

Context-related variation in the peripartum vocalisations and phonatory behaviours of Holstein-Friesian dairy cows

Alexandra C. Green, Cameron E.F. Clark, Sabrina Lomax, Livio Favaro,

David Reby

▶ To cite this version:

Alexandra C. Green, Cameron E.F. Clark, Sabrina Lomax, Livio Favaro, David Reby. Context-related variation in the peripartum vocalisations and phonatory behaviours of Holstein-Friesian dairy cows. Applied Animal Behaviour Science, 2020, 231, pp.105089 -. 10.1016/j.applanim.2020.105089 . hal-03492532

HAL Id: hal-03492532 https://hal.science/hal-03492532v1

Submitted on 22 Aug2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0168159120301775 Manuscript_1a67a0250b23d4ddee7eee62f0687c4b

1 Context-related variation in the peri-partum vocalisations and phonatory

2 behaviours of Holstein-Friesian dairy cows

- 3 Alexandra C. Green^{1,2}, Cameron E.F. Clark¹, Sabrina Lomax¹, Livio Favaro^{2,3}, David Reby²
- 4 ¹Livestock Production and Welfare Group, School of Life and Environmental Sciences, University
- 5 of Sydney, Camden, Australia
- ⁶ ²Equipe Neuro-Ethologie Sensorielle, ENES/CNRL, CNRS UMR5292, INSERM UMR_S 1028,
- 7 University of Lyon/Saint-Étienne, Saint-Étienne, France
- ⁸ ³Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina
- 9 13, 10123 Turin, Italy
- 10 ^{*}Corresponding author: A. Green
- 11 Email address: a.green@sydney.edu.au (A. Green)

12

13 Abstract

- 14 **Context-related information** can be reflected within mammalian vocalisations and could in turn be
- 15 studied to benefit production animals. Whilst previous research has revealed the contextual, and even
- 16 emotional content of goat, pig and horse vocalisations, cattle vocalisations remain relatively less
- 17 explored. In this study we recorded the vocalisations and accompanying phonatory behaviours of 19
- 18 Holstein-Friesian dairy cows (n = 10 primiparous, n = 9 multiparous) during the peri-partum contexts of
- 19 parturition with dystocia and fence-line calf separation. Findings revealed that vocal structure was

20	context dependent, with parturition calls longer in duration, higher in fundamental frequency (FO) min
21	and F0 start, containing more nonlinear phenomena and more minor F0 modulations. By contrast, calls
22	during calf separation were distinguishable by their F0 contour, having a higher F0 mean and F0 max,
23	and greater F0 var, F0 cv and F0 absolute slope. During parturition, primiparous cows emitted calls
24	longer in duration, lower in F0 mean, and containing more F0 modulations than their multiparous
25	conspecifics. Parturient cows expressed a greater number of open mouth calls, whereas mixed calls
26	were more common in the calf separation context. Additionally, 82% of the primiparous and 10% of the
27	multiparous cow vocalisations involved tongue exposure from the mouth during parturition, which may
28	represent a visual indicator of compromised welfare. Overall, our results show that the context-related
29	variation is conveyed through an integration of vocal and visual sensory modalities, with the
30	combination of an open mouth configuration, tongue protrusion, and spectral properties such as an
31	overall lower FO and longer duration during parturition likely enhancing vocal transmission over longer
32	distances to inform more receivers about the urgency of this context. Knowledge of these vocal and
33	behavioural cues could be adopted on farm to determine the welfare of peri-partum cattle and are
34	instrumental for future cattle bioacoustics research.
35	
36	Keywords:
37	Calf separation; parturition; vocal communication; welfare

39 **1. Introduction**

- 40 There are many welfare challenges associated with the peri-partum period in cows (Rørvang et al.,
- 41 2018). Parturition is painful for many mammalian species, particularly the first time or when foetal

42	expulsion is difficult (Barrier et al., 2012; Mainau and Manteca, 2011; Remnant et al., 2017). Moreover,
43	in commercial farming environments, peri-partum cows may also be group housed to facilitate farm
44	management, and this can lead to mismothering and agonistic social interactions (Rørvang et al., 2018).
45	Within 24 hours post-partum, industry common practice is to separate the cow and calf to minimise the
46	bond formation that occurs soon after birth (Hudson and Mullord, 1977), as well as associated distress
47	responses from the cow (Flower and Weary, 2001; Lidfors, 1996; Stěhulová et al., 2008). Alongside this,
48	herd sizes are increasing and individual animal attention from farmers is diminishing (Barkema et al.,
49	2015). Thus, novel welfare assessment techniques are necessary to improve peri-partum farming
50	practices and alert farmers to those animals requiring attention.
51	The study of vocal behaviour presents an opportunity to assess an individual's attributes non-invasively
52	(Green et al., 2017). Mammalian vocalisations have been shown to contain dynamic cues to
53	motivational state (Morton, 1977), context (Taylor et al., 2009) and more recently, emotions, aligning
54	with the arousal/valence framework (Briefer, 2012; Scherer, 1986). Accordingly, there has been a surge
55	in bioacoustics research surrounding the emotional content of livestock vocalisations, especially of goats
56	(Baciadonna et al., 2019; Briefer et al., 2015b), pigs (Briefer et al., 2019; Leliveld et al., 2017; Linhart et
57	al., 2015), horses (Briefer et al., 2015a) and recently cattle (Green et al., 2019). <mark>Cattle have been</mark>
58	recorded vocalising in the welfare-compromising contexts of handling (Grandin, 2001), restraint and
59	branding (Watts and Stookey, 1999), and with differing methods of calf separation (Ikeda and Ishii,
60	2008; Weary and Chua, 2000). While some acoustic analyses have been undertaken to assess <mark>context-</mark>
61	related variation (Weary and Chua, 2000; Yeon et al., 2006), cattle vocal research has traditionally
62	focused on conspicuous vocal measures such as calling rate (Flower and Weary, 2001; Lidfors, 1996;
63	Stěhulová et al., 2008) and the quantification of high-frequency call types (Johnsen et al., 2015), rather
64	than the spectrographic features for a more comprehensive analysis of welfare state.

