Fulin Liu 
  
Wencan Zhu 
  
Hussein Shoaito 
  
Audrey Chissey 
  
Séverine A Degrelle 
  
Thierry Fournier 
email: thierry.fournier@parisdescartes.fr
  
Mining of combined human placental gene expression data across pregnancy, applied to PPAR signaling pathway

Keywords: WGCNA, Placenta, Bioinformatics, Microarray, Peroxisome Proliferator Activated Receptor (PPAR), Lipids

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The placenta acts as a bridge between the developing fetus and the mother, and plays an essential role in gas, water, and nutrient exchange. Placentation begins with the implantation of the blastocyst into the endometrium. The outer layer of the blastocyst, known as the trophoblast, forms the outer layer of the placenta. This trophoblast further differentiates into two subtypes: villous cytotrophoblast (inner layer), which forms via fusion of the syncytiotrophoblast (outer layer), and the extravillous cytotrophoblast, which is capable of invading the maternal endometrium [START_REF] Costa | Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions[END_REF]. The syncytiotrophoblast is renewed by fusion of the underlying villous cytotrophoblast throughout pregnancy [START_REF] Reiter | Peripheral reproductive organ health and melatonin: ready for prime time[END_REF].

Aberrations in placental structure and function can have an immediate effect on the outcome of pregnancy as well as a life-long influence on the health of the offspring [START_REF] Burton | What is the placenta?[END_REF]. For example, abnormal invasion of extravillous trophoblast results in dysfunction in uterine spiral artery remodeling, which is associated with the pregnancy-related disease pre-eclampsia [START_REF] Burton | The placenta: a multifaceted, transient organ[END_REF]. Even when placentation proceeds normally, it is an extremely intricate process based on complex interactions between growth, rates of blood flow, transporter protein expression, trans-membrane concentration gradients, and metabolic demands [START_REF] Burton | The placenta: a multifaceted, transient organ[END_REF]. To better understand this process and the ways in which it can go wrong, it is necessary to have an overview of the normal development of the human placenta throughout pregnancy, which can then serve as a baseline for investigations of abnormal placental structure and function in pregnancy-related diseases.

In microarray-based transcriptome studies of human placentas, it is common to group the objects of comparison by gestational age-e.g., first trimester, second trimester, or term-in order to highlight the underlying differences. For example, Soncin et al. [START_REF] Soncin | Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development[END_REF] conducted genome-wide expression profiling of human placental specimens from gestational weeks 4 to 16. Similarly, Winn et al. [START_REF] Winn | Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term[END_REF] performed expression profiling of the human placenta from gestational week 14 to term. These expression datasets were sequenced on Illumina and Affymetrix chips, respectively, and the original publications generally compared the gene expression profiles using moderated t statistics and adjusted P values. Here, we combined the datasets from these two studies to conduct a broad analysis of the dynamic changes in gene expression that occur over the course of normal placentation, ranging from 4 to 40 weeks. To do this, we applied simple linear regression models and utilized weighted correlation network analysis (WGCNA). Finally, we provide an example of the potential applications of this type of approach by focusing on the PPAR signaling pathway.

We examined the dynamic patterns of expression of the genes linked with this pathway, and compared these data with the results of lipid staining of placental tissues of different gestational ages.

Materials and Methods

Datasets

The microarray profiling datasets GSE100051 and GSE5999 were retrieved from the Genome Expression Omnibus (GEO) database (ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE100051/GSE5999). Dataset GSE100051 contained the gene expression profiles of human placenta samples from 4 to 39 gestational weeks, generated using an Illumina HumanHT-12 Beadchip V4.0 [START_REF] Soncin | Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development[END_REF], while dataset GSE5999 comprised gene expression profiles of human placenta from 14 to 40 weeks, generated using the Affymetrix Human Genome U133A&U133B arrays [START_REF] Winn | Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term[END_REF]. To easily distinguish among the datasets, we labeled microarray data from GSE100051 as "dataset1", U133A as "dataset2", and U133B as "dataset3". Additionally, we only retained the samples from the first and second trimesters in dataset1, to avoid redundancy with datasets 2 and 3.

