated from
K max < n). Denote by M n the set of partitions of 1, n into at most K max contiguous segments. Set m = {T 1 , • • • , T K } a generic element of K segments in M n . Consider the collection {S m , m ∈ M n }
λ ϑ t = K k=1 λ t (θ k )1 t∈T k and denote by P (•|F t-1 , ϑ) the distribution of Y t |F t-1 , ϑ; let p(•|F t-1 , ϑ) = p(•; λ ϑ t )
be the probability density function of this distribution. For ϑ ∈ S, let P n,ϑ be the conditional distribution of (Y

1 , • • • , Y n )|F n-1 , ϑ. We consider the log-likelihood contrast conditioned to Y 0 , Y -1 , • • • : ∀ϑ ∈ S, γ n (ϑ) := γ n (P n,ϑ ) = -log P n,ϑ (Y 1 , • • • , Y n ) = - n t=1 log p(Y t |F t-1 , ϑ) = - n t=1 log p(Y t ; λ ϑ t ).
Thus, the minimal contrast estimator ϑ m of ϑ * on the collection S m is obtained by minimizing the contrast

γ n (ϑ) over ϑ ∈ S m ; that is, ϑ m = argmin ϑ∈Sm γ n (ϑ).
The main approaches of the model selection procedures take into account the model complexity and select the estimator ϑ mn such that, m n minimizes the penalized

criterion crit n (m) = γ n ( ϑ m ) + pen n (m), for all m ∈ M n (1.3)
where pen n : M n → R + is a penalty function, possibly data-dependent. We now address the following issues.

(i) Semi-parametric setting. 

KL(ϑ * , ϑ) := KL(P n,ϑ * , P n,ϑ ) = E log P n,ϑ * (Y 1 , • • • , Y n ) P n,ϑ (Y 1 , • • • , Y n ) = n t=1 E log p(Y t |F t-1 , ϑ * ) p(Y t |F t-1 , ϑ) = n t=1 E log p(Y t ; λ ϑ * t ) - n t=1 E log p(Y t ; λ ϑ t ) ,
where E denotes the expectation with respect to the true distribution of the observations. In the case where

γ n is the likelihood contrast, we get KL(ϑ * , ϑ) = E[γ n (ϑ) -γ n (ϑ * )].
The "ideal" partition m(ϑ * ) (the one whose estimator is closest to ϑ * according to the Kullback-Leibler risk) satisfying:

m(ϑ * ) = argmin m∈Mn E[KL(ϑ * , ϑ m )].
The corresponding estimator ϑ m(ϑ * ) , called the oracle, depends on the true sample distribution, and cannot be computed in practice. The goal is to calibrate the penalty term, such that the segmentation m provides an estimator ϑ m where the risk of ϑ m is close as possible to the risk of the oracle, namely such that

E[KL(ϑ * , ϑ m )] ≤ C E[KL(ϑ * , ϑ m(ϑ * ) )] (1.4)
for a non-negative constant C, expected close to 1. This issue is addressed in the above mentioned papers, and the results obtained are heavily relied on the independence of the observations. In our setting here, it seems to be a more difficult task. But, we believe that the coupling method can be used as in [START_REF] Lerasle | Optimal model selection for density estimation of stationary data under various mixing conditions[END_REF] to overcome this difficulty. We leave this question as the topic of a different research project. We consider (1.2) and derive a penalized contrast of type (1.3). We assume that there exists a partition

τ * of [0, 1] such that [τ * n] = m *
, where [τ * n] is the corresponding partition of 1, n obtained from τ * . We provide sufficient conditions on the penalty pen n , for which the estimators m and ϑ m are consistent; that is:

| m|, m n , ϑ m P -→ n→∞ K * , τ * , ϑ *
where m n is the corresponding partition of [0, 1] obtained from m.

The paper is organized as follows. In Section 2, we set some notations, assumptions and define the Poisson QMLE. In Section 3, we derive the estimation procedure and provide the main results. Some simulations results are displayed in Section 4 whereas Section 5 focus on applications on the US recession data and the daily number of trades in the stock of Technofirst. Section 6 is devoted to a summary and conclusion. The Supporting Information provides the proofs of the main results.

Notations and Poisson QMLE

We set the following classical Lipschitz-type condition on the function f . Assumption A i (Θ) (i = 0, 1, 2): For any y ∈ N N 0 , the function θ → f (y; θ) is i times continuously differentiable on Θ and there exists a sequence of non-negative real numbers (α

(i) k ) k≥1 satisfying ∞ k=1 α (0) k < 1 (or ∞ k=1 α (i) k < ∞ for i = 1, 2); such that for any y, y ∈ N N 0 , sup θ∈Θ ∂ i f (y; θ) ∂θ i - ∂ i f (y ; θ) ∂θ i ≤ ∞ k=1 α (i) k |y k -y k |;
where • denotes any vector, matrix norm.