65	According to the source-filter theory of voice production (Fant, 1960), mammalian vocalisations
66	commence in the larynx (source of the sound) through vibrations of the vocal folds, whose rate
67	determines the fundamental frequency (F0), amplitude and duration of the sound (Taylor and Reby,
68	2010). This sound is subsequently filtered through the supra-laryngeal vocal tract (filter of the sound)
69	which is responsible for altering the formant frequencies and energy distribution of the sound (Taylor
70	and Reby, 2010). The source-filter framework has been adopted over the last few decades to investigate
71	static indexical and fluctuating motivational or emotional vocal cues in a range of mammalian species,
72	including deer (Reby and McComb, 2003), primates (Gamba et al., 2011), goats (Briefer and McElligott,
73	2011; Favaro et al., 2014), pigs (Briefer et al., 2019), and more relevantly cattle (Green et al., 2019;
74	Padilla de la Torre et al., 2015). Animal exposure to a stressor results in changes in respiration, salivation
75	and muscle tension through the triggering of the autonomic nervous system (Briefer, 2012). This in turn
76	results in the animal altering its source and/or filter-related vocal features (Briefer, 2012; Scherer, 1986).
77	Several FO-related vocal parameters have been associated with different production contexts (Mcgrath
78	et al., 2017; Taylor et al., 2009; Yin and McCowan, 2004) and further, source-related vocal parameters
79	including nonlinear phenomena, amplitude, F0 mean, F0 variability, and/or call duration have all been
80	shown to increase alongside increasing situation urgency (Koutseff et al., 2017; Marx et al., 2003;
81	Stoeger et al., 2012, 2011), likely mediated by changes in physiological arousal. Context-related vocal
82	modulations triggered by differences in emotions and/or motivations seem to be shared homologously
83	across mammalian species, likely due to commonalities in morphology, physiology and vocal production
84	mechanisms (Briefer, 2012). Thus, the application of the source-filter theory will be helpful in
85	deciphering the welfare-related context variation of cow vocalisations, along with their communicative
86	functions.

87 Here we investigated the acoustic differences of Holstein-Friesian cattle vocalisations, produced during

88 the peri-partum contexts of parturition with dystocia and fence-line calf separation. Moreover, both

primiparous and multiparous cows were observed to assess the effect of parity on peri-partum vocal responses. The accompanying phonatory behaviours at the time of each vocalisation including mouth configuration and tongue protrusion are also described, to determine the relationship between vocal production and other conspicuous behavioural parameters. We hypothesised that there would be context-related variability in the cow vocalisations and their underlying phonatory behaviours, which may reflect differences in motivations and emotions that the cattle were experiencing.

95

96 2. Materials and methods

97 2.1. Animals and management

98 The experiment was conducted in a maternity barn (Figure 1) at a large-scale commercial dairy farm in 99 New South Wales, Australia between June and October 2018. The experiment was approved by the 100 University of Sydney Animal Ethics Committee (Project number: 2016/1078). Nineteen primiparous and 101 multiparous Holstein-Friesian cows were included in this experiment (n = 10 primiparous, n = 9102 multiparous, mean parity = 2.16, range = 1 - 5). These experimental cows were selected from a herd of maternity cows (n = \sim 120) which were all within two weeks of their intended date of parturition. From 103 104 this herd, each focal cow was selected on her day of parturition, based on her expression of prepartum 105 behaviour including increased vocal rate, restlessness, tail lifting, increased mucous production, looking 106 at other calves and/or licking her amniotic fluid (Barrier et al., 2012). On this farm, the calving 107 intervention criteria involved the farm staff checking the progress of the parturient cow every 30 108 minutes (min) (including pushing, visibility of discharge, amniotic sac and/or feet). Farm staff assisted 109 the cow when no progress was made for a minimum of 30 min. To minimise variability in calving 110 procedures, only cows that required calving intervention for foetal expulsion were included in this study. 111 Both parturition and subsequent calf separation were observed for all experimental cows from 06:30 –

- 112 14:30, with one cow recorded at a time. All cows were identifiable by their unique coat markings, ear
- tags and collar numbers. Given their daily handling, all cows were habituated to human presence.

131 **2.3.** Recording conditions

132 *2.3.1.Parturition*

- 133 The recording of parturition commenced when the cow expressed signs of the second stage of labour,
- including visibility of the amniotic sac and/or calf legs. Duration of recording varied between cows with
- 135 calving duration longer for primiparous (mean = 89.9 min, range = 50 173 min) than multiparous
- 136 (mean = 63.2 min, range = 24 127 min) cows. Despite the group-housing environment, during
- 137 parturition, cows tended to isolate themselves from conspecifics by moving to a pen area free from
- disturbance. Calving intervention was provided by the experienced farm staff and involved using a
- 139 calving jack whilst the cow was standing restrained in a head bail at the cattle crush (n = 5 primiparous,
- 140 n = 8 multiparous cows) or calving ropes to pull the calf from the side lying cow (n = 5 primiparous, n = 1
- 141 multiparous cows). Recording ceased when the calf was born. During parturition, vocalisations were
- mainly associated with the cow pushing out the calf, or when the farm staff assisted with calf pulling.
- 143 High-quality recordings were available for 17 of the 19 experimental cows during parturition.

144 2.3.2.Calf separation

145 Calf separation involved the farmer moving the calf to the other side of a fence-line barrier between Pen

- 146 **2 and Pen 3 (Figure 1)** where the calves and cows were housed, respectively. The focal cow was
- 147 recorded for 60 min immediately after separation from her calf, with separation occurring soon after
- 148 parturition (mean time = 108 min, range = 64 271 min). All cows could bond with their respective calf
- 149 before separation commenced. Across the observation period, recording coincided with peak calving
- activity, meaning that $\frac{\text{Pen 2}}{\text{Contained multiple calves}}$ (mean = 5, range = 1 10). Calves had access to a
- 151 heated shelter to maintain body temperature if needed. Pen 3 consisted of multiple cows including the
- post-partum focal cow and primiparous cows which were due to calve (mean = 7 cows, range = 4 10).

153	The focal cow and her respective calf maintained visual, auditory and some physical contact through the
154	fence-line barrier for the recording session. During calf separation, vocalisations were mainly produced
155	when the cow looked at the calf. Calves were transported twice daily at 10:00 and 15:00 h to a separate
156	shed for individual housing.
157	
158	2.4. Vocalisation recordings
159	Vocalisations were recorded from the 19 cows across parturition and subsequent calf separation.
160	Vocalisations were captured from between 1 to 15 m from the focal cow using a Sennheiser ME67
161	directional microphone (frequency response: 40 – 20000 Hz, max SPL: 125 dB at 1000 Hz) powered by a
162	Sennheiser K6 power module <mark>(Sennheiser Electronic GmbH and Co, Wedemark, Germany).</mark> For shock
163	and wind-noise reduction, the microphone was covered with a Rycote Classic Softie Windshield and
164	attached to a Softie mount with pistol grip [®] (Rycote Microphone Windshields, Gloucestershire, United
165	Kingdom). Vocalisations were recorded onto a Marantz PMD661 MK2 digital solid-state recorder
166	(Marantz Professional, Cumberland, RI, United States) with stereo input (sampling rate: 44.1 kHz). Lower
167	and higher amplitude calls were captured using two recording volume gain settings concurrently and
168	these settings were adjusted manually to avoid signal saturation. Each vocalisation was stored as a
169	separate file in the .WAV uncompressed format at 16-bit amplitude resolution.
170	
171	2.5. Vocalisation analyses
172	A total of 393 vocalisations were analysed on the basis of good signal to noise ratio, including 214 from

parturition (n = 9 multiparous cows, n = 8 primiparous cows) and 179 from calf separation (n = 7

174 multiparous cows, n = 5 primiparous cows). Vocalisations were analysed using Praat v.6.0.31 (Boersma