Clustering analysis and construction of co-expression modules of human placenta microarray data

Dataset1 characterized gene expression in first trimester, second trimester, and term samples of human placenta, and contained a total of 11405 genes. Together, datasets 2 and 3 contained 22217 genes. Because the datasets were generated using different methods, we chose three sets of samples of the same gestational age (14, 16, 39 weeks) from each to determine if the datasets were directly comparable. Specifically, we analyzed these subsets using distance clustering, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE). After the classification of samples, Simple linear regression was used to identify the significantly expressed genes (SEGs) with adjusted P-values of less than 0.05, while P-value for the simple linear regression refers to the null hypothesis that the coefficient is zero. The WGCNA algorithm [START_REF] Langfelder | WGCNA: an R package for weighted correlation network analysis[END_REF] was subsequently used to evaluate SEG expression using the WGCNA package (version: 1.68) in R (version: 3.6), accompanied by a clustering analysis of the human placenta samples based on appropriate threshold values. To be specific, clustering analysis was performed first in order to detect outliers within the sample sets. Next, we determined the optimum value for soft thresholding power by testing to see which of a range of power values (from 1 to 30) best reduced the background noise of the correlations in the adjacency matrix.

The optimum value was selected according to measurements of the scale independence criterion, using a threshold of 0.9. Using this value, co-expression modules were then constructed based on the adjacency matrix, which contains the correlations of eigengenes from the default unsigned network. The minimum module size was set as 30 to increase the reliability of the results.

Analysis of co-expression modules for human placenta microarray data

Using the constructed modules, a clustering dendrogram was plotted that corresponded to the relationships among genes. A heatmap of gene co-expression values was created to help visualize the strength of the associations.

Likewise, we estimated associations between the module eigengenes and the clinical trait (gestational age) by defining values of gene significance (GS) and module membership (MM). The former represents the absolute value of the correlation coefficient between a gene's expression and the gestational age, while the latter was defined as the correlation coefficient between a given gene expression profile and the module eigengene.

Functional enrichment analysis of the co-expression modules and creation of line graphs

Significant modules were selected for further inspection if the correlation coefficient exceeded 0.6 and the P-value was less than 0.05. The genes contained by these significant modules were submitted for analysis of functional enrichment in clusterProfiler (version 3.9), which included gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms [START_REF] Yu | clusterProfiler: an R package for comparing biological themes among gene clusters[END_REF]. The significance threshold was defined as a P-value less than 0.05, and the top 15 terms were kept for visualization. We then extracted the genes from a selected pathway and performed a log2-transformation, followed by standardization (Z-scores transformation). That is, each gene expression value was adjusted by the mean and standard deviation ( = ̅ , where x is the raw expression value, ̅ is the sample mean, and S is the sample standard deviation). To facilitate comparisons between dataset1 and datasets2&3, the scaled gene expression values in the overlapping gestational weeks (14w and 16w) were set as the baseline values for Δ (Δ = -& , where Mean1 is the mean value from dataset1 in gestational weeks 14&16, Mean2&3 is from dataset2&3). The baseline value was then added to each scaled gene expression value in dataset2&3. The scaled and adjusted gene expression values were plotted in the form of a line graph showing changes with gestational age, with the Y coordinate representing the relative scaled range instead of the absolute expression of genes.

Lipid (Oil Red O) staining

First trimester (7-13 weeks of pregnancy) and term placental tissues were obtained with the patients' written informed consent from the Cochin Port-Royal, Antony, and Montsouris maternity units (Paris, France). Our protocol was approved by the local ethics committee (CPP 2015-mai-13909). Oil Red O staining was performed to detect lipid droplet accumulation in the placental tissues (first trimester (early, n = 9; late, n = 9) and term (n = 5)). Briefly, placental villi were frozen with cryomatrix gel (Thermoscientific, Runcorn, UK) under liquid nitrogen vapor. Frozen tissues were sectioned at a thickness of 10 μm. ORO working solution (150 mg Oil Red O powder + 50 ml 100% isopropanol + 80 ml distilled water) was added to the slides to cover the sections, which were subsequently incubated at room temperature for 7 min. This was followed by counterstaining with hematoxylin at room temperature for 30 s.

After a 2-h submergence under flowing tap water, the sections were covered by glass slides with mounting medium (Dako North America, Inc., CA, USA) and then examined under an upright microscope (Olympus BX60, Tokyo, Japan) at 40× amplification. The intensity and number of lipid droplets were evaluated blindly by two people. Ordered logistic regression was applied to select the significant factors among gestational age, sex, and smoking habits.

Statistics

Data are presented as means ± standard error. Statistical analysis was performed using a one-way ANOVA combined with a Scheffe post-hoc test for groups, and ordered logistic regression for multivariate data. P-values smaller than 0.05 were considered indicative of a statistically significant difference.

