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Abstract 20 

Modelling the mass balance and forecasting the temporal variations of cadmium 21 

(Cd) in farmland soil play a critical role in the development of mitigation strategies 22 

for Cd pollution. In this study, a novel framework integrating the mass balance model 23 

with model-independent parameter estimation, geostatistics, and bagging algorithms 24 

were integrated to simulate the long-term changes in the Cd content of farmland soil 25 

in Zhejiang Province, China. The predicted Cd content in farmland soil in 2013 was 26 
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compared to observed data (R value=0.568 and root-mean-square error=0.177 mg 27 

kg−1), demonstrating the feasibility of our model. The prediction results for 2050 28 

indicated that the average concentration of Cd in farmland soil from Zhejiang 29 

Province will increase to 0.30 mg kg−1 if the current trend continues, and that 37.4% 30 

of the farmland soil in the province will be classified as a “security utilisation region”, 31 

indicating great risk of soil Cd contamination in these areas. Reducing industrial 32 

emissions and soil acidification to reduce the Cd pollution risk should receive great 33 

attention. This study provides a new perspective for forecasting the temporal trends of 34 

Cd accumulation in farmland soil and facilitates improved management and risk 35 

prevention of Cd pollution in agricultural soils and products.  36 

 37 
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 41 

1. Introduction 42 

Heavy metal (HM) contamination of soil has been a broad environmental 43 

concern worldwide due to its various sources, high toxicity, and non-biodegradability 44 

(Jia et al., 2019; Xia et al., 2019; Hu et al., 2020a; Sciarrillo et al., 2020; Van Pelt et 45 

al., 2020). Cd is the most widespread HM pollutant in China, with 7.0% of soil 46 

samples polluted by Cd, according to the Chinese government (NSPCIR, 2014). Due 47 

to its high mobility, Cd can be easily absorbed by plants and then accumulate in the 48 
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human body via the food chain, inhalation of contaminated dust, dermal contact, and 49 

consumption of crops grown in polluted soil (DalCorso et al., 2008; Guo et al., 2011; 50 

Hu et al., 2017a; Ronzan et al., 2018). Cd a carcinogen that can damage the 51 

functioning of some human organs (Sawut et al., 2018; Shen et al., 2019; Xiang et al., 52 

2019). Hence, modelling Cd accumulation and forecasting its temporal trends in 53 

agricultural soil are essential. 54 

However, the accumulation of Cd in soil is a highly complicated and variable 55 

process. Numerous pathways, including atmospheric deposition, wastewater irrigation, 56 

rock weathering, agricultural inputs, and industrial waste, contribute to the 57 

accumulation of soil Cd (Shao et al, 2018). The mass balance model is a useful tool 58 

for modelling and forecasting the accumulation of HMs in agricultural soil (Keller et 59 

al., 2001; Six and Smolders, 2014), and some attempts have been made to simulate 60 

the long-term trends of HM accumulation in agricultural soil using mass balance 61 

models. Keller et al. (2001) used the mass balance model to estimate the accumulation 62 

of Cd and Zn in agricultural soils from Sundagau City, south of Basel, Switzerland. 63 

Chen et al. (2007) also analysed the long-term transfer of Cd in cropland soils from 64 

the Tongzhou and Daxing Districts in southern Beijing, China, using the mass balance 65 

model, and found that the strong variations in model parameters contributed to the 66 

uncertainty of the prediction result. Six and Smolders (2014) analysed the mass 67 

balance of soil Cd across European agricultural land using empirical models, and the 68 

uncertainty analysis of five regional scenarios suggested that leaching was the most 69 

uncertain flux.  70 
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These studies demonstrated the feasibility of using the mass balance model for 71 

modelling and forecasting the accumulation of HMs in agricultural soil. However, 72 

previous studies had several drawbacks: (1) existing studies limited by time, labour, 73 

and economic costs for soil sampling usually lacked independent validation; (2) most 74 

existing studies were impeded by high uncertainty related to the variability of model 75 

parameters, leading to biased prediction results; and (3) existing studies were impeded 76 

by extremely high values when exploring the spatial pattern of HMs, leading to the 77 

overestimation of the HM content in nearby regions (Keller et al., 2001; Chen et al., 78 

