
HAL Id: hal-03492408
https://hal.science/hal-03492408v1

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Verification of smart contracts: A survey
Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, Abdelhamid

Mellouk

To cite this version:
Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, Abdelhamid Mellouk. Verifica-
tion of smart contracts: A survey. Pervasive and Mobile Computing, 2020, 67, pp.101227 -.
�10.1016/j.pmcj.2020.101227�. �hal-03492408�

https://hal.science/hal-03492408v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Verification of Smart Contracts: A Survey

Mouhamad ALMAKHOURa,b, Layth SLIMANc, Abed Ellatif SAMHATb, Abdelhamid
MELLOUKa

aParis-Est Creteil University, LISSI-TincNET Research Team, Créteil and Vitry-sur-Seine, France.
bLebanese University, Faculty of Engineering-CRSI, Univ. Campus, Hadath, Lebanon

cEFREI Engineering School-Paris, Villejuif, France

Abstract

To achieve trust and continuity in the smart contracts-based business process execution, the
verification of such smart contracts is mandatory. A blockchain-based smart contract should
work as intended before using it. Due to the immutable nature of blockchain, any bugs or
errors will become permanent once published and could lead to huge economic losses. To
avoid such problems, verification is required to check the correctness and the security of the
smart contract. In this survey, we consider the smart contracts and we investigate smart
contacts formal verification methods. We also investigate the security assurance for smart
contracts using vulnerabilities detection methods. In this context, we provide a detailed
overview of the different approaches to verify the smart contracts and we present the used
methods and tools. We show a description of each method as well as its advantages and
limitations and we draw several conclusions.

Keywords: Smart contracts, BlockChain, Verification, Correctness, Security assurance

1. Introduction

Boosted-up by the spread of ICT technologies, many new economic models are emerging
in the global markets, such as demand-driven economy, virtual marketplaces and distributed
supply chain. These economic and technological forces are producing more and more complex
systems, where the interconnection between actors, the availability of trusted information,
as well as cost and revenue sharing among the actors are the key factors to obtain sustain-
able and cost-effective businesses. These systems require the presence of decentralized, yet
trusted, process and data management.

Distributed Legder Technology (DLT) can help addressing both, trust and decentraliza-
tion problems in collaborative business processes. In this context, blockchain [1] [2] as a
DLT technology, initially proposed for cryptocurrency, has recently gained a lot of inter-
est from a variety of sectors such as government [3], finance [4, 5], industry [6], health [7],

Email addresses: mouhamad.almakhour@univ-paris-est.fr (Mouhamad ALMAKHOUR),
layth.sliman@efrei.fr (Layth SLIMAN), samhat@ul.edu.lb (Abed Ellatif SAMHAT),
mellouk@u-pec.fr (Abdelhamid MELLOUK)

Preprint submitted to Elsevier June 27, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1574119220300821
Manuscript_4994850c6af7e64cbf37bc8929a4609b

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1574119220300821

internet of thing IoT [8, 9] and research [10]. It offers key functionalities including data
persistence, anonymity, fault-tolerance, auditability, resilience, and decentralized execution.
For instance, a company called Everledger [11] built a blockchain based system that allows
tracking diamonds from their source, in order to help stakeholders, ensure their diamonds
are conflict-free. In addition, several research works [12] [13] [14] [15] have been conducted
on this field to prove the feasibility of the blockchain-based collaborative business processes
using a high-level notation, (such as the Business Process Model and Notation (BPMN))

More recently, the introduction of smart contracts has extended the functionalities of
blockchains. A smart contract is a computer program intended to enforce the execution of
a deal between two or more parties. In the context of blockchain, a smart contract is a
immutable computer program stored in the blockchain and executed by some of its nodes.
The smart contract is usually written in a high-level language such as Solidity or Vyper, and
then it is compiled down to the bytecode that runs on the blockchain like Ethereum Virtual
Machine (EVM) in Ethereum blockchain. Other blockchain platforms can create and run
smart contracts written by different high-level languages. For example, the Hyperledger
Fabric [16] is a permissioned blockchain infrastructure, contributed by IBM and Digital As-
set. Hyperledger Fabric provides execution of Smart Contracts called ”chain code”, written
in a Golang and javascript [17]. Also, Tezos is a blockchain-based cryptocurrency and a
smart contracts platform for building decentralized applications (dApps) [18]. Tezos-smart
contracts [19] are written by Liquidity high-level language with Michelson language (it is the
domain-specific language used to write smart contracts on the Tezos blockchain). According
to [20], Tezos-smart contracts were designed with security and formal verification in mind.