175 and Weenink, 2009). Overall, we measured 12 acoustic parameters (Table 1) that could be robustly 176 extracted from vocalisations produced in a commercial farming environment where ambient noise was 177 an important component of the soundscape. Further, we selected parameters that would likely 178 modulate with increasing context-related urgency. Full call duration was measured directly off the 179 waveform, and the narrow band spectrogram of each call was visualised (FFT method, window length = 180 0.1 s, time steps = 1000, frequency steps = 250, Gaussian window shape, dynamic range = 60 dB) 181 displaying the first 2500 Hz of the call, to determine the proportion of nonlinear phenomena relative to 182 the full call duration. We then ran a custom-built script to batch process the remaining acoustic analyses 183 (Reby and McComb, 2003), which contained two distinct procedures to characterise the F0 contour and 184 modulation events, respectively. In particular, a band-pass filter (pass Hann band, from frequency = 40 185 Hz, to frequency = 2500 Hz, smoothing = 10 Hz) was firstly applied to each vocalisation to remove 186 background noise produced by farm machinery and birds present in the maternity shed. The script 187 procedure then involved extracting the F0 contour of each vocalisation ([Sound: To pitch (cc) command], 188 time step = 0.01s, pitch floor = 45 Hz, pitch ceiling = 1000 Hz) to measure a range of FO-related 189 parameters. These included F0 mean, F0 min, F0 max, F0 start, F0 end, F0 var, F0 cv and F0 absolute 190 slope. We manually corrected spurious values and octave jumps by viewing the spectrogram and the 191 associated F0 contour using the Pitch edit window [Inspect pitch object] (Reby and McComb, 2003). In 192 the case of biphonation sidebands (Fitch et al., 2002), the F0 values were selected if they were clearly 193 visible. Further, we 'unvoiced' any regions where the F0 values could not be accurately detected, for 194 example, where deterministic chaos (Fitch et al., 2002) was present. The second procedure involved 195 applying two distinct smoothing algorithms to the F0 contour, including (Smooth command in Praat, 196 bandwidth = 25) followed by (Smooth command in Praat, bandwidth = 2), which suppressed the long-197 term and short-term F0 modulation events, respectively (Koutseff et al., 2017; Raine et al., 2018; Reby 198 et al., 2016). Following the smoothing procedures, the inflection points were counted as a change in the

- sign of the contour's derivative and divided by the total number of voiced segments in each recording.
- 200 This resulted in two distinct indexes of F0 modulation, including inflex25, which characterised minor
- 201 intonation events, and inflex2 which characterised major intonation events.

Table 1. Definitions and justification of the 12 vocal parameters measured in this study.

Parameter type	Vocal parameter	Definition	References to previous distress-related studies
Temporal	Full duration (s)	Total duration of the call (from start to end)	(Raine et al., 2018; Stoeger et al., 2012, 2011)
F0 - contour	F0 mean (Hz)	Mean F0 across the call	(Koutseff et al., 2017; Raine et al., 2019, 2018)
	F0 min (Hz)	Minimum F0 across the call	(Koutseff et al., 2017; Raine et al., 2019, 2018)
	F0 max (Hz)	Maximum F0 across the call	(Koutseff et al., 2017; Raine et al., 2019, 2018)
	FO start (Hz)	F0 at the start of the call	(Koutseff et al., 2017)
	F0 end (Hz)	F0 at the end of the call	(Koutseff et al., 2017)
	F0 var (Hz/s)	Cumulative variation in the F0 contour in Hertz divided by call duration	(Briefer, 2012)
	F0 CV (Hz)	Coefficient of variation over the duration of the call	(Koutseff et al. <i>,</i> 2017; Raine et al., 2019, 2018)
	Abs F0 slope (Hz/s)	F0 mean absolute slope	(Briefer et al., 2019)
F0 - modulation	Inflex 25	Index of minor F0 modulation	(Koutseff et al., 2017; Raine et al., 2019, 2018)
	Inflex 2	Index of major F0 modulation	(Koutseff et al., 2017; Raine et al., 2019, 2018)

Nonlinear Nonlinear Proportion of the call that contains nonlin		Proportion of the call that contains nonlinear	(Koutseff et al.,
phenomena	phenomena	phenomena including deterministic chaos (non-	2017; Raine et
	(%)	random broadband noise with no clear harmonic	al., 2018;
		structure), biphonation sidebands (side	Stoeger et al.,
		frequencies which occur either side of the FO and	2012)
		harmonics) and/or subharmonics (spectral	
		components that are integer fractions of the F0)	

205 2.6. Behavioural observations

206 A video camera (Sony HDR-AS300 action cam[®], Sony Australia Limited, North Sydney, Australia) was 207 affixed along the fence-line to continuously record the focal cow behaviour during parturition and calf 208 separation. To relate behaviour with vocal production, video and audio were simultaneously recorded 209 and time stamped. To characterise the accompanying mouth and tongue positions of the cows during 210 vocal production, behavioural analysis software BORIS v.7.7.4 (Friard and Gamba, 2016) was used. 211 Mouth position upon vocalisation was recorded as either 1) closed, 2) mixed (including both closed and 212 open mouth components), or 3) open. The proportion of the call duration for which the mouth was 213 open was quantified and tongue exposure (tongue protruding and/or dorsally flexed inside of the 214 mouth) was additionally reported. Mouth position was recorded for all 393 vocalisations; however, 215 tongue position was only clearly visible in 295 of the vocalisations.

216

217 2.7. Statistical analyses

Statistical analyses were performed using R Studio v.1.2.1 335 (RStudio Team, 2020), an integrated
development environment for R (R Core Team, 2020). For the vocal data, we used the 'Ime4' package
(Bates et al., 2015) to carry out linear-mixed effects models (LMMs) with each vocal parameter included
as the response variable. These models included the fixed effects of context (parturition or calf
separation) and parity (primiparous or multiparous), and their two-way interaction. Since cattle calls are

223 likely structured on a graded continuum (Kiley, 1972), the proportion of the call duration with the mouth 224 open was included as a covariate in the model, as mouth configuration can influence FO-related 225 parameters (Sebe et al., 2010). Additionally, to compensate for the variable duration of parturition 226 amongst cows, time duration of both contexts was normalised to range between 0 and 1 with the time 227 of each vocalisation included as a covariate. All fixed effects were checked for multicollinearity using the 228 'VIF function' (Fox and Weisberg, 2018), with all considered to be non-collinear as they resulted in 229 values of less than four. The random effect was cow ID to control for repeated measures from the same 230 individuals. Residuals were graphically inspected, and to approximate normal distribution and 231 homoscedasticity all vocal parameters bar inflex2 and nonlinear phenomena were log transformed. 232 For the behavioural data, which included categorical response variables, we ran a series of generalised 233 linear mixed models (GLMMs) with binomial distribution in 'Ime4', implementing the 'all versus one' 234 approach. The response was the behaviour of interest (closed, mixed, or open mouth) which was scored 235 as 1, versus the other two behaviours of that category scored as 0. Fixed effects included context 236 (parturition or calf separation) and parity (primiparous or multiparous) along with their two-way 237 interaction, and the covariate of normalised time. The random effect was cow ID to control for repeated 238 measures. As tongue exposure was produced exclusively during parturition, no further statistical tests 239 were applied to this behavioural parameter.