In the whole paper, it is assumed that for j = 1, • • • , K * , there exists a stationary and ergodic process

{Y t,j , t ∈ Z} satisfying E(Y t,j |F t-1,j ) = f (Y t-1,j , Y t-2,j , • • • ; θ * j ), ∀ t ∈ Z (2.1)
where F t,j = σ(Y s,j , s ≤ t) is the σ-field generated by {Y s,j , s ≤ t}; and

∃C > 0, > 1, such that ∀t ∈ Z, EY 1+ t,j < C. (2.2)
{Y t,j , t ∈ Z} is a stationary solution of the jth regime. The focus process Y = {Y t , t ∈ Z} is modelled by these stationary regimes; that is, for any

j = 1, • • • , K * , {Y t , t * j-1 < t ≤ t * j
} is a trajectory of the process {Y t,j , t ∈ Z}. Note that, the main assumption here is that, the observations on each segment j are stationary and depend on θ * j . Therefore, the process Y is then constructed such that for any

j = 1, • • • , K * , Y t = Y t,j
for t * j-1 < t ≤ t * j . This stationary assumption on each segment has been discussed in the literature. In the classical autoregressive models (including ARMA and GARCH process), Bardet et 

Notations

Assume that a trajectory (Y 1 , • • • , Y n ) of Y is observed; with 0 < t * 1 < • • • < t * K * -1 < n. By convention t * 0 = -∞ and t * K * = ∞.
We will use the following notations.

• For any finite set A, |A| denotes the cardinality of A.

• For a, b ∈ R (with a ≤ b), a, b = N ∩ [a, b]
is the set of integers between a and b.

• For any (p, q) ∈ N 2 , M p,q (R) denotes the set of matrices of dimension p × q with coefficients in R.

• For K ∈ N, M n (K) = t = (t 1 , . . . , t K-1 ) ; 0 < t 1 < . . . < t K-1 < n, t j+1 -t j > u n for j = 1, • • • , K -1 and n -t K-1 > u n for some sequence (u n ) with values in N (see Subsection 3.1); in particular, t * = t * 1 , . . . , t * K * -1 ∈ M n (K * )
is the true vector of the locations of breaks. When K = 1, M n (1) corresponds to the model with no break.

In the sequel, any configuration t Throughout the sequel, the following norms will be used:

= (t 1 , . . . , t K-1 ) ∈ M n (K) is also used as a partition {T 1 , T 2 , • • • , T K } of 1, n into K contiguous segments, where T 1 = {1, • • • , t 1 }, T j = {t j-1 +1, • • • , t j } for j = 2, • • • , K -1, T K = {t K-1 + 1, • • • , n}. In particular, T * 1 = {1, • • • , t * 1 }, T * j = {t * j-1 + 1, • • • , t * j } for j = 2, • • • , K * -1 and T K * = {t K * -1 + 1, • • • , n}. M n (K) corresponds to the set of partitions of 1, n into K contiguous segments. • For K ∈ N * and t ∈ M n (K) fixed, we set n k = |T k | for 1 ≤ k ≤ K. In particular, n * j = |T * j | for 1 ≤ j ≤ K * . For 1 ≤ k ≤ K and 1 ≤ j ≤ K * , let n k,j = |T * j ∩ T k |. • Let θ * = (θ * 1 , • • • , θ * K * ) ∈ Θ K * be
• f Θ := sup θ∈Θ ( f (θ) ) for any function f : Θ -→ M p,q (R); • x m = max 1≤i≤K |x i | for x = (x 1 , • • • , x K ) ∈ R K ;
• if Y is a random vector with finite r-order moments, we set

Y t r = E ( Y r ) 1/r .

Poisson QMLE

Let (Y 1 , . . . , Y n ) be a trajectory generated from the model (1.2). Since the conditional distribution is assumed to be unknown, the likelihood of the model is unknown. The estimation procedure of the parameters θ * j is based on the Poisson quasi-maximum likelihood introduced by Ahmad and Francq (2016). The conditional Poisson (quasi)log-likelihood of the model (1.2) computed on a segment T ⊂ {1, . . . , n} is given (up to a constant) by

L n (T, θ) := t∈T (Y t log λ t (θ) -λ t (θ)) = t∈T t (θ) with t (θ) = Y t log λ t (θ) -λ t (θ) (2.3) where λ t (θ) = f θ t = f (Y t-1 , • • • Y 1 , 0, • • • , 0; θ). According to (2.
3), the Poisson quasi-likelihood estimator (PQMLE) of θ * j computed on T is defined by

θ n (T ) := argmax θ∈Θ ( L n (T, θ)). (2.4) Now, for j = 1, • • • , K * , define the Poisson (quasi)log-likelihood of the jth regime by L n,j (T * j , θ) := t∈T * j (Y t,j log λ t,j (θ) -λ t,j (θ)) = t∈T * j t,j (θ) with t,j (θ) = Y t,j log λ t,j (θ) -λ t,j (θ) 
where

λ t,j (θ) = f θ t,j = f (Y t-1,j , Y t-2,j , • • • ; θ). It can be approximated by L n,j (T * j , θ) := t∈T * j (Y t,j log λ t,j (θ) -λ t,j (θ)) = t∈T * j t,j (θ) with t,j (θ) = Y t,j log λ t,j (θ) -λ t,j (θ) (2.5) where λ t,j (θ) = f θ t,j = f (Y t-1,j , • • • , Y t * j-1 +1,j , 0 • • • 0; θ). According to (2.5), the PQMLE of θ * j computed on T * j is defined by θ n (T * j ) := argmax θ∈Θ ( L n,j (T * j , θ)). (2.6) 
Let us stress that θ n (T ) is the PQMLE of the parameter computed on the segment T from the model with multiple change-point ; i.e., λ t (θ) (used in L n (T, θ)) depends on the observations of all the previous regimes; whereas θ n (T * j ) represents the PQMLE of the parameter computed from the jth stationary regime ; i.e., λ t,j (θ) (used in L n,j (T * j , θ) ) depends on only the observations of the jth stationary regime.