Thus the smart contracts [21] are paramount to design and implement a business pro-
cess, which greatly contributes to dependence on the use of blockchain in business process
management systems (BPMSs) [22]. The correctness and security of the smart contracts
are required as smart contract failures may cause millions of dollars of lost funds. Thus, a
blockchain applications based on smart contracts should be checked and verified to ensure
the correctness, security, and safety of the smart contract implementations. We focus in this
paper on the verification of smart contracts. Given that, the Ethereum platform is the most
widely used in the world, especially in smart contracts, thus we only consider the verification
of smart contracts on Ethereum blockchain. We investigate two aspects of smart contracts
verification, the first is related to the correctness of smart contracts and the second one
focuses on the security assurance of smart contracts.

The correctness verification is about respecting the specifications that determine how
users can interact with the smart contracts and how the smart contracts should behave
when used correctly. There are two approaches used to verify the correctness: the formal
verification and the programming correctness. The formal verification methods [23] are
based on formal methods (mathematical methods [24]), while the programming correctness
methods are based on ensuring the programming as code is correct, which means the program
runs without entering the loop and gives correct outputs for correct inputs. We mainly focus
on the formal verification approaches that is because formal verification is more rigorous and
reliable.

On the other hand, the security assurance aspect is also important as the correctness

2

aspect. In addition, the smart contracts are immutable nature, so any bugs or errors will
become permanent once published and could lead to huge economic losses. To avoid this,
we investigate the vulnerabilities detection methods that aim at improving the security of
smart contracts by the study of vulnerabilities by verifying the smart contracts against a
list of already defined and well-known vulnerabilities patterns. The vulnerabilities detection
can avoid the same mistakes, which makes smart contracts more secure.

In this survey, the smart contract is the core of interest. This survey covers two aspects:

i Smart contract verification to achieve the correctness of collaboration process.

ii Vulnerabilities detection related to the security assurance of smart contracts to avoid
bugs and errors.

For the formal verification, we investigate the methods based on Theorem Proving, Model
Checking and Runtime Verification as well as the existing platforms based on these methods.
And for the vulnerabilities detection methods, we present Symbolic Execution, Fuzzing and
Abstract Interpretation as well as the existing platforms based on these methods. This
work is helpful for researchers that would start working with the formal verification and the
vulnerabilities detection of smart contracts.

In figure 1, we illustrate the taxonomy of smart contract verification and vulnerability
detections methods adopted in this survey.

The rest of this paper is organized as follows; in section 2, we give required background
about smart contracts and the verification requirements. Then we consider the verification
of correctness including the different models and platforms in section 3. The vulnerabilities
detection and their tools are presented in section 4. Section 5 presents the discussion and
future directions. Finally, section 6 concludes the survey.

Figure 1: Taxonomy of the smart contract verification’s Tools

3

2. Theoretical Background and Definitions

In this section, we briefly provide the theoretical background related to blockchain and
smart contracts in addition to the notions typically used.

2.1. Blockchain and smart contracts

Blockchain technology allows a distributed computing architecture where the transac-
tions are publicly announced and the participants agree on a single history of these trans-
actions (or ledger) [25]. The transactions are grouped into blocks, given timestamps, and
then published. The hash of each block includes the hash of the previous block to form a
chain, making published blocks difficult to alter [26]. Blockchain technology is changing the
way in which computer systems can regulate the interaction between real-world parties in
a variety of ways. The requirements of the participation of trusted central authorities or
resource managers were a limitation for the use of smart contracts [27]. Blockchain based
smart contracts enforced implicitly by certain Blockchain architectures have opened wide op-
portunities. A smart contract is a computer program represented by its source code. It can
implement automatically the content of a separate agreement expressed in natural language.
Smart Contracts are often written using high-level languages such as Solidity (see figure 2),
then are compiled into bytecode and embedded in self-contained that can be deployed in
any node in the Blockchain. Due to the losses caused by uncorrected smart contracts, the
verification of smart contracts is mandatory to avoid the failures and vulnerabilities. In
the next section, we present several reasons to show why smart contracts should be verified
before the deployment on Blockchain.