To assess the significance of the fixed effects in both the vocal and behavioural datasets, we compared a full model including the fixed and random effects, to a null model, comprising the covariates and random effect for which we were controlling. Any non-significant interaction terms were dropped from the models, with models compared using Akaike's information criterion (AIC) (Akaike, 1974), with the lowest scoring AIC model selected. Models were fitted with maximum likelihood estimation and likelihood ratio tests were used to confirm the significance of the full models. We used Tukey adjusted

pairwise comparisons in the 'emmeans' package (Lenth et al., 2019) to compare results of parturition
and calf separation, and we report the estimated marginal means, along with their standard errors on
the response scale. The main effect of context is reported in instances where the context by parity
interaction was not significant. Further, we only report on fixed effects which were of relevance to our
hypothesis, i.e. we do not report on the values of the covariates. For all models, a probability < 0.05 was
considered statistically significant, and a statistical trend was considered at 0.05

252

253 3. Results

254 3.1. Vocal parameters during parturition and calf separation

255 All 12 vocal parameters measured in this study were significantly affected by context, or a context by 256 parity interaction (Table 2). Post-hoc comparisons of context showed that vocalisations produced during 257 parturition had a greater prevalence of nonlinear phenomena as well as a higher F0 min and F0 start 258 (Table 3). By contrast, vocalisations during calf separation had a higher F0 max, and a greater F0 var, F0 259 cv and FO absolute slope (Table 3). Additionally, these calf separation calls tended to have a higher FO 260 end (Table 3). There was a significant context by parity interaction for four vocal parameters including 261 full duration, F0 mean, minor F0 (inflex 25) and major F0 modulations (inflex 2) (Table 2). Within the 262 parturition context, primiparous cows produced vocalisations with a longer duration, a lower F0 mean, 263 and more major F0 modulations (inflex 2) than their multiparous conspecifics (Table 4). Primiparous 264 parturition vocalisations also tended to have more minor F0 modulations (inflex 25). By contrast, there 265 was no parity difference observed for any vocal parameter during calf separation (Table 4). Overall, for 266 both primiparous and multiparous cows, parturition induced calls with a longer duration, lower F0 mean 267 and more minor inflections (inflex 25) than subsequent calf separation (Table 4). Further, primiparous

268	cattle vocalisations contained more major inflections (inflex 2) during parturition than in subsequent calf
269	separation, however for multiparous cows, this difference was not significant (Table 4).

- Table 2. Results of final model selection for LMMs and GLMMs using ANOVAs, comparing the full model
- 272 (with the fixed effects, covariates, and random effect) to the null model (with only the covariates and
- 273 random effect). Only the fixed effects relevant to our hypothesis are provided in the table and
- significant P-values are highlighted in bold.

Para	Effect	df	X ²	P-value	
Voca	lisations				
Temporal	Full duration (s)	Context * Parity	3	62.16	< 0.001
F0 - contour	F0 mean (Hz)	Context * Parity	3	37.16	< 0.001
	F0 min (Hz)	Context	2	9.77	0.008
	F0 max (Hz)	Context	2	28.57	< 0.001
	F0 start (Hz)	Context	2	14.74	0.001
	F0 end (Hz)	Context	2	8.55	0.01
	F0 var (Hz/s)	Context	2	43.33	< 0.001
	F0 CV (Hz)	Context	2	32.03	< 0.001
	Abs F0 slope (Hz/s)	Context	2	35.23	< 0.001
F0 - modulation	Inflex 25	Context * Parity	3	19.27	< 0.001
	Inflex 2	Context * Parity	3	8.10	0.04
Nonlinear phenomena	Nonlinear phenomena (%)	Context	2	31.03	< 0.001
Beh	Behaviours				

	Mouth position	Closed mouth	Context	2	5.59	0.06
		Mixed	Context	2	26.97	< 0.001
		Open mouth	Context * Parity	3	50.90	< 0.001
275						

- 276 Table 3. Estimated marginal means ± SE of main effects along with their P-values derived from the
- 277 Tukey's post-hoc pairwise comparisons. The LMMs included each vocal parameter as the response
- variable, the fixed effects of context and parity, the covariates of normalised time and proportion of the
- 279 mouth open, and the random effect of cow ID. Significant P-values are highlighted in bold.

Vocal parameter	Parturition	Calf separation	t-ratio	P-value
F0 min (Hz)	75.80 ± 2.38	70.60 ± 2.42	2.18	0.03
F0 max (Hz)	167.00 ± 9.52	218.00 ± 13.32	-4.99	< 0.001
F0 start (Hz)	84.80 ± 3.58	75.70 ± 3.42	2.97	0.003
F0 end (Hz)	119.00 ± 4.89	130.00 ± 5.89	-1.88	0.06
F0 var (Hz/s)	99.20 ± 8.19	168.30 ± 15.19	-6.01	< 0.001
F0 cv	0.15 ± 0.01	0.23 ± 0.02	-5.12	< 0.001
F0 abs slope	118.00 ± 9.22	185.00 ± 15.92	-5.22	< 0.001
NLP (%)	33.10 ± 4.39	16.70 ± 4.56	5.61	< 0.001

Table 4. Estimated marginal means ± SE of interaction effects along with their P-values derived from the
Tukey's post-hoc pairwise comparisons. The LMMs included each vocal parameter as the response
variable, the interaction between the fixed effects context and parity, the covariates of normalised time
and proportion of the mouth open, and the random effect of cow ID. Letters denote significant
differences (P < 0.05) between parities in the same context, and P-values are reported for significant
differences at the contextual level (parturition versus calf separation). Significant P-values are
highlighted in bold.

Vocal Parity Parturition Calf Parturition versus Calf separation separation parameter t-ratio P-value Full duration (s) Primiparous 2.08 ± 0.14^{A} 1.18 ± 0.11 5.75 < 0.001 Multiparous 1.52 ± 0.10^{B} 1.17 ± 0.07 5.36 < 0.001 F0 mean (Hz) Primiparous 115.00 ± 177.00 ± 15.13 -5.01 < 0.001 7.84^A Multiparous 144.00 ± 165.00 ± 10.82 < 0.001 -3.35 9.43^B Inflex 25 Primiparous 12.85 ± 1.34 7.24 ± 1.02 3.71 < 0.001 Multiparous 9.92 ± 0.97 8.42 ± 0.82 2.10 0.04 Inflex 2 Primiparous 1.06 ± 0.06^{A} 0.81 ± 0.10 2.15 0.04 Multiparous 0.87 ± 0.06^{B} 0.88 ± 0.05 -0.14 0.89

289

291 3.2. Phonatory behaviours during vocal production

292 The production of open mouth and mixed calls (Figure 2) was significantly impacted by context (Table 2). 293 Both open and mixed calls were emitted upon exhalation, and closed mouth calls were emitted nasally. 294 A greater percentage of mixed calls was observed during calf separation compared to parturition (Z ratio 295 = -4.73, P < 0.0001). By contrast, more open mouth calls were produced during parturition than calf 296 separation for both primiparous (Z ratio = 4.77, P < 0.0001) and multiparous cows (Z ratio = 3.02, P = 297 0.003). There was also a significant context x parity effect during parturition (Table 2), with primiparous 298 cows producing more open mouth calls than multiparous cows (Z ratio = -2.92, P = 0.004). During 299 parturition, tongue exposure was observed during 82% of the primiparous cow vocalisations and just 300 10% of the multiparous cow vocalisations, however this behaviour was not observed during calf 301 separation by any cow. Further, tongue exposure was exclusively observed when the cows were 302 emitting the vocalisation and at no other time during the observation period.