To avoid the problems of parameter identifiability and to study the asymptotic normality of the PQMLE, we shall assume:

(A0): for all (θ, θ ) ∈ Θ 2 , f (Y t-1 , Y t-2 , • • • ; θ) = f (Y t-1 , Y t-2 , • • • ; θ ) a.s. for some t ∈ N ⇒ θ = θ ; moreover, ∃c > 0 such that inf θ∈Θ f (y 1 , y 2 , • • • ; θ) ≥ c, for all y ∈ N N 0 .
In order to ensure the consistency and the asymptotic normality of the PQMLE, we set the following assumptions for each segment j = 1, • • • , K * (see also [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF]):

(A1): θ * j is an interior point of Θ ⊂ R d ; (A2): a t,j a.s
-→ 0 and Y t,j a t,j a.s -→ 0 as t → ∞, where a t,j = sup θ∈Θ λ t,j (θ)λ t,j (θ) ;

(A3): 

J j = E 1 λt,j (θ * j ) ∂λt,j (θ * j ) ∂θ ∂λt,j (θ * j ) ∂θ < ∞ and I j = E Var(Yt,j |Ft-1) λ 2 t,j (θ * j ) ∂λt,j (θ * j ) ∂θ ∂λt,j (θ * j ) ∂θ < ∞; (A4): for all c ∈ R, c ∂λt,j (θ * j ) ∂θ = 0 a.s ⇒ c = 0; (A5): there exists a neighborhood V (θ * j ) of θ * j such that: for all i, k ∈ {1, • • • , d}, E sup θ∈V (θ * j ) ∂ 2 ∂θ i ∂θ k t,j (θ) < ∞; (A6): b t,j , b t,j Y t,
∂ λ t,j (θ) ∂θ , E ï 1 λ t,j (θ) ∂λ t,j (θ) ∂θ ò .
These aforementioned assumptions hold for many classical models, see [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF]. These authors have established that the estimator θ n (T * j ) is strongly consistent, for each regime

j ∈ {1, • • • , K * }; that is, θ n (T * j ) a.s. -→ n→∞ θ * j .
They have also proved the asymptotic normality of θ n (T * j ); that is,

» n * j ( θ n (T * j ) -θ * j ) D -→ n→∞ N (0, Σ j ), ∀j = 1, • • • , K * ,
where Σ j := J -1 j I j J -1 j . Under the above assumptions, for any j = 1, • • • , K * , the matrix Σ j can be consistently estimated by Σ j = J -1 j I j J -1 j , where (2.7)

J j = 1 n n t=1 1 λ t,j ( θ n (T * j )) ∂ λ t,j ( θ n (T * j )) ∂θ ∂ λ t,j ( θ n (T * j )) ∂θ , I j = 1 n n t=1 Y t λ t,j ( θ n (T * j )) -1 2 ∂ λ t,j ( θ n (T * j )) ∂θ ∂ λ t,j ( θ n (T * j )) ∂θ .
If we consider the process {Y t , t ∈ Z}, these properties are also verified on the segment

T * 1 since it is easy to see that {(Y t , λ t ), t ∈ T * 1 } is a stationary process while {(Y t , λ t ), t > t * 1 } is not.
The following proposition establishes the consistency of the estimator θ n (T * j ), for any j ∈ {1, • • • K * }.

Proposition 2.1 Assume that (A0)-(A2) and (A 0 (Θ)) hold. Then

θ n (T * j ) a.s. -→ n→∞ θ * j , ∀j = 1, • • • , K * .
The results of this proposition have been obtained by [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF] when (Y t , λ t ) is strictly stationary.

Estimation procedure and main results

In this section, we carry out the estimation of the number of breaks K * -1 and the instants of breaks t * by using a penalized contrast. Some asymptotic studies are also reported.

Penalized Poisson quasi-likelihood estimator

For any configuration of regimes

K ≥ 1, t ∈ M n (K) and θ = (θ 1 , • • • , θ K ) ∈ Θ K , we define the contrast (QLIK) J n (K, t, θ) := -2 K k=1 L n (T k , θ k ). (3.1)
According to the proprieties of the PQMLE, when K * is known, a natural estimator of (t * , θ * ) = ((t * j ) 1≤j≤K * -1 , (θ * j ) 1≤j≤K * ) for the model (1.2) is therefore the PQMLE on every interval [t j + 1, • • • , t j+1 ] and every parameter θ j , for 1 ≤ j ≤ K * . But, since K * is assumed to be unknown, we cannot directly use such method. To take into account the estimation of K * , the most classical solution is to penalize the contrast by an additional term κ n K, where κ n represents a regularization parameter. Now, define the penalized contrast QLIK, called penQLIK, by (penQLIK)

J n (K, t, θ) := J n (K, t, θ) + κ n K, (3.2) 
with κ n ≤ n and

κ n -→ n→∞ + ∞.
The estimator of (K * , t * , θ * ) is defined as one of the minimizers of the penalized contrast:

Ä K n , t n , θ n ä ∈ argmin 1≤K≤Kmax argmin (t,θ)∈Mn(K)×Θ K Ä J n (K, t, θ) ä and τ n = t n n . (3.3) 
We will also carry out a data-driven method, based on the slope heuristic procedure (see [START_REF] Baudry | Slope Heuristics: overview and implementation[END_REF])

to calibrate the penalty term. In this procedure, it is expected that the criteria QLIK is a linear transformation of the penalty (here the number of regimes K) for the most complex models (with K close to K max ). Two times the slope of the linear part of -QLIK(K) with K ≤ K max should be close to the "optimal" penalty term (which the corresponding estimator fulfills an oracle inequality as (1.4)). Note that, in practice, a numerical algorithm can be used to compute the estimator on each segment; therefore, a minimum size is needed for the numerical computation of the criteria. Thus, we consider only the segments of length larger than some u n and we can a priori fix K max smaller than [n/u n ], where (u n ) is a sequence with values in N, satisfying

u n -→ n→∞ ∞.
The complete procedure can be summarized as follows:

1. For each 1 ≤ K ≤ K max , draw K,min t,θ QLIK(K) . Then compute the slope of the linear part: this slope is κ n /2.

2. Using κ n = κ n , draw K,min t,θ penQLIK(K) 1≤K≤Kmax . This curve has a global minimum at K n .

Let us point out that the theoretical validity of this slope heuristic procedure has been established in some 

Asymptotic behavior

Under some assumptions, we will establish the asymptotic behavior of the estimator ( K n , t n , θ n ). Throughout this article, we set the following classical assumption in the problem of break detection:

Assumption B. min 1≤j≤K * -1 θ * j+1 -θ * j > 0. Also, there exists a vector τ * = (τ * 1 , • • • , τ * K-1 ) with 0 < τ * 1 < • • • < τ * K-1 < 1, called the vector of breaks such that t * j = nτ * j , for j = 1, • • • , K (where [•] is the integer part).
The following theorem gives the consistency of ( K n , t n , θ n ).

Theorem 3.1 Assume that K max > K * and (A0)-(A2), B. If A i (Θ) (i = 0, 1, 2), (2.2) (with > 1) hold and (κ ) satisfies ≥1 1 κ k≥ α (0) k < ∞, (3.4 
)

then Ä K n , τ n , θ n ä P -→ n→∞ (K * , τ * , θ * ) .
By convention, throughout the sequel, if the vectors t n and t * do not have the same length, complete the shorter of the two vectors with 0 before computing the norm t nt * m . The following theorem establishes the rates of convergence of the estimator τ n . 

Theorem 3.2 Assume that K max > K * and (A0)-(A2), B. If A i (Θ) (i = 0, 1, 2), (2.2) (with > 1), (3.4) hold and ≥1 1 √ k≥ α (i) k < ∞, f or i = 1, 2, (3.5 
K n < K * , set T j = T Kn , for j ∈ ¶ K n , • • • , K * © .
The following theorem establishes the asymptotic normality of θ n ( T j ).

Theorem 3.3 Assume that K max > K * and (A0)-(A6) and B. If A i (Θ) (i = 0, 1, 2), (2.2) (with > 2), (3.4 
) and (3.5) hold, then

» n * j Ä θ n ( T j ) -θ * j ä D -→ n→∞ N d (0, Σ j ) , ∀ j = 1, • • • , K * ,
where

Σ j := J -1 j (θ * j )I j (θ * j )J -1 j (θ * j ) with J j (θ * j ) = E 1 λ t,j (θ * j ) ∂λ t,j (θ * j ) ∂θ ∂λ t,j (θ * j ) ∂θ and I j (θ * j ) = E Var(Y t,j |F t-1 ) λ 2 t,j (θ * j )
∂λ t,j (θ * j ) ∂θ ∂λ t,j (θ * j ) ∂θ .

Remark 3.4

The conditions on the regularization parameter (κ n ) n∈N can be obtained if the Lipschitzian coefficients of f (• ; θ) and its derivatives are bounded by a geometric or Riemanian sequence:

1. the geometric case: if α

(i) k = O(a k ) (i = 0, 1, 2)
with 0 ≤ a < 1, then any choice of (κ n ) n∈N such that κ n ≤ n and κ n → ∞ satisfies (3.4) (for instance, κ n of order log n as in the BIC approach). Also, (3.5) holds.

the Riemanian case: if

α (i) k = O(k -γ ) (i = 0, 1, 2) with γ > 3/2, then, (3.5) holds. Moreover,
• if γ > 2, then the conditions (3.4) holds for any choice of (κ n ) n∈N such that κ n ≤ n and κ n → ∞.

• if 3/2 < γ ≤ 2, then any choice such that κ n = O(n δ ) with δ > 2 -γ or κ n = O(n 2-γ (log n) δ ) with δ > 1 satisfies (3.4).

Some simulations results

In this section, we implement the procedure on the R software (developed by the CRAN project). We will restrict our attention to the estimation of the vector (K * , t * ); i.e, the number of segments K * and the instants of breaks t * . For the performances of the estimator of the parameter θ * , we refer to the works of [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF]. For each process, we generate 100 replications following the scenarios considered. The estimated number of segments is computed by using the QLIK criteria penalized with κ n = κ n , κ n = log n and κ n = n 1/3 . The value of the estimator κ n is calibrated by applying the slope estimation procedure (see Baudry et al. (2010)) as described above. Once the regularization parameter κ n is obtained, the dynamic programming algorithm is used to minimize the criteria. With this algorithm, the complexity of the procedure declines from O(n Kmax ) to O(n 2 ).

