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1. Introduction 

Composed of different neural layers, the retina converts light inputs into electrical signals, 

which are then transmitted to the brain. Photoreceptors (PRs), cones and rods, are the 

primary cells involved in light detection. Rods are sensitive to dim light whereas cones detect 

specific wavelengths allowing color vision. The electrical signal generated by PRs is further 

processed by other neurons (bipolar, amacrine, horizontal cells) and transmitted to the brain 

through ganglion cells. A number of retinal diseases, such as Age-related Macular 

Degeneration and Retinitis Pigmentosa, leads to the degeneration of PRs which ultimately 

results in vision impairment and in some cases in blindness. Although highly informative, 

animal models are not able to recapitulate all the pathological hallmarks of these pathologies 

and human diseased tissues are difficult to obtain. Development of differentiation protocols 

to generate retinal cells from human pluripotent stem cells (hPSCs) has considerably 

broaden the access to human cellular models of retinal degeneration. They offer renewed 

opportunities to better understand the underlying pathological mechanisms and develop new 

therapeutics. In addition, retinal tissues derived from healthy hPSCs also represent a 

promising source for regenerative medicine. This review will discuss these different aspects of 

the use of hPSCs to understand and treat retinal disorders. 

2. Retinal degenerative diseases 

2.1. Age-related Macular Degeneration 

After uncorrected refractive errors and cataracts, AMD is the third leading cause of moderate 

or severe vision loss worldwide [1]. Projections for 2040 are alarming with an estimated 

number of people affected with all stages of the disease of 288 million [2]. Interestingly, the 

prevalence of all stages of AMD is higher (12.3%) in people with European ancestry than Asian 

(7.4%) or African (7.5%) populations [2]. The geographically isolated population of Timor-Leste 

has an even lower prevalence for AMD - less than 0.5% - suggesting the influence of genetic 

context on disease appearance [3]. AMD is classified according to the stage of the disease 

based on ophthalmic examinations. Early or intermediate AMD is characterized by the 

presence in the macula of medium drusen (diameter between 63 and 125µm; early AMD) or 

large drusen (larger than 125µm) and changes in retinal pigmentation (intermediate AMD) [4]. 

Late AMD is defined by the presence of macular choroidal neovascularisation (wet AMD, 

corresponding to 10-20% of cases) or macular atrophy (dry AMD, corresponding to 80-90% of 
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cases) [4, 5]. Early AMD is usually asymptomatic [4]. Initial symptoms are distortion of central 

vision progressing towards scotomas in the central visual field. In wet AMD, new vessels 

develop in the macular area and are susceptible to leak and generate hemorrhages, damaging 

the macula [6]. Vision loss can be fast and severe in this context. Vision loss in dry AMD is 

more progressive with the degeneration of the retinal pigment epithelium (RPE) and 

subsequent atrophy of macular retina. 

AMD is caused by a combination of genetic and environmental factors. The major risk factor 

is age. The prevalence of all stages of AMD is of 3.5% between the ages of 55 and 59 years but 

rises to 27.3% after 85 years in the European population [7]. Smoking is a critical modifiable 

risk factor in the development of late AMD [8]. Other environmental risks include sunlight 

exposition, diet, alcohol and hypertension. Among the genes associated with increased risk 

for AMD, complement factor H (CFH) and age-related maculopathy susceptibility 2/ high-

temperature requirement factor A1 (ARMS2/HTRA1) polymorphisms are to date the most 

important [6]. Several mechanisms are suggested to play a role in AMD such as inflammation, 

defective regulation of the complement system, oxidative stress, metabolic dysfunctions, 

accumulation of lipids and extracellular matrix alterations [6, 9, 10]. However, the exact 

pathological mechanisms are still not fully understood. Accumulation of proteins and lipids in 

the Bruch’s membrane is suspected to promote inflammation and affect the circulation of 

nutrients and liquids, damaging the RPE. In addition, RPE degeneration in dry AMD may 

precipitate the secondary loss of PRs.  

No treatment is currently available for the dry form of AMD. The most effective clinical 

treatment for wet AMD patients is anti-VEGF therapy delivered at regular intervals to prevent 

worsening eyesight. Although response to therapy is not systematic, some patients experience 

a moderate improvement in visual acuity [5]. Patient compliance to treatment protocol could 

be one of the reasons for incomplete response as injections are frequent (once a month or 

every 2 months) and expensive. Diet supplementation with zinc and antioxidants in AMD 

patients has also been suggested to decrease the risk of progression to late AMD [11]. 

2.2. Retinitis Pigmentosa 

RP is a heterogeneous group of inherited retinal dystrophies, which affects 1.5 million of 

patients worldwide [12]. The inheritance of RP is autosomal-recessive in 50-60% of all cases 
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and linked to chromosome X in 5-15% of patients [13, 14]. Syndromic forms of RP account for 

20-30% of cases, including Usher’s and Bardet-Biedl syndromes (the most frequent ones) [14]. 

The ophthalmic eye fundus examination reveals the classical clinical triad of RP: bone spicule 

pigmentation, which may correspond to melanin deposits from RPE cells that have migrated 

into the retina, attenuation of retinal vessels that could be secondary to PR loss and waxy 

pallor of the optic nerve likely due to the presence of glial cells [12]. While clinical 

manifestations vary according to the underlying genetic defect, RP patients typically 

experience night blindness - which may not be noticed by patients at early stages - followed 

by a progressive reduction of the visual field (tunnel vision). RP patients also report seeing 

flashes of light (photopsia) which worsen under stress [15, 16]. Central vision is usually 

preserved until the later stages of the disease. The median age of symptom appearance is 29-

year old [17]. Of note, the age of onset as well as the clinical manifestation and progression of 

the disease vary depending on the mutated gene in addition to genetic background and 

environmental factors. Most patients with RP are legally blind by 40-year old due to severe 

visual field alterations [14].  

The primary cellular defect is localized in rods or, for about 5% of cases, in the RPE [18]. At 

advanced stages of the disease, optical coherence tomography shows that the ganglion cell 

layer and inner nuclear layer are relatively well preserved while the PR layer is completely 

depleted. However, a retinal remodeling occurs following the complete loss of PRs leading 

after decades of degeneration to rewiring, glial hypertrophy and global cell death [13]. This 

important aspect of the pathology suggests that the retinal circuitry does not degenerate 

immediately after loss of PRs. RP patients could thus be eligible to PR cell transplantation 

during a specific time window. To date, a vast number of disease-causing variants in more 

than 80 genes for RP have been identified (https://sph.uth.edu/retnet/sum-dis.htm). Most of 

these genes encode proteins that play a role in the photo-transduction cascade, the visual 

cycle, ciliary structures and transport, RNA splicing as well as intracellular trafficking [12, 14]. 

However, disease-causing mutations are still unknown in 30% of non-syndromic and 50% of 

autosomal-dominant RP patients [12, 14]. 

Few therapeutic options are available to treat RP. The only approved treatment is a gene 

therapy for patients with RPE65 gene mutations (2% of RP cases, Luxturna®) [19]. This therapy 

was shown to be safe and induced an improvement in navigational abilities and light 
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sensitivity. The effect was found maximal at 30-day post-injection and stable for at least 4 

years [20]. Vitamin A palmitate as well as docosahexaenoic acid (DHA, an omega-3 fatty acid 

present in oily fish) supplementations are recommended by some clinicians. While still 

debated, a few studies reported that such nutritional treatments might delay vision 

degradation [14, 21, 22]. Approximately 40-50% of individuals with RP develop cataracts that 

further impair their visual acuity. These patients can benefit from cataract surgery with 

significant visual gain [23, 24]. Finally, night vision devices (ie. specific goggles) that amplify 

light can be used by patients to improve their mobility [25, 26]. 