Figure 2: Part of solidity’s code

4

2.2. Verification needs for smart contracts

The concept of smart contracts in distributed ledger systems has been considered as
a safe way of enforcing agreements between participating parties. However, unlike legal
contracts, which talk about the behavior to be conducted and the consequences of behaving
differently, the executable code embedded in smart contracts give explicit instructions on
how to achieve compliance. Consequently, ensuring correctness of the executable codes
is an important, challenging task because incidents may lead to huge financial losses due
to bugs, breaches and flaws in smart contracts. For instance, as mentioned in [28], an
attacker managed to drain more than 3.6 million Ether by exploiting a flaw in the Distributed
Autonomous Organization (DAO) smart contract’s source code. In September 2017, the
multi-signature wallet Parity was attacked in Ethereum, which had resulted in more than
150,000 Ether (about $30 million) embezzlement. In April 2018, because of the BEC attack,
about $900 million were stolen. Facing these losses, the verification of smart contracts
before the deployment on blockchain has attracted extensive attention. We can identify at
least three reasons to apply formal specifications and verifications to smart contracts: First,
smart contract vulnerabilities, due to the immutable nature of smart contracts, any bugs or
errors will become permanent once published and could lead to huge losses. For this, we
need to ensure the safety and security of smart contracts. Vulnerabilities in smart contracts
have resulted in several high-profile exploits in the blockchain technology. Second, smart
contracts are often low-level implementations of a high-level workflow that comprises a state
machine with different actions predicated by suitable access control to determine who has
the permission to execute a given action [29]. The lack of knowledge at the programmers
for the semantics of programming that reflects the high-level workflows may lead to many
misconception issues. As a result, we obtain “unfair contracts”, which are syntactically
technically correct but do not implement the desired business logic. Therefore, there is
a strong need for a high-level specification language to express the intent of the workflow
in a smart contract. Third, with regard to correctness, many programming paradigms
used to write smart contract are not designed to be used in the context of the blockchain
environment [30], resulting in many problems during execution time.

2.3. Concepts and Definitions

Since 2017, the number of papers related to smart contract verification and vulnerabilities
detection has increased dramatically. To this end, many surveys and studies have been
done. To the best of our knowledge, these works considered smart contract verification and
vulnerabilities detection separately. For instance, [31] classified the vulnerabilities according
to the location of vulnerability in Ethereum layers, and it presents some best practices
to avoid these vulnerabilities. Also, [32] surveys 27 tools for analyzing smart contracts
and describe their characteristics. [33] Identifies the security problems and vulnerabilities
in Ethereum smart contracts which have caused severe attacks and classified it into three
categories: static, dynamic and formal verification. In addition, [34] considers only the
formal verification tools. Finally, [35] surveys the most tools of analyzing smart contracts
and classified it under tow concepts, tools to verify the correctness of smart contracts and
tools to ensure the security of smart contracts. Different from the above surveys, this

5

survey investigates both formal verification and vulnerabilities detection. We present the
used methods, tools and approaches related to these two fields. This work skips many other
surveys by providing a detailed description of each method and tool as well as its advantages
and limitations. It also gives a detailed overview of 25 tools for verification of Ethereum-
smart contracts, specially the formal verification tools and vulnerabilities detection tools.
We then discuss the different methods and we draw several conclusions and future research
directions.
This work is helpful for researchers that would start working with the formal verification
and the vulnerabilities detection of smart contracts.