Results

Dataset evaluation, SEG filtering, and selection of soft thresholding power value

To evaluate the possibility of combining datasets 1, 2, and 3 in a single analysis, we performed clustering analyses. We observed that samples from different sequencing platforms or experiments clustered in different groups in three different analyses-distance clustering (Figure 1A&1B), PCA analysis (Figure 1C), and t-SNE analysis (Figure 1D)-and therefore could not be combined directly. For this reason, we detected the gene set modules for these microarrays separately. For dataset1, all the gene expression data from 4 to 16 gestational weeks were processed by WGCNA. Instead, in datasets 2 and 3, simple linear regression analysis was applied to first identify 2583 and 1536 SEGs, respectively. These two sets of SEGs were integrated with the corresponding expression matrix (36 samples), and then submitted to WGCNA for clustering and selection. We detected no outlier samples in dataset1, and the optimum soft thresholding power value was determined to be 4 (Figure 2A). In dataset2, no outlier samples were present and the optimum power value was 24 (Figure 2B); likewise in dataset3 there were no outliers and the optimum power value was 18 (Figure 2C).

Construction and analysis of co-expression modules of human placenta microarray data

The original co-expression modules were constructed in the R environment using the dynamic tree cut method of branch cutting. The number of genes contained in the original modules is shown in Table S1. After construction, original modules with a high degree of similarity were merged to form the merged modules, along with the corresponding overview of the Topological Overlap Matrix (TOM) heatmap between genes (Figure S1). Using the merged modules, we performed an interaction analysis between the module eigengenes and gestational age, and created scatterplots of GS vs. MM. Of the modules tested, the following met our retention criteria (correlation coefficient great than 0.6 and P values less than 0.5): the 'greenyellow', 'blue', 'pink' and 'royalblue' modules in dataset1 (Figure 3A) and the 'grey' modules in dataset2 (Figure 3B) and dataset3 (Figure 3C).

Functional enrichment analysis of the co-expression modules

Next, we took the significant modules from each dataset and combined the genes in order to perform an analysis of functional enrichment; datasets 2 and 3 were further combined because they originated from the same samples. A total of 3651 genes in dataset1 and 1522 genes in dataset2&3 (1122 in dataset2 and 400 in dataset3) were submitted separately to clusterProfiler. The top 15 GO terms for biological processes are shown in the bar plots in Figure 4A (dataset1) and 4B (dataset2&3), while the top 15 KEGG pathway terms are shown in Figures 4C and4D, respectively.

Furthermore, the intersection of GO terms and KEGG pathways between dataset1 and dataset2&3 are shown in an UpSet plot (Figure 4E). Details of the GO terms and KEGG pathways are given in the supplementary materials (Table S2).

PPAR signaling pathway and detection of lipid droplets

To illustrate the potential applications for this type of approach, we chose to perform a fine-scale analysis of the dynamic changes in gene expression within a single pathway. We selected the PPAR signaling pathway as it was highlighted by both functional enrichment analyses (clusterProfiler returned both the GO term "regulation of lipid metabolic process" and the KEGG term "PPAR signaling pathway") and has been the focus of other research by our group. The expression data were extracted from the datasets and mapped onto the PPAR pathway (Figure 5A); focal genes included members of the FABP family, PCK2, LPL, SLC27A2, ACSL1, PPARα, PPARγ, and its heterodimer RXRα. The scaled and adjusted gene expression of all of these genes was plotted as a function of gestational age in line graphs (Figure 5B). Overall, patterns of gene expression were consistent with the pathway relationships in Figure 5A. As reported by previous studies, there were significant variations in the expression of these genes with gestational age. In particular, members of the FABP family and LPL showed apparent up-and/or down regulation in their expression over time (Figure 5B). To provide a basis for comparison, we characterized the lipid content of sections of human placenta of varying gestational ages. Specifically, Oil Red O staining was performed on early (7-9w) and late (12-13w) first trimester and term tissue sections (Figure 5C). We detected an abundance of lipid droplets in first trimester sections, compared with a relative deficiency in term placentas. To go further, a semi-quantitative analysis was performed to investigate the differences in lipid droplet intensity in first trimester (7-9w, 12-13w) and term placentas, and to explore the correlation between lipid droplet content and gestational age, sex, and smoking. A one-way ANOVA test, combined with a Scheffe post-hoc test, highlighted significant differences between age groups (p < 0.0001, Figure 5C). Furthermore, we detected a negative correlation between gestational age and lipid droplet intensity (p < 0.0001, Table 1). Detailed data for the ordered logistic regression analysis are provided in the supplementary materials (Table S3). 