Implementation procedure

We give the steps of the dynamic programming algorithm for computing the number of segments K n and the optimal configuration of the break-points vector t. This algorithm is such that if

(t 1 , • • • , t K-1 , t) represents the optimal configuration of Y 1 , • • • , Y t into K segments, then (t 1 , • • • , t K-1 ) is the optimal configuration of Y 1 , • • • , Y t K-1 into K -1 segments.
Assume that the regularization parameter κ n is known and let M L be the upper triangular matrix of dimension n × n with M L i,l = L(T i,l , θ n (T i,l )), where

T i,l = {i, i + 1, • • • , l}, for 1 ≤ i ≤ l ≤ n.
We summarize the implementation of the procedure as follows:

• The number of segments K n : Let C be an upper triangular matrix of dimension K max × n. For 1 ≤ K ≤ K max and K ≤ t ≤ n, C K,t will be the minimum penalized criteria of

Y 1 , • • • , Y t into K segments. For t = 1, • • • , n, C 1,t = -2M L 1,t + κ n and the relation C K+1,t = min K≤l≤t-1 (C K,l -2M L l+1,t + κ n ) is satisfied. Hence, K n = argmin 1≤K≤Kmax (C K,n ).
• The change-point locations t n : Let Z be an upper triangular matrix of dimension (K max -1) × n. For

1 ≤ K ≤ (K max -1) and K + 1 ≤ t ≤ n, Z K,t will be the Kth potential break-point of Y 1 , • • • , Y t . Therefore, the relation Z K,t = min K≤l≤t-1 (C K,l -2M L l+1,t + κ n ) is satisfied for K = 1, • • • , (K max -1).
The break-points are obtained as follows: set t Kn = n and for 

K = K n -1, • • • , 1, t K = Z K, t K+1 .
Y t |F t-1 ∼ P(λ t ) ; λ t = f (Y t-1 , Y t-2 , • • • ; θ * j ) = α (j) 0 + α (j) Y t-1 , ∀ t ∈ T * j , ∀ j ∈ {1, • • • , K * } . (4.1)
The parameters vector is θ * j = (α

(j) 0 , α (j) ), for all j ∈ {1, • • • , K * }.
For n = 500 and n = 1000, we generate a sample (Y 1 , • • • , Y n ) in the following situations:

• scenario IA 0 : θ * 1 = (0.5, 0.6) is constant (K * = 1) ; • scenario IA 1 : θ * 1 = (0.5, 0.6) changes to θ * 2 = (1.0, 0.6) at t * = 0.5n (K * = 2) ; • scenario IA 2 : θ * 1 = (0.5, 0.6) changes to θ * 2 = (1.0, 0.6) at t * 1 = 0.3n which changes to θ * 3 = (1.0, 0.25) at t * 2 = 0.7n (K * = 3).
For the scenario IA 2 , we generate a series with n = 1000. Figure 1 shows the slope of the linear part of the -QLIK criteria minimized in (t, θ). We obtain κ n ≈ 5.9; this value of κ n is data-dependent ; i.e., it is the value that has been used for this particular realization. By using this above value for κ n , we minimize the penQLIK in (K, t, θ), with 1 ≤ K ≤ K max . Figure 1 also displays the points (K, min t,θ penQLIK(K)) for 1 ≤ K ≤ K max = 15. One can see that the estimated number of segments is K n = 3. Also, the estimated instants of breaks vector is t n = (291, 702) (t * = (300, 700)) (see Figure 2). Now, we are going to generate 100 replications of a Poisson-INGARCH(1,1) process following the scenarios 1 indicates the frequencies of the number of replications where K n = K * , K n < K * and K n > K * , for the regularization parameter κ n = κ n , log n, n 1/3 . For the scenarios IA 1 and IA 2 , we also consider the replications where the true number of breaks is achieved (i.e., K n = K * ) and we present some elementary statistics of the estimated instants of breaks (see Table 1).

IA 0 -IA 2 . Table
The results in Table 1 show that for the penalties considered, the performances increase with n in all scenarios.

In accordance with Theorem 3.1, the consistency of the penalties log n and n 1/3 is numerically convincing.

Moreover, the n 1/3 -penalty outperforms the other procedures when n = 1000.

Poisson-INGARCH models

We consider the problem (1.2) for a Poisson-INGARCH(1,1); i.e., (

Y 1 , • • • , Y n ) is a trajectory of the process Y = {Y t , t ∈ Z} satisfying: Y t |F t-1 ∼ P(λ t ) ; λ t = α (j) 0 + α (j) Y t-1 + β (j) λ t-1 , ∀ t ∈ T * j , ∀ j ∈ {1, • • • , K * } . (4.2) 
The parameters vector is θ * j = (α

(j) 0 , α (j) , β (j) ), for all j ∈ {1, • • • , K * }.
For n = 500 and n = 1000, we generate 100 replications of the model (4.2) in the following situations:

• • • • • • • • • • • • • • • 2 4 6 8 10 12 14 
-520 -510 -500 -490 -480 -470 -460 -450 (b) Slope estimation for n=1000 K -QLIK criteria • scenario IG 0 : θ * 1 = (1.0, 0.2, 0.15) is constant (K * = 1) ;