We briefly explain some notions mentioned in this survey.
Bytecode refers to the list of byte-size integers that serve as instructions for the Ethereum
Virtual Machine (EVM).
Source code refers to a program in a high-level programming language, here Solidity.
Static analysis refers to a class of methods that examine the source code or bytecode of a
contract without executing it.
Dynamic analysis means to observe a contract while executing (parts of) it in the original
context.
Disassembling means to translate EVM bytecode into better readable assembly language,
where machine operations and storage addresses are represented symbolically.
Decompilation is the process of transforming EVM bytecode to a more compact repre-
sentation on a higher abstraction level (like intermediate or Solidity code) to enhance the
readability of the code or to ease data flow analysis.
Basic block is a sequence of statements without branches.
Control flow graph (CFG) is a directed graph, where the basic blocks of a program serve
as the nodes. An arc connects node A with node B if it is possible that block B gets executed
immediately after block A. The arc may be labeled by the condition under which this path
is chosen.
Abstract Syntax Tree (AST) represents the syntactic structure of Solidity code as a
tree. It occurs as an intermediate product when compiling Solidity to bytecode. Often, it is
better suited for analyzing Solidity code.
Execution trace is the sequence of instructions (possibly including additional information)
executed during a particular run of the code.
Transformation from a stack to a register-oriented view is a particular de-compilation
technique that replaces stack-oriented instructions of the Ethereum Virtual Machine by in-
structions operating on registers.
Finite state machines (FSMs) are abstract models of systems that can be in a finite
number of states only. FSMs are characterized by listing all states, by designating the ini-
tial and final states, and by describing the actions that will cause the machine to transition
to another state.
Horn logic is a restricted form of first-order logic where all formulas (‘clauses’) are if-then
rules. Though restricted, Horn logic is still computationally universal, thus it can perform
the same computations as any computer.
DataLog is a restricted form of Horn logic that is no longer computationally universal, but

6

it allows for efficient processing, e.g. with tools like Soufflé.

3. Verification of correctness: Formal Verification for Smart Contracts

Based on the formal methods, the formal verification of smart contracts provides the
correctness of smart contracts in a rigorous and reliable mathematical model [23] [24]. In
order to perform formal verification, formal specifications could be used. By using math-
ematical methods, formal verification can attest that the final program behaves exactly
as described in its specification. Formal verification is used in the fields where errors can
be quite significant as it eliminates human error. The basic steps in formal verification
as given in [36]: Formally model the system; Formalize the specification; and Prove that
the model satisfies the specification. Most formal verification tools use human-readable (or
close to human-readable) languages for specifications. Thus, the results of the audit look
like comprehensive documentation more than a security report. We can use mathematical
methods to model and rigorously verify the correctness of smart contracts and know if the
program behaves as described in the specification. Since verification is automatic, it will be
performed efficiently. Formal verification could detect unknown vulnerabilities because the
formal verification audit cover the whole program, with no missed cases. As for formal ver-
ification weaknesses, it is clear that formal verification detects only inconsistencies between
the formal specification and the implementation. This means if there are errors or deficien-
cies in the specification, many errors or breaches will be left undetected. Consequently, the
specifications should be prepared carefully. In addition, formal verification demands a lot
of preparation from the development team.

In the case of smart contracts verification, we can improve smart contracts security by
ensuring the correctness of contracts using formal verification. There are several projects
aimed at creating formally specified execution environments (virtual machines) for various
networks such as (Implementations in F* [37], Formal Ethereum Virtual Machine semantics
in the K Framework [38]). Formal verification uses many approaches, here we will limit
our discussion to those which are widely used in smart contract context, mainly Theorem
Proving, Model Checking and Runtime Verification.

3.1. Theorem Proving

In theorem proving [39], the system is modeled mathematically, and the desired proper-
ties to be proven are specified. Then, the verification is performed. Theorem proving uses
well-known axioms and simple inference rules. These are used to derive the new theorems,
lemmas as needed for the proof [34]. Theorem proving is a very flexible verification method
and it can be applied to different kind of systems as long as they can be expressed math-
ematically. Theorem proving can be interactive, automated or a hybrid [36]. Interactive
theorem proving requires some human input. In contrast, the automated ones perform the
theorem proving semi-automatically. Hybrid theorem proving works on verification of the
complex parts with interactive theorem proving while the rest parts can be verified with
automated theorem proving. For theorem proving, the most expressive logic is higher-order
logic (HOL) [40]. Theorem proving suffers from many main limitations: the massive human

7

investment to prove theorems, the need of a deep understanding of the method [34] and
there are no fully automatic theorem provers [41]. The rest of this section provides the tools
based theorem proving in smart contract context.

3.1.1. Towards Formal Verification in Isabelle/HOL (TFV-Isab/HOL)

In [42], the authors used the theorem prover Isabelle/HOL and an existing EVM-formal
model to verify the bytecode of smart contracts. The goal was to create a sound program
logic and to use the resulting program logic for verification. This is done by splitting the
contracts into basic blocks of different types. To achieve the split, they decompiled the
bytecode in order to extract Control Flow Graphs (CFG). In this case, basic blocks, which
consist of code sequences that are not interrupted by jumps, are the vertices of the graph.
They are connected by edges, which represent the jumps [42]. In this way, each basic block
is a sequential piece of code, where the first instruction is executed first, and it continues
uninterrupted until the last instruction of the basic block is finished. The basic blocks are
further divided into different types, depending on the last instruction of the block. The types
are Terminal, Jump, Jumpi, and Next [42]. When the basic blocks are obtained, the program
logic is created using Hoare logic, which has Hoare triple designed for program correctness.
As a result, a framework was created for expressing the EVM bytecode using logic, which is
necessary in order to use a theorem prover for verification. The entire verification procedure
was successfully applied to a case study. However, the framework does not support the full
syntax of Solidity. For instance, loops and the message calls to other contracts are currently
not supported.

3.1.2. Formal Verification of Smart Contracts with the K –Framework (FVSC-K)

In [43], a smart contract formal verification method based on K-Framework is proposed.
K-Framework is one of the most robust and powerful language definition frameworks. It
allows defining the programming language and providing a set of tools for that language,
including both an executable model and a program verifier. This framework provides a
user-friendly, modular, and mathematically rigorous meta-language for defining program-
ming languages, type systems, and analysis tools. Additionally, the K-Framework enables
verification of smart contracts. The K-Framework is composed of 8 components listed in
figure 3. To prove that a program always does what it should, the contract’s specification is
required. However, creating a formal specification through a manual process requires con-
siderable expertise. According to [43], runtime verification of bytecode is better than this of
solidity as bytecode language can be used for any high-level contract language. They applied
contract specification to refine (for bytecode) manually, and then came the role of the virtual
semantic machine to know what each bytecode does and the bit-level data structure it works
on. All of this is used as input to an automated theorem prover ”K verification framework”
with human help by adding the Hint component, and verified contract. Two messages from
the prover are possible: ”I created the proof that the contract is right” or ”The contract is
wrong.”

8

Figure 3: Workflow of K-framework

3.1.3. EtherTrust

Grishchenko and all. [44] provides the first sound static analyzer for EVM bytecode.
This tool supports reachability properties, which contain the most important security prop-
erties for smart contracts (e.g., single-entrancy and transaction environment dependency).
The soundness is proven against a complete and mechanized semantics of EVM bytecode.
EtherTrust translates bytecode to Horn clauses and it checks properties using the SMT
solver Z3. This approach does not detect vulnerabilities but provides guarantees that the
code is free of certain ones.

3.1.4. FSPVM-E

Using Hoare logic in Coq [45], which is one of the best higher-order logic theorem prov-
ing assistants, based on the Calculus of inductive construction (Cic) that supports Curry-
Howard Isomorphism (CHI), the work presented in [46] provided a novel formal symbolic
process virtual machine (FSPVM), called FSPVM-E [46]. FSPVM-E is used to verify the
reliability, security and functional correctness properties of smart contracts. First, the au-
thors present EVI execution-verification isomorphism, an extension of CHI that combines
the advantages of model checking and theorem proving technology. EVI is the basic theory
for combining Higher-Order Logic Systems (HOLS) and Symbolic Execution Technology to
solve the problems in higher-order logic theorem proving. Second, FSPVM takes EVI as
the fundamental theoretical framework to develop an FSPVM for Ethereum (FSPVM-E).
The FSPVM-E has three main parts [46]: GERM a formal memory framework that supports
different formal verification specifications at the code level; Lolisa an extensible formal inter-
mediate programming language, and FEther a formally verified interpreter for Lolisa. These
parts work conjointly: GERM simulates the physical memory hardware structure, Lolisa is
a large subset of the Solidity programming language mechanized in Coq, and finally, FEther
the virtual execution engine to symbolically execute and verify the formal version of smart
contracts in FSPVM-E.