Discussion

In the past few decades, the goal of DNA microarray experiments has generally been to characterize different types of tissues or cells, including the human placenta. However, most of this research has focused on describing gene expression associated with specific events or activities that occur within short windows of time, such as the development of pre-eclampsia in the first trimester [START_REF] Founds | Altered global gene expression in first trimester placentas of women destined to develop preeclampsia[END_REF], the dose response of placenta to maternal choline intake in the third trimester [START_REF] Jiang | A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1)[END_REF], the effects of the PPARγ-agonist rosiglitazone on cytotrophoblasts in the first trimester and at term [START_REF] Segond | Transcriptome analysis of PPARgamma target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion[END_REF][START_REF] Liu | Comparative Study of PPARgamma Targets in Human Extravillous and Villous Cytotrophoblasts[END_REF], and the comparison of gene expression profiles from the first (45-59 days) and second trimesters (109-115 days) and at term [START_REF] Mikheev | Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study[END_REF]. In contrast to these previous studies, our work provides an overview of continuous genome-wide expression in the human placenta from the very beginning of pregnancy (gestational week 4) to term (week 40). We were able to accomplish this by integrating the microarray data published by Soncin et al. [START_REF] Soncin | Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development[END_REF] and Winn et al. [START_REF] Winn | Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term[END_REF].

Rather than comparing different static stages using t-tests, as in the overall design of Winn et al. [START_REF] Winn | Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term[END_REF], we evaluated the dynamic changes in gene expression that occur over the course of gestation. Dynamic data, as argued by Bar-Joseph [START_REF] Bar | Analyzing time series gene expression data[END_REF], can indicate a strong autocorrelation between successive points, which cannot be accomplished by comparing independent, identically distributed samples of static data. Comparison of one static period to another might distort the actual role of a biological process that serves different specialized functions in different stages [START_REF] Tsang | Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics[END_REF]. For example, the surge in oxygen tension in the placental villi only occurs in a narrow timeframe, from 10-12 weeks' gestation [START_REF] Tuuli | Review: Oxygen and trophoblast biology--a source of controversy[END_REF]. For this reason, we analyzed the datasets using simple linear regression, and the adjusted P-value associated with each gene was used as an indicator for its significance related to the response variable (gestational age). This statistical method helped us select more than 4000 significant probe sets for dataset2&3, far more than the 505 in Winn et al.'s study. Although this number may initially seem high, it is actually quite likely that such a large number of SEGs are involved in pregnancy, since the structure and functions of human placenta undergo rapid and dramatic modifications.

Additionally, we considered the pairwise correlations between genes and co-expression gene sets, as well as the network topology of different networks, as has been previously described [START_REF] Zhang | A general framework for weighted gene co-expression network analysis[END_REF][START_REF] Horvath | Geometric interpretation of gene coexpression network analysis[END_REF][START_REF] Langfelder | Eigengene networks for studying the relationships between co-expression modules[END_REF]. For this, we used WGCNA with the default unsigned network to identify, out of all of the genes in dataset1 and a subset of genes in dataset2&3, those that are correlated to gestational age. WGCNA is a method for constructing correlation networks that is especially suited for analyzing large, high-dimensional datasets like DNA microarrays [START_REF] Langfelder | WGCNA: an R package for weighted correlation network analysis[END_REF]. As noted by the literature associated with the WGCNA package, this method is not recommended for use in analyzing differential expression since the assumption of scale-free topology will be invalidated. In our case, we were able to successfully apply it to filtered SEGs, possibly because they were defined by simple linear regression rather than direct comparison between groups. In the end, with this combined method, we broadened the number of highlighted SEGs to 5173 in different periods of placentation, compared to the hundreds of differentially expression genes identified previously. Subsequently, these SEGs were submitted for analysis of functional enrichment to identify the biological processes and pathways involved; we also compared our top terms with those reported in the original research [START_REF] Winn | Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term[END_REF], which included a longer and more detailed list (Supplementary Material Figure S2).