• scenario IG 1 : θ * 1 = (1.0, 0.2, 0.15) changes to θ * 2 = (1.0, 0.45, 0.15) at t * = 0.5n (K * = 2) ;

• scenario IG 2 : θ * 1 = (0.1, 0.3, 0.6) changes to θ * 2 = (0.5, 0.3, 0.6) at t * 1 = 0.3n which changes to θ * 3 = (0.5, 0.3, 0.2) at t * 2 = 0.7n (K * = 3). Table 2 indicates the frequencies of the true number of breaks estimated and some elementary statistics of the estimators of the change-point locations. It appears that the results of the n 1/3 -penalty and the slope procedure are quite satisfactory except for the case of two breaks. In this later case, the n 1/3 -penalty and the slope procedure over-penalize the number of breaks, while the log n-penalty under-penalizes. But, overall, the performances of the proposed procedures increase with n and the estimation of the break-points locations is well achieved.

The US recession data

Firstly, we consider the series of the quarterly recession data from the USA for the period 1855-2013 (see Figure 4). This series (Y t ) represents a binary variable that is equal to 1 if there is a recession in at least proposed by [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF], applied a posteriori (after change-point detection) also confirms these results. As noted in the implementation of the dynamic programming algorithm, we begin by the calibration of the regularization parameter κ n . The slope estimation procedure applied with u n = (log n) 2 returns the value κ n ≈ 3.21 and the estimation of the number of segments is K n = 2; i.e., one break is detected (see Figure 3). The location of the break-point estimated is t = 313. The change detected at t = 313 corresponds to the first quarter of 1933 (see Figure 4). These results are in concordance with those obtained by Diop and Kengne (2017) and [START_REF] Hudecová | Structural changes in autoregressive models for binary time series[END_REF]. The estimated model with one break-point is where in parentheses are the standard errors of the estimators obtained from the robust sandwich matrix

E(Y t |F t-1 ) = λ t =            0.120 + 0.749Y t-
H -1 j Σ -1 j H -1 j
computed on each regime j, with Σ j is given by (2.7) and

H j = 1 n n t=1 ∂ 2 t,j ( θn( Tj )) ∂θ∂θ
. The estimation of the parameters displays a distortion in term of standard errors; it can be explained by the fact that the true distribution of the observations (which is binary), is quite different from the Poisson quasilikelihood used.

Number of trades in the stock of Technofirst

Secondly, we apply our change-point detection procedure to a financial time series data. We consider the daily number of trades in the stock of Technofirst listed in the NYSE Euronext group. It is a series of 1000 observations from 04 January 2010 to 20 April 2016 (see Figure 6). The data are available online at the website "https://www.euronext.com/en/products/equities/FR0011651819-ALXP". These data have been analyzed by [START_REF] Ahmad | Poisson QMLE of count time series models[END_REF] with the PQMLE, and have concluded that the INGARCH(1,3) is more appropriate.

We carry out an INGARCH(1,1) representation with the possibility of change in the observations.

The slope estimation procedure obtained with u n = (log(n)) 2 returns κ n ≈ 23.04 and the estimation of the number of segments is K n = 3; i.e., two changes are detected (see Figure 5). The locations of the break-points estimated are t 1 = 230 (06 April 2011) and t 2 = 311 (06 September 2011), see also Figure 6.

q q q q q q q q q q q q q q q 2 4 6 The estimated model with the change-points is 

E(Y t |F t-1 ) = λ t =                     

Summary and conclusion

This paper focuses on the multiple change-point problem in a general class of integer-valued time series. A penalized contrast estimator based on the Poisson quasi-maximum likelihood of the model is proposed. The q q q q q q q q q q q q q q q 2 4 6 

  where, for a given m ∈ M n , S m is the families of sequence (θ t ) which are piecewise constant on the partition m. Any ϑ = (θ t ) ∈ S m depends on the parameter θ = (θ 1 , • • • , θ K ) which is the piecewise values of θ t on each segment. Set S = ∪ m∈Mn S m . Denote by ϑ a generic element of S, with partition m and parameter θ. |θ| = K denotes the number of the piecewise segments, also called the dimension of ϑ. The true model ϑ * with dimension K * , depends on a partition m * and the parameter θ * .

(

  iii) Multiple change-point problem from an asymptotic point of view. The aim here is to consistently estimate the parameters of the change-point model. This issue has been addressed by several authors using the classical contrast/criteria optimization or binary/sequential segmentation/estimation; see for instance, Bai and Perron (1998), Davis et al. (2008), Harchaoui and Lévy-Leduc (2010), Bardet et al. (2012), Davis and Yau (2013), Davis et al. (2016), Ma and Yau (2016), Yau and Zhao (2016), Inclan and Tiao (1994), Bai (1997), Fryzlewicz and Subba Rao (2014), Fryzlewicz (2014), among others, for some advanced towards this issue. These works and many other papers in the literature on the asymptotic study of multiple change-point problem are often focused on continuous valued time series; moreover, the case of a large class of semi-parametric model for discrete-valued time series (such as those discussed earlier) have not yet addressed.

  al. (2012) have avoided this assumption by an approximation study between the stationary and the nonstationary regime. As pointed out by Doukhan and Kengne (2015) (see Remark 4.1), such study can be carried out in the Poisson autoregressive model. But, it seems to be not easy (or not possible) in the general class of model considered here, since the conditional distribution is assumed to be unknown. Ahmad and Francq (2016) (Section 3) have discussed about the stationarity and the ergodicity issues. In many classical integer-valued time series, the assumption A 0 (Θ) allows the existence of a stationary and ergodic process satisfying (2.1) (see for instance, Doukhan et al. (2012, 2013), Davis and Liu (2016)).

  the vector of the true parameters of the model (1.2).

  model selection problem; see for instance, Arlot and Massart (2009), Lerasle (2011). The theoretical validity in a large class of semi-parametric model for integer-valued time series considered here has not yet been established. But this heuristic has been successfully applied for change-point detection in some settings (see for example, Baudry et al. (2010), Bardet et al. (2012)).