3. Generation of retinal cells from human pluripotent stem cells 

The development of physiologically relevant cellular models is a key step towards modeling 

the complexity of retinal diseases. Indeed, it is essential to accurately capture the biological 

complexity of the retina in vitro to better understand the underlying pathological 

mechanisms and ultimately find new therapeutics. The different cell sources to generate 

such models include early postnatal PR precursors from animal models, human fetal and adult 

primary cells or tissues, and more recently hPSCs - including both human embryonic stem cells 

(hESCs) and human induced pluripotent stem cells (hiPSCs) (reviewed in [19]). hPSCs have 

gained great interest from the research community owing to their unlimited self-renewal 

potential and their ability to differentiate into any cell type of the adult body. First derived in 

1998, hESCs are isolated from the inner cell mass of human blastocyst-stage embryos [27]. 

Sharing the same key properties, hiPSCs are adult cells that have been genetically 

reprogrammed to an embryonic stem cell-like state by the forced expression of a cocktail of 

pluripotency factors [28]. Besides their use in disease modeling studies, they also represent a 

renewable cell source that enable the derivation of large numbers of functional retinal cells 

for regenerative medicine. 

3.1. Eye development 

Substantial progress has been made over the last 15 years in the development of robust 

protocols to differentiate both hESCs and hiPSCs into retinal cells by mimicking in vitro the 

developmental steps occurring in the human embryo. The vertebrate retina is derived from 

the neuroectoderm, initially through the concomitant inhibition of Activin/Nodal, bone 

morphogenetic protein (BMP) and Wnt/β-catenin signaling [29-31]. Shortly after gastrulation, 

the anterior neural plate is specified into the eye field in which cells co-express a unique 
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combination of transcription factors called the eye-field transcription factors (EFTFs). Then the 

eye field evaginates from the diencephalon to form bilateral optic vesicles containing retinal 

stem cells that will give rise to the optic stalk, RPE and neural retina (NR) [32]. These retinal 

stem cells commit towards a specific cell lineage after invagination into the bi-layered optic 

cup depending on their initial regionalization: while the NR originates from the inner layer, 

the outer layer gives rise to the RPE [33]. Within the naive NR, retinal progenitor cells (RPCs) 

give rise in a temporal and conserved order to the different retinal cell types, including PR 

precursors, to form the mature retina with its characteristic laminar cytoarchitecture. 

This differentiation process is tightly regulated by exogenous signals coming from adjacent 

tissues and cell-intrinsic factors, such as Wnt, fibroblast growth factor (FGF), BMP, Notch, 

sonic hedgehog (SHH), retinoic acid (RA) and activin A signalings [33]. Levering on 

developmental studies, the overall strategy is to expose hPSCs to signaling molecules in a time 

and dose dependent manner along the differentiation process to generate the retinal cell type 

of interest. For an in-depth description of differentiation protocols, we refer the reader to 

excellent review articles [34-36].  

3.2. Derivation of RPE cells 

Both hESCs and hiPSCs have the potency to differentiate into RPE cells that are equally 

effective in protecting the retina from degeneration following transplantation into the 

subretinal space of a RP rodent model [37]. A summary of selected differentiation protocols 

to generate RPE cells from hPSCs is listed in Table S1.  

Initial studies demonstrated the spontaneous differentiation potential of hPSCs into RPE cells 

upon FGF2 withdrawal from the culture medium [38-41]. After a few weeks in culture, 

pigmented areas begin to emerge and cells acquire a distinctive cobblestone morphology. 

These pigmented patches are manually isolated and amplified to obtain a pure population of 

RPE cells (Figure 1). However, such “spontaneous” protocol is highly operator-dependent, 

time-consuming (2-3 months) and does not allow for the production of large cell banks. To 

overcome these limitations, studies have focused on directing RPE differentiation by adding 

signaling molecules that mimic developmental cues known to be important in RPE 

development and specification at critical time points. 
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Figure 1: Schematic representation of spontaneous and directed differentiation methods to 

obtain RPE cells from hPSCs based on selected studies. 

Early work by the group of Masayo Takahashi reported that hPSCs exposed to Wnt and Nodal 

antagonists using a SFEB (serum-free floating culture of embryoid body–like aggregates) 

system gave rise to 30-35% of cells positive for the RPE characteristic transcription factors 

PAX6 and MITF after 6 weeks [42, 43]. Two other studies showed that addition of nicotinamide 

and Activin A, a member of the TGF-β superfamily, promoted the differentiation of hPSCs to 

neural and subsequently to RPE fate with 80% of pigmented cells after 8 weeks in culture [44, 

45]. Based on previous research [44, 46, 47], Buchholz et al. further combined use of retinal 

inducing factors (Noggin, DKK1, insulin-like growth factor-1 (IGF-1), FGF2) and known RPE 

differentiation factors (nicotinamide, Activin A, FGFR/VEGFR inhibitor SU5402, and vasoactive 
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intestinal peptide - VIP) [48]. Addition of these factors at specific times led to the conversion 

of approximately 80% of the cells to an RPE phenotype in only 14 days, as evidenced by the 

expression of pigmentation marker PMEL17 [48]. Although these directed protocols 

considerably increased the yield of RPE cells from hPSCs compared to that obtained with the 

spontaneous method, mechanical enrichment of pigmented cells during the course of the 

differentiation was still required to obtain a homogenous RPE cell population. The same team 

improved the protocol by addition of CHIR99021, an activator of the Wnt canonical pathway. 

It improved significantly the efficiency of RPE derivation from hESCs to 97%, bypassing the 

necessity of manual enrichment [49]. However, it is important to note that this protocol did 

not significantly reduce the differentiation duration from that of the “spontaneous” method 

as RPE cells were banked after more than 100 days in culture [49]. More recently, our group 

developed a simplified protocol in which hESCs were treated with nicotinamide, Activin A and 

CHIR99021 in a sequential manner to obtain highly enriched and functional RPE cells within 

84 days [50]. 

As a step toward clinical use in regenerative medicine, differentiation protocols were 

optimized to obtain RPE cells: i) in conditions using a good manufacturing practice (GMP)-

compliant production process and ii) in large numbers to treat the millions of patients affected 

by RPE-associated retinal degeneration (Figure 1). Some studies addressed these bottlenecks 

by developing xeno-free/ feeder-free protocols [51-55]. The development of directed 

differentiation protocols has fostered the implementation of automated systems to upscale 

the production process and increase its robustness. The use of a modular platform was 

reported for the long-term maintenance and passaging of hiPSCs and suggested the 

potential to differentiate cells to retinal lineages, including RPE [56]. Matsumoto et al. 

further demonstrated the feasibility of the automated culture of hiPSC-derived RPE cell 

sheets in a closed automated cell-culture system, removing the need for operational skills 

and facilities [57]. We recently achieved a fully automated process allowing the large-scale 

production of RPE cells from hPSCs, considerably upscaling the production capacity as more 

than 16 billion of mature and functional RPE cells could now be produced within 12 weeks 

with only one round of production [50].  

3.3. Derivation of photoreceptors 
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A summary of selected differentiation protocols to generate PRs from hPSCs is presented in 

Table S2.  

Pioneering work from the group of Thomas Reh demonstrated the capacity of hESCs to 

differentiate in vitro into PRs (Figure 2) [47]. Using a combination of the eye field inducer IGF-

1, BMP signaling inhibitor Noggin and Wnt/β-catenin signaling pathway antagonist Dkk1, they 

were able to direct hESCs into 80% of PAX6+/VSX2+ retinal progenitors after 3 weeks in culture 

[31]. However, differentiation of these RPCs into PRs was infrequent with only 12% of CRX-

positive PR precursors and less than 0.01% of S-Opsin- or Rhodopsin-positive mature PRs [31]. 