Figure 2. Narrow-band spectrograms of (A) a closed mouth vocalisation produced during parturition, (B)
 a mixed vocalisation comprising closed and open mouth components produced during calf separation,

307 and (C) an open mouth vocalisation produced during parturition.

- 309 4. Discussion
- 310 Despite ongoing discussions about the potential for vocalisations to assess animal welfare (Green et al.,
- 311 2017; Manteuffel et al., 2004; Watts and Stookey, 2000), the information coded within cow vocalisations
- 312 remains under-investigated. Here we show context-related variability in the acoustic features and
- 313 phonatory behaviours of cow vocalisations recorded during parturition with dystocia and fence-line calf
- 314 separation. First, we describe the acoustic and phonatory-behavioural characteristics of peri-partum
- 315 cow vocalisations at the contextual level. We then discuss plausible reasons for their contextual
- 316 differences related to their communicative function and potential motivational and emotional encoding.
- 317 These findings contribute to the greater understanding of cattle vocal communication and are a step
- 318 towards the creation of a tool to detect welfare changes aurally and visually on farm.
- 319 Parturient cow vocalisations were characterised by a longer duration, overall lower FO, a greater
- 320 prevalence of nonlinear phenomena and more minor frequency modulations than calf separation calls.
- 321 Further, primiparous parturient cows produced calls longer in duration, more frequency modulated and
- 322 lower in F0 mean than their multiparous conspecifics. Presently, all cows had difficulty with foetal
- 323 expulsion, requiring farming intervention to extract the calf. Moreover, the primiparous cows endured
- 324 longer labour durations, which has previously been associated with more pain due to foeto-pelvic
- 325 disproportion and greater effort placed into calving (Mainau and Manteca, 2011). Interestingly, the
- 326 parturient cow vocalisations share features with the guttural, low FO sounds of parturient women upon
- 327 effort and exertion (McKay and Roberts, 1990). We suggest that the parturient cow vocal characteristics
- 328 may reflect the intense musculature and energy expenditure during parturition, affecting sub-glottal
- 329 pressure and muscular tension within the vocal apparatus (Taylor and Reby, 2010; Titze, 1994). By
- 330 contrast, calf separation vocalisations could be discriminated by their distinctive FO contour, being more
- 331 harmonic and comprising a broader frequency range and greater variability around the F0. It has been

- 332 shown that more intense separation methods (e.g. separation from the calf after four days) are
- associated with calls of higher frequencies (Weary and Chua, 2000). Thus, the lack of parity effect on calf
- 334 separation call structure may represent within-context similarities in arousal expression. Our results also
- align with the observations of Flower and Weary (2001), which found no behavioural differences
- 336 between post-partum primiparous and multiparous cows undergoing immediate separation from their
- 337 calves.
- 338 In our study, fundamental frequency related parameters (FO mean, max, end, var, CV, absolute slope)
- 339 were overall higher for calf separation than parturition and did not conform to the vocal arousal
- 340 expression exhibited by other mammalian species (Briefer, 2012). In dogs, disturbance barks produced
- 341 in more urgent situations (e.g. when a stranger rang a doorbell) were also lower in FO parameters,
- 342 despite mirroring higher arousal through their longer duration, more rapid repetitions and vocal
- 343 roughness (Yin and McCowan, 2004). Cattle vocalisations are acoustically graded (Kiley, 1972) and in our
- 344 study there was a high prevalence of intermediate call types which were ambiguous to visually classify.
- 345 For this reason, we addressed contextually driven vocal variation independent of any empirical call type.
- 346 Despite the ability to encode instantaneous dynamic information (Taylor and Reby, 2010), vocalisations
- 347 are not always direct expressions of emotional state. Different parts of the acoustic continuum may
- 348 serve different communicative functions in a variety of contexts, for example nasalised calls are often
- 349 favoured for short-distance communication, and oralised calls for communication over longer distances
- 350 (Padilla de la Torre et al., 2015). This could explain why it was difficult to compare the potential
- 351 emotional encoding in vocalisations across contexts. The emotional information encoding in other
- 352 mammalian species has been shown to differ between call types (Linhart et al., 2015; Maigrot et al.,
- 353 2018), thus to more definitively attribute acoustic variations to emotional state, future cattle studies
- 354 should analyse vocalisations most typical of the low- and high-frequency call structures (Padilla de la
- 355 Torre et al., 2015) and exclude any intermediate call sub-types.

- 356 Acoustic variations can reflect the circumstances surrounding vocal emission (Owings and Morton,
- 357 1998). Indeed, the present contrasting peri-partum acoustic features were most likely shaped by the
- 358 different communicative functions of the vocalisations. Low-frequency vocalisations tend to propagate
- 359 further than high-frequency vocalisations (Marten et al., 1977), with nonlinear phenomena enhancing
- 360 the projection of formant frequencies over longer distances (Fitch et al., 2002). Therefore, parturient
- 361 cows were likely vocalising over longer distances to their conspecifics, or to the farmer for help. In
- 362 contrast, when separated, the cows were likely vocalising to their respective calves in close proximity
- 363 across the fence-line. The calf separation calls emulate the high-frequency calls produced by free-
- 364 ranging cattle initiating social contact (Padilla de la Torre et al., 2015), similar in their acoustic structure
- 365 (F0 start, end, mean, min, max, absolute slope, var) and their mixed mouth configuration, suggesting
- 366 that these separation calls play a communicative role in maintaining contact with the calf. Nonetheless,
- 367 the acoustic characteristics of the peripartum vocalisations partially conform to Morton's motivational-
- 368 structural rules, which state that mammals emit harsh, low-frequency, high-intensity vocalisations when
- 369 in hostile contexts as opposed to tonal, high-frequency vocalisations when appeased or fearful (Morton,
- 370 1977). The communicative functions of these certain acoustic characteristics could be verified through
- 371 playback experiments of peri-partum vocalisations to signal receivers.
- 372 Just as acoustic properties can enhance the salience of the vocalisations for long distance
- 373 communication, seemingly so too can the phonatory behaviours associated with vocal production.
- 374 Parturient vocalisations were typically coupled with an open mouth configuration, and this was
- 375 observed more frequently in the primiparous than multiparous cows. Mouth configuration has been
- 376 used to empirically classify call types in cattle (Johnsen et al., 2015; Padilla de la Torre et al., 2015) and
- 377 other ungulates (Briefer et al., 2019, 2015b), with evidence to suggest that the expression of different
- 378 call types relates to different underlying motivational or emotional states (Maigrot et al., 2018; Morton,
- 379 1977; Tallet et al., 2013). A greater production of open mouth calls also seems to correlate with