4. 2

 2 Results of simulations 4.2.1 Poisson-INARCH models We consider the problem (1.2) for a Poisson-INARCH(1); i.e., (Y 1 , • • • , Y n ) is a trajectory of the process Y = {Y t , t ∈ Z} satisfying:

Figure 1 :Figure 2 :IA 2

 122 Figure 1: A typical example for a Poisson-INARCH(1) process in the scenario IA 2 with n = 1000. The left-hand graph is the curve ofmin t,θ QLIK(K), for 1 ≤ K ≤ K max ; the solid line represents the linear part of this curve with the slope κ n /2 = 2.928. This value of κ n depends on this particular realization. The right-hand side is the graph (K, min t,θ penQLIK(K)), for 1 ≤ K ≤ K max .

Figure 3 :Figure 4 :

 34 Figure 3: The curve ofmin t,θ QLIK(K) and the graph (K, min t,θ penQLIK(K)) for the US recession data with an INARCH(1) representation. The solid line represents the linear part of this curve with slope κ n /2 = 1.605.

Figure 5 :Figure 6 :

 56 Figure 5: The curve ofmin t,θ QLIK(K) and the graph (K, min t,θ penQLIK(K)) for the daily number of trades in the stock of Technofirst. The solid line represents the linear part of this curve with slope κ n /2 = 11.52.

  j and a t,j d t,j Y t,j are of order O(t -h ) for some h > 1/2, where

	b t,j = sup θ∈Θ	E	∂ λ t,j (θ) ∂θ	-	∂λ t,j (θ) ∂θ	and d t,j = sup

θ∈Θ max E 1 λ t,j

(θ)

  )

	then the sequence	Ä	t n -t *	m	ä n>1	is uniformly tight in probability; that is,
					lim δ→∞	lim n→∞ P	Ä	t n -t *	m > δ	ä	= 0.

This result implies that for any sequence of non-negative real numbers (w n ) n such that w n → ∞, t nt * m = o P (w n ); that is, a convergence rate close to O P (1). As pointed out by

[START_REF] Bardet | Multiple breaks detection in general causal time series using penalized quasi-likelihood[END_REF]

, this is the rate obtained when (Y t ) t is a sequence of independent random variables. Now, we give the convergence in distribution of the estimator θ n . By convention, if

Table 1 :

 1 Breaks estimated after 100 replications for a Poisson-INARCH(1) process following the scenarios IA 0 -IA 2 . The first three columns show the frequencies of the estimation of the true, low and high number of breaks. The last three columns give some elementary statistics of the change-point locations when the true number of breaks is achieved.

	Scenarios IA0 (K * = 1)	n = 500	κn κn κn = log n	Kn = K * 0.72 0.76	Frequencies Kn < K * 0.00 0.00	Kn > K * 0.28 0.24	τ1	Mean ± s.d.	τ2	Mean τ n -τ *
			κn = n 1/3	0.94	0.00	0.06				
		n = 1000	κn = κn	0.94	0.00	0.06				
			κn = log n	0.90	0.00	0.10				
			κn = n 1/3	1.00	0.00	0.00				
	IA1 (K * = 2) IA2 (K * = 3)	n = 500 n = 1000 n = 500 n = 1000	κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3	0.76 0.83 0.87 0.89 0.87 0.98 0.62 0.73 0.64 0.87 0.84 0.93	0.03 0.03 0.09 0.00 0.00 0.00 0.13 0.12 0.33 0.00 0.00 0.05	0.21 0.14 0.04 0.11 0.13 0.02 0.25 0.15 0.03 0.13 0.16 0.02	0.497 ± 0.064 0.495 ± 0.066 0.495 ± 0.064 0.507 ± 0.033 0.507 ± 0.034 0.506 ± 0.032 0.311 ± 0.071 0.317 ± 0.073 0.310 ± 0.058 0.300 ± 0.034 0.302 ± 0.043 0.300 ± 0.051	0.689 ± 0.060 0.690 ± 0.072 0.685 ± 0.070 0.693 ± 0.030 0.692 ± 0.030 0.694 ± 0.028	0.038 0.040 0.038 0.019 0.020 0.019 0.061 0.067 0.061 0.034 0.038 0.037

Table 2 :

 2 Breaks estimated after 100 replications for a Poisson-INGARCH(1,1) process following the scenarios IG 0 -IG 2 . The first three columns show the frequencies of the estimation of the true, low and high number of breaks. The last three columns give some elementary statistics of the change-point locations when the true number of breaks is achieved.