In two other studies, Osakada et al. cultured hPSCs as embryoid bodies using a SFEB system in 

presence of Wnt and Nodal antagonists for 20 days before switching them to adherent culture 

(3D/2D protocol) with the addition of factors known to be involved in rod genesis (RA, taurine, 

FGF2, Shh) [42, 58]. Twenty percent of CRX-positive cells were obtained, giving rise later to 

approximately 8.5% of Rhodopsin-positive mature PRs by day 200 [42, 58]. It was also the first 

demonstration that inhibition of Notch signaling in vitro with the γ-secretase inhibitor DAPT 

induced the cell cycle exit of proliferating RPCs and a concomitant increase in early born 

ganglion cells and CRX-positive PR precursors [42]. Using a similar 3D/2D approach, Meyer and 

collaborators showed that hPSCs could differentiate into early and late PR phenotypes without 

the need of exogenous factors in a sequence and time course highly reminiscent of normal 

retinal development [59]. This protocol was further refined into a 3D/2D/3D method to isolate 

neural rosette-containing cell colonies maintained as cellular aggregates in suspension [60]. 

Using this technique, a subpopulation of aggregates developed optic vesicle characteristics 

and differentiated toward the PR lineage with 56% of CRX-positive cells by day 80 [60]. 

Although these studies successfully recapitulated the main steps of retinal development in 

vitro, key structural and functional features of PRs, i.e. the presence of outer-segment discs 

and light sensitivity, were still lacking. 

Considerable progress came with the first production of self-organized bi-layered optic cup 

structures from hESCs that then differentiated into a multilayered neural retina containing 

retinal cells, including cones and rods (Figure 2) [61]. Importantly, this study was the first to 

report the formation of PRs with reasonable development of inner segments and connecting 

cilia [61]. Based on the protocol developed by Meyer et al. [59, 60], the group of Valeria Canto-

Soler more recently demonstrated that hiPSCs could also self-organize into retinal cups that 
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generate a fully laminated 3D retinal tissue in presence of serum, RA and taurine [62]. 

Noteworthy, it was the first evidence that PRs reached an advanced stage of maturation in 

vitro as evidenced by some level of photosensitivity in a limited number of cells and the 

presence of a minority of PRs with outer-segment discs after 27 weeks of differentiation [62]. 

Although introduction of 3D organoid technology has dramatically improved the generation 

of mature PRs, current protocols are still hindered by variability issues. A recent study by 

Capowski et al. generated retinal organoids from 16 hPSC lines and monitored their 

appearance and structural organization over time in an attempt to develop a staging system 

to reduce inconsistencies in cultures [63]. Three consistent morphological stages of hPSC-

derived retinal organoid development were distinguished by light microscopy, each one 

corresponding to a specific cellular composition and lamination relative to the timeline of 

differentiation [63]. 

For future clinical use of hPSC-derived PRs, recent studies have focused on adapting these 

research-grade protocols to GMP-grade under feeder-free and xeno-free conditions [51, 52, 

64]. While functional RPE cells are currently derived from hESCs with high yield and purity 

using GMP-compliant differentiation protocols, challenges remain for PR production. This is 

notably due to extremely long culturing times required to obtain mature PRs in vitro (>100 

days), operator-dependent manual enrichment of neural retina / optic cup structures as well 

as heterogeneous cellular composition of organoids. Different selection strategies have been 

developed to enrich PRs from retinal cultures. A screen of human retinal samples and hPSC-

derived retinal organoids against a large panel of human monoclonal antibodies using a high 

throughput flow cytometry approach identified PR-specific cell surface markers [65]. Double 

negative CD29/SSEA-1 selection increased the enrichment of CRX and Recoverin positive cells 

from 16.5% to 61% from day 200 retinal organoid cultures [65]. In addition, a cone biomarker 

panel combining CD markers for positive cone selection (CD26, CD147, CD133) and negative 

selection of undesirable cells (SSEA-1) successfully enriched L/S-opsin cones from fetal retina 

and 17-18 week-old hESC-derived retinal samples to 30% and 50% respectively [66]. The group 

of Olivier Goureau also showed that CD73 targeting by magnetic-activated cell sorting 

(MACS), previously described for the enrichment of mouse PSC-derived PRs [67], was an 

effective strategy to isolate a transplantable population of PRs from hiPSC-derived retinal 

organoids at day 120 [68]. 
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Figure 2: Main protocols for the differentiation of hPSCs into PRs in vitro. 

4. Human pluripotent stem cells to model retinal degeneration 

4.1. Cellular models 

Disease modeling using hPSCs requires a precise experimental design in order to decipher 

the relevant pathological mechanism with minimal bias. Three parameters are key to define: 

(1) cell type(s) affected, (2) genetic and/or environmental nature of the disease and (3) 

appropriate controls.   

First, the retinal cell type that is affected should be defined according to the selected 

disease. If the degeneration/dysfunction is a secondary cause of another cell type, co-

cultures or complex assemblies such as organoids might be considered. Cultures of an 

isolated cell type helps to discriminate between molecular mechanisms that are cell 
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autonomous and those that are cell extrinsic. Therefore, these different approaches are 

complementary to capture the complexity of pathological mechanisms. The second aspect 

is related to the genetic nature of a disease. A causative gene (RP or other genetic disorders) 

are relatively easy to model. When susceptibility alleles are identified as suggested for AMD, 

the variability and inconsistency of the model could be difficult to predict. For this reason, 

appropriate controls should be defined early in experimental design. Pioneer studies used 

one hiPSC line to characterize a disease but this is not sufficient nowadays as troubles with 

reproducibility were frequently reported. Indeed, the genetic background of patient or 

control cell lines could interfere with the marker evaluated. Therefore, it is important to 

reproduce the experiments with other hPSC lines to capture the relevant phenotypes. In 

addition, CRISPR/Cas9 technology allows precise gene editing that could be used both to 

restore the corrected gene or protective allele in patient hPSCs or in the opposite case to 

generate the gene mutation or susceptibility allele in non-affected hPSCs. Such isogenic lines 

that neutralize the impact of different genetic backgrounds are powerful to isolate 

contribution of a gene mutation or an allele to a disease mechanism.  

4.1.1. Age-related macular degeneration 

As a multifactorial and late onset disease, AMD is by nature difficult to model. The genetic 

contribution to the disease is well established with CFH and ARMS2/HTRA1 variants being the 

most strongly associated [6]. In a recent genome-wide association study, 52 independent risk 

variants distributed across 34 loci were also identified [69]. However, their exact roles are still 

largely unknown. Thus, the global strategy is to evaluate the implication of the different risk 

alleles associated to AMD, focusing on the most affected cell type (ie. RPE cells). Thereafter, 

we will only focus on AMD models linked to CFH and ARMS2/HTRA1 variants. 

AMD hiPSC derived RPE (hiPSC-RPE) cells carrying the ARMS2/HTRA1 high-risk genotype did 

not present an obvious diseased phenotype but were found similar to 1-year old wildtype 

monkey RPE [70]. As lipofuscin fluorophore A2E accumulate with age in normal RPE cells, 

hiPSC-RPE cells were treated with A2E for 10 days. In that context, hiPSC-RPE cells from AMD 

patients homozygous for the high-risk haplotype exhibited a reduced protein level and activity 

of superoxide dismutase 2 (SOD2), suggesting a compromised antioxidant capacity [70]. This 

was confirmed following exposure to blue light in order to generate oxidative stress [70]. The 

same results were also obtained by an exposure to H2O2 [71]. In addition, this last study 
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identified a dysfunction of the NAD-dependent deacetylase sirtuin1 (SIRT1) and peroxisome 

proliferator activated receptor gamma coactivator 1-alpha (PGC-1α) pathway that is 

suggested to alter mitochondrial biogenesis and remodeling causing increased reactive 

oxygen species (ROS) production [71]. The group of Sally Temple further characterized the 

effect of the homozygous ARMS2/HTRA1 risk genotype and evidenced a significantly higher 

expression of complement and inflammatory factors similarly to what is observed in AMD 

patients [72, 73] (Figure 3). 