- 380 increasing distress during calf separation (Johnsen et al., 2015), which could reflect greater urgency
- 381 during parturition compared to calf separation, especially for the primiparous cows.
- 382 Tongue protrusion was also observed exclusively during parturition solely at the time of vocal
- 383 production. To the best of our knowledge, this behaviour has not been documented in other cattle
- 384 studies, but in Iberian red deer stags, tongue protrusion is a conspicuous feature of acoustic rutting
- display and is a consequence of thyroid muscle contraction (Frey et al., 2012). While hypothesised to be
- 386 energetically costly, tongue protrusion with an open mouth configuration may allow for the
- 387 uninterrupted passage of an exhalatory air stream producing the vocalisation (Frey et al., 2012), which
- 388 could mechanically function to project the vocalisation over longer distances. This could explain why
- 389 there was a greater prevalence of tongue protrusion behaviour in the primiparous parturient cows,
- 390 again reinforcing the notion that they perceived the context with greater urgency. Although we did not
- 391 directly estimate the impact of tongue protrusion on vocal characteristics, the lower F0 mean of the
- 392 parturient vocalisations, particularly those emitted by the primiparous cows, may have also been
- ³⁹³ influenced by the tongue protrusion behaviour. Similarly, the common roars of Iberian Red stags which
- 394 were produced with the tongue protruded, were lower in F0 than their non tongue-protruding harsh
- 395 roar equivalents (Frey et al., 2012). Presently, both mouth configuration and tongue protrusion
- 396 behaviour provided valuable information about contextual and parity-related effects in cows and are
- 397 promising visual tools to assess welfare-related differences on farm. Further exploration of these
- 398 phonatory behaviours and their impact on acoustic features is therefore warranted in a well-controlled
- 399 experimental setting to validate our current suggestions.
- 400 Our findings are subject to some limitations. Due to the observational design of the present study, the
- 401 two peripartum contexts differed in a number of aspects. The activity of the cow was higher during
- 402 parturition, as cows expended strong muscular efforts to expel the calf. Also, the position of the cows

- 403 upon vocalising differed, with parturient cows either recumbent or restrained in a head-bail, compared
- 404 to separated cows which were moving freely. This prevented the assessment of locomotion as a
- 405 behavioural proxy of arousal (Leliveld et al., 2017; Maigrot et al., 2018), or heart rate as a physiological
- 406 indicator of arousal (Briefer et al., 2015b, 2015a), as there was no previous habituation to the monitors.
- 407 To overcome these limitations to unequivocally attribute acoustic differences to variations in emotional
- 408 state, a controlled experiment should be performed in future. This could also involve comparing
- 409 additional variables within each context, such as different methods of parturition (assisted versus
- 410 unassisted) as well as different times (Flower and Weary, 2001; Lidfors, 1996; Weary and Chua, 2000) or
- 411 degrees (Johnsen et al., 2015) of calf separation. By comparing calls with the same communicative
- 412 function, this would assist in deciphering the precise vocal indicators of emotion in peri-partum cow
- 413 vocalisations.
- 414
- 415 **5.** Conclusions
- 416 Vocalisations and associated phonatory behaviours can provide insight into the peri-partum farming
- 417 context to which cows are exposed. In this study, we identified a series of robust vocal parameters that
- 418 are not influenced by ambient noises produced on commercial dairy farms, and behavioural parameters
- 419 that are conspicuous and easy to observe. The combination of an open mouth configuration, tongue
- 420 protrusion and spectral properties such as an overall lower F0 and longer duration during parturition
- 421 likely resulted in signal propagation over longer distances, thereby informing more receivers about the
- 422 urgency of this context. We recommend assessing these measures further in a controlled experimental
- 423 setting, to simultaneously determine behavioural and vocal encoding of emotions in peri-partum cows,
- 424 for a more comprehensive understanding of their welfare state.

426 Acknowledgements

We are grateful to the undergraduate students who assisted with the data collection and farm staff who were so accommodating to this research. Special thanks to Peter Thomson for the statistical advice and Lena Lidfors for her behavioural expertise. Also, thank you to Frédéric Sèbe for assistance with filtering the vocalisations.

431

432 Funding

433 Author A.G was supported by an Australian Government Research Training Program (RTP) Scholarship.

434 This research was partially supported by Dairy Australia to C.C and S.L and the University of Lyon's

435 IDEXLYON project as part of the "Programme Investissements d'Avenir" (ANR-16-IDEX-0005) to D.R.

436

437 Author contributions

438 A.G, C.C, S.L designed the experiment. C.C and S.L sourced funding and provided resources and project

439 administration. A.G collected the data. A.G, L.F, D.R conducted the acoustical and statistical analyses.

440 A.G, L.F, D.R conceptualised the manuscript. A.G wrote the first draft of the manuscript. C.C, S.L, L.F, D.R

- 441 contributed to subsequent drafts of the manuscript.
- 442

443 References

444 Akaike, H., 1974. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 19,

445 716–723. https://doi.org/10.1109/TAC.1974.1100705

446	Baciadonna, L., Briefer, E.F., Favaro, L., McElligott, A.G., 2019. Goats distinguish between positive and
447	negative emotion-linked vocalisations. Front. Zool. 16, 1–11. https://doi.org/10.1186/s12983-019-
448	0323-z

- 449 Barkema, H.W.W., von Keyserlingk, M.A.G., Kastelic, J.P., Lam, T.J.G.M., Luby, C., Roy, J.-P., LeBlanc,
- 450 S.J.J., Keefe, G.P.P., Kelton, D.F.F., 2015. Invited review: Changes in the dairy industry affecting
- 451 dairy cattle health and welfare. J. Dairy Sci. 98, 7426–45. https://doi.org/10.3168/jds.2015-9377
- 452 Barrier, A.C., Haskell, M.J., Macrae, A.I., Dwyer, C.M., 2012. Parturition progress and behaviours in dairy
- 453 cows with calving difficulty. Appl. Anim. Behav. Sci. 139, 209–217.
- 454 https://doi.org/10.1016/j.applanim.2012.03.003
- 455 Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects Models Using Ime4.
- 456 J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01
- 457 Boersma, P., Weenink, D., 2009. Praat: doing phonetics by computer. http://www.praat.org/.
- 458 Briefer, E., McElligott, A.G., 2011. Indicators of age, body size and sex in goat kid calls revealed using the
- 459 source-filter theory. Appl. Anim. Behav. Sci. 133, 175–185.
- 460 https://doi.org/10.1016/j.applanim.2011.05.012
- 461 Briefer, E.F., 2012. Vocal expression of emotions in mammals: Mechanisms of production and evidence.
- 462 J. Zool. 288, 1–20. https://doi.org/10.1111/j.1469-7998.2012.00920.x
- 463 Briefer, E.F., Maigrot, A.-L., Mandel, R., Freymond, S.B., Bachmann, I., Hillmann, E., 2015a. Segregation
- 464 of information about emotional arousal and valence in horse whinnies. Sci. Rep. 4, 9989.
- 465 https://doi.org/10.1038/srep09989
- 466 Briefer, E.F., Tettamanti, F., McElligott, A.G., 2015b. Emotions in goats: mapping physiological,