	Scenarios IG0 (K * = 1)	n = 500	κn = κn κn = log n	Kn = K * 0.86 0.96	Frequencies Kn < K * 0.00 0.00	Kn > K * 0.14 0.04	τ1	Mean ± s.d.	τ2	Mean τ n -τ *
			κn = n 1/3	1.00	0.00	0.00				
		n = 1000	κn = κn	0.92	0.00	0.08				
			κn = log n	0.96	0.00	0.04				
			κn = n 1/3	1.00	0.00	0.00				
	IG1 (K * = 2) IG2 (K * = 3)	n = 500 n = 1000 n = 500 n = 1000	κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3 κn = κn κn = log n κn = n 1/3	0.75 0.70 0.78 0.75 0.58 0.83 0.53 0.58 0.37 0.62 0.60 0.56	0.05 0.03 0.06 0.05 0.00 0.03 0.41 0.23 0.49 0.26 0.06 0.29	0.20 0.27 0.16 0.20 0.42 0.13 0.06 0.19 0.14 0.12 0.34 0.15	0.515 ± 0.066 0.514 ± 0.073 0.512 ± 0.066 0.507 ± 0.031 0.508 ± 0.034 0.501 ± 0.048 0.299 ± 0.078 0.299 ± 0.074 0.300 ± 0.076 0.293 ± 0.050 0.293 ± 0.051 0.301 ± 0.029	0.691 ± 0.073 0.693 ± 0.070 0.697 ± 0.015 0.702 ± 0.010 0.702 ± 0.010 0.699 ± 0.011	0.038 0.040 0.038 0.019 0.021 0.022 0.053 0.049 0.047 0.025 0.026 0.016

  1 month in the quarter and 0 otherwise. There are 636 quarterly observations obtained from The National Bureau of Economic Research. These data have already been analyzed by several authors. Hudecová (2013) has applied a change-point procedure based on a normalized cumulative sums of residuals and has found a break in the first quarter of 1933. Recently, Diop and Kengne (2017) have applied a change-point test based on the maximum likelihood estimator of the model's parameter and have detected a break in the last quarter of 1932.We consider the INARCH(1) representation and apply the penQLIK contrast procedure. This choice is motivated by the fact that the estimation of the last component of θ (i.e., the parameter β) is not significant in the INGARCH(1,1) representation (see[START_REF] Diop | Testing parameter change in general integer-valued time series[END_REF]). The test of nullity of one coefficient (TNOC)

  are the robust standard errors of the estimators. Let us note that, we have applied the TNOC, which fund that the INARCH(1) representation is the most appropriate for the first regime.

		2.436 + 0.368Y t-1 , for t ≤ 230 (0.126) (0.032)
		4.643 + 0.607Y t-1 + 0.032λ t-1 , for 230 < t ≤ 311 (0.649) (0.022) (0.033)
	 	1.113 + 0.166Y t-1 + 0.531λ t-1 , for t > 311, (0.226) (0.016) (0.071)
	where in parentheses	
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Negative binomial INGARCH models

We consider the problem (1.2) for a negative binomial INGARCH(1,1) (NB-INGARCH(1,1)); i.e., (Y 1 , • • • , Y n ) is a trajectory of the process Y = {Y t , t ∈ Z} satisfying:

where the parameters vector is θ * j = (α (j) 0 , α (j) , β (j) ), for all j ∈ {1, • • • , K * } and N B(r, p) denotes the negative binomial distribution with parameters r and p. Here, we use the probability mass function of N B(r, p) given by

, for all y = 0, 1, . . . 

• scenario NB-IG 2 : θ * 1 = (0.1, 0.3, 0.6) changes to θ * 2 = (0.5, 0.3, 0.6) at t * 1 = 0.3n which changes to θ * 3 = (0.5, 0.3, 0.2) at t * 2 = 0.7n (K * = 3). 

where the parameters vector is θ * j = (α

, for all j ∈ {1, • • • , K * } and B(p) denotes the Bernoulli distribution with parameter p.

For n = 500 and n = 1000, we generate a sample (Y 1 , • • • , Y n ) in the following situations: Table 4 shows that the procedures provide satisfactory results with BIN-INARCH(1) model, except that the n 1/3 -penalty in the case of two breaks. But, the performances of these procedures increase with n and the break-points locations are overall well estimated.

INARCH(∞) models

Now, consider a Poisson-INARCH(∞); i.e., (Y

where α

that is, we focus on the change in the parameter α (j) 0 . This process corresponds to a particular case of the problem (1.2) with f (y

We deal with a scenario where the consistency of the BIC procedure is not ensured. Therefore, we consider the Riemanian case with α k = O(k -1.7 ) (in the scenario detailed below). More precisely, we consider the model (4.5) with

The number 1/2.2 is obtained from the values of the Riemann zeta function, and allows the condition In Table 5, one can see that the n 1/3 -penalty uniformly outperforms the other two procedures. Moreover, the performances of the proposed procedures increase with n, except the log n-penalty whose the performances decrease with n. Hence, the consistency of the BIC procedure is quite questionable in this case.

Real data application

We apply our change-point procedure to two examples of real data series. To compute the estimator K n , the κ n -penalty is used with u n = (log(n)) δ (where 3/2 ≤ δ ≤ 2) and K max = 15.

Appendix. Supplementary material: Proofs of the main results

This Supplementary material may be found in the online version of this article.