 

Figure 3: Current model of pathological mechanisms underlying AMD based on hiPSC-RPE cell 

studies. Red arrows indicate components that are modulated by the disease (increased or 

decreased function). P: phosphorylation; Ac: acetylation; RPE: retinal pigment epithelium; 

POS: photoreceptor outer segment; ROS: reactive oxygen species. 
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hiPSC-RPE cells carrying the high-risk Y402H polymorphism in CFH gene did not exhibit obvious 

morphological or functional defects (RPE markers, secretion of PEDF, transepithelial 

resistance, phagocytosis potential). A deeper characterization revealed signs reminiscent of 

AMD, including increased inflammation, cellular stress, accumulation of lipid droplets and 

deposition of drusen-like deposits [74] (Figure 3). SOD2 gene expression level was, 

interestingly, also reduced in hiPSC-RPE cells carrying the high risk allele. When CFH gene is 

overexpressed, hiPSC-RPE cells exposed to oxidized lipids are protected from cell death 

mediated by a caspase dependent apoptosis process [75]. Taken together, these results 

suggest that the CFH gene function in response to oxidative stress is altered by the high-risk 

Y402H polymorphism. 

4.1.2. Retinitis Pigmentosa 

hPSC technology has also been used over the last decade as a model platform to study RP, the 

most common form of hereditary retinal disorder (Table 1). In the first report of an in vitro 

disease model, the group of Masayo Takahashi derived hiPSCs from RP patients carrying 

known causative mutations in the RP1 axonemal microtubule associated protein (RP1), Pim-1 

kinase associated protein (RP9), peripherin 2 (PRPH2) or rhodopsin (RHO) gene [76, 77]. As 

observed in RP, patient-derived rod PRs from all mutations selectively degenerated in vitro. 

These cells expressed markers for endoplasmic reticulum stress (RHO mutation) and oxidative 

stress (RP9 mutation) [76, 77]. hiPSCs derived from a RP patient harboring a different RHO 

mutation (E181K) in another study reproduced these findings [78]. This pathological 

phenotype was reverted to normal in PRs after correction of the expression of RHO using a 

helper-dependent adenoviral vector [78]. However, it should be noted that the gene 

correction was performed in hiPSCs, not in derived retinal cells. It is unclear whether this 

rescue could be also obtained in retinal cells and thus be relevant to gene therapy in RP 

patients. 

Disease Mutation Cell type Phenotype Reference 

XLRP RPGR 

 3D retinal 

organoids           

hiPSC-RPE 

Mutations perturb RPGR/gelsolin interaction, 

compromising gelsolin activation (gelsolin 

controls actin disassembly in  connecting 

cilium, thereby facilitating rhodopsin transport 

to POS).                                                                                                                           

Mutations affect cilia length and PR number. 

Megaw et al. 

2017 [79]              

Deng et al. 

2018 [80] 
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XLRP RP2 hiPSC-RPE 

Complete lack of RP2 protein. IFT20 

localization, Golgi cohesion and Gb1 trafficking 

altered. 

Schwarz et 

al. 2015 [81] 

XLRP RP2 
 3D retinal 

organoids  

Complete lack of RP2 protein. Reduced levels 

of Kif7 at cilia tips (involved in stabilizing cilia 

tips). 

Schwarz et 

al. 2017 [82] 

RP RP1 
Rod 

photoreceptors 

Decreased number of patient-derived rods in 

vitro. 

Jin et al. 

2011 [76] 

RP RP9 
Rod 

photoreceptors 

Decreased number of patient-derived rods in 

vitro. Markers for oxidation or endoplasmic 

reticulum stress. Oxidation is involved in the 

photoreceptor degeneration. 

Jin et al. 

2011 [76] 

RP PRPH2 
Rod 

photoreceptors 

Decreased number of patient-derived rods in 

vitro.  

Jin et al. 

2011 [76] 

RP RHO 

Rod 

photoreceptors        

hiPSC-RPE 

Decreased number of patient-derived rods in 

vitro. Markers for oxidation or endoplasmic 

reticulum stress. Mislocalization of RHO in 

cytoplasm. 

Jin et al. 

2011 [76]; 

Jin et al. 

2012 [77]   ;   

Yoshida et 

al. 2014 [78] 

RP MAK 
Retinal 

progenitor cells 

MAK is expressed in the inner segments, cell 

bodies, and axons of photoreceptors. Loss of 

retina-specific isoform in mutated cells. 

Tucker et al. 

2011 [83] 

RP USH2A 

 3D retinal 

organoids              

hiPSC-RPE 

Upregulation of GRP78 and GRP94. Protein 

misfolding and ER stress.                                                                                  

Organoids :Morphological defects, reduced 

laminin, defect in retinalprogenitor cell 

development, layer formation                                                                                                 

RPE: abnormal morphology, lack of pigment 

foci, and reduced expression of RPE markers 

Tucker et al. 

2013 [84]                                      

Guo et al. 

2019 [85] 

RP TRNT1 
 3D retinal 

organoids  

Autophagy defect. Accumulation of LC3-II. 

Elevated level of oxydative stress. 

Sharma et 

al. 2017 [86] 

RP MFRP hiPSC-RPE 
Disorganized actin, loss of RPE cellular 

morphology and apical microvilli. 

Li et al. 2014 

[87] 

RP MERTK hiPSC-RPE Phagocytosis defects. 
Ramsden et 

al. 2017 [88] 

RP PRPF31 

 3D retinal 

organoids and 

hiPSC-RPE 

RPE: disrupted epithelium (polarity, TER) 

Phagocytosis and cilia defects                                                                   

PR: cilia defects, progressive degeneration and 

cellular stress                                                                                                              

RPE defects restored by AAV-PRPF31 gen 

augmentation 

Buskin et al. 

2018 [89]                     

Brydon et al. 

2019  [90] 

RP PRPF8 hiPSC-RPE 
Near normal phenotype, no difference 

regarding phagocytosis  

Foltz et al. 

2018 [91] 

RP NRL 
 3D retinal 

organoids  

Retinal organoids with S-opsin dominant PR 

population 

Kallman et 

al. 2020 [92] 

late 

onset 

RP 

PDE6B 
 3D retinal 

organoids  

At D230 modified expression of genes 

regulating cGMP hydrolysis leading to elevated 

cGMP levels in patient cells. 

Gao et al. 

2020 [93] 
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Table 1: hiPSC based models of RP and associated characteristic phenotypes.  

In an innovative approach, the exome sequencing of an individual with sporadic RP led to the 

identification of a homozygous Alu insertion in exon 9 of male germ cell-associated kinase 

(MAK), a protein normally expressed in the inner segments, cell bodies, and axons of rods and 

cones [83]. hiPSCs were then generated from a RP patient homozygous for the Alu insertion 

and a non-MAK-associated RP patient as control. Retinal cells derived from the hiPSCs of the 

RP patient with the MAK Alu insertion presented a loss of a tissue-specific MAK splice variant 

normally found in retinal precursors [83]. The same group later used a similar strategy to 

identify disease-causing USH2A mutations in an adult patient with autosomal recessive RP 

[84]. USH2A mutations were associated to an upregulation of GRP78 and GRP94 indicative of 

protein misfolding and subsequent ER stress in hiPSC-derived PR precursors [84]. When 

grafted in mice’s subretinal space, these patient’s cells were able to develop and mature as 

PRs. This suggests that the mutation may not interfere with the normal development of the 

retina but rather with the survival of PRs later in life. Such patients may therefore be amenable 

to preventive therapeutic strategies before the onset of degeneration. TRNT1, a CCA-adding 

enzyme which belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family 

functions by adding CCA to the 3′ end of all tRNA precursors. A mutation in this gene was 

expected to cause protein misfolding and ER stress. However, it was not the case in hiPSC-

derived retinal organoids from RP patients with mutations in TRNT1 [86]. The cells rather 

exhibited a defect in autophagy as evidenced by an accumulation of the microtubule-

associated protein LC3-II and elevated levels of oxidative stress [86]. 

Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) and RP2 gene account 

respectively for 70–90% and 10-20% of X-linked RP (XLRP) leading to rapid vision loss in boys 

and young men [94-96]. Using a 3D retinal differentiation protocol, Megaw et al. generated 

PRs from hiPSCs carrying a RPGR mutation to investigate its role in PR maintenance and its 

molecular pathogenesis mechanisms [79]. This group identified an increased actin 

polymerization in the PR connecting cilia, resulting in rhodopsin mislocalisation to the inner 

segment and ultimately in cell stress and degeneration [79]. CRISPR/Cas9-mediated hiPSC 

gene editing correction of the mutation rescued both PR structure and electrophysiological 

properties in retinal organoids [80]. Mutations in the RP2 gene is the second most common 

cause of XLRP. In accordance with early studies hinting at the central role of RP2 in vesicle 
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trafficking and cilia function, Schwarz et al. characterized the phenotype of hiPSC-RPE cells 

from an RP2 patient that lost the RP2 protein expression. These cells displayed mislocalization 

of the intraflagellar transport protein IFT20 and a disrupted Golgi cohesion [81]. They later 

showed in hiPSC-derived 3D optic cups that the RP2 protein, along with the small GTPase 

ARL3, were key regulators of the trafficking of ciliary tip kinesins [82]. Interestingly, the use of 

translational read-through inducing drugs caused an increase in functional RP2 protein levels, 

reversing the observed disease phenotypes in hiPSC derived retinal cells [81, 82]. 

While the primary cellular defect in RP patients is in most cases localized in PRs, abnormalities 

in the RPE are also reported in about 5% of cases [18]. For instance, mutations in Membrane 

Frizzled-related Protein (MFRP), a RPE-specific type II transmembrane protein similar to WNT-

binding frizzled proteins, cause autosomal recessive RP. To investigate disease mechanisms, 

hiPSC-RPE cells were derived from two patients with MFRP mutations. These cells had altered 

actin polymerization, abnormal morphology with less pigments, mislocalized pigment 

distribution, as well as loss of clear cellular boundaries and cell-to-cell contacts [87]. 

Furthermore, reintroducing normal MFRP expression with AAV vector therapy directly in 

hiPSC-RPE cells reversed the pathological phenotype [87]. This result suggests that gene 

therapy could be used to correct disease-causing mutations in RPE cells. 

One of the most important functions of RPE cells is their ability to phagocyte shed PR outer 

segments (POS), a process vital for proper retinal function. Indeed, defects in RPE phagocytosis 

lead to an accumulation of cellular debris in the subretinal space ultimately resulting in 

progressive degeneration of PRs, as seen in the RCS rat, a widely used model for recessively 

inherited retinal degeneration [97]. Individuals with mutations in MER receptor tyrosine 

kinase (MERTK), the human orthologue of the RCS rat retinal dystrophy gene, are affected 

with severe and progressive RP [98]. MERTK-signaling in the retinal pigment epithelium was 

later shown to be essential for efficient phagocytosis of POS by RPE cells [99]. In accordance 

with these observations, hiPSC-RPE cells from individuals harboring mutations in the MERTK 

gene were unable to mediate the engulfment of POS [88, 100]. The use of translational read-

through inducing drugs were able to restore MERTK expression and phagocytosis function 

[88]. 

4.2. Screening strategies for drug discovery 
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Besides enabling in-depth mechanistic studies of disease phenotypes in vitro, the 

development of robust differentiation protocols of hPSCs into retinal cells has proven 

instrumental in the development of high-throughput drug screening strategies to identify 

novel therapeutic agents. Drug discovery has relied for a long time on molecular target-based 

approaches, also called “reverse pharmacology” [101]. Such hypothesis-driven strategy relies 

on the identification of a molecular target whose activity or expression is directly associated 

to a disease pathogenesis. Compounds are then screened for their ability to bind and 

modulate the target. On the contrary, a phenotypic approach does not require prior 

understanding of the molecular mechanism of action but rather focuses on identifying 

compounds capable of reversing a phenotype thought to be representative of the disease. The 

contribution of phenotypic screening to the discovery of new first-in-class small molecule 

drugs approved by the US Food and Drug Administration (FDA) between 1999 and 2008 largely 

exceeded that of target-based approaches [102]. A critical efficiency variable of this approach 

is the use of physiologically relevant cellular models that accurately capture the biological 

complexity of the disease state in vitro [103]. With the advent of PSC technology, hPSC-

derived cellular models have gained great interest from the scientific community as an 

alternative platform for drug screening [104]. 

The group of Masayo Takahashi first evaluated the potential of candidate drugs in hiPSC-

derived PRs [76]. As rod PRs from RP patients underwent degeneration in vitro similarly to 

what is observed in vivo, they assessed effects of antioxidant vitamins α-tocopherol, ascorbic 

acid, and β-carotene on this cellular model. Interestingly, α-tocopherol treatment significantly 

increased the number of rhodopsin-positive cells harboring RP9 mutation, providing proof-of-

principle for drug screening based on the phenotype of hiPSC-derived retinal cells [45, 76]. 

Similarly, Yoshida et al. screened for agents able to protect rods from the accelerated cell loss 

induced by the rhodopsin mutation [78]. hiPSC-derived PRs were treated with molecules that 

could modify ER stress-related pathways. In such context, rhodopsin-related cell loss was 

suppressed, with a concomitant reduction of ER stress and apoptosis markers, after treatment 

with mTOR inhibition (rapamycin, PP242), AMP kinase activation (AICAR), apoptosis signal-

regulating kinase 1 [ASK1] inhibition (NQDI-1), or suppression of protein synthesis (salubrinal) 

[78]. A proof-of-principle example of a target-based screening approach was also shown in 

hiPSC-RPE cells from a RP patient with a MERTK nonsense mutation [88]. Two translational 
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read-through inducing drugs, G418 and PTC124 demonstrated their ability to restore MERTK 

gene expression and full-length protein level. In addition, PTC124 functionally rescued 12% of 

the phagocytic function of RP hiPSC-RPE cells [88]. 

hPSC-based models of AMD were also successful in identifying disease-modulating 

compounds. Following the differentiation of AMD hiPSC into RPE cells, Chang et al. found that 

these cells displayed an abnormal accumulation of ROS. Therefore, to attenuate oxidative 

damage, they screened compounds to find an effective scavenger of ROS [105]. Among several 

dietary supplements for retinal protection and natural antioxidant compounds, the team 

demonstrated that curcumin effectively protected AMD hiPSC-RPE cells from H2O2-induced 

cell death through upregulation of several oxidative stress regulatory proteins and significant 

reduction of ROS production [105]. More recently, the group of Sally Temple used a panel of 

AMD biomarkers combined with transcriptome analysis to demonstrate that nicotinamide 

treatment improved AMD-related phenotypes. They suggested that this effect was mediated 

by the inhibition of the production of drusen proteins and VEGF, as well as by decreasing 

inflammatory and complement factors [72]. Recent machine learning approaches were 

developed to predict RPE cell functionality (transepithelial resistance, polarized VEGF 

secretion) [106]. Broaden use of deep neural networks applied to drug screening would be 

a potent alternative to identify new compounds. 

Bruch’s membrane (BM), the extracellular matrix in which RPE cells are attached plays a 

critical function in AMD progression. Therefore, several strategies were developed to 

reproduce the interaction between BM and RPE cells [107]. In particular, non-enzymatic 

nitration of the extracellular matrix mimics the damages accumulated in aged BM [108]. BM 

is constantly attacked by matrix metalloproteinase and renewed by RPE and choroid [109]. 