- 467 behavioural and vocal profiles. Anim. Behav. 99, 131–143.
- 468 https://doi.org/10.1016/j.anbehav.2014.11.002
- 469 Briefer, E.F., Vizier, E., Gygax, L., Hillmann, E., 2019. Expression of emotional valence in pig closed-mouth
- 470 grunts: Involvement of both source- and filter-related parameters. J. Acoust. Soc. Am. 145, 2895–
- 471 2908. https://doi.org/10.1121/1.5100612
- 472 Fant, G., 1960. Acoustic theory of speech production, 2nd ed. Mouton.
- 473 Favaro, L., Briefer, E.F., McElligott, A.G., 2014. Artificial neural network approach for revealing
- 474 individuality, group membership and age information in goat kid contact calls. Acta Acust. United
- 475 with Acust. 100, 782–789. https://doi.org/10.3813/AAA.918758
- 476 Fitch, W.T., Neubauer, J., Herzel, H., 2002. Calls out of chaos: the adaptive significance of nonlinear
- 477 phenomena in mammalian vocal production. Anim. Behav. 63, 407–418.
- 478 https://doi.org/10.1006/anbe.2001.1912
- 479 Flower, F.C., Weary, D.M., 2001. Effects of early separation on the dairy cow and calf: 2. Separation at
- 480
 day 1 and 2 weeks after birth. Appl. Anim. Behav. Sci. 70, 275–284. https://doi.org/10.1016/S0168

 481
 1591(00)00164-7
- 482 Fox, J., Weisberg, S., 2018. An R Companion to Applied Regression, Third. ed. Sage.
- 483 Frey, R., Volodin, I., Volodina, E., Carranza, J., Torres-Porras, J., 2012. Vocal anatomy, tongue protrusion
- 484 behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus
- 485 hispanicus). J. Anat. 220, 271–292. https://doi.org/10.1111/j.1469-7580.2011.01467.x
- 486 Friard, O., Gamba, M., 2016. BORIS: a free, versatile open-source event-logging software for video/audio
- 487 coding and live observations. Methods Ecol. Evol. 7, 1325–1330. https://doi.org/10.1111/2041-

488 210X.12584

- Gamba, M., Favaro, L., Torti, V., Sorrentino, V., Giacoma, C., 2011. Vocal tract flexibility and variation in
 the vocal output in wild indris. Bioacoustics 20, 251–266.
- 491 https://doi.org/10.1080/09524622.2011.9753649
- 492 Grandin, T., 2001. Cattle vocalizations are associated with handling and equipment problems at beef
- 493 slaughter plants. Appl. Anim. Behav. Sci. 71, 191–201. https://doi.org/10.1016/S0168-
- 494 1591(00)00179-9
- 495 Green, A., Clark, C., Favaro, L., Lomax, S., Reby, D., 2019. Vocal individuality of Holstein-Friesian cattle is
- 496 maintained across positively and negatively valenced farming contexts. Sci. Rep. 9, 1–9.
- 497 https://doi.org/https://doi.org/10.1038/s41598-019-54968-4
- 498 Green, A.C., Johnston, I.N., Clark, C.E.F., 2017. Invited review: The evolution of cattle bioacoustics and
- 499 application for advanced dairy systems. Animal 1–10.
- 500 https://doi.org/10.1017/S1751731117002646
- 501 Green, A.C., Lidfors, L.M., Lomax, S., Favaro, L., Clark, C.E.F., 2020. Vocal production in postpartum dairy
- 502 cows: Temporal organization and association with maternal and stress behaviors. J. Dairy Sci.
- 503 Hudson, S.J., Mullord, M.M., 1977. Investigations of maternal bonding in dairy cattle. Appl. Anim. Ethol.
- 504 3, 271–276. https://doi.org/10.1016/0304-3762(77)90008-6
- 505 Ikeda, Y., Ishii, Y., 2008. Recognition of two psychological conditions of a single cow by her voice.
- 506 Comput. Electron. Agric. 62, 67–72. https://doi.org/10.1016/j.compag.2007.08.012
- 507 Johnsen, J.F., Ellingsen, K., Grøndahl, A.M., Bøe, K.E., Lidfors, L., Mejdell, C.M., 2015. The effect of
- 508 physical contact between dairy cows and calves during separation on their post-separation

- 509 behavioural response. Appl. Anim. Behav. Sci. 166, 11–19.
- 510 https://doi.org/10.1016/j.applanim.2015.03.002
- 511 Kiley, M., 1972. The Vocalizations of Ungulates, their Causation and Function. Z. Tierpsychol. 31, 171–
- 512 222. https://doi.org/10.1111/j.1439-0310.1972.tb01764.x
- 513 Koutseff, A., Reby, D., Martin, O., Levrero, F., Patural, H., Mathevon, N., 2017. The acoustic space of
- 514 pain: cries as indicators of distress recovering dynamics in pre-verbal infants. Bioacoustics 4622, 1–
- 515 13. https://doi.org/10.1080/09524622.2017.1344931
- 516 Leliveld, L.M.C., Düpjan, S., Tuchscherer, A., Puppe, B., 2017. Vocal correlates of emotional reactivity
- 517 within and across contexts in domestic pigs (Sus scrofa). Physiol. Behav. 181, 117–126.
- 518 https://doi.org/10.1016/j.physbeh.2017.09.010
- 519 Lenth, R., Singmann, H., Love, J., Buerkner, P., Herve, M., 2019. Package "emmeans."
- 520 Lidfors, L.M., 1996. Behavioural effects of separating the dairy calf immediately or 4 days post-partum.
- 521 Appl. Anim. Behav. Sci. 49, 269–283. https://doi.org/10.1016/0168-1591(96)01053-2
- 522 Linhart, P., Ratcliffe, V.F., Reby, D., Spinka, M., 2015. Expression of emotional arousal in two different
- 523 piglet call types. PLoS One 10. https://doi.org/10.1371/journal.pone.0135414
- 524 Maigrot, A., Hillmann, E., Briefer, E., 2018. Encoding of Emotional Valence in Wild Boar (Sus scrofa) Calls.
- 525 Animals 8, 1–15. https://doi.org/10.3390/ani8060085
- 526 Mainau, E., Manteca, X., 2011. Pain and discomfort caused by parturition in cows and sows. Appl. Anim.
- 527 Behav. Sci. 135, 241–251. https://doi.org/10.1016/j.applanim.2011.10.020
- 528 Manteuffel, G., Puppe, B., Schön, P.C., 2004. Vocalization of farm animals as a measure of welfare. Appl.
- 529 Anim. Behav. Sci. 88, 163–182. https://doi.org/10.1016/j.applanim.2004.02.012

- 530 Marten, K., Quine, D., Marler, P., 1977. Sound transmission and its significance for animal vocalization -
- 531 II. Tropical forest habitats. Behav. Ecol. Sociobiol. 2, 291–302. https://doi.org/10.1007/BF00299741
- 532 Marx, G., Horn, T., Thielebein, J., Knubel, B., Von Borell, E., 2003. Analysis of pain-related vocalization in
- 533 young pigs. J. Sound Vib. 266, 687–698. https://doi.org/10.1016/S0022-460X(03)00594-7
- 534 Mcgrath, N., Dunlop, R., Dwyer, C., Burman, O., Phillips, C.J.C., 2017. Hens vary their vocal repertoire and
- 535 structure when anticipating different types of reward. Anim. Behav. 130, 79–96.
- 536 https://doi.org/10.1016/j.anbehav.2017.05.025
- 537 McKay, S., Roberts, J., 1990. Maternal and Caregiver Perceptions of the Meaning of Maternal Sounds
- 538 During Second Stage Labor. J. Nurse. Midwifery. 35, 266–273.
- Morton, E.S., 1977. On the Occurrence and Significance of Motivation-Structural Rules in Some Bird and
 Mammal Sounds. Am. Nat. 111, 855–869.
- 541 Owings, D.H., Morton, E.S., 1998. The roles of assessment and management in communication, in:
- 542 Animal Vocal Communication: A New Approach. Cambridge University Press, Cambridge, p. 71.
- 543 Padilla de la Torre, M., Briefer, E.F., Reader, T., McElligott, A.G., 2015. Acoustic analysis of cattle (Bos
- taurus) mother–offspring contact calls from a source–filter theory perspective. Appl. Anim. Behav.
- 545 Sci. 163, 58–68. https://doi.org/10.1016/j.applanim.2014.11.017
- 546 Raine, J., Pisanski, K., Bond, R., Simner, J., Reby, D., 2019. Human roars communicate upper-body
- 547 strength more effectively than do screams or aggressive and distressed speech. PLoS One 14,
- 548 e0213034. https://doi.org/10.1371/journal.pone.0213034
- 549 Raine, J., Pisanski, K., Simner, J., Reby, D., 2018. Vocal communication of simulated pain. Bioacoustics
- 550 4622, 1–23. https://doi.org/10.1080/09524622.2018.1463295

551	Reby, D., Levréro, F., Gustafsson, E., Mathevon, N., 2016. Sex stereotypes influence adults' perception of
552	babies' cries. BMC Psychol. 1–12. https://doi.org/10.1186/s40359-016-0123-6
553	Reby, D., McComb, K., 2003. Anatomical constraints generate honesty: acoustic cues to age and weight
554	in the roars of red deer stags. Anim. Behav. 65, 519–530. https://doi.org/10.1006/anbe.2003.2078
555	Remnant, J.G., Tremlett, A., Huxley, J.N., Hudson, C.D., 2017. Clinician attitudes to pain and use of
556	analgesia in cattle: Where are we 10 years on? Vet. Rec. 181, 1–7.
557	https://doi.org/10.1136/vr.104428
558	Rørvang, M.V., Nielsen, B.L., Herskin, M.S., Jensen, M.B., 2018. Prepartum Maternal Behavior of
559	Domesticated Cattle: A Comparison with Managed, Feral, and Wild Ungulates. Front. Vet. Sci. 5.
560	https://doi.org/10.3389/fvets.2018.00045
561	R Core Team, 2020. R: A Language and Environment for Statistical Computing.
562	RStudio Team, 2020. RStudio: Integrated Development Environment for R.

Scherer, K.R., 1986. Vocal Affect Expression - a Review and a Model for Future Research. Psychol. Bull.
99, 143–165.

Sebe, F., Duboscq, J., Aubin, T., Ligout, S., Poindron, P., Sèbe, F., Duboscq, J., Aubin, T., Ligout, S.,

566 Poindron, P., 2010. Early vocal recognition of mother by lambs: contribution of low- and high-

- 567 frequency vocalizations. Anim. Behav. 79, 1055–1066.
- 568 https://doi.org/10.1016/j.anbehav.2010.01.021
- 569 Stěhulová, I., Lidfors, L., Špinka, M., 2008. Response of dairy cows and calves to early separation: Effect
- 570 of calf age and visual and auditory contact after separation. Appl. Anim. Behav. Sci. 110, 144–165.
- 571 https://doi.org/10.1016/j.applanim.2007.03.028

572	Stoeger, A.S., Baotic, A., Li, D., Charlton, B.D., 2012. Acoustic Features Indicate Arousal in Infant Giant
573	Panda Vocalisations. Ethology 118, 896–905. https://doi.org/10.1111/j.1439-0310.2012.02080.x
574	Stoeger, A.S., Charlton, B.D., Kratochvil, H., Fitch, W.T., Stoeger, A.S., Charlton, B.D., 2011. Vocal cues
575	indicate level of arousal in infant African elephant roars. Acoust. Soc. Am. 130, 1700–1710.
576	https://doi.org/10.1121/1.3605538
577	Tallet, C., Linhart, P., Policht, R., Hammerschmidt, K., Šimeček, P., Kratinova, P., Špinka, M., 2013.
578	Encoding of Situations in the Vocal Repertoire of Piglets (Sus scrofa): A Comparison of Discrete and
579	Graded Classifications. PLoS One 8. https://doi.org/10.1371/journal.pone.0071841
580	Taylor, A.M., Reby, D., 2010. The contribution of source-filter theory to mammal vocal communication
581	research. J. Zool. 280, 221–236. https://doi.org/10.1111/j.1469-7998.2009.00661.x
582	Taylor, A.M., Reby, D., Mccomb, K., 2009. Context-Related Variation in the Vocal Growling Behaviour of
583	the Domestic Dog (Canis familiaris). Ethology 115, 905–915. https://doi.org/10.1111/j.1439-
584	0310.2009.01681.x
585	Titze, I.R., 1994. Principles of voice production. Prentice-Hall Inc.
586	Watts, J.M., Stookey, J.M., 2000. Vocal behaviour in cattle: The animal's commentary on its biological
587	processes and welfare. Appl. Anim. Behav. Sci. 67, 15–33. https://doi.org/10.1016/S0168-
588	1591(99)00108-2
589	Watts, J.M., Stookey, J.M., 1999. Effects of restraint and branding on rates and acoustic parameters of
590	vocalization in beef cattle. Appl. Anim. Behav. Sci. 62, 125–135. https://doi.org/10.1016/S0168-

592 Weary, D.M., Chua, B., 2000. Effects of early separation on the dairy cow and calf 1. Separation at 6 h, 1

591

1591(98)00222-6

- 593 day and 4 days after birth. Appl. Anim. Behav. Sci. 69, 177–188. https://doi.org/10.1016/S0168594 1591(00)00128-3
- 595 Yeon, S.C., Jeon, J.H., Houpt, K.A., Chang, H.H., Lee, H.C., Lee, H.J., 2006. Acoustic features of
- 596 vocalizations of Korean native cows (Bos taurus coreanea) in two different conditions. Appl. Anim.
- 597 Behav. Sci. 101, 1–9. https://doi.org/10.1016/j.applanim.2006.01.013
- 598 Yin, S., McCowan, B., 2004. Barking in domestic dogs: Context specificity and individual identification.
- 599 Anim. Behav. 68, 343–355. https://doi.org/10.1016/j.anbehav.2003.07.016