2007; Six and Smolders, 2014). This study implemented several measures to resolve 79 

these issues. First, sensitivity analysis was conducted to identify the parameters with 80 

the largest impacts on model performance using the model-independent parameter 81 

estimation (PEST) approach (Doherty et al., 2004). The values of several of the most 82 

impactful parameters were then optimised through PEST. Second, we utilised the 83 

results of extensive soil surveys conducted in 2003 and 2013 to train and 84 

independently validate the model, respectively. Third, we utilised the bagging 85 

algorithm to conduct 50 simulations, and the results of the 20 simulations with the 86 

highest accuracy were selected and averaged to produce a final forecast map of the Cd 87 

content in farmland soil in 2050. This approach effectively eliminated the negative 88 

influence of local extreme values on the prediction results. Finally, spatial 89 

autocorrelation and correlation analyses were conducted to ensure that there was no 90 

systematic bias in our model.  91 

The area studied here has undergone rapid industrialisation and urbanisation over 92 
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the past four decades, which has led to many environmental issues, particularly soil 93 

HM pollution. In this study, we developed a novel framework that combines the mass 94 

balance model, PEST method, geostatistical method, spatial autocorrelation analysis, 95 

grid computing, and bagging algorithms to model the mass balance of Cd in 2003 and 96 

2013, and forecast the pollution trend of Cd in the soil of Zhejiang Province, southeast 97 

China, in 2050. The objectives of our research were to (1) apply the PEST method to 98 

identify the most sensitive parameters affecting the prediction results and optimise the 99 

values of these parameters to reduce the model uncertainty and bias; (2) model the 100 

mass balance of Cd, estimate the spatial pattern of soil Cd in the study region, and 101 

validate the model performance based on data for 2013; and (3) forecast the trend of 102 

Cd contamination in the study area during 2050. Our study will help policymakers 103 

and stakeholders to understand the temporal trends of Cd pollution and more 104 

efficiently control Cd pollution in the soils of the research area.  105 

2. Material and methods106 

2.1 Study area 107 

Zhejiang Province, located in southeast China, covers the area between the 108 

latitudes of 27°02ʹ and 31°11ʹN and longitudes of 118°01ʹ and 123°01ʹE, has a total 109 

land area of 104,141 km2 and a population of 58.50 million people. The elevation 110 

decreases from the southwest to the northeast, and rivers cross the whole province. 111 

Zhejiang experiences a typical northern subtropical monsoon climate, with a mean 112 

annual temperature of 15 to 18 °C and mean annual precipitation of 980 to 2000 mm. 113 

Zhejiang Province is located in the southern Yangtze River Delta, and its economy 114 
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and industry are highly developed. Additionally, Zhejiang is an important grain 115 

production area, with farmland covering an area of 19,746 km2. The main crops and 116 

agricultural products cultivated in Zhejiang are rice, cabbage, broccoli, sweet rice, and 117 

watermelon. However, due to the rapid development of local industries, 118 

environmental pollution in the study area has become increasingly severe, and soil 119 

pollution by HMs is a severe environmental problem.  120 

2.2 Sampling and Data processing  121 

In this study, multi-source heterogeneous data were used to conduct the 122 

superposition analysis. Over the past few decades, the grid computing environment 123 

has been widely used as a powerful tool for data-intensive and computation-intensive 124 

modelling (Hu et al., 2004). Pouchard et al. (2003) reported the growing use of grid 125 

computing for obtaining, comparing, and analysing data and synthesising grid 126 

computing with spatial data processing methods. Although points may have low 127 

spatial density, grid computing can maximise data utilisation, particularly in 128 

large-scale studies, and it is also suitable for multi-source, heterogeneous data 129 

processing. Sampling points from two time periods can be overlaid on the grids. 130 

Although one grid covers more than one point, the value of the grid can be calculated 131 

using the average value of several points. On this basis, the forecast results can be 132 

improved and the model can be optimised through parameter modification, improving 133 

the credibility of the prediction results.  134 

 135 

Figure 1.  136 
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137 

In this study, topsoil (0–20 cm) samples from the farmland in Zhejiang Province 138 

were collected in 2003 and 2013, respectively. The total concentration of Cd was 139 

obtained by acid digestion with HF–HNO3–HClO4. To integrate the soil samples 140 

collected in 2003 and 2013, two points with separation distances of less than 300 m 141 

were considered to share the same soil pool. Based on this assumption, the study area 142 

was divided into grids, and the value of each grid was the average Cd concentration 143 

overlaid on the grid by the sampling points for each survey. After data matching, 413 144 

grids were retained in the study area (Fig. 1).  145 

2.3 Novel framework based on the mass balance model 146 

2.3.1 Model description 147 

The flux of Cd in the topsoil constitutes of several mass-balance procedures, 148 

including the motion of Cd between soil, water, and plants (Peng et al., 2016). In this 149 

study, we considered the main input and output flows of soil Cd, and the pathways 150 

with negligible contributions to Cd accumulation in the farmland soil were not 151 

considered. Figure 2 presents the main potential input, internal, and output flows of 152 

Cd in farmland soil. The main inputs of Cd in soil include wind transportation and 153 

deposition, rock weathering, water irrigation, fertiliser application, straw return, air 154 

deposition, and solid waste landfilling, while the main outputs include surface 155 

drainage, wind transportation, plant uptake, and water leaching. Additionally, solid–156 

liquid conversion occurs in the root-zone soil pool.  157 

158 
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Figure 2.  159 

 160 

In this study, the mass balance model developed by Keller et al. (2001) was used 161 

to model and forecast the movement and accumulation of Cd in the farmland soil of 162 

the study area. This method can be described as an empirical stochastic balance model 163 

that estimates the HM content in soil at a regional scale considering the spatial 164 

variations of the various pathways through which HMs accumulate in soil. Thus, the 165 

change in the Cd content (g ha−1) of topsoil (0–20 cm) during a certain period of time 166 

∆t (yr) can be obtained as follows (Keller et al., 2001): 167 

      
∆����
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where 	
� is the total input flux of Cd through irrigation water, considering the 172 

effective agricultural water consumption; 	
�� denotes the input metal flux through 173 

pesticide and fertiliser application, including manure, sludge, and lime; 	�
� is the 174 

input metal flux through atmospheric deposition; �� is the metal flux removed from 175 

soil through the harvested crop; �� represents the HM flux through the vertical 176 

movement of water in soil, defined as leaching; �
  is the quantity of fertiliser, 177 

irrigation, pesticides, and limestone, and is a fixed value according to local farming 178 

customs; �
 is the concentration of Cd in the fertiliser, irrigated water, pesticides, and 179 

limestone; and � is the agricultural water consumption. The input data and default 180 

values of the model parameters are listed in Table S1. 181 
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The major outputs of the model include the movement of HMs in the solution 182 

and solid phases, the output fluxes of HMs via leaching and plant uptake, and a 183 

forecast of the probable soil Cd concentration in the near future, which can be 184 

compared to the actual value of the predicted year. More details of the mass balance 185 

model were provided by Keller et al. (2001) and Peng et al. (2016).  186 

2.3.2 Parameter sensitivity analysis and optimisation 187 

As indicated in previous studies, uncertainty related to parameter variability 188 

introduces errors and biases to prediction results (Chen et al., 2007; Six and Smolders., 189 

2014). To determine the high-impact parameters to be used in the model calibration 190 

process, sensitivity analysis was conducted to identify parameters that would critically 191 

impact the model outcomes. Such analysis measured the combined variations in the 192 

model estimates due to a partial variation in the studied parameter (Doherty, 2004). In 193 

this study, we employed the PEST method to identify and optimise parameters with 194 

the greatest impact on the model construction. 195 

The mass balance parameters were calibrated following a grid-based 196 

optimisation method to describe the nonlinear procedures by computing the Jacobian 197 

matrix of the sensitivities of the model parameters as implemented in PEST (Doherty 198 

et al., 1994). The model communicated through input and output documents, reading 199 

parameter values from the input documents and writing the outputs to the output 200 

documents. The PEST method then read the output document, calculated the squared 201 

error between the observed and predicted values, and revised the parameter values to 202 

minimise the weighted sum of the squared deviations. A novel mass balance input 203 
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document was then written, the model was executed again, and the same procedure 204 

was applied numerous times. Detailed information regarding the PEST method is 205 

available in the studies by Doherty et al. (2004) and Rose et al. (2007) and is also 206 

presented in the Supplemental Materials. 207 

2.3.3 Model simulation based on bagging algorithm 208 

Over the last several decades, ensemble methods, such as bagging (Breiman, 209 

1996), a bootstrap aggregation method, have been widely used to solve numerous 210 

issues related to real-world predictions (Peng et al., 2019; Zhou et al., 2019; Yan et al., 211 

2020). The bagging method employs bootstrap to reproduce the training data set and 212 

produce multiple editions of classifier and optimum training data sets. The new 213 

classifiers are then combined through plural voting to establish an aggregated 214 

classifier for class prediction (Pham and Prakash., 2019). In this study, we employed 215 

the bagging algorithm to conduct model simulations and produce prediction results.  216 

2.3.4 Cd content in 2050 based on the bagging algorithm 217 

In this study, subsampling was repeatedly conducted from the training set, 218 

forming 50 base models, and the results of the base models that met the required 219 

precision were integrated to generate the final prediction results. This aided in 220 

smoothing the effects of outliers or extreme values. 221 

 222 

Figure 3.  223 

 224 

The process of forecasting the soil Cd in 2050 based on the bagging method is 225 

shown in Fig. 3 and described as follows: according to the bootstrap method, 70% of 226 
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the samples were utilised as a subtraining set through replacement, and the remaining 227 

30% of the samples were used as a subtesting set. After repeating this 50 times, 228 

one-to-one subtraining and subtesting set data were obtained. The subtraining set was 229 

then input into the mass balance equation to obtain the prediction results. The spatial 230 

prediction results were then obtained using the inverse distance weighted (IDW) 231 

interpolation operation. This process was repeated 50 times, and the results of the 20 232 

simulations with the highest accuracy were selected and averaged to produce the final 233 

forecast map of Cd content in the farmland soil of Zhejiang Province in 2050.  234 

2.4 Geostatistical and spatial autocorrelation analysis 235 

Geostatistics were first used in studies on the spatial variations of soil in the 236 

1970s, and ordinary kriging is a representative geostatistical method (Webster and 237 

Oliver, 2011), which was developed for predicting the values of target variables at 238 

unvisited locations with data obtained from observation points (Li and Heap, 2011). 239 

The ordinary kriging method considers the spatial positions of the observation and 240 

estimated points, and considers the relative positions of the observation points, thus, 241 

its interpolation effect is better than that of the IDW method with a small sample size. 242 

The IDW method is readily employed and more suitable for datasets that deviate 243 

significantly from normal distribution (Hu et al., 2017b; Jia et al., 2020). Numerous 244 

studies have been published on the application of ordinary kriging and IDW in soil 245 

science, environmental science, social sciences, ecology, and other disciplines (Ismail 246 

et al., 2020; Lin et al., 2020; Singh et al., 2020; Jin et al., 2020).  247 

The global Moran’s I index was issued by Moran (1948), and detects the spatial 248 
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autocorrelation of a variable. The global Moran’s I index is obtained as follows:  249 

   	 =
∑ ∑ ������ �!�"�� �!#$

�%&
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�%&
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$
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                                         (4) 250 

where )! = �

*
∑ )


*

+� , , represents the sample number, - and . denote the samples, 251 

and /
0 is the spatial weight matrix based on distance. Moran (1948) and Cliff and 252 

Ord (1981) provided a detailed description of the global Moran’s method, which is 253 

presented in the Supplemental Material. 254 

2.5 Data analysis and utilisation of the model 255 

In this study, the summary statistics were processed using R Studio software, 256 

while the global Moran’s I index was computed in GeoDa 1.12.1.59 (Anselin et al., 257 

2006). The map developed through ordinary kriging and IDW was produced in 258 

ArcGIS 10.2 (ESRI Inc., USA), and the parameter sensitivity analysis and 259 

optimisation were conducted in PEST (Doherty, 2004). The model simulation based 260 

on the bagging algorithm was conducted using the bagging function of the ipred 261 

package in R Studio (Peters et al., 2002). The main steps of this study are presented in 262 

Fig. 4.  263 

 264 

Figure 4.  265 

 266 

3. Results and discussion 267 

3.1 Summary statistics 268 

The mean contents of Cd in the farmland soil of the research region were 0.19 269 

and 0.22 mg kg−1 in 2003 and 2013, respectively (Table 1). The average soil Cd 270 
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content in 2013 was higher than that in 2003, indicating an increasing trend of Cd 271 

accumulation in the surveyed region between 2003 and 2013. Zhejiang Province is 272 

one of the most developed provinces in China, with numerous industrial enterprises 273 

that have rapidly expanded between 2003 and 2013 under rapid economic 274 

development. Large amounts of solid waste and sewage generated by industrial 275 

activities are discharged into the natural environment. Additionally, some pollutants 276 

accumulate in agricultural soil through atmospheric deposition and wastewater 277 

irrigation. These activities may contribute to increases in the soil Cd in Zhejiang 278 

Province.  279 

In this study, the coefficient of variation (CV; %) indicates the extent of the 280 

variation in the Cd content. The high CV values in both 2003 (70.37%) and 2013 281 

(76.50%) represent strong variations in the Cd content of the study area, further 282 

demonstrating that anthropogenic activities contribute to the accumulation of Cd in 283 

the soil (Hu et al., 2017c; Hu et al., 2018). The high values of kurtosis and skewness 284 

indicate the existence of anomalously high Cd values, particularly in 2003 (Table 1). 285 

 286 

Table 1.  287 

 288 

Some of the abnormally high Cd concentrations observed in grids during 2003 289 

and 2013 can be explained by the changes in the surrounding enterprises. Regional 290 

soil pollution is typically due to the joint action of two processes: (1) the continuous 291 

background process, which is mainly affected by differences in the parent material 292 

and diffusion source; and (2) the quasi-point process, which is mainly attributable to 293 
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point-source pollution caused by anthropogenic activities. Variations due to the 294 

continuous background and random processes at a small scale are referred to as the 295 

background and point source effects (i.e., artificial random effects such as changes in 296 

polluting enterprises), respectively. Both of these effects can generate outliers and 297 

affect the prediction accuracy. 298 

3.2 Sensitivity analysis and model parameter optimisation 299 

In this study, the input data of the mass balance model included the initial soil Cd 300 

concentration measured in 2003, the soil Cd concentration measured in 2013, soil 301 

properties, sorption isotherm features, plant growth and uptake, and the amount of Cd 302 

added to soil from various sources. The Cd content in 2003 was used to train the 303 

model, and the predicted value of Cd in 2013 was used to validate the model by 304 

comparison with the Cd content measured in 2013. 305 

In this study, we set the range of the parameter values (10−10–1010), and the 306 

default values of all parameters in PEST were used to define the searching space of 307 

the parameters. The most sensitive parameters affecting the prediction results were 308 

also identified by PEST. In this study, the most sensitive parameters were Er, d, and Rp 309 

(Fig. S1), representing plant uptake, soil depth, and water leaching, respectively. The 310 

soil depth was assumed to be 20 cm, and the values of Er and Rp were optimised and 311 

used in the mass balance model. 312 

3.3 Model performance 313 

As the original soil Cd concentration data exhibited a skewed distribution, the 314 

original data were pre-processed through logarithmic conversion to satisfy the normal 315 
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distribution before constructing the mass balance model. Several indices, including 316 

the Pearson correlation coefficient (R), root-mean-squared-error (RMSE), mean 317 

absolute error (MAE), and mean error (ME), were calculated to assess the model’s 318 

performance for estimating the Cd content at the different sampling sites in 2013. As 319 

shown in Fig. 5, the R and RMSE values of our framework were 0.568 and 0.177 mg 320 

kg−1, respectively. Considering the high variation and complex sources of Cd in soil, 321 

these results confirm the feasibility of our framework for predicting the soil Cd 322 

content in farmland at a regional scale. Nevertheless, additional efforts should be 323 

devoted to increasing the model performance in a further study. 324 

 325 

Figure 5.  326 

 327 

3.4 Residual error analysis 328 

3.4.1 Relationships between residual errors and input variable values  329 

As reported by Smith et al. (2015), when residual errors exhibit an obvious 330 

structural relationship with the input data, a systematic bias exists and the model 331 

neglects some important factors. In contrast, when the relationships are random, there 332 

is no systematic bias and the residuals of the model represent random errors. 333 

Therefore, in most studies, scatter diagrams of residuals are plotted to assess 334 

heteroscedasticity (Smith et al., 2015). Autocorrelation was assessed using the test 335 

statistic and the visual assessment of correlograms (Ljung and Box, 1978).  336 

In this study, the bulk density (BK) and volume water content (V) of every 337 



16 
 

sample were measured. Therefore, we analysed the relationships between the residual 338 

errors of the prediction results and input values of BK and V to detect whether there 339 

was systematic bias in the prediction results. As shown in Table S2, the input values 340 

of V and BK were not significantly correlated with the residual errors. The 341 

relationships between the input values and residual errors of the target grids are also 342 

shown in Fig. 6. These results confirm that the structure of the mass balance model is 343 

satisfactory, and the model could approximately predict the future pollution scenario.  344 

 345 

Figure 6.  346 

 347 

3.4.2 Spatial pattern and autocorrelation test of residual errors 348 

The residual errors of the prediction results in 2013 were the differences obtained 349 

by deducting the measured value from the predicted value in 2013 (Fig. S2). The 350 

global Moran’s I value of the residual error of the predicted Cd content in 2013 was 351 

0.00092 (Fig. S3), which indicates an almost random spatial distribution of the 352 

residual error of the prediction result. Additionally, as shown in Fig. S2, there was no 353 

clear spatial trend of the Cd content prediction residuals in 2013, indicating that there 354 

was no systematic bias in the predicted Cd content in 2013 as the residuals were 355 

randomly distributed across the research region.  356 

The map of the residual errors of the prediction results for 2013 (Fig. 7) was 357 

produced by ordinary kriging. As shown in Fig. 7, high residual errors mainly 358 

occurred in the central and eastern coastal regions, with highly developed economic 359 

activities. In these areas, the higher strength of human activities leads to various 360 
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sources of Cd contamination and strong variations in soil Cd, increasing the difficulty 361 

in modelling the mass balance of soil Cd. Moreover, the soil Cd values for 2003 and 362 

2013 that we used were the total Cd content, and the influences on the effectiveness of 363 

soil and plant absorption were not as direct as the effective state of Cd in soil based on 364 

the pH, organic matter, cation exchange capacity, and other soil properties (Hu et al., 365 

2020b); thus, different forms of Cd may require a transition. This topic requires 366 

further in-depth studies. 367 

368 

Figure 7. 369 

370 

3.5 Forecast Cd pollution status in 2050 based on the bagging algorithm 371 

On May 28, 2016, the Chinese government issued the National Soil Pollution 372 

Control Plan (http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm), 373 

which strives to ensure that more than 95% of areas classified as security utilisation 374 

and priority protection zones should be made safe for use through landuse 375 

transformation by 2030. As we verified the feasibility of our developed model for 376 

estimating the temporal changes in the Cd content of farmland soil, the model was 377 

used to forecast the Cd content in sample grids of the study area in 2050. The 378 

summary statistics of the Cd content and corresponding degree of pollution in the 379 

farmland soil of Zhejiang Province in 2050 are shown in Table 2. In 2050, under the 380 

current trend, the mean Cd content in farmland soil will increase to 0.30 mg kg−1.  381 

382 
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Table 2.  383 

 384 

Regarding the pollution classification, referring to the national soil 385 

environmental quality standard for farmland (GB 15618-2018), when the soil HM 386 

concentration is below the risk screening values, the risk for soil HM pollution is 387 

considered to be low, and this case is referred to as the priority protection class (Table 388 

S3). When the soil HM concentration exceeds the risk intervention value, the risk of 389 

soil contamination in agricultural land is considered to be high, and this is referred to 390 

as the strictly controlled class (Table S4). The neutral case is the security utilisation 391 

class.  392 

Our results indicated that 346 grids were forecast as the priority protection class, 393 

accounting for 83.78% of all of the sampled grids. Furthermore, 67 grids were 394 

forecast as the security utilisation class, accounting for 16.22% of all grids. Spatial 395 

interpolation was subsequently employed to obtain the spatial pattern of the forecast 396 

Cd content in the farmland soil of Zhejiang Province in 2050. As the original content 397 

and content after the logarithmic conversion of soil Cd in the study area deviated from 398 

a normal distribution, the IDW was utilised to conduct spatial interpolation (Jie et al., 399 

2013). A map of the forecast Cd content of farmland soil in Zhejiang Province during 400 

2050 is presented in Fig. 8.  401 

 402 

Figure 8.  403 

 404 
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As shown in Fig. 8 (a), the concentration of soil Cd in the farmland of some 405 

areas in eastern and northern Zhejiang Province will exceed 0.45 mg kg−1, or even 406 

0.55 mg kg−1, in 2050, which exceeds the screening value of Cd in agricultural land. 407 

The highest soil Cd concentrations were mainly observed in the central and eastern 408 

coastal areas of Zhejiang Province. These areas, characterised by high-intensity 409 

industrial, commercial, and transportation activities, are the most developed regions 410 

of the province. Cd originating from traffic emissions, wastewater irrigation, 411 

industrial waste, and atmospheric deposition contributes to the relatively high Cd 412 

concentrations of these regions. 413 

Considering the map of the Cd concentration in 2050 and latest Chinese national 414 

standard (GB 15618-2018), in combination with the soil pH and land-use types, the 415 

degree of Cd pollution in Zhejiang Province during 2050 was mapped, and the result 416 

is shown in Fig. 8 (b). As shown in Fig. 8 (b), if the current trend continues, 37.4% of 417 

the farmland in Zhejiang Province will be classified as a security utilisation region in 418 

2050, and the other 62.3% of farmland will be classified as a priority region. 419 

Therefore, there is the potential risk of Cd pollution in the edible agricultural products 420 

planted in 37.4% of the farmland in Zhejiang Province, and the results suggest that 421 

measures, such as agronomic management and alternative planting strategies, should 422 

be adopted to reduce the risk (Hu et al., 2017b; Hu et al., 2019).  423 

Moreover, some extremely high values were smoothed in the simulations based 424 

on bagging algorithms. This explains why the maximum Cd content in 2050 is 0.65, 425 

which is lower than the maximum Cd contents in 2003 and 2013. Therefore, some 426 
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local sites that were severely polluted by Cd are not presented in Fig. 8. Additionally, 427 

the negative effects of soil acidification on Cd pollution control should receive special 428 

attention. As significant soil acidification has been detected in most farmland soil of 429 

China (Guo et al., 2020), and acidic soil has a lower intervention value for Cd, the 430 

pollution risk of Cd in soil could increase. Numerous studies have revealed that Cd is 431 

more mobile in acidic soil; therefore, crops can absorb it more easily and it can 432 

accumulate in the human body via food chains (McBride, 2002; Li et al., 2005; 433 

Houben et al., 2013), posing a greater threat to human health. Therefore, substantial 434 

effort must be devoted to reduce Cd accumulation in soil and to prevent soil from 435 

becoming significantly acidified. 436 

3.6 Limitations and perspectives 437 

Although we adopted several measures to reduce model uncertainty and bias, and 438 

improve the model performance, our study has several limitations. First, although we 439 

included as many main sources and outputs of Cd in agricultural soil as possible, not 440 

all sources and outputs of soil Cd could be included in our mass balance model. 441 

Therefore, some uncertainty remains in our prediction results. Second, limited by time, 442 

labour, economic costs, and equipment, the values of some parameters were obtained 443 

from similar previous studies. Third, although we collected over 20,000 soil samples 444 

from the study area, after data pre-processing, only 413 grids contained soil samples 445 

in both 2003 and 2013. Most of these soil grids were distributed in the central, 446 

northern, and eastern coastal regions of Zhejiang Province, which also negatively 447 

affected the results. The inconsistencies in the strategies of the two surveys conducted 448 
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in 2003 and 2013 contributed to this limitation. Therefore, to improve the model 449 

performance and confirm our results, more soil samples should be collected 450 

referencing the sampling strategies of the surveys conducted in 2003 and 2013 in 451 

future studies to fully utilise the information of soil samples that were already 452 

collected. Additionally, field experiments must also be conducted to refine the 453 

parameter values. Finally, information related to additional input and output fluxes, 454 

such as crop straw, rock weathering, household solid waste, electronic waste, and 455 

surface runoff, should also be collected, which will facilitate more accurate prediction 456 

results. 457 

Our results also have implications for the government and policymakers. As 458 

indicated by our results, Cd accumulation is highly related to the socio-economic 459 

development level, as confirmed by the overlap of areas with high Cd content and 460 

high economic development. This also demonstrates that anthropogenic activities, 461 

particularly industrial activities, contribute to Cd pollution the most. Numerous 462 

related studies have also reached this conclusion (Gan et al., 2019; Deng et al., 2020; 463 

Hu et al., 2020c). Additionally, soil acidification is a threat that could offset efforts to 464 

control Cd pollution, as acidic soil has a lower intervention threshold for Cd pollution. 465 

Therefore, we should focus on accurately appointing the sources of soil Cd and 466 

implementing specific measures to reduce the accumulation of Cd in farmland soil, 467 

and remain alert to the issue of soil acidification.  468 

4. Conclusion 469 

In this research, we constructed a novel framework combining the mass balance 470 
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model, PEST method, geostatistical method, spatial autocorrelation analysis, and 471 

bagging algorithm to model the mass balance of Cd in the farmland soil of Zhejiang 472 

Province, eastern China, during 2003 and 2013, and forecast the Cd concentrations in 473 

2050. The sensitivity analysis found that Er, d, and Rp were the main factors affecting 474 

the prediction results. Therefore, the two parameters (excluding soil depth) were 475 

optimised to ensure more robust and reliable performance. For the predicted Cd 476 

content in the farmland soil of the survey region in 2013, the R and RMSE values of 477 

our model were 0.568 and 0.177 mg kg−1, respectively.  478 

The results showed that the average Cd content of farmland soil in Zhejiang 479 

Province will increase to 0.30 mg kg−1 in 2050 under the current trend, and 37.4% of 480 

the farmland soil in Zhejiang Province will be classified as a security utilisation 481 

region. Measures, including agronomic regulations and alternative planting, should be 482 

adopted in such areas. However, additional surveys and experiments are required to 483 

confirm our results and improve the model performance. Furthermore, attention 484 

should be paid to issues such as local extremely polluted sites, soil acidification, and 485 

waste produced from industrial activities. Our study provides new insight for 486 

modelling HMs, particularly the Cd balance, and forecasting the temporal trends of 487 

HM pollution at the regional scale. The results of this study also provide critical 488 

information for the government and policymakers, and contribute to the development 489 

of more efficient and reasonable strategies and policies for preventing and controlling 490 

HM contamination in the survey region. For example, different policies could be 491 

implemented in priority protection, security utilisation, and strictly controlled areas. 492 
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In agricultural and rural regions, more effort should be devoted to reducing the use of 493 

fertilisers and pesticides. In industrial regions, traditional industries (energy and 494 

pollution-intensive enterprises) could be upgraded into environmentally friendly 495 

enterprises. Finally, the results also provide inspiration for conducting similar 496 

analyses in other similar regions.  497 
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Figure 1. Map of the locations of the sampling grids 

 

Figure 2. The main outputs and inputs of the source and sink equilibrium system of 

soil Cd 



Figure 3. The forecast process of soil Cd in 2050 based on the bagging method 

 

Figure 4. Flow chart of the framework for modeling soil cadmium balance 



Figure 5. Relationships between measured and predicted values of Cd in 2013

Figure 6. Relationships of the input values and residual errors 



 

Figure 7. Map of the residual error of model simulation results 

    

Figure 8. Map of (a) forecasted Cd content in farmland soil in the study area in 2050 

and (b) classification of the environmental quality assessment of Cd 

 



Table 1. Descriptive statistics of Cd concentrations in the research area in the years 

2003 and 2013 (mg kg−1) 

Year Number of grids Mean Std Min Max CV (%) 
Skewnes

s 
Kurtosis 

2003 413 0.19 0.14 0.07 2.21 70.37 9.90 130.10 

2013 413 0.22 0.17 0.01 1.83 76.50 5.02 37.29 

 

Table 2. Summary statistics of Cd content and degree of pollution in farmland soil in 

Zhejiang Province in 2050 

Element 

Number 

of grids 

Content (mg kg−1) Priority protection class Security utilization class 

Min Mean Max Number Proportion (%) Number Proportion (%) 

Cd 413 0.24 0.30 0.65 346 83.78 67 16.22 

 