In a similar manner, an immortalized RPE cell line (ARPE-19) was used in vitro to produce a 

BM-like extracellular matrix [108].  Alternatively, BM could be obtained from aged human 

cadavers [110]. First examples of AMD modeling demonstrated that AMD-like extracellular 

matrix perturbed functions of normal hiPSC-RPE cells (increased VEGF release, complement 

activation) [108]. Moreover, AMD hiPSC-RPE cells had reduced ability to attach and survive 

on nitrite modified extracellular matrix [111]. While not yet implemented in drug screening, 

future studies should take into account RPE matrix modifications on disease modeling as 

BM could affect both normal and AMD RPE cells. 
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Although it is now possible to synthesize and test increasingly large compound libraries, 

theoretically increasing the probability of identifying novel lead compounds, more than 85% 

of drug development programs across all indications fail to progress from phase I clinical trials 

to approval [112]. This gap between lead compound identification and success in the clinic 

might be attributed, at least in part, to the fact that the vast majority of high-throughput 

screening strategies relies on assays carried out on two-dimensional (2D) cell culture models 

that do not adequately recapitulate human pathophysiology. Indeed, while 2D models are well 

suited to study cell intrinsic deficits, they ultimately fail to recapitulate the cellular 

microenvironment, in particular endogenous signaling and cell-cell as well as cell-extracellular 

matrix interactions, limiting the extent to which diseases can be modeled. To overcome these 

shortcomings, three-dimensional (3D) culture systems that more closely resemble the native 

tissue architecture are becoming part of the drug discovery toolbox. At the forefront of this 

effort is the generation of retinal organoids that, as discussed before, more faithfully 

recapitulate some aspects of the histoarchitecture and cellular composition of the developing 

human retina both spatially and temporally. Although highly informative, it is important to 

note that retinal organoids might not necessarily be suited for RPE screens as they contain 

rather low number of RPE cells. 

While retinal organoids hold promising advantages over other culture systems, several 

critical technical limitations still exist. The first concern is that organoids contain immature 

cells corresponding to a fetal stage, where PRs develop a partially mature organization and 

neurons display an abnormal synaptic connectivity [113, 114]. The addition of an 

extracellular matrix might improve connectivity and responsiveness to light [114]. Another 

concern is the cell death that occurs in organoid centers. Cells self-organize into 3D 

structures, develop a well-organized initial lamination and correct temporal production of 

the diverse cell types. However, cells localized in the center of the organoid will disorganize 

and undergo progressively cell death: this is particularly the case for retinal ganglion cells 

and inner cell layers [63, 113]. Another hurdle to overcome is that existing retinal organoid 

protocols are not able to generate a specific area of the retina such as the fovea or the 

macula, which is obviously a limitation when addressing macular degenerative diseases. The 

last limitation is related to the absence of RPE adjacent to PR. Indeed the microenvironment 

provided by RPE cells (nutrients, matrix, debris phagocytosis…) might be important 
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particularly for the long culture duration required for PRs as suggested recently [115, 116]. 

Thus, organoids with current protocols are only a step forward that improve existing 2D 

models. 

Knowing these shortcomings, the use of retinal organoids for drug screening remains the 

object of intense research to overcome technical constraints. Indeed, incorporating 3D 

culture systems into miniaturized 384- or 1536-well formats in an automated and cost-

effective screening setup is still in infancy [117]. Two of the biggest challenges are the 

visualization of 3D structures with automated imaging systems as well as the general lack of 

robust quantitative technologies to analyze organoids on a large scale [117, 118]. To address 

this need, Vergara et al. developed a screening platform that enabled accurate quantification 

of fluorescent reporters in complex hiPSC-derived retinal organoids, allowing for quantitative 

analysis of dynamics of developmental processes and cellular physiological states [118]. Of 

importance, technologies and readout assays that have been developed and successfully 

implemented in low- to high-throughput strategies in other 3D systems, for example cancer-

like spheroids, could be adapted to retinal organoids [119, 120]. 

 

Adding another level of complexity, recent studies have focused on increasing the 

physiological relevance of hPSC-derived retinal models by juxtaposing a polarized RPE sheet 

to the retinal structure [115, 116]. Achberger et al. developed a microfluidic platform to create 

a complex multi-layer structure from hiPSCs that includes all cell types and layers present in 

retinal organoids in direct interplay with an RPE layer, recapitulating the complex in vivo 

anatomy of the human retina in vitro [115, 121]. Combining the two promising technologies, 

organoids and organ-on-a-chip, they provided a controllable vasculature-like perfusion to the 

3D culture system and recapitulated the interaction of mature PR segments with RPE cells. 

This microfluidic retina-on-a-chip was validated for compound screening and toxicological 

studies by exposing the system to two molecules whose pathological side effects on the retina 

had been previously described, the anti-malaria drug chloroquine and the antibiotic 

gentamicin [115, 121]. While much work remains before complex retina-like 3D in vitro 

systems become standards for toxicity and drug screenings, the rapid development in recent 

years of organoids, biomaterials and microfluidic technologies are bringing this prospect 

closer to realization. 
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5. Human pluripotent stem cells for cell therapy 

5.1. Strategies for tissue restoration  

Depending on the retinal degenerative disease and its specific stage of progression, different 

cell types are lost. In AMD, RPE cells stop performing their support functions and degenerate, 

which then triggers PR death. While the primary cellular defect in RP patients is mostly 

localized in PRs, dysfunctional RPE cells are also reported in about 5% of cases. Cell therapy 

products for AMP and RP patients should be designed accordingly to replace or supplement 

the remaining RPE cells and/or PRs (Figure 4). The other major aspect of tissue restoration is 

to determine precisely the injection site as the grafted material cannot cover the totality of 

the retina. Even if RP affects the peripheral retina first, the macula is ultimately damaged. 

Thus, in AMD and RP, the macula is the targeted site of implantation to maximize visual 

recovery as visual acuity mostly rely upon this area. 

 

 

Figure 4: Schematic representation of retinal degeneration in AMD/RP patients and associated 

cell therapy strategies. PR: photoreceptor; RPE: retinal pigment epithelium; AMD: Age-Related 

Macular Degeneration; RP: Retinitis Pigmentosa. 

5.1.1. RPE cell therapy 

RPE cells can either be delivered as a cell suspension or as an organized monolayer. The cell 

suspension formulation offers the advantage of a simplified logistic: cells are sent frozen to 

the hospital where they can be stored and thawed when desired. In addition, little 

manipulation is required before transplantation in the subretinal space and a simple syringe 
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is used for eye injection. Delivery of hPSC-RPE cells as a cell suspension into the subretinal 

space of the RCS rat model slowed down PR degeneration and preserved visual functions [41, 

44, 122-124]. The first hPSC-RPE clinical trials based on this strategy targeted AMD and 

Stargardt’s disease. The safety profiles were reassuring as no adverse event related to the use 

of hPSCs was observed [125, 126]. Moreover, preliminary signs of efficacy were reported in 

some patients for up to 4 years [127]. 

The second formulation approach is to deliver an already formed hPSC-RPE epithelium. This 

strategy drastically complicates the transport, storage and subretinal delivery. Indeed, as a 

living monolayer of cells, the graft can only be kept for a limited period of time in a controlled 

environment [128, 129]. A supporting scaffold made of polymers or of biological composition 

is usually needed in vitro during epithelial reformation of hPSC-RPE cells to ensure that cells 

can be removed from the culture dish [18, 130-133]. For implantation, specific devices have 

to be developed in order to deliver the hPSC-RPE sheet into the subretinal space [41, 129, 134-

136]. The rational leading to the development of this strategy is that RPE cells are functional 

only when organized as an epithelium with the secretion of cytokines [137]. In addition, the 

diseased environment with oxidative stress and altered Bruch’s membrane could limit in vivo 

epithelial reformation of hPSC-RPE cells grafted as a cell suspension. Indeed, hESC-RPE are 

more resistant to oxidative stress, which is present in AMD and RP, when organized as 

monolayers [138]. Compared to cell suspension injections, the viability of hPSC-RPE cells 

grafted in the subretinal space of Nude rat was higher when delivered as a sheet [131]. Our 

group, as well as others, demonstrated that hPSC-RPE sheets improved the therapeutic visual 

outcomes of RCS rats compared to the same cells injected as a cell suspension [41, 132]. 

Preliminary results of three human clinical trials using a RPE sheet formulation to treat AMD 

were published recently [133, 135, 139]. The graft monolayer was cultured over polyester 

[135], parylene [133] or without scaffold [139]. None of these studies reported a serious 

adverse event related to the grafted hPSC-RPE cells. While these studies were not designed to 

evaluate efficacy, first data are encouraging. In particular, Prof. Coffey and collaborators 

treated two severe exudative AMD patients with a hESC-RPE sheet on a polyester scaffold 

[135]. Such patients had lost dramatically their visual acuity due to retinal dysfunction [140]. 

If untreated, their retinas will degenerate and their vision permanently lost. Existing 

treatments consist of CNV removal and/or anti-VEGF medication that might improve the 
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visual outcomes but the incidence of RPE rips is more frequent (17%) than without 

treatment (10%) [141]. These RPE rips expose Bruch’s membrane and choroids and have a 

poor visual prognosis. The CNV removal itself does not improve visual acuity but reduce the 

risk of severe visual loss [142]. In Coffey’s study, the CNV might have been removed 

unintentionally [143] and the outcomes should be taken with caution (few treated patients, 

no control untreated eyes or anti-VEGF treated eyes for comparison). Nevertheless, one of 

the two patients improved enough his visual acuity that he was able to read again [135]. 

5.1.2. PR cell therapy 

For successful cell replacement, PR precursors need to integrate into the pre-existing neuronal 

network of the host retina and maturate with the formation of outer segments sensitive to 

light. Similarly, to RPE cells, they can either be delivered as a cell suspension or as an organized 

tissue. 

Cell suspension injection 

Pioneer studies provided evidence that stage-specific post-mitotic PR precursors from mice 

could integrate into the host outer nuclear layer (ONL - corresponding to the layer of PR 

nuclei), differentiate to acquire the morphological characteristics of mature PRs and improve 

moderately the vision in murine models of retinal degeneration [144-147]. Altogether, these 

data led researchers to the conclusion that migration and integration of donor PR cells was 

the underlying mechanism of some visual function recovery. 

Five independent back-to-back studies published starting from late 2016 called for a re-

evaluation of this paradigm [148-152].  Indeed, the vast majority of transplanted PR precursors 

did not integrate into the host retina but rather remained in the subretinal space where they 

exchanged cytoplasmic material with host PRs. Following GFP positive cell grafting into the 

subretinal space of mice ubiquitously expressing a red fluorescent protein, cells coexpressing 

both reporters were found in the ONL, which indicates exchange of material [148-150]. In 

complementary experiments, Nrl-GFP mice were injected with the thymidine analogue EdU 

during development to independently label the nucleus and cytoplasm [149, 152]. While the 

majority of GFP+ donor cells in the subretinal space was EdU+, no EdU labelling was observed 

in GFP+ cells located in the host ONL. Thus, donor and host cells only exchanged their 

cytoplasmic content, not their nuclei. Gender-mismatched transplants confirmed this 
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observation as the nuclei of GFP+ cells in the host ONL contained only the X- or Y-chromosome 

present in the host [148-150]. No polynucleated cells were observed. Such result suggests that 

GFP protein and/or mRNA was transmitted between donor/recipient cells. In light of these 

recent findings, we should reevaluate previous reports that had concluded that donors cells 

could integrate in the host ONL where they expressed donor proteins that were otherwise 

missing in the endogenous PRs of the recipient (such as rod α-Transducin, Peripherin-2 and 

Rhodopsin) [145, 146, 153, 154]. It can be inferred that these vision-related proteins may in 

fact be transferred from donor to host PRs through material exchange. 

The Cre/Lox system gave direct evidence for bidirectional exchange of intracellular material 

between donor and host cells [148-150]. Transplantation of donor PRs isolated from floxed 

reporter mice into PR-specific Cre mice showed expression of the reporter on transplanted 

cells in the subretinal space, revealing transfer of Cre-recombinase from host PRs to donor 

cells - and vice versa. Together these results demonstrate that while donor PR migration and 

integration do occur in rare events, the majority of transplanted cells engages in a process of 

material transfer through molecular mechanisms that remain to be determined. As a result, 

material transfer of functional proteins from murine donor cells to remaining host PRs after 

transplantation, rather than their structural integration, could explain partial recovery of 

visual function in retinal degeneration models. This material exchange appears to be specific 

between donor PR precursors/ host PRs. Indeed, no exchange was observed when GFP 

proteins were injected directly in the subretinal space or when GFP retinal progenitor cells as 

well as fibroblasts were transplanted [148]. This transfer is also limited to the ONL. Only one 

report, not confirmed by other studies, suggests that other cells types might be involved, 

including bipolars and Mullers [152]. The mechanisms involved in this material exchange are 

not elucidated but a vector is needed to mediate this intercellular communication. Several 

options are suggested including a fusion of donor/host plasma membranes or through the 

exchange of extracellular vesicles (like exosomes or microvesicles) [155]. This last 

proposition is attractive as such vesicles allow the transfer of mRNA / miRNA /proteins / 

lipids from one cell type to another with specificity [156]. 

It is important to note that all the above-mentioned studies were conducted with mouse 

donor cells. Recent transplantation experiments using human cells showed that material 

exchange was rather limited within the rodent eye as the vast majority of donor cells remained 
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in the subretinal space and only few cells integrated into the host ONL [68, 157, 158]. 

Therefore, cell suspension transplantation into primates are required to evaluate the level of 

material transfer, the integration of human donor cells into the ONL and their capacity to form 

outer segments in vivo. 

When reevaluating only studies where donor PRs were transplanted in completely 

degenerated rodent to avoid cytoplasmic exchanges, visual gain remains unclear. For 

example, Rd1 mice with a degenerated ONL and zero functionality were transplanted with 

a GFP photoreceptor cell suspension at 10-12 weeks in 2013 [159]. The authors suggested 

an anatomical connection between donor rod and host bipolar cells (rod specific synaptic 

proteins, GFP labelling). This was correlated with pupil light responses. However, when 

reevaluating these results in light of material transfer, only separate analysis of cone and 

rod ERG responses could address each contribution to functionality. Indeed, in this model, 

cones could remain, even nonfunctional for a long time and it is not excluded that cones 

could be functionally rescued following rod transplantation and elicit a pupil light response 

[155]. When grafted in degenerated Rd1 mice, hESC derived photoreceptors differentiated 

into cones and appeared to make connection with bipolar cells as evidenced by histology, 

but without evaluation of visual functions [160]. Thus, in atrophic mice, donor PRs are able 

to make connection with host neurons but without a clear demonstration of visual 

functionality. 

Retinal sheet transplantation 

An alternative to the injection of PRs as a cell suspension is the transplantation of retinal 

sheets. This approach, based on the dissection of retinal organoids in small sections, was 

evaluated after transplantation in rodents, primates and cats [161-163]. In such tissue, PRs 

are transplanted with other cell types [162-164] that might limit the connection with second 

order neurons of the recipient retina. In addition, implanted retinal sheets tend to form 

rosettes in vivo with outer segments inside, leading to a separation with RPE cells [161, 162, 

164].  

Despite these limitations, synaptic connections with host retinas and some visual recovery 

were observed in rodent models of retinal degeneration, as evidenced by multi-electrode 

array recordings and assessment of visual behavior [162, 164-166]. Similar results were 
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reported in primates (only one animal at 1.5 year post-surgery) by measuring visually-guided 

saccades [166]. While the advantage of this strategy is to engraft an already formed and 

organized layer of PRs, additional work is needed to limit the presence of neurons other than 

PRs in the graft and to improve the product delivery into the eye in order to reduce rosette 

formation. 

5.2. Future of retinal cell therapy  

Both preclinical and clinical studies hint that the use of hPSC derivatives is a safe and viable 

therapeutic option for the treatment of retinal degenerative diseases. However, a number 

of important questions must be addressed before this strategy can be part of the arsenal of 

clinical tools, among which the challenge of transplant immune rejection, the development of 

more complex retinal grafts through tissue engineering and the potential combined use of 

optogenetic tools. 

Graf rejection: immunological considerations 

The success of cell replacement therapies does not rely solely on the quality and maturation 

of the grafted cell product but also on our understanding of the host immunological responses 

following transplantation. As ocular immune privilege provides the eye with immune 

protection, it was initially postulated that transplanted grafts into the eye would largely be 

protected from immune rejection. However, it is difficult to address the graft immunogenicity 

as hPSC derived retinal cells are usually grafted in a xenogeneic context and therefore under 

heavy immune suppression [41, 68, 129, 163, 164, 167-169]. In addition, the diseased ocular 

microenvironment is likely to increase the risk of immune rejection. For example, progressive 

loss of RPE cells as well as alteration of Bruch’s membrane in AMD ultimately compromise the 

blood-retinal barrier, further degrading the immune privilege of the eye. Besides, the injection 

procedure itself could also favor transplant rejection by allowing immune cells to enter the 

retina. The result of this uncertainty is that the best immunosuppression strategy is still 

debated in ongoing and planned human clinical trials, with current strategies ranging from 

local to high systemic immunosuppression regimen [125, 133, 135]. 

One way to evaluate the immune response in an allogeneic context is to transplant monkey 

iPS-RPE allografts into the non-immune-suppressed subretinal space of monkeys. In that 

context, retinal tissue damage was observed in major histocompatibility complex (MHC)-
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mismatched monkeys but not in MHC-matched animals [170-172]. In vivo imaging and 

histological analysis evidenced a strong inflammatory response to MHC-mismatched allografts 

in a highly localized and aggressive manner by 4 days post-transplantation, continued through 

3 weeks, ultimately resulting in the rejection of iPS-RPE grafts [171, 172].  

Autologous hPSC-derived cell products could overcome the rejection risk. However, such 

strategy is not achievable for wide-scale clinical practice. An alternative is to establish hPSC 

banks from “super-donors” homozygous for conserved human leucocyte antigen (HLA) 

haplotypes that are representative of a specific population to enable HLA matching and 

therefore minimize the risk of allograft rejection [173]. Current estimates predict that a bank 

of hiPSCs from 100 to 150 highly selected donors would meet the needs of 50-90% of the 

recipient population in the UK [174, 175]. However, the cost of such banks remains high. 

Another promising strategy is the engineering of allogenic hPSCs to be hypoimmunogenic to 

both adaptive and innate immune responses using CRISPR-Cas9 gene editing. In a recent 

approach, hypoimmunogenic hESCs were generated after deletion of the highly polymorphic 

MHC class I and class II molecules and expression of immunomodulatory factors PD-L1, HLA-

G, and CD47 [176]. Accordingly, engineered vascular smooth muscle cells derived from these 

hESCs elicited significantly less T cell- and natural killer cell-mediated immune responses with 

minimal engulfment by macrophages [176]. CD47 overexpression and ablation of MHC class I 

and II were later found sufficient to generate hypoimmunogenic hiPSCs [177]. 

Cardiomyocytes, endothelial cells as well as smooth muscle cells derived from these cells 

reliably escaped immune rejection in MHC-mismatched allogenic recipients and survived long-

term without the use of immunosuppression [177]. Thus, the generation of hypoimmunogenic 

hPSCs holds the promise of universal cell grafts from a unique cell bank. 

Looking forward: scaffold-based tissue engineering 

The final formulation of the cell therapy product has major impact on correct integration and 

polarization of the grafted material in the host cellular environment [19]. Attempts at 

delivering single cell suspensions of hPSC-derived PRs and RPE cells have led to poor 

integration rate and limited visual recovery compared to their transplantation as cell sheets 

[41, 129, 148-150, 163-165]. Importantly, PRs transplanted as cell sheets from retinal 

organoids formed synaptic connections and developed polarized segments [163-165]. 
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However, the formation of rosettes was also observed, within which outer segments of PRs 

were separated from the support of endogenous RPE cells [163, 164]. Levering on the clinical 

success of RPE sheet transplants grown on biocompatible substrates, the addition of 

supportive scaffolds is currently explored to deliver PRs in a more physiologically structured 

way. This may improve implantation and facilitate proper apical-basal polarization of the graft 

[178-180]. Of importance, Jung et al. recently developed a 3D biodegradable micro-structured 

scaffold designed to capture PRs in cup-shaped wells that support the correct orientation of 

axonal processes [180]. While the long-term biocompatibility and integration of such system 

within the host retina remains to be investigated in vivo, this scaffold-based tissue engineering 

approach provides an innovative way forward for the development of more complex retinal 

grafts. In addition, the design of bio-engineering tissues composed of a combination of layers 

of organized RPE cells and PRs might be a suitable graft for advanced stage of AMD and RP 

where RPE cells are defective and PRs lost. 

Combining stem cell therapy and optogenetics 

Optogenetic uses light to control cells genetically modified to express an optogene encoding 

light-sensitive membrane proteins known as opsins [181]. The overall strategy is to convert 

surviving retinal neurons into light-sensitive cells and thereby functionally turn them into 

artificial PRs able to convert light into electrical signal to restore vision [182]. Importantly, the 

use of optogenes is a mutation-independent approach that can be used in a wide range of 

retinal degenerative conditions. Targeted electrical stimulation has been reported in dormant 

cone PRs lacking their light-sensitive outer segments [181, 183, 184] as well as in downstream 

retinal neurons such as RGCs [185-188] and bipolar cells [189-191]. These studies further 

hinted that the restored light information was transmitted to the visual cortex of formerly 

blind mice as they exhibited an improvement in visually guided behavioral responses. So far, 

two clinical trials based on this technology (targeting RGCs) are underway in patients affected 

with RP (clinicaltrials.gov identifiers: NCT03326336 and NCT02556736). However, rendering 

RGCs sensitive to light engender the loss of the sophisticated processing that occurs through 

the retina (from PRs to RGCs) while a small number of dormant cones remains. As significant 

progress is being made with the generation of more specific and improved opsins, the use of 

optogenetic tools could be broaden by combining stem cell therapy and optogenetics to 

counteract the difficulty to obtain functional PRs from hPSCs with light-sensitive outer 
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segments [36]. This was achieved recently in mice suggesting that this strategy may be viable 

[158]. 

6. Conclusion  

As highlighted in this review, hPSCs have become valuable tools to investigate the different 

stages of retinal degeneration and help tailor therapeutic strategies for the future. Before 

the complete loss of PRs, drug compounds identified through high throughput screening on 

RP/AMD hPSC models could be delivered to patients. When the degeneration is at an 

advanced stage, hPSCs differentiated into retinal cells could be transplanted into the eye to 

replace lost cells or to support remaining PRs through cytoplasmic exchanges. While 

significant roadblocks need to be addressed, the fast development of more physiologically 

relevant cellular models that accurately capture the biological complexity of the retina in vitro 

bring these expectations closer to reality. There is still a long way to go before first treatments 

reach patients but many phase 1/2 clinical trials have already started.  
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