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Abstract

Choquistic regression is an elegant generalisation of logistic regression, which preserves
its monotonicity whilst alleviating its linearity. However, much as logistic regression, it
lacks self-awareness, that is, an ability to represent the ignorance (aka epistemic uncertainty)
involved in its predictions, which is crucial in safety-critical classification problems. Recently,
an extension of logistic regression was introduced to remedy this issue for this latter classifier.
This extension is formalised within evidence theory and relies in particular on a sound
method for statistical inference and prediction developed in this framework. In this paper,
a similar extension is derived for choquistic regression. The usefulness of the obtained
approach is confirmed empirically in classification problems where cautiousness in decision-
making is allowed.

Keywords— Belief functions, Choquistic regression, Choquet integral, Logistic regression, Mono-
tonic classification, Reliable classification, Epistemic uncertainty, Nonlinear models.
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1 Introduction
In various practical classification problems such as corporate bond rating [46], teaching course evalu-
ation [3] or breast cancer diagnosis [42], it is common to have some prior knowledge that the relation
between the input (predictor) variables and the output (target) variable is monotonic, i.e., everything
else being equal, the increase of a particular input variable can only increase (or only decrease) the
output variable. Accounting for this particular prior knowledge when developing a classification model
is important for at least two reasons [47, 26, 17, 1, 4]: (1) it may be beneficial for model induction and in
particular to improve the accuracy of predictions; (2) only models satisfying the monotonicity constraint
(for short, monotonic models) may be considered acceptable by the end-users. This topic of so-called
monotonic classification is not new, yet it has received an increasing interest in the last few years as
shown recently in [4].

Focusing on (monotonic) binary classification, where the target variable takes one of two values (the
positive class and the negative class), a well-established model for this task is logistic regression [22]. It
obtains the probability of the positive class (and thus of the negative class) by modelling the log-odds of
the positive class as a linear function of the predictors. Its monotonicity together with its interpretability
has contributed to its popularity as underlined in [17]. Yet, logistic regression has at least two limitations,
which impedes its use in some real classification problems.

First, the model for the log-odds of the positive class being linear in the predictors, there is a
lack of flexibility from a learning point of view with respect to the possibility of interactions between
the predictors. This issue can be overcome by replacing the linear model with more complex models
that are nonlinear in the predictors [23]. However, this increased flexibility may come at the expense
of losing monotonicity and of affecting interpretability. For instance, kernel logistic regression [52] with
polynomial and Gaussian kernels are flexible extensions of logistic regression but they are not necessarily
monotone [17]. A notable exception, though, is the proposal of Fallah Tehrani et al. [17], which uses the
Choquet integral [6] for modelling the log-odds of the positive class. The obtained classification model,
called choquistic regression, generalises the logistic regression, guarantees monotonicity and provides
flexibility in terms of modelling nonlinear relationships between predictors and the log-odds of the
positive class. Moreover, it benefits from measures defined for the Choquet integral making it possible
to quantify the importance of each predictor as well as the interaction between predictors, and thus it
has some level of interpretability. Needless to say, there is a price to pay for the greater flexibility of
choquistic regression, which is a higher computational complexity than that of logistic regression. Yet,
this complexity may still be acceptable for some real problems.

Secondly, the uncertainty in a given prediction being modelled by a probability measure (charac-
terised by a single number, such as the probability of the positive class), there is a lack of flexibility from
a representational point of view with respect to the different possible sources of the uncertainty [43, 49].
In particular, logistic regression fails to provide a quantification of the ignorance involved in its predic-
tion, ignorance (aka epistemic or reducible uncertainty) being the part of the uncertainty caused by a
lack of knowledge, such as a limited amount of training data [43]. Basically, logistic regression lacks the
ability of “knowing what it knows and what not” or, for short, “self-awareness” [43]. Such an ability
may be important in critical classification problems such as medical diagnosis, where it may be used to,
e.g., postpone the ultimate decision until further data is acquired. This issue of so-called reliable classi-
fication [43, 7] can be addressed by replacing the probabilistic representation of uncertainty with richer
uncertainty representations. Two noteworthy proposals in this respect, extending logistic regression, are
those of Senge et al. [43] and of Minary et al. [31]. Both are grounded in probability and statistics, but
the former is formalised within the framework of fuzzy preference modelling [19] whereas the latter is
formalised within evidence theory (aka theory of belief functions or Dempster-Shafer theory) [45]. They
were applied to two different problems: medical diagnosis and binary SVM classifier stacking, respec-
tively. From a formal point of view, the uncertainty representation in each of these two methods is
characterised by two numbers (instead of the single number of the conventional logistic regression) and
makes it possible to quantify the ignorance in a given prediction. Obviously, these finer representations
of the uncertainty involve higher computational costs than that of logistic regression, but these costs
may still be tolerable in some cases.

Choquistic regression is a sound, elegant and useful generalisation of logistic regression, allowing
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flexibility in the modelling of interactions between predictors, while maintaining monotonicity and in-
terpretability. However, it suffers from the same limitation as logistic regression with respect to self-
awareness. Therefore, it seems interesting to try and extend to choquistic regression the approach of
Senge et al. [43] or of Minary et al. [31]. In this paper, a first study in this direction is reported, where
the approach of Minary et al. [31] is extended to choquistic regression. We focused on this approach
(rather than the one of Senge et al. [43]) because it relies on a recent method for statistical inference
and prediction proposed in [25], which has gained momentum and is already quite well developed on
both the theoretical and practical sides (see, e.g., [29, 37, 24, 30, 12, 5, 15] for recent results around this
method, including a few successful applications). Another reason for this focus is the study conducted
in the context of active learning in [41], which provides an additional experimental argument that the
quantification of ignorance permitted by the approach of [31] can be a useful measure of the lack of
knowledge.

The rest of this paper is organised as follow. The logistic regression model and its generalisation
based on the Choquet integral due to [17], are recalled in Section 2. Then, in Section 3, necessary notions
of evidence theory are provided and the extension of logistic regression based on this theory, introduced
in [31], is presented. This latter extension is carried over to the more general choquistic regression model
in Section 4. The resulting evidential extension of choquistic regression is compared experimentally in
Section 5 to choquistic regression and to the evidential extension of logistic regression. Finally, Section 6
concludes the paper.

2 Choquistic regression
In this section, logistic regression is first recalled. Then, necessary material on the Choquet integral is
provided and an extension of logistic regression relying on this integral is presented.

2.1 Logistic regression
As already mentioned, logistic regression (LR) [22] is a model commonly used in binary classification
problems. For an object (instance) with unknown label (class or target) y ∈ Y = {0, 1} and observed
feature (predictor) vector x = (x1, . . . , xm)ᵀ ∈ X = Rm, and given a training set D = {x(i), y(i)}ni=1
of n objects supposed to be an i.i.d. sample from an underlying (unknown) probability measure PXY ,
LR yields a probability P (y = 1|x) for the positive class (and thus also of the negative class) given the
predictors.

LR assumes a monotone relationship of the probability with respect to the predictors, in the sense
that every thing else being equal in the predictors, an increase of the value of an individual predictor xj
can either only increase or only decrease the probability.

More specifically, LR is obtained by assuming that the log-odds of y = 1 given the predictor vector
x is a linear function of the predictors:

log
(
P (y = 1|x)
P (y = 0|x)

)
= σ0 + σᵀ

mx, (1)

where σ0 ∈ R is a bias (the intercept) and σm = (σ1, . . . , σm)ᵀ ∈ Rm is a vector of regression coefficients.
According to Eq. (1), a positive (resp. negative) coefficient σj > 0 implies that an increase of xj will
necessarily increase (resp. decrease) the probability of the positive class. Besides, from (1), one easily
obtains

πl := P (y = 1|x) = h(σ0 + σᵀ
mx), (2)

where
h(z) = (1 + exp(−z))−1, ∀z ∈ R,

is known as the logistic function.
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Let σ = (σ0,σm) ∈ Σ = Rm+1 denote the parameters of the LR model defined by (2). The actual
values σ̂ of the parameters σ to be used in (2) are determined thanks to the training set D. More
precisely, they are chosen as the ones maximising the conditional likelihood function:

LD(σ) =
n∏
i=1

P (y(i)|x(i))

=
n∏
i=1

(π(i)
l )y

(i)
· (1− π(i)

l )1−y(i)
, ∀σ ∈ Σ. (3)

In practice, the conditional log-likelihood function

`D(σ) = logLD(σ)

=
n∑
i=1

y(i) log π(i)
l + (1− y(i)) log(1− π(i)

l ), ∀σ ∈ Σ,

is maximised to find σ̂ since it has a more convenient form than (3) and its maximum is also attained
for σ = σ̂. Formally, we have:

σ̂ = arg max
σ∈Σ

`D(σ), (4)

and σ̂ is called a maximum likelihood estimate (MLE) of σ.

Example 1. Let D be the training set composed of n = 30 training instances generated as follows: 15
instances for the positive class and 15 instances for the negative class have been drawn respectively from
the bivariate normal distributions N (µ1, S1) and N (µ0, S0), with means µ1 = (1, 1) and µ0 = (−1,−1),
and covariance matrices S1 and S0 such that

S0 =
(

4 3
3 4

)
and S1 =

(
3 2.5

2.5 3

)
.

These instances are illustrated in Figure 1. Let us consider an object (also shown in Fig. 1) with observed
feature vector x = (2,−1) and unknown label y ∈ Y = {0, 1}. The probability P (y = 1|x) of the positive
class for this object given its predictors may then be obtained using LR, which essentially amounts to
finding a MLE σ̂ = (σ̂0, σ̂1, σ̂2) of σ using (4) and plugging it in Eq. (2): we find

σ̂ ≈ (0.140, 1.222, 0.848),

which induces P (y = 1|x) ≈ 0.85.
Using the classical (Bayesian) decision strategy of minimising the expected loss [16], the decision

reached for the label y of this object is y = 1 in the case where the 0/1 loss function (a wrong decision
costs 1 and a correct decision costs nothing) is used. More generally, Figure 1 shows the decision boundary
of LR in the case of 0/1 loss, which corresponds to those x ∈ X such that P (y = 1|x) = 0.5.

2.2 The Choquet integral
The Choquet integral [6] allows the integration of functions with respect to non-additive measures, also
known as capacities.

Definition 1 (Capacity). Let C = {c1, · · · , cm} be a finite set. A capacity is a set function µ : 2C → [0, 1]
satisfying monotonicity, i.e., µ(A) ≤ µ(B) for all A ⊆ B ⊆ C, and normalisation, i.e., µ(∅) = 0 and
µ(C) = 1.
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Figure 1: Training set D: instances of the positive class (light grey triangles) and of the negative
class (dark grey squares). Object of interest (⊕) with feature vector x = (2,−1). Decision
boundary ( ) of LR in the case of 0/1 loss, with associated decision regions: y = 1 (light grey)
and y = 0 (dark grey).

Definition 2 (Choquet integral). Let µ be a capacity on C = {c1, · · · , cm}. The Choquet integral of a
function g : C → R with respect to µ is given by

Cµ(g) =
m∑
i=1

(
g(c(i))− g(c(i−1))

)
· µ(A(i)), (5)

where A(i) = {c(i), . . . , c(m)}, g(c(0)) = 0 and (·) is a permutation of {1, . . . ,m} such that 0 ≤ g(c(1)) ≤
g(c(2)) ≤ . . . ≤ g(c(m)).

Besides its use in classification (recalled in Section 2.3), the Choquet integral plays a role in other
domains. For instance, computing the lower expectation of a function of an uncertain variable, when
uncertainty is modelled by a belief function (which is a particular kind of non-additive measures for
the representation of uncertainty) corresponds to computing the Choquet integral of this function with
respect to the belief function [20]. However, above all, its prominent field of application has been that
of multiple criteria decision making (MCDM), where it is used as an aggregation operator (the non-
additivity allowing to account for interactions between criteria) [21] as briefly recalled in the following.

When using the Choquet integral in MCDM, C represents a set of relevant criteria to compare
different alternatives, µ(A) is interpreted as the importance of the subset of criteria A ⊆ C, g(ci) ∈ [0, 1]
is the utility of a given alternative with respect to criterion ci indicating the degree to which ci is
satisfied for this alternative, and Cµ(g) represents the overall evaluation (satisfaction) of this alternative.
For instance, if one is contemplating buying a house, the alternatives are the different houses on offer, the
set of criteria might be C = {living area, garden size, number of rooms} and µ(A) is the evaluation
of an alternative satisfying criteria A (and not satisfying C\A). Besides, interactions between criteria
are accounted for through µ: if subsets of criteria A ⊆ C and B ⊆ C can be seen as complementary
(e.g., A = {living area} and B = {garden size} since both areas are important on the final decision)
then this is formally expressed by µ(A∪B) > µ(A)+µ(B) (positive interaction), whereas if A and B are
redundant (e.g., A = {living area} and B = {number of rooms} since either of the two may suffice),
this is represented by µ(A ∪B) < µ(A) + µ(B) (negative interaction).

The Choquet integral admits a useful representation based on the so-called Möbius transform.
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Definition 3 (Möbius transform). The Möbius transform mµ of a capacity µ is given by

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B),∀A ⊆ C.

Remarking that mµ(∅) = 0, we denote by mµ the vector of size 2m−1 whose elements are the values
mµ(A) ∈ R, ∅ 6= A ⊆ C, ordered according to some arbitrary order on the subsets of C.

A capacity µ can be recovered from its Möbius transform mµ by:

µ(A) =
∑
B⊆A

mµ(B), ∀A ⊆ C. (6)

Using (6), it is easy to show that the Choquet integral (5) of a function g with respect to the capacity
µ satisfies:

Cµ(g) =
∑
A⊆C

mµ(A) · min
ci∈A

g(ci). (7)

An interesting property that a capacity µ may satisfy is k-order additivity (or, simply, k-additivity):
if k is the smallest integer such that mµ(A) = 0 for all A ⊆ C with |A| > k, then µ is said to be k-
additive. In MCDM, this property means an absence of interaction between subsets of criteria A,B ⊂ C
such that |A| > k and |B| > k. It also implies that µ is then characterised by less than the 2m−1 values
required in the general case.

2.3 The choquistic regression model
In [17], it is proposed to extend the LR model by replacing σ0 + σᵀ

mx in (1) by

γ (Cµ(gx)− β) , (8)

which yields

πc := P (y = 1|x) = h(γ (Cµ(gx)− β)), (9)

where γ and β are two parameters such that γ > 0 and β ∈ [0, 1], and where Cµ(gx) is the Choquet
integral with respect to measure µ of the function

gx : C → [0, 1]

that maps, for a given object with feature value vector x = (x1, . . . , xm)ᵀ, each feature ci (viewing C as
the set of features describing objects) to a value x̃i = gx(ci) ∈ [0, 1] corresponding to a normalisation of
the feature value xi.

Assuming that some prior knowledge on the monotonicity of the classification problem at hand
is available and, more specifically, that the direction of the influence of each input feature xi on the
probability of the positive class is known, then the following normalisation can be used [17]: if the
influence is positive (increasing), then

x̃i = xi −mi

Mi −mi
, (10)

withmi andMi the lower and upper bounds for xi, which are either known or estimated from the learning
set D as mi = min1≤j≤n x

(j)
i andMi = max1≤j≤n x

(j)
i ; and if the influence is negative (decreasing), then

x̃i = (Mi − xi)/(Mi −mi). In the case where the direction of the influence of predictor xi is actually
not known, then it is estimated from the data using LR [17]: if σ̂i > 0 then the influence is assumed to
be positive, otherwise it is considered to be negative.

In a nutshell, this approach, called choquistic regression (CR), proceeds in two steps. First, an
aggregated value Cµ(gx) ∈ [0, 1] is obtained for an instance x. Then, this value is compared to the
threshold β. If Cµ(gx) > β, then P (y = 1|x) > 0.5 (“the decision tends to be positive” [17]), whereas
if Cµ(gx) < β, then P (y = 1|x) < 0.5 (the decision “tends to be negative” [17]). Furthermore, the
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parameter γ acts as a scaling factor. If Cµ(gx) > β, then as γ increases, P (y = 1|x) increases, whereas
if Cµ(gx) < β, then as γ increases, P (y = 1|x) decreases. In addition, let us remark that this model is a
proper generalisation of LR (we refer the interested reader to [17, Section 5.3]).

Let υ = (γ,mµ, β) denote the parameters of the CR model defined by (9), where mµ is the Möbius
transform of µ. Similarly as in the case of LR, it is proposed in [17] to determine the actual values
υ̂ for the parameters υ using the maximum likelihood principle. The conditional likelihood of the CR
parameters is given by

LD(υ) =
n∏
i=1

(π(i)
c )y

(i)
· (1− π(i)

c )1−y(i)
. (11)

Hence, the conditional log-likelihood function can be written as:

`D(υ) =
n∑
i=1

y(i) log π(i)
c + (1− y(i)) log(1− π(i)

c ). (12)

Unlike the coefficients σ of LR, the parameters υ of CR must respect some constraints and in particular
mµ must be the Möbius transform of some proper capacity µ. Therefore the maximisation of the
conditional log-likelihood (12) is actually a constrained optimisation problem, which may be formally
written as [17]:

υ̂ = arg max
υ∈Υ

`D(υ) (13)

with Υ the set composed of the vectors (γ,mµ, β) satisfying

β ∈ [0, 1], γ ∈ R>0,
∑
A⊆C

mµ(A) = 1 (14)

and ∑
B⊆A\{ci}

mµ(B ∪ {ci}) ≥ 0, ∀A ⊆ C, ∀ci ∈ C. (15)

Example 2. Continuing Example 1, the probability P (y = 1|x) of the positive class for the object with
feature vector x = (2,−1) may also be obtained using CR, which amounts to finding a MLE υ̂ of υ using
(13) and plugging it in (9): we find

m̂µ({1}) ≈ 0.020, m̂µ({2}) = 0, m̂µ({1, 2}) ≈ 0.980, γ̂ ≈ 15.077, β̂ ≈ 0.426,

which induces P (y = 1|x) ≈ 0.59. Similarly as for LR, the decision reached for the label y of this object
using CR is y = 1 in the case of 0/1 loss. More generally, Figure 2 shows the decision boundary of CR
in the case of 0/1 loss.

Let us remark that CR is quite a flexible model and runs thus the risk of overfitting the data. A
solution proposed in [17] to mitigate this issue is to restrict the capacity µ to be k-additive, for some
k < m determined through cross-validation.

3 Evidential logistic regression
An extension of LR based on evidence theory is recalled in this section. For the paper to be self-contained,
necessary notions – in particular an approach for statistical inference and prediction – of the theory of
evidence on which this extension relies, are provided first.

3.1 Basic notions of the theory of evidence
Evidence theory is a framework for uncertainty modelling and reasoning. Let Y be a variable whose
actual value y belongs to some finite set Y = {y1, . . . , yK} (called the frame of discernment). Uncertainty
about y is represented in this theory by a mapping mY : 2Y → [0, 1], called mass function, such that∑

A⊆Y

mY(A) = 1, (16)
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Figure 2: Decision boundary ( ) of CR in the case of 0/1 loss.

and mY(∅) = 0. The quantity mY(A) is interpreted as the belief allocated exactly to the hypothesis
y ∈ A and nothing more specific. In addition, any A ⊆ Y such that mY(A) > 0 is called a focal set of
mY .

Several functions are in one-to-one correspondence with mY and, in particular, the belief and plau-
sibility functions defined, respectively, for all A ⊆ Y as

BelY(A) =
∑
B⊆A

mY(B), and PlY(A) =
∑

B∩A 6=∅

mY(B). (17)

The degree of belief BelY(A) is interpreted as the amount of evidence strictly supporting y ∈ A, while the
plausibility PlY(A) represents the amount of evidence not contradicting y ∈ A. Due to the one-to-one
correspondence between these functions, mY can be recovered from, e.g., BelY . We have

mY(A) =
∑
B⊆A

(−1)|A|−|B|BelY(B), ∀A ⊆ Y. (18)

The contour function plY is defined as the plausibility function restricted to the singletons, i.e.,
plY(yi) = PlY({yi}), for all yi ∈ Y. When its focal sets are nested, a mass function mY is said to be
consonant and it is fully characterised by its contour function. Its associated plausibility function can
then be recovered as follows:

PlY(A) = sup
yi∈A

plY(yi), ∀A ⊆ Y. (19)

There exist several strategies to make a decision about the actual value y of Y given a mass function
mY on Y representing uncertainty about y [10, 13, 28]. Some yield systematically a precise decision, i.e.,
y = yi for some yi ∈ Y, while other may yield only an imprecise decision, i.e., y ∈ A for some A ⊆ Y,
when there is too much uncertainty. In the particular case where the frame of discernment is binary (by
convention, in this paper, Y = {0, 1}) and 0/1 loss is used, then the classical precise decision strategies
(i.e., minimising the pignistic, or lower, or upper expected loss, see [10]) amount to the same decision
rule:

y =
{

1 if mY({1}) > mY({0}),
0 otherwise. (20)

Among the imprecise decision strategies, the interval dominance decision rule has recently shown its
interest in exploiting evidential classifiers [14]. In the binary case and with 0/1 loss, this rule reads as
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follows:
y =

{
1 if BelY({1}) > PlY({0}),
0 if BelY({0}) > PlY({1}), (21)

and y ∈ {0, 1} otherwise.

3.2 Belief function-based approach to statistical inference and predic-
tion

Shafer [45] introduced a belief function-based approach to statistical inference, which was subsequently
justified by Denoeux [11]. Given an observed realisation z ∈ Z of some random quantity Z ∼ PZ(·; θ) with
θ ∈ Θ the unknown parameter of interest, this approach represents knowledge about θ by a consonant
belief function BelΘz whose contour function plΘz is the relative likelihood:

plΘz (θ) = Lz(θ)
Lz(θ̂)

, ∀ θ ∈ Θ,

where Lz(θ) = PZ(z; θ), θ̂ is a MLE of θ and it is assumed that Lz(θ̂) <∞.
BelΘz is called the likelihood-based belief function. Its focal sets are the level-sets of plΘz defined as

Γz(u) = {θ ∈ Θ | plΘz (θ) ≥ u}, (22)

for u ∈ [0, 1]. Moreover, BelΘz can be regarded as being induced by the random set [34] Γz(U) with
U ∼ U([0, 1]), in the sense that

BelΘz (A) = PU ({u ∈ [0, 1]|Γz(u) ⊆ A}), ∀A ⊆ Θ.

In [25, 24], this likelihood-based approach to statistical inference was extended to the prediction
problem, which consists in making statements about a not-yet-observed realisation y ∈ Y of some
random quantity Y ∼ PY (·; θ) given knowledge about θ obtained by observing z (represented here by
BelΘz ). The extension relies on Dempster’s sampling model [8], which expresses Y as a function ϕ of the
parameter θ and some unobserved variable V with known probability distribution PV independent of θ:

Y = ϕ(θ, V ). (23)

In [25, 24] (see, also, [12]), the function ϕ is obtained by inverting the cdf of Y and V ∼ U([0, 1]).
In this scheme, variables U and V are independent and thus the distribution PU,V of (U, V ) is the

uniform distribution on [0, 1]2. Besides, for any (u, v) ∈ [0, 1]2, we can assert from (22) and (23) that
Y ∈ ϕ(Γz(u), v). Accordingly, knowledge about the future realisation y given the observed data z may be
represented by the belief function BelYz induced by the random set ϕ(Γz(U), V ) and defined as [25, 24]

BelYz (A) = PU,V
(
{(u, v) ∈ [0, 1]2 | ϕ(Γz(u), v) ⊆ A}

)
, ∀A ⊆ Y. (24)

BelYz is called the predictive belief function. Its associated plausibility function PlYz is defined by

PlYz (A) = PU,V
(
{(u, v) ∈ [0, 1]2 | ϕ(Γz(u), v) ∩A 6= ∅}

)
, ∀A ⊆ Y. (25)

This approach to statistical inference and prediction is illustrated by Example 3, where Y is a
Bernoulli variable, as this is the case on which the evidential extension of LR recalled in the next section
relies.

Example 3. Let Z ∼ B(n, θ), i.e., Z is a random variable following a binomial distribution with param-
eters n ∈ N and θ ∈ [0, 1]. Assume we have observed z ∈ N successes out of the n trials. Knowledge about
θ given z is then represented by the likelihood-based belief function BelΘz with contour function defined
by:

plΘz (θ) = θz(1− θ)n−z

θ̂z(1− θ̂)n−z
=
(
θ

θ̂

)nθ̂
·
(

1− θ
1− θ̂

)n(1−θ̂)

, ∀θ ∈ [0, 1],
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Figure 3: Contour functions for the binomial distribution with θ̂ = 1
3 and n ∈ {15, 30}, and

induced predictive mass functions for the next trial.

where θ̂ = z/n is the MLE of θ. Figures 3a and 3b show plΘz for θ̂ = 1
3 and for, respectively, n = 15 and

n = 30. As can be seen, the area under the contour function plΘz reduces as n increases.
Let Y ∼ B(θ), i.e., Y is a binary (Y = {0, 1}) random variable following a Bernoulli distribution

with parameter θ ∈ [0, 1]. Variable Y can be expressed in the form (23) as

Y = ϕ(θ, V ) =
{

1, if V ≤ θ,
0, otherwise,

with V ∼ U([0, 1]).
Using the fact that plΘz is continuous and unimodal (as illustrated by Fig. 3), it can be shown (see [25,

Example 2]) that the expressions of the predictive belief and predictive plausibility that y = 1, given by (24)
and (25) for A = {1}, reduce respectively to

BelYz ({1}) = θ̂ −
∫ θ̂

0
plΘz (θ)dθ, (26)

PlYz ({1}) = θ̂ +
∫ 1

θ̂

plΘz (θ)dθ. (27)

For instance, for n = 15 and θ̂ = 1
3 , we find BelYz ({1}) ≈ 0.20 and PlYz ({1}) ≈ 0.49.

Equivalently, in terms of the predictive mass function mYz , we have using Eqs. (16)-(18)

mYz ({1}) = BelYz ({1}),
mYz ({0}) = 1− PlYz ({1}),
mYz (Y) = PlYz ({1})−BelYz ({1})

=
∫ 1

0
plΘz (θ)dθ.

Each mass mYz (A), A ⊆ Y, corresponds to a particular area with respect to the function plΘz , as illustrated
by Fig. 3. In particular, mYz (Y), which represents the amount of belief, called ignorance [25], that cannot

10



be committed to any specific hypothesis, is equal to the area under the contour function plΘz . Let us
remark that the size of this area tends to 0 as n tends to infinity [25]. In other words, mYz (Y) reflects
the amount of data: the more data there are, the less ignorance there is.

3.3 The evidential logistic regression model
Following previous work from Xu et al. [49], Minary et al. [31] introduced a belief function-based extension
of LR, called hereafter evidential logistic regression (ELR), which they used as a meta-classifier to
combine classifiers’ outputs. In ELR, the label y ∈ Y = {0, 1} of an object whose feature vector x has
been observed, is seen as the realisation of a binary random variable Y following a Bernoulli distribution
with parameter θ = h(σ0 + σᵀ

mx), where there is some uncertainty on σ = (σ0,σm) induced by the
observation of the training data D. The representation of the uncertainty on σ and the subsequent
prediction of Y are carried out using the approach for statistical inference and prediction recalled in the
preceding section, therefore yielding a belief degree BelYD,x({1}) and a plausibility degree PlYD,x({1})
(rather than a probability P (y = 1|x) as in LR) for the positive class given the predictors.

More precisely, Minary et al. [31] represent uncertainty on σ by the likelihood-based (consonant)
belief function BelΣD whose contour function is defined by

plΣD(σ) = LD(σ)
LD(σ̂) , ∀σ ∈ Σ, (28)

and whose corresponding plausibility function is obtained as

PlΣD(A) = sup
σ∈A

plΣD(σ), ∀A ⊆ Σ.

Then, the uncertainty with respect to θ induced by the uncertainty on σ and the observed feature
vector x, is represented by a consonant belief function BelΘD,x with contour function plΘD,x obtained as

plΘD,x(θ) =
{

0 if θ ∈ {0, 1},
P lΣD ({σ ∈ Σ | θ = h(σ0 + σᵀ

mx)}) otherwise,

where

{σ ∈ Σ | θ = h(σ0 + σᵀ
mx)} =

{
σ ∈ Σ | − (σ0 + σᵀ

mx) = ln(θ−1 − 1)
}

=
{
σ ∈ Σ | σ0 = − ln(θ−1 − 1)− σᵀ

mx
}
,

which yields

plΘD,x(θ) = sup
σm∈Rm

plΣD
(
− ln(θ−1 − 1)− σᵀ

mx,σm
)
, ∀θ ∈ (0, 1). (29)

The value plΘD,x(θ), θ ∈ (0, 1), can be obtained by an iterative maximisation algorithm.
Finally, the predictive belief BelYD,x({1}) and predictive plausibility PlYD,x({1}) of the positive class

given the predictors are obtained from the contour function plΘD,x using Eqs. (26) and (27), respectively.
Note that, using Eqs. (16)-(18), the uncertainty with respect to the label y of an object whose feature
vector x has been observed, can then be equivalently characterized by some other pairs of quantities
than the belief degree BelYD,x({1}) and the plausibility degree PlYD,x({1}), such as the mass mYD,x({1})
supporting the positive class together with the mass mYD,x(Y) representing the amount of ignorance.

Example 4. In order to be able to provide graphical representations of the inner workings of ELR, we
will consider, only in this example, a slightly simplified version of ELR where a degree of freedom of the
model is removed. Specifically, we consider the case where the LR extended by ELR is LR with the bias
term σ0 fixed (arbitrarily) to σ0 = 0. In this case, considering the classification problem with training
dataset D of Example 1, LR is defined with coefficients σm = (σ1, σ2)ᵀ ∈ R2.

The steps to obtain the predictive belief BelYD,x({1}) and predictive plausibility PlYD,x({1}) for the
object with observed feature vector x = (2,−1) are now illustrated, where the restriction σ0 = 0 holds
throughout the rest of the example.

11



0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ1

σ
2

0.2 0.4 0.6 0.837 0.9 0.995

(a) Level sets of the contour function plΣD. Lines
σ2 = (− ln(θ−1 − 1)− σ1x1)/x2 for x = (x1, x2) =
(2,−1) and θ ∈ {0.2, 0.4, 0.6, 0.837, 0.9, 0.995},
with the maximum on each line ( ◦ ) .

0 0.2 0.4 0.6 0.837 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pl
Θ D,
x
(θ

)

θ

mYD,x(Y)

mYD,x({1})

(b) Contour function plΘD,x(θ) for x = (2,−1).
Associated predictive mass function mYD,x.
Maximums (◦) found for different values of θ in
Fig. 4a.

Figure 4: Computation of the contour function on Θ involved in ELR.

The levels sets of the contour function plΣD defined by (28) are shown in Figure 4a. From (29) (and
σ0 = 0), the value of plΘD,x(θ) is defined as the maximum of plΣD along the line :

σ2 = (− ln(θ−1 − 1)− σ1x1)/x2.

This line is shown for different values of θ in Figure 4a. Figure 4b shows the resulting contour function
plΘD,x for feature vector x = (2,−1), from which BelYD,x({1}) and PlYD,x({1}) are obtained using Eqs. (26)
and (27) respectively. We find:

BelYD,x({1}) = 0.5703, P lYD,x({1}) = 0.9517.

Equivalently, we have
mYD,x({1}) = 0.5703, mYD,x(Y) = 0.3815

(and mYD,x({0}) = 0.0483 using (16)).

Example 5. Relaxing the restriction on the bias parameter ( i.e., the restriction σ0 = 0) used in Example
4 solely for the sake of illustration, let us provide the actual results obtained when one applies ELR to
the data from Example 1. Figure 5a shows the contour function plΘD,x for the object with observed
feature vector x = (2,−1) from which BelYD,x({1}) and PlYD,x({1}) are obtained using Eqs. (26) and (27)
respectively. We find:

BelYD,x({1}) = 0.5655, P lYD,x({1}) = 0.9578,
or, equivalently,

mYD,x({1}) = 0.5655, mYD,x(Y) = 0.3923, mYD,x({0}) = 0.0422.

Using the interval dominance decision rule with mYD,x and 0/1 loss, one obtains that the decision for
the label y of the object having feature vector x = (2,−1) is y = 1. For this instance, the uncertainty
is thus too low to yield an imprecise decision. A precise decision is reached, which is the same decision
as the one obtained with LR. Nonetheless, let us remark that in general, decisions made using LR and
ELR may differ as illustrated in Figure 5b, which shows the decision regions (in the case of 0/1 loss) of
ELR and in particular the fact that it may yield imprecise decisions. For completeness, Figure 5c shows
the degree of ignorance yielded by ELR for any x ∈ X ; we can remark that the areas where ignorance is
the greatest correspond to the areas where imprecise decisions are made.
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4 Evidential choquistic regression
In this section, a belief function-based extension of the CR model is proposed, following the approach
of Minary et al. [31] to extend the LR model that was recalled in Section 3.3. This extension of CR,
derived in Section 4.2, is presented using a reparameterisation of CR in a linear form provided in Section
4.1. As will be seen, this reparameterisation offers several advantages. Furthermore, in Section 4.3, the
computational complexity of this extension of CR is analysed.

4.1 Reparameterised choquistic regression
The CR model may be rewritten in a linear form as follows. From (7), expression (8) verifies

γ (Cµ(gx)− β) = γ

(∑
A⊆C

mµ(A) · min
ci∈A

gx(ci)− β

)
= −γβ +

∑
A⊆C

γ ·mµ(A) · min
ci∈A

gx(ci)

= −γβ +
∑

A⊆C,A 6=∅

γ ·mµ(A) · min
ci∈A

gx(ci). (30)

Let ψ : 2C → R and φx : 2C → R be the mappings defined, respectively, as

ψ(∅) = −γβ,
ψ(A) = γ ·mµ(A), ∀A ⊆ C,A 6= ∅,

and

φx(∅) = 1,
φx(A) = min

ci∈A
gx(ci), ∀A ⊆ C,A 6= ∅.

Then, from (30), we obtain

γ (Cµ(gx)− β) =
∑
A⊆C

ψ(A) · φx(A)

= ψᵀφx, (31)

with ψ and φx the column vectors whose elements are, respectively, the values ψ(A) and φx(A), A ⊆ C,
ordered according to the same (arbitrary) order on the subsets of C.

Let us note that the original parameters υ = (γ,mµ, β) of CR can be recovered from the alternative
parameters ψ as follows:

γ =
∑

A⊆C,A 6=∅

ψ(A),

β = −ψ(∅)∑
A⊆C,A 6=∅ ψ(A)

,

mµ(A) = ψ(A)∑
B⊆C,B 6=∅ ψ(B)

, ∀A ⊆ C,A 6= ∅,

using the fact that µ(C) = 1 =
∑

B⊆C,B 6=∅mµ(B).
Under this reparametrisation, fitting the CR model amounts to determining the actual values ψ̂ of

the parameters ψ. The conditional likelihood of these alternative parameters is given by

LD(ψ) =
n∏
i=1

(h(ψᵀφ
x(i) ))y

(i)
· (1− h(ψᵀφ

x(i) ))(1−y(i)), (32)
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and the log-likelihood is then

`D(ψ) =
n∑
i=1

y(i) log(h(ψᵀφ
x(i) )) + (1− y(i)) log(1− h(ψᵀφ

x(i) )).

Given the constraints (14) and (15) as well as the relations between parameters υ and ψ, the values
ψ̂ are obtained by solving the following constrained optimisation problem:

ψ̂ = arg max
ψ∈Ψ

`D(ψ) (33)

with Ψ the set composed of the vectors ψ ∈ R2m

satisfying∑
A⊆C,A 6=∅

ψ(A) ≥ −ψ(∅) ≥ 0,
∑

A⊆C,A 6=∅

ψ(A) > 0,

and ∑
B⊆A\{ci}

ψ(B ∪ {ci}) ≥ 0, ∀A ⊆ C, ∀ci ∈ C.

In other words, and as already remarked in [17, Section 6], CR can be seen as fitting a (constrained)
linear function in the feature space spanned by the set of features {φx(A)|A ⊆ C}. From a formal point
of view, this reparametrisation presents thus CR under a similar form to that of LR. This is particularly
interesting as it makes it possible to extend straightforwardly to CR both the approach followed by
Minary et al. [31] to derive ELR and some other useful results related to LR, as will be seen in the
next section. Furthermore, from a practical of view, let us remark that we have observed (for instance,
when running the experiments reported in Section 5) that solving the optimisation problem (33) is on
average an order of magnitude faster than solving the optimisation problem (13) when using the fmincon
function of Matlab (function reportedly used in [17] to solve (13)).

4.2 The evidential choquistic regression model
In this section, an evidential extension of CR, called evidential choquistic regression (ECR), is derived.
This extension may be obtained equivalently using the CR model based on the expression (8) or based on
the linear form (31). Since this latter expression has the advantages mentioned in the preceding section,
it is preferred.

Similarly to the ELR model recalled in Section 3.3, we propose to see the label y ∈ Y = {0, 1}
of an object whose feature vector x has been observed, as the realisation of a binary random variable
Y following a Bernoulli distribution with parameter θ = h(ψᵀφx), where there is some uncertainty on
ψ induced by the observation of the training data D. This latter uncertainty is represented by the
likelihood-based (consonant) belief function BelΨD whose contour function is defined by

plΨD(ψ) = LD(ψ)
LD(ψ̂)

, ∀ψ ∈ Ψ,

and whose corresponding plausibility function is obtained as

PlΨD(A) = sup
ψ∈A

plψD(ψ).

Then, the uncertainty with respect to θ induced by the uncertainty on ψ and the observed feature vector
x, is represented by the consonant belief function BelΘD,x whose contour function is given by

plΘD,x(θ) =
{

0 if θ ∈ {0, 1},
P lΨD ({ψ ∈ Ψ | θ = h(ψᵀφx)}) otherwise,
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where

{ψ ∈ Ψ | θ = h(ψᵀφx)} =
{
ψ ∈ Ψ | − ψᵀφx = ln(θ−1 − 1)

}
=

{
ψ ∈ Ψ | ψ(∅) = − ln(θ−1 − 1)−

∑
A⊆C,A 6=∅

ψ(A) · φx(A)

}
,

which yields

plΘD,x(θ) = sup
ψ∗∈R2m−1

plΨD

(
− ln(θ−1 − 1)−

∑
A⊆C,A 6=∅

ψ(A) · φx(A),ψ∗
)
, ∀θ ∈ (0, 1), (34)

with ψ∗ the vector whose elements are the values ψ(A), A ⊆ C,A 6= ∅. The value plΘD,x(θ), θ ∈ (0, 1),
can be obtained by an iterative maximisation algorithm.

Similarly as for ELR, the prediction of Y given this uncertainty on θ is carried out using the approach
for prediction recalled in Section 3.2. Specifically, the predictive belief BelYD,x({1}) and predictive
plausibility PlYD,x({1}) of the positive class given the predictors are obtained from the contour function
plΘD,x defined by (34) using Eqs. (26) and (27), respectively.

Example 6. Let us illustrate ECR on the classification problem with training dataset D of Example
1. The contour function plΘD,x(θ) obtained from (34) for feature vector x = (2,−1)ᵀ is illustrated in
Figure 6a. This contour function induces

BelYD,x({1}) = 0.3403, P lYD,x({1}) = 0.8889.

Equivalently, we have

mYD,x({0}) = 0.1111, mYD,x({1}) = 0.3403, mYD,x(Y) = 0.5485.

Using the interval dominance decision rule with mYD,x and 0/1 loss, the decision reached for the label
y of the object with feature vector x = (2,−1)ᵀ is y = {0, 1}. In other words, the uncertainty is too high
and an imprecise decision is obtained when using the evidential extension of CR (CR yielded the decision
y = 1, see Example 2). This contrasts with LR where the same precise decision (y = 1) was obtained
with its evidential extension (see Examples 1 and 5, respectively).

For completeness, the decision regions (in the case of 0/1 loss) and the levels of ignorance of ECR
are shown in Figures 6b and 6c, respectively. Similarly as for ELR, regions where imprecise decisions
are made correspond to areas with greatest levels of ignorance.

Remark 1. In order to prevent LR from over-fitting when the training examples in D are perfectly
separable, a modified version due to Platt [38] of the conditional likelihood LD of the LR parameters may
be used: the label y(i) ∈ {0, 1} in (3) is then replaced by t(i) ∈ [0, 1] defined by

t(i) =

{
N++1
N++2 if y(i) = 1,

1
N−+2 if y(i) = 0,

(35)

where N+ and N− are the number of positive and negative samples, respectively, in D. This modification
ensures LD to have a unique supremum σ̂. In their derivation of ELR – precisely, in their definition (28)
of the contour function plΣD – Minary et al. [31] actually used this modified version of LD.

As already mentioned in Section 2.3, CR may also be prone to over-fitting. Besides restricting µ
to be k-additive for some k < m, it is proposed in [17] to address this issue by adding a L1-regulariser
on the Möbius transform in the objective (13). However, we may as well consider a modified version
of the conditional likelihood LD of the CR parameters, where the label y(i) in (11) (or in (32) if the
reparametrisation is used) has been replaced by t(i) defined by (35). Let us remark that, thanks to the
reparameterised form of CR and its formal similarity with LR, it is then straightforward to obtain that
this latter modification ensures LD to have a unique supremum ψ̂.
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Figure 6: Evidential choquistic regression.
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In the experiments reported in Section 5, the modified labels (35) (rather than the original labels y(i))
are not only used in the conditional likelihood involved in ELR (as it is the actual definition of ELR given
in [31]), but they are also used in all the conditional likelihoods involved in LR, CR and ECR. This is
done in order to ensure a fairer comparison between the approaches.

4.3 Complexity
In this section, we provide a brief analysis of the computational complexity involved in making a

prediction using ECR. To derive this complexity, we start by recalling the complexity of training LR,
then we proceed with the complexity of making a prediction using ELR and with that of training CR,
before ending with that of making a prediction using ECR.

Given a training set D composed of n instances described by m-dimensional feature vectors, the
computational complexity of finding the MLE of LR according to Eq. (4), using gradient ascent (GA),
is [32]:

O ((m+ 1) · n · t) ,
with t the number of ascent iterations.

Making a prediction using ELR involves essentially computing contour function plΘD,x (inducing the
predictive belief function BelYD,x), which in practice is approximated by: (1) selecting a finite number
c of values of θ ∈ (0, 1); (2) evaluating plΘD,x, that is, solving the optimisation problem (29), for each
selected value of θ; (3) interpolating plΘD,x linearly between the selected values of θ. Note that the same
approach is followed for making a prediction using ECR (in step (2), optimisation problem (34) is then
solved instead of (29)).

The complexity of solving the optimisation problem (29), using GA, is similar to that of finding
the MLE of LR: it is O (m · n · t) . Since this optimisation is done c times, the complexity of making a
prediction using ELR is

O (c ·m · n · t) .

Training CR amounts to solving the constrained optimisation problem (33), which can be done using
projected gradient ascent [2]. From the complexity of training LR, we obtain that the complexity of
training CR is

O (2m · n · t) .
We thus face an exponential complexity in the number of features. This complexity can nonetheless be
significantly reduced by restricting the capacity underlying CR to be k-additive, for some k < m, which,
we recall, is also useful to prevent overfitting. Using this restriction, the dimension of the parameter
space Ψ of CR is reduced to

∑k

l=0

(
m
l

)
, and the complexity of training CR becomes

O

(
k∑
l=0

(
m

l

)
· n · t

)
.

As already mentioned, making a prediction using ECR follows the same approach to that of making
a prediction using ELR. We have in particular that ECR inherits the complexity of CR, in the same
manner as ELR inherits the complexity of LR. Therefore, the complexity of making a prediction using
ECR is

O (c · 2m · n · t) .
However, using the restriction to k-additive capacities as done in the experiments reported in Section 5,
the complexity comes down to

O

(
c ·

k∑
l=1

(
m

l

)
· n · t

)
,

which remains acceptable for real applications having low dimensional features and for k small.
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Name #instances #features source
Blood Transfusion Service Center (BLO) 748 4 UCI
Contraceptive Method Choice (CMC) 1473 9 UCI
Haberman’s Survival (HAB) 306 3 UCI
Hamster (HAM) 73 5 StatLib
Lecturers Evaluation (LEV) 1000 4 WEKA
Mammographic (MMG) 961 4 UCI
Auto MPG (MPG) 398 7 UCI
Teaching Assistant Evaluation (TAE) 151 5 UCI
Yeast (YST) 1484 8 UCI

Table 1: Datasets used in the experiments

5 Experiments
In this section, the results of some experiments that we conducted are reported. Their goal is twofold.
First, we would like to show that by capturing uncertainty in a more subtle way, ECR is a useful reliable
variant of CR. Secondly, we seek to show that by enabling more flexibility with respect to the possibility
of interactions between the predictors, ECR is competitive with ELR. Our experiments rely on some
(monotone) datasets, which are presented in the next section.

5.1 Datasets
We used nine datasets, summarised in Table 1, for which the assumption of monotonicity in the input
variables seems reasonable. To our knowledge, at least some of them have also been used in previous
works on monotonic classification, such as in [18, 17, 4]. They are available from the UCI1, StatLib2

and WEKA3 dataset repositories. Some of them have numerical or categorical outputs, which were thus
binarised. Furthermore, all the input features were normalised using (10). The following paragraphs
provide some more details on each one of the datasets.

Blood Transfusion Service Center (BLO) This dataset is a subsample of the database main-
tained by the Blood Transfusion Service Center in Hsin-Chu City in Taiwan. The data represents 748
donor examples described by 4 features : recency (months since last donation), frequency (total number
of donation), monetary (total blood donated), time (months since first donation). The goal is to predict
the dependent binary variable representing whether the donor donated blood in March 2007.

Contraceptive Method Choice (CMC) This dataset is composed of 1473 instances collected
in 1987 by the National Indonesia Contraceptive Prevalence Survey. The problem is to predict the
choice of contraceptive method encoded with 3 categories (no use, long-term methods, or short-term
methods) from 9 demographic and socio-economic features of women: age, education, education of
husband, number of children, religious, working, occupation of husband, living index, media exposure.
The categorical output was binarised into a two-class target by distinguishing between those women that
do not use a contraceptive method (category “no use”) and those that do use one (categories “long-term
methods” and “short-term methods”).

Haberman’s Survival (HAB) This dataset contains 306 instances on the survival of patients who
had undergone surgery for breast cancer between 1958 and 1970 at the University of Chicago’s Billings
Hospital. Instances are described by 3 ordinal features: patient’s age, year of operation, and amount of

1https://archive.ics.uci.edu
2http://lib.stat.cmu.edu/datasets
3https://waikato.github.io/weka-wiki/datasets
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detected axillary nodes. The goal is to predict the dependent binary variable representing whether the
patient died within 5 years.

Hamster (HAM) This dataset contains the measurements of the weights of 6 organs (lung, heart,
liver, spleen, kidney, testes) of 73 hamsters from a strain with a congenital heart problem. The numeric
output is the weight measurement of testes, which was binarised as done in the OpenML dataset repos-
itory4, i.e., it was binarised to a two-class target by computing the mean and classifying all instances
with a measurement lower than the mean as positive and all others as negative.

Lecturers Evaluation (LEV) This dataset is composed of examples of anonymous lecturer eval-
uations sampled at the end of courses where students were asked to score lecturers according to four
ordinal features including oral skills and contribution to their professional/general knowledge. The or-
dinal output is an overall evaluation of a lecturer’s performance which was binarised by interpreting the
scores between 3 and 4 as positive (good evaluation) and the scores between 0 and 2 as negative (bad
evaluation), as done in [17].

Mammographic (MMG) This dataset is composed of 961 instances of patients. The problem is to
predict whether a mammographic mass lesion is benign or malignant, given 3 BI-RADS features (mass
shape, mass margin, density) and the patient’s age.

Auto MPG (MPG) This dataset was designed for the American Statistical Association Exposition
of 1983. The problem is about the prediction of the city-cycle fuel consumption (in miles per gallon)
based on seven features of a car: cylinders, displacement, horsepower, weight, acceleration, model year,
origin. The numerical consumption output was binarised by thresholding at the median, as done in [17].
Furthermore, incomplete instances were removed.

Teacher Assistant Evaluation (TAE) The data was collected at the Statistics Department of
the University of Wisconsin-Madison. It represents a collection of 151 evaluations of teacher assistants
based on 6 ordinal features: native speaker, instructor, course, semester, class size. The ordinal output
represents 3 categories (low, medium, and high), which was binarised to a two-class target by distin-
guishing between great (category high) and not great evaluation (categories medium and low).

Yeast (YST) This dataset is composed of 1484 instances describing the cellular localisation sites
of proteins, given 8 features extracted from the amino acid contents. The protein localisation site is a
nominal output encoded with 10 modalities (“cyt” for cytosolic or cytoskeletal, “nuc” for nuclear, “mit”
for mitochondrial,...). It was converted to a two-class target by relabelling the majority localisation site
modality as positive and all others as negative, which amounts to predicting whether the localisation
site is “cyt”.

5.2 Accuracy
As stressed in [43], it is important to make sure that an improved representation of uncertainty permitted
by a reliable variant of a classifier, does not come at the expense of a loss in accuracy. Therefore, we
looked first at the predictive accuracy of our reliable version of CR, i.e., of ECR, before investigating
its potential benefits with respect to CR in terms of uncertainty representation. This also allowed us
to check whether the superior accuracy of CR in comparison to LR observed in [17] when the amount
of training data is sufficiently large5, is carried over to their evidential extensions, as this seems to be
another important requirement.

4See https://www.openml.org/d/893
5In [17], it was observed that CR outperforms LR when there is sufficiently extensive training data, but also

that LR may be better if the amount of training data is small, which the authors explained by the fact that
the flexibility of CR, i.e., its ability to capture nonlinear dependencies between input attributes, may lead to
overfitting when there is few data and is becoming more and more advantageous as more data is available.
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For each dataset, we followed a similar procedure to that of [17]. The dataset was randomly split
into two parts: a training set and a test set. Each of the models (LR, CR, ELR, ECR) was learnt on
the training set and its performance was measured using the standard misclassification rate (0/1 loss)
estimated on the test set – for the reliable classifiers ELR and ECR, a (precise) prediction was obtained
using the decision rule (20). This process was repeated 100 times and the results were averaged over
these repetitions. Furthermore, we considered three proportions between training and test data, which
were 20:80, 50:50 and 80:20, in order to study the influence of the amount of training data. In addition,
to obtain the best accuracy, the underlying capacity of CR (and thus of ECR, as it extends CR) was
restricted to be k-additive, with k determined by 10-fold cross validation on the training set.

The results for this experiment are given in Tables 2 and 3. First, as can be seen from Table 2, ECR
and ELR have essentially the same predictive accuracies as CR and LR, respectively. Second, ECR has
a better predictive accuracy than ELR (this is all the more true as the training set size increases).

In order to further confirm these observed differences in the classifier performances, we resorted to the
statistical tests recommended by Demšar [9]. First, a Friedman test (using the FF statistic, see [9, Section
3.2.2]) was used for comparing LR, CR, ELR and ECR over the nine datasets, with the null hypothesis
that the classifiers are equivalent. The test statistic relies on the average rankings of the classifiers
(provided in Table 2), where the rankings are based in this experiment on the misclassification rate. We
found that the null hypothesis is rejected at significance level α = 0.05, for any of the three proportions
considered between training and test data. When the null hypothesis is rejected, the classifiers can then
be compared to each other using a post-hoc test such as the one of Bonferroni-Dunn [9], which relies also
on the average rankings of the classifiers. We used this test to compare ECR to the other classifiers at
significance level α = 0.05. We found that ECR is significantly better than both LR and ELR and that
the difference with CR is not significant, for any of the three proportions considered between training
and test data.

Overall, these results mean that the two requirements set above for ECR seem thus to be met:
enabling the possibility to capture extra information on the reliability of predictions does not deterio-
rate the predictive accuracy, and enabling nonlinear dependencies between input attributes brings an
improvement in predictive accuracy not only in the probabilistic setting but also in the evidential one.
Moreover, this latter flexibility in terms of dependencies between input attributes is all the more ex-
ploited to improve accuracy as the learning set size increases, as can be seen from Table 3, which shows
that the optimal (cross-validated) value of k is increasing in the learning set size.

5.3 Utility-discounted accuracy
As it was illustrated by Examples 5 and 6, an interest of the improved representation of uncertainty
offered by the reliable variants of LR and CR is the ability to make imprecise predictions when there is
too much uncertainty. The question of the measurement of the quality of classifiers issuing potentially
imprecise predictions has received a few answers (see [51, 50] and the references therein). In general, the
idea is to have a measure taking both into account the accuracy and the precision of the predictions.
A standard approach is to extend the classical accuracy measure to imprecise predictions, which makes
it then possible to compare classifiers issuing imprecise predictions with classifiers issuing only precise
predictions.

A first proposal in this vein, known as discounted accuracy, reads as follows. Let T = {x(i), y(i)}Ti=1
be a test set composed of T objects, with y(i) ∈ Y the known (and precise) label of object i. Furthermore,
let A(i) ⊆ Y denote the (potentially imprecise) prediction for the label of object i, provided by a classifier
having observed feature vector x(i). Then, the discounted accuracy AccD of this classifier is:

AccD = 1
T

T∑
i=1

1A(i) (y(i)) · 1
|A(i)|

, (36)

with 1A(i) the indicator function of subset A(i). This measure clearly degenerates into the classical
accuracy measure when all A(i), i = 1, . . . , T , are singletons, i.e., all the predictions are precise.

An issue with the discounted accuracy is that the value of an imprecise prediction A(i) is considered
to be the same as that of a purely random choice within A(i), as criticised by Zaffalon et al. [51]. In
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Datasets CR ECR LR ELR
BLO(20:80) .2256 ± .0125(2) .2255 ± .0126(1) .2271 ± .0128(4) .2269 ± .0125(3)
CMC(20:80) .3190 ± .0151(1) .3217 ± .0221(2) .3350 ± .0128(4) .3349 ± .0129(3)
HAB(20:80) .2607 ± .0184(1) .2608 ± .0189(2) .2611 ± .0210(3.5) .2611 ± .0211(3.5)
HAM(20:80) .4498 ± .0812(1) .4512 ± .0796(2) .4672 ± .0683(3.5) .4672 ± .0680(3.5)
LEV(20:80) .1543 ± .0116(1) .1546 ± .0115(2) .1628 ± .0098(3.5) .1628 ± .0099(3.5)
MMG(20:80) .2074 ± .0126(2) .2066 ± .0126(1) .2087 ± .0116(3) .2088 ± .0116(4)
MPG(20:80) .1093 ± .0168(2) .1088 ± .0168(1) .1102 ± .0173(4) .1098 ± .0175(3)
TAE(20:80) .3346 ± .0450(1) .3371 ± .0480(2) .3373 ± .0463(3) .3376 ± .0474(4)
YST(20:80) .3098 ± .0101(1) .3216 ± .0553(4) .3181 ± .0107(2) .3183 ± .0105(3)

Average ranking 1.33 1.89 3.39 3.39
BLO(50:50) .2225 ± .0165(1) .2226 ± .0166(2) .2259 ± .0162(3) .2261 ± .0162(4)
CMC(50:50) .3026 ± .0127(1) .3040 ± .0128(2) .3284 ± .0117(3) .3285 ± .0117(4)
HAB(50:50) .2537 ± .0278(2) .2527 ± .0278(1) .2556 ± .0284(4) .2553 ± .0283(3)
HAM(50:50) .3983 ± .0862(1) .4047 ± .0781(2) .4453 ± .0716(4) .4444 ± .0717(3)
LEV(50:50) .1423 ± .0118(1.5) .1423 ± .0117(1.5) .1637 ± .0121(3.5) .1637 ± .0122(3.5)
MMG(50:50) .1983 ± .0147(2) .1982 ± .0148(1) .1999 ± .0132(3) .2000 ± .0132(4)
MPG(50:50) .0910 ± .0204(2) .0909 ± .0202(1) .0978 ± .0178(4) .0977 ± .0177(3)
TAE(50:50) .3139 ± .0468(1) .3141 ± .0476(2) .3267 ± .0432(4) .3264 ± .0432(3)
YST(50:50) .3100 ± .0131(1) .3101 ± .0130(2) .3211 ± .0140(4) .3210 ± .0140(3)

Average ranking 1.39 1.61 3.61 3.39
BLO(80:20) .2195 ± .0291(1.5) .2195 ± .0293(1.5) .2307 ± .0283(4) .2306 ± .0282(3)
CMC(80:20) .2968 ± .0215(1) .3005 ± .0220(2) .3245 ± .0250(3.5) .3245 ± .0250(3.5)
HAB(80:20) .2548 ± .0508(1) .2549 ± .0507(2) .2582 ± .0500(4) .2579 ± .0505(3)
HAM(80:20) .3413 ± .1110(1) .3507 ± .1155(2) .4360 ± .1061(4) .4353 ± .1040(3)
LEV(80:20) .1429 ± .0220(1.5) .1429 ± .0222(1.5) .1657 ± .0205(3.5) .1657 ± .0205(3.5)
MMG(80:20) .1910 ± .0243(1.5) .1910 ± .0244(1.5) .1949 ± .0236(3.5) .1949 ± .0236(3.5)
MPG(80:20) .0838 ± .0288(2) .0836 ± .0281(1) .0905 ± .0295(3.5) .0905 ± .0297(3.5)
TAE(80:20) .3050 ± .0814(2) .3043 ± .0813(1) .3337 ± .0788(4) .3323 ± .0803(3)
YST(80:20) .3095 ± .0221(1) .3102 ± .0221(2) .3200 ± .0230(3.5) .3200 ± .0230(3.5)

Average ranking 1.39 1.61 3.72 3.28

Table 2: Mean and standard deviation of 0/1 loss (associated ranking) for CR, LR and their
reliable variants, trained on 20%, 50%, and 80% of the datasets.
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Datasets k
BLO(20:80) 1.33 ± 0.49
CMC(20:80) 2.90 ± 1.48
HAB(20:80) 1.52 ± 0.66
HAM(20:80) 2.16 ± 0.98
LEV(20:80) 2.29 ± 1.05
MMG(20:80) 1.96 ± 0.95
MPG(20:80) 2.17 ± 1.13
TAE(20:80) 2.07 ± 1.00
YST(20:80) 2.78 ± 1.28
BLO(50:50) 1.70 ± 0.46
CMC(50:50) 3.42 ± 1.51
HAB(50:50) 1.89 ± 0.75
HAM(50:50) 2.65 ± 0.89
LEV(50:50) 3.29 ± 0.57
MMG(50:50) 2.17 ± 0.91
MPG(50:50) 2.74 ± 1.19
TAE(50:50) 2.47 ± 1.12
YST(50:50) 3.34 ± 1.25
BLO(80:20) 1.97 ± 0.17
CMC(80:20) 3.85 ± 1.69
HAB(80:20) 2.00 ± 0.75
HAM(80:20) 3.11 ± 0.63
LEV(80:20) 3.55 ± 0.50
MMG(80:20) 2.16 ± 0.77
MPG(80:20) 3.00 ± 1.03
TAE(80:20) 3.04 ± 1.00
YST(80:20) 3.70 ± 0.96

Table 3: Mean (± standard deviation) value of k determined by cross-validation over the 100
repetitions.
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other words, in the case of ambiguity, it does not reward caution. To address this problem, Zaffalon
et al. [51] justified another measure called utility-discounted accuracy, which also degenerates to the
classical accuracy measure when all the predictions are precise. This measure is defined as follows:

AccU = 1
T

T∑
i=1

1A(i) (y(i)) · u( 1
|A(i)|

), (37)

where u is a concave function on [0, 1], such that u(1) = 1 and u(0) = 0. Function u is interpreted
as modelling the utility of a prediction according to its precision (the more precise the prediction, the
higher the utility). In particular, it rewards an imprecise prediction A(i) ⊆ Y at least as much as the
discounted accuracy since this latter accuracy corresponds to giving a utility 1

|A(i)| to this prediction,
whereas prediction A(i) gets a utility u( 1

|A(i)| ) ≥
1

|A(i)| thanks to the concavity of u.
In the case of binary classification (Y = {0, 1}), which is of interest in this paper, Zaffalon et al. [51]

proposed to reward the imprecise prediction A(i) = {0, 1} by a utility between 0.65 and 0.8, i.e., we
should have u( 1

|{0,1}| ) = u(0.5) ≥ 0.65 and u(0.5) ≤ 0.8 (in contrast to the discounted accuracy, which
corresponds to giving a utility of only 0.5 to such prediction). This means that by setting u(0.5) = 0.65,
one is modelling a moderate cautiousness-seeking attitude – imprecise predictions are valued (rewarded),
yet to a small extent – whereas by setting u(0.5) = 0.80, imprecise predictions are rewarded to a greater
extent, hence modelling a stronger cautiousness-seeking attitude.

With that in mind, we repeated the experimental procedure described in Section 5.2, but with two
modifications. First, instead of using the decision rule (20) for ELR and ECR, we use the interval dom-
inance decision rule (21), therefore yielding potentially imprecise decisions for these classifiers. Second,
instead of measuring the performances of LR, CR, ELR and ECR using the misclassification rate, we used
the utility-discounted accuracy6 with u(0.5) = 0.65 and also with u(0.5) = 0.8; the former performance
measure is denoted by AccU65 and the latter is denoted by AccU80 .

The results of this second experiment are presented in Tables 4 and 5, respectively, for the perfor-
mance measures AccU65 and AccU80 , respectively. As can be seen from these tables, ECR and ELR have
globally better performances than CR and LR, respectively. Furthermore, the difference in performance
between a classifier and its reliable version is generally all the greater as there are fewer training data.
Overall, this suggests that ECR and ELR are able to capture useful information on the reliability of
predictions and, in particular, that the greater uncertainty induced by fewer training data is appropri-
ately taken into account by these reliable variants of CR and LR. Comparing the performances of ECR
and ELR, we can see that ECR is globally better than ELR. In addition, similarly as in the case of
predictive accuracy (see Section 5.2), the difference in performance between ECR and ELR is typically
all the greater as there are more training data. This means that the flexibility of ECR is beneficial also
when making reliable predictions and is all the more so as the learning set size increases.

Similarly as in Section 5.2, Friedman tests based on the average rankings (provided in Tables 4 and 5)
induced by performance measures AccU65 and AccU80 , were used for comparing further the classifiers.
We found for both of these performance measures that the null hypothesis (the classifiers are equivalent)
is rejected at level α = 0.05, for any of the three proportions considered between training and test
data. We proceeded with Bonferroni-Dunn tests (with level α = 0.05) based on the average rankings
induced by AccU65 and AccU80 . We found that according to AccU65 , ECR is significantly better than
LR and that the differences with CR and ELR are not significant, whereas according to AccU80 , ECR
is significantly better than both LR and CR and the difference with ELR is not significant; all of these
statements are obtained for any of the three proportions considered between training and test data. The
non-significant differences with ELR according to these particular tests, mitigate the conclusion drawn
above from Tables 4 and 5 that ECR is globally better than ELR when making reliable predictions.

To sum up this section and the previous one, we can conclude that ECR is a useful extension of
both CR and ELR. It combines the advantages of both in terms of modelling capabilities, which is
reflected by the results of our experiments. More precisely, the ability of ECR to capture uncertainty in

6Obviously, for LR and CR, this measure is nothing but their predictive accuracy (already provided in Sec-
tion 5.2 in the form of the misclassification rate), as these models yield only precise predictions.
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Datasets CR ECR LR ELR
BLO(20:80) .7744 ± .0125(3) .7848 ± .0117(1) .7729 ± .0128(4) .7838 ± .0108(2)
CMC(20:80) .6810 ± .0151(3) .7115 ± .0113(1) .6650 ± .0128(4) .6966 ± .0094(2)
HAB(20:80) .7393 ± .0184(3) .7528 ± .0163(1) .7389 ± .0210(4) .7513 ± .0163(2)
HAM(20:80) .5502 ± .0812(3) .6318 ± .0387(2) .5328 ± .0683(4) .6342 ± .0362(1)
LEV(20:80) .8457 ± .0116(3) .8555 ± .0086(1) .8372 ± .0098(4) .8542 ± .0089(2)
MMG(20:80) .7926 ± .0126(3) .8026 ± .0073(2) .7913 ± .0116(4) .8028 ± .0080(1)
MPG(20:80) .8907 ± .0168(1) .8722 ± .0224(4) .8898 ± .0173(2) .8866 ± .0118(3)
TAE(20:80) .6654 ± .0450(3) .6850 ± .0288(1) .6627 ± .0463(4) .6837 ± .0243(2)
YST(20:80) .6902 ± .0101(3) .7202 ± .0144(1) .6819 ± .0107(4) .7170 ± .0089(2)

Average ranking 2.78 1.56 3.78 1.89
BLO(50:50) .7775 ± .0165(3) .7856 ± .0167(1) .7741 ± .0162(4) .7852 ± .0167(2)
CMC(50:50) .6974 ± .0127(2) .7228 ± .0092(1) .6716 ± .0117(4) .6968 ± .0114(3)
HAB(50:50) .7463 ± .0278(3) .7587 ± .0251(1) .7444 ± .0284(4) .7567 ± .0255(2)
HAM(50:50) .6017 ± .0862(3) .6515 ± .0506(1) .5547 ± .0716(4) .6292 ± .0399(2)
LEV(50:50) .8577 ± .0118(2) .8637 ± .0094(1) .8363 ± .0121(4) .8523 ± .0109(3)
MMG(50:50) .8017 ± .0147(3) .8071 ± .0113(1) .8001 ± .0132(4) .8053 ± .0114(2)
MPG(50:50) .9090 ± .0204(1) .9055 ± .0151(2) .9022 ± .0178(4) .9029 ± .0152(3)
TAE(50:50) .6861 ± .0468(3) .7075 ± .0294(2) .6733 ± .0432(4) .7077 ± .0310(1)
YST(50:50) .6900 ± .0131(3) .7159 ± .0125(1) .6789 ± .0140(4) .7044 ± .0125(2)

Average ranking 2.56 1.22 4.00 2.22
BLO(80:20) .7805 ± .0291(3) .7827 ± .0277(2) .7693 ± .0283(4) .7834 ± .0295(1)
CMC(80:20) .7032 ± .0215(2) .7283 ± .0179(1) .6755 ± .0250(4) .6968 ± .0227(3)
HAB(80:20) .7452 ± .0508(3) .7567 ± .0502(1) .7418 ± .0500(4) .7512 ± .0488(2)
HAM(80:20) .6587 ± .1110(2) .6828 ± .0721(1) .5640 ± .1061(4) .6208 ± .0677(3)
LEV(80:20) .8571 ± .0220(2) .8651 ± .0191(1) .8343 ± .0205(4) .8496 ± .0182(3)
MMG(80:20) .8090 ± .0243(2) .8112 ± .0217(1) .8051 ± .0236(4) .8067 ± .0222(3)
MPG(80:20) .9162 ± .0288(1) .9156 ± .0235(2) .9095 ± .0295(4) .9114 ± .0269(3)
TAE(80:20) .6950 ± .0814(3) .7134 ± .0587(2) .6663 ± .0788(4) .7140 ± .0660(1)
YST(80:20) .6905 ± .0221(3) .7128 ± .0190(1) .6800 ± .0230(4) .7018 ± .0209(2)

Average ranking 2.33 1.33 4.00 2.33

Table 4: Mean and standard deviation of AccU65 (associated ranking) for CR, LR and their
reliable variants, trained on 20%, 50%, and 80% of the datasets.
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Datasets CR ECR LR ELR
BLO(20:80) .7744 ± .0125(3) .8058 ± .0196(1) .7729 ± .0128(4) .8045 ± .0192(2)
CMC(20:80) .6810 ± .0151(3) .7692 ± .0147(1) .6650 ± .0128(4) .7467 ± .0141(2)
HAB(20:80) .7393 ± .0184(3) .7833 ± .0198(1) .7389 ± .0210(4) .7823 ± .0202(2)
HAM(20:80) .5502 ± .0812(3) .7374 ± .0467(2) .5328 ± .0683(4) .7512 ± .0522(1)
LEV(20:80) .8457 ± .0116(3) .8822 ± .0116(1) .8372 ± .0098(4) .8765 ± .0117(2)
MMG(20:80) .7926 ± .0126(3) .8268 ± .0100(1) .7913 ± .0116(4) .8252 ± .0098(2)
MPG(20:80) .8907 ± .0168(3) .9125 ± .0139(2) .8898 ± .0173(4) .9196 ± .0108(1)
TAE(20:80) .6654 ± .0450(3) .7556 ± .0299(2) .6627 ± .0463(4) .7644 ± .0262(1)
YST(20:80) .6902 ± .0101(3) .7646 ± .0154(1) .6819 ± .0107(4) .7534 ± .0116(2)

Average ranking 3.00 1.33 4.00 1.67
BLO(50:50) .7775 ± .0165(3) .7965 ± .0184(1) .7741 ± .0162(4) .7945 ± .0183(2)
CMC(50:50) .6974 ± .0127(3) .7673 ± .0106(1) .6716 ± .0117(4) .7300 ± .0136(2)
HAB(50:50) .7463 ± .0278(3) .7748 ± .0270(1) .7444 ± .0284(4) .7722 ± .0273(2)
HAM(50:50) .6017 ± .0862(3) .7348 ± .0588(2) .5547 ± .0716(4) .7412 ± .0571(1)
LEV(50:50) .8577 ± .0118(3) .8805 ± .0096(1) .8363 ± .0121(4) .8673 ± .0119(2)
MMG(50:50) .8017 ± .0147(3) .8241 ± .0121(1) .8001 ± .0132(4) .8199 ± .0120(2)
MPG(50:50) .9090 ± .0204(3) .9286 ± .0138(1) .9022 ± .0178(4) .9219 ± .0152(2)
TAE(50:50) .6861 ± .0468(3) .7579 ± .0356(1) .6733 ± .0432(4) .7575 ± .0375(2)
YST(50:50) .6900 ± .0131(3) .7439 ± .0152(1) .6789 ± .0140(4) .7279 ± .0136(2)

Average ranking 3.00 1.11 4.00 1.89
BLO(80:20) .7805 ± .0291(3) .7912 ± .0284(1) .7693 ± .0283(4) .7906 ± .0305(2)
CMC(80:20) .7032 ± .0215(3) .7673 ± .0194(1) .6755 ± .0250(4) .7231 ± .0239(2)
HAB(80:20) .7452 ± .0508(3) .7695 ± .0499(1) .7418 ± .0500(4) .7627 ± .0486(2)
HAM(80:20) .6587 ± .1110(3) .7579 ± .0771(1) .5640 ± .1061(4) .7279 ± .0786(2)
LEV(80:20) .8571 ± .0220(3) .8766 ± .0197(1) .8343 ± .0205(4) .8630 ± .0183(2)
MMG(80:20) .8090 ± .0243(3) .8250 ± .0222(1) .8051 ± .0236(4) .8186 ± .0223(2)
MPG(80:20) .9162 ± .0288(3) .9326 ± .0219(1) .9095 ± .0295(4) .9235 ± .0260(2)
TAE(80:20) .6950 ± .0814(3) .7597 ± .0611(1) .6663 ± .0788(4) .7527 ± .0683(2)
YST(80:20) .6905 ± .0221(3) .7361 ± .0195(1) .6800 ± .0230(4) .7215 ± .0215(2)

Average ranking 3.00 1.00 4.00 2.00

Table 5: Mean and standard deviation of AccU80 (associated ranking) for CR, LR and their
reliable variants, trained on 20%, 50%, and 80% of the datasets.
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a subtler way makes it a useful variant of CR when cautious decision-making matters; ECR carries thus
to CR the advantage of ELR over LR. In addition, the ability of ECR to capture nonlinear dependencies
between input attributes makes it a useful alternative to ELR when accurate decision-making matters;
ECR carries thus to ELR the advantage of CR over LR. Moreover, ECR compares also favorably with
ELR in terms of reliable predictions, albeit to a lesser extent than in comparison to CR since the
observed quantitative improvements were not confirmed by the statistical tests conducted. As will be
seen, the experiment reported in the next section provides further evidence in favour of ECR over ELR
in another setting related to cautious decision-making. Prior to that, we should nonetheless recall that
these advantages come at a price: ECR combines also the drawbacks of CR and ELR in terms of
computational complexity, as discussed in Section 4.3. Computing a prediction for ECR can indeed be
intensive; this is typically the case for optimal (cross-validated) values of k such that k ≥ 8.

5.4 Accuracy-rejection curves
In addition to the possibility of making imprecise predictions when there is too much uncertainty, ECR
makes it possible to quantify the ignorance in a given prediction using the quantity mYD,x(Y). In order to
validate the relevance of this quantity as a measure of ignorance, we used accuracy-rejection curves [33],
similarly as done previously in the context of reliable classification in [43]. This means that we rejected
classification of instances for which mYD,x(Y) is above some threshold, and evaluated the accuracy on
the remaining instances. Then, we repeated this process for other thresholds. Finally, we plotted the
obtained results as an accuracy-rejection curve, which is nothing but the accuracy on the non-rejected
samples as a function of the rejection rate. The rationale for computing such curves is that, if mYD,x(Y)
is a valid measure of the ignorance associated with the classification of an object x, then we should
observe a monotone dependency between rejection rate and accuracy.

We repeated the experimental procedure described in Section 5.2, except that instead of looking at
the misclassification rate on a given test set, we computed on this set the accuracy-rejection curve based
on mYD,x(Y) issued by ECR. Furthermore, we only considered the proportion 50:50 between training and
test data. For completeness, we also computed accuracy-rejection curves based on mYD,x(Y) issued by
ELR, and we plotted accuracy-rejection curves based on random rejection (instead of mYD,x(Y)) of test
instances classified by both ECR and ELR.

The results of this third experiment are shown in Figure 7. As it can be seen, for ECR, the accuracy
on non-rejected instances is increasing in the rejection rate. This is an empirical confirmation that ECR
is self-aware, through the quantitymYD,x(Y), of the reliability of its predictions. A similar observation can
be made for ELR, although there are two noticeable differences. First, on the dataset TAE (see Fig. 7h),
there is a drop in accuracy for ELR after the 50% rejection mark. This can perhaps be explained by the
fact that this mark on this dataset corresponds to only 38 non-rejected instances, and thus the results
past this mark may not be too meaningful. Second, on the dataset HAM (see Fig. 7d), ELR fail to do
better than random rejection up to the 65% rejection mark. In contrast, ECR does not exhibit these
undesirable behaviours. Moreover, its accuracy for any rejection rate is on average at least as good, or
even better, than that of ELR. In sum, the flexibility of ECR with respect to ELR is also beneficial in
terms of accuracy-rejection curves.

6 Conclusions
Choquistic regression is a generalisation of logistic regression, allowing flexibility in the modelling of
interactions between predictors, while maintaining monotonicity. In this paper, we derived a reliable
variant of choquistic regression, which makes it possible to represent the ignorance involved in a given
prediction. This ability has been recognised as particularly important in critical classification problems
such as medical diagnosis [43]. Our approach follows the one in [31], where a reliable version of logistic
regression is proposed. It is formalised within evidence theory and relies in particular on a sound method
for statistical inference and prediction developed in this framework. Through a series of experiments we
showed that, by capturing uncertainty in a proper way and by enabling flexibility in the interactions
between predictors, the reliable version of choquistic regression constitutes a useful alternative, when
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Figure 7: Accuracy-rejection curves based on the ignorance of ECR ( ) and of ELR ( ), and
based on randomly rejecting test instances classified by ECR ( ) and by ELR ( ).
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cautiousness in decision-making is allowed, both to choquistic regression and to the reliable logistic
regression from [31].

The ability to quantify the ignorance, aka epistemic uncertainty, in a prediction seems particularly
interesting in an active learning [44] setting, specifically in the context of the popular uncertainty sam-
pling approach, as preliminary yet promising studies [41, 35] in this direction show. The rationale is that
since ignorance corresponds to the reducible part of the uncertainty, it seems reasonable to assume that
the active learner should query the label of the instance for which its current prediction has maximum
ignorance, as this should lead to the most effective reduction of the learner’s uncertainty, which is the
typical goal of active learning. This was coined as the “epistemic uncertainty principle” in [35]. Ongoing
work consists in testing this principle with respect to our reliable variant of choquistic regression.

The reliable versions of logistic regression proposed by Senge et al. [43] and by Minary et al. [31]
seem to have been developed independently from one another. In future works, we plan on comparing
these two approaches, both theoretically and empirically. Moreover, a belief function-based analysis of
logistic regression was proposed recently in [14]. From a formal point of view, this analysis makes it
possible to derive from the logistic regression model, a belief function on the unknown label of an object,
and bears thus some similarity with the approach of Minary et al. [31]. We are interested by conducting
also a thorough comparison between these two approaches. Such comparisons are not only interesting
in themselves but could also inform further research in the direction of this paper, that is, developing
reliable variants of generalisations of logistic regression.

Other perspectives include investigating two generalisations of our proposal. First, we would like to go
beyond binary classification and handle multi-class classification. This may be achieved by following two
different paths: (1) using binary decomposition, similarly as done in [36] to extend the reliable (binary)
classification approach of Senge et al. [43], and in which case we could rely on previous works dealing with
binary decomposition in the belief function framework [40, 27]; (2) by defining a multinomial version of
choquistic regression, in a similar manner as multinomial logistic regression is defined (see, e.g., [14]), and
by deriving its belief function-based reliable variant using previous results for the multinomial logistic
regression [48]. A second worthy generalisation would be the ability to handle learning data having
soft labels (aka partially supervised learning). The foundations for such endeavour could be found in
promising results concerning logistic regression obtained recently in [39].
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