One of the significantly enriched functions on the list was the "PI3K-Akt signaling pathway", which has been reported

to participate in the decidualization of trophoblast during early pregnancy [START_REF] Zhang | nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans[END_REF]. Similarly, the "Ras signaling pathway" has been reported to control trophoblast stem cell survival by regulating the phosphorylation and destabilization of proapoptotic proteins [START_REF] Yang | An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival[END_REF]; two other significant pathways, "Rap1 signaling pathway" and "cAMP signaling pathway", regulate placental cell fusion [START_REF] Chang | Involvement of Epac1/Rap1/CaMKI/HDAC5 signaling cascade in the regulation of placental cell fusion[END_REF][START_REF] Gerbaud | Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion[END_REF]. We also found "PPAR signaling pathway" on the lists of enriched biological processes and pathways, and chose to investigate this pathway further since our research group is devoted to studying the role of PPARs in human placental development.

We constructed a map of the up-and downstream genes of PPAR nuclear receptors, and found that the expression changes we observed in PPAR-associated genes, such as LPL, SLC27A2, ACSL1, and FABPs, were consistent with what is currently known about their relationships. We next focused on visualizing the expression over time of these genes, PPARs, and the PPAR heterodimer RXRα. For each gene, we used a line graph of scaled and adjusted gene expression to dynamically display relative changes across placentation. Our results revealed a continuous increase in LPL, FABP4, and FABP5 expression, and a continuous decrease in FABP7 and ACSL1. As nuclear receptors, PPARs regulate gene expression through binding to a PPAR response element, by which transcription of the target gene is promoted or inhibited [START_REF] Fournier | PPARgamma and early human placental development[END_REF]. In a previous study conducted by our research group, we investigated the effects of the PPARγ-agonist rosiglitazone on trophoblast. Trophoblast treated with rosiglitazone showed significant upregulation in FABP4 and FABP5, and down-regulation in LPL, but no significant changes in other associated members of the pathway [START_REF] Segond | Transcriptome analysis of PPARgamma target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion[END_REF]. These results are consistent with the patterns demonstrated by the line graphs, and support the critical role of PPARγ in lipid metabolism during placental development. Indeed, in mice, deletion of PPARγ leads to the absence of adipose tissues and results in a series of metabolic phenotypes related to dysfunctional lipid metabolism such as, e.g., hypermetabolism and hyperphagia [START_REF] Gilardi | Systemic PPARgamma deletion in mice provokes lipoatrophy, organomegaly, severe type 2 diabetes and metabolic inflexibility[END_REF]. A previous enrichment analysis also revealed the importance of the PPAR signaling pathway in first trimester placenta, along with its link to lipid metabolism and other complex biological functions [START_REF] Zhao | PPAR signaling pathway in the first trimester placenta from in vitro fertilization and embryo transfer[END_REF]. To corroborate these results, we stained sections of first trimester and term placentas with Oil

Red O to detect neutral lipid droplets, the quantity of which is commonly used as a proxy for the expression of LPL, FABPs, and PPARs [START_REF] Chassen | Alterations in placental long chain polyunsaturated fatty acid metabolism in human intrauterine growth restriction[END_REF][START_REF] Diaz | Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy[END_REF][START_REF] Kolodziej | Influence of glucose and insulin in human adipogenic differentiation models with adipose-derived stem cells[END_REF]. We observed an apparent decrease in the intensity of lipid droplets from first trimester to term, and using ordered logistic regression, were able to confirm a negative correlation between first trimester gestational age and lipid droplet intensity. The overall concordance between such disparate methods-gene expression analysis and lipid staining-is evidence for the reliability of our analysis.

Finally, in our study, the decrease in lipid droplets with gestational age seems to be linked with the upregulation of FABPs, which may further affect the activation of PPARγ. The activation of PPARγ upregulates the expression of lipid metabolic genes such as LPL, which can then increase the metabolism of lipid droplets in cytotrophoblasts. However, other studies have reported an increase in FABP expression from the activation of PPARγ in in vitro cultured cytotrophoblasts, which then resulted in lipid uptake and accumulation [START_REF] Scifres | Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts[END_REF][START_REF] Liu | Comparative Study of PPARγ Targets in Human Extravillous and Villous Cytotrophoblasts[END_REF]. This apparent paradox could be explained by the fact that FABP4 can also downregulate PPARγ activity, as was observed in adipocytes through ubiquitination and subsequent proteasomal degradation [START_REF] Garin-Shkolnik | FABP4 attenuates PPARgamma and adipogenesis and is inversely correlated with PPARgamma in adipose tissues[END_REF]. Therefore, we hypothesize that there might be an interesting dynamic between FABPs and PPARγ activation which could lead to FABP4 acting the same way in term placenta as in adipocyte. As an example, FABP4 is upregulated in cases of preeclampsia, a major pregnancy-related disease, by altered placental lipid metabolism [START_REF] Victor Han | Delfina Siroen Early onset preeclampsia is characterized by altered placental lipid metabolism and a premature increase in circulating FABP4[END_REF].

To conclude, by using new methods for the analysis of global gene expression in human placenta from 4 to 40 gestational weeks, our study identifies a large number of significant genes and provides useful information on the biological processes and pathways involved, which together gives us new clues for deciphering not only the normal functions of placentation but also the mis-regulations that may be linked to pregnancy-related diseases. This type of analysis can be used to probe deeply into the processes and pathways involved in placentation, as we show with the PPAR signaling pathway, which mediates the constant decrease of placental lipids throughout pregnancy. 
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Graphical abstract: Weighted correlation network analysis reveals dynamic changes in the biological processes involved in human placentation. In particular, an investigation of the PPAR signaling pathway provides evidence for its role in mediating a decrease in lipid content throughout placentation.

Fig. 1 .

 1 Fig. 1. The results of tests to determine the compatibility of samples from different sequencing platforms or experiments. (A) Optimal number of clusters for samples in the combined dataset 1&2&3, according to the K-means clustering algorithm. (B) K-means clustering for samples in dataset1, dataset2, and dataset3. (C) PCA of the samples in dataset1, dataset2, and dataset3. (D) t-SNE dimensionality reduction of the samples in dataset1, dataset2, and dataset3. PCA: principal component analysis; t-SNE: t-distributed stochastic neighbor embedding.

Fig. 2 .

 2 Fig. 2. Sample clustering and soft-thresholding power selection for microarray datasets. Sample clustering was based on Euclidean distances and the trait heatmap of samples representing gestational age and replication. Soft-thresholding power was determined by evaluating a range of power values from 1 to 30. Graphs A, B, and C represent dataset1, dataset2, and dataset3, respectively. For each graph, the left panel shows the sample dendrogram and trait heatmap while the right panel shows scale independence as a function of soft thresholding power, with the threshold for selection set as 0.9 (red line).

Fig. 3 .

 3 Fig. 3. Heatmap of module-trait associations and scatterplots for merged modules. The module-trait association heatmaps for datasets 1-3 appear on the left of panels A-C. In the heatmaps, traits are represented in columns and color modules in rows. The labels on the left side of the heatmap indicate the module types (represented by colors) and the labels on the right side show the value scale. For the modules in each dataset that met our inclusion criteria (correlation coefficient greater than 0.6 and P-value less than 0.05) for the trait of gestational age, we created scatterplots based on gene significance scores and module membership values, which are shown on the right of panels A-C, respectively.

Fig. 4 .Fig. 5 .

 45 Fig.4. Functional enrichment analysis of significant modules. A total of 3651 genes in dataset1 and 1522 genes in dataset2&3 (1122 in dataset2 and 400 in dataset3) were submitted to clusterProfiler. A&B: Bar plots depicting the top GO terms for enriched biological processes in dataset1 and dataset2&3, respectively, with the number of genes involved in each on the x-axis. C&D: Bar plots depicting the top KEGG pathways for dataset1 and dataset2&3, respectively, with the number of genes involved in each on the x-axis. E: The intersection of GO terms and KEGG pathways between dataset1 and dataset2&3 represented in an UpSet plot. GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes.
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Table 1 .

 1 Result of ordered logistic regression analysis

	Factor	Coefficient	Standard Error	t	P>|t|	[95% Conf. Interval]
	Gestational Age	-576.0346	104.1833	-5.53	0.000	-803.0306	-349.0386
	Sex	-292.2495	439.55	-0.66	0.519	-1249.947	665.4477
	Smoking	-279.8577	426.1765	-0.66	0.524	-1208.417	648.7012
	Constant Term	8220.114	1109.687	7.41	0.000	5802.314	10637.91
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Supplementary Materials

The number of genes contained in the original color modules from the unsigned and signed networks are shown in Table S1. The completed results of the biological process and pathway analysis for differentially expressed genes are contained in Table S2, which comprises four sheets. Figure S1 is a heatmap of gene co-expression values which shows the strength of the associations. Figure S2 provides a comparison of the top terms for biological processes, molecular functions, and pathways in the original research and the present study. Characteristics of the placenta used for logistic regression are described in Table S3.