9

3.1.5. F* Translation

In cooperation between Microsoft Research and Harvard University, a framework is done
to analyze and formally verify Ethereum smart contracts using F* functional programming
language [37] [47]. Such contracts are generally written in Solidity [48] and compiled down
to the Ethereum Virtual Machine (EVM) byte-code. In [37] they develop a language-based
approach for verifying smart contracts. Two prototype tools based on F* are presented and a
smart contract verification architecture is proposed and illustrated in figure 4. The contracts

Figure 4: F* Architecture

are translated into F* programs that call an F* runtime library for all Ethereum operations.
The two tools are Solidity* and EVM*. Solidity* is a tool that compiles Solidity contracts
into F* [37] in order to verify, at the source level, functional correctness specifications and
safety with respect to runtime errors. The figure 5 show a simple solidity code translated
by F* to Solidity*. EVM* is a tool that decompiles EVM bytecode into more succinct F*
code hiding the details of the stack machine [37]. It allows to analyze low-level properties.
Given a Solidity program and equivalent EVM bytecode, both are translated into F*. Then
thier equivalence is verified using relational reasoning [49].

Figure 5: A simple solidity code translated by F*

3.2. Model Checking

Given a finite-state model of a system and a formal property, model checking is an auto-
mated technique that systematically checks whether this property holds for that model [50].
The verification is done with model checking software like NuSMV, SPIN, etc. The model

10

checker checks automatically if each state of the model satisfies the specifications given by
the user. In case that there is a property not satisfied, the model checker provides a coun-
terexample that can help us to identify mistakes and to correct bugs. On the other hand,
if each state of the model satisfies the specification, the model is formally verified for that
specific property. The figure 6 shows the procedure of the model checker. We can summarize
the procedure of the model checking by the following steps [50]:
i. modeling (system–ąmodel)
ii. Specification (natural language specification–ąproperty in formal logic)
iii. Verification (algorithm to check whether a model satisfies a property). The rest of this
section provides the formal verification tools based on model checking.

Figure 6: Procedure of model checker

3.2.1. Model checking for smart contracts (MCSC)

This work aims at establishing a generic modeling method of Ethereum application to
apply a model-checking approach on smart contracts and its execution environment [51].
The proposed model is written in NuSMV input language [52] and the properties to check
are formalized into temporal logic CTL (Computation Tree Logics) [53]. It has three com-
ponents: the kernel layer that captures the (Ethereum) blockchain behavior, the application
layer that models the smart contracts themselves (Translation rules from Solidity to NuSMV
language have been provided to build the application layer), and the environment layer that
determines an execution framework for the application [51]. To check whether the con-
tracts behave as they are supposed to do, expected properties of the application have to
be formalized into temporal logic. Properties include safety, fairness, reachability, real-time
properties, etc. If a property does not hold, the model-checking provides a counter-example.
Thus it is possible to determine the nature and the source of the defect. The method is quite
generic and can be applied to various Ethereum applications. According to the case study
given in [51], the model checking approach was able to verify four of the five properties. For
the unsatisfied property, a counter-example was provided by the model checker.

11

3.2.2. Formal verification of smart contracts based on users and blockchain behaviors models
(FVBU-behaviors)

In [54], the authors present a new approach to model smart contract and blockchain
protocol execution along with users’ behaviors based on a formal model checking language.
This new approach was applied to a user registry smart contract, which was then formally
verified by using model checking on the contract itself by and considering the user-behavior
(if it is a hacker or not). In [54], they analyzed the safety of the registry smart contract
execution by introducing a hacker behavior model. The hackers purpose is to steal the
identity of a user by registering with his account. Three scenarios are evaluated in order to
determine the probability of the hacker to successfully register the name. In Scenario 1, the
hacker finds the name after the registration of the user from the mined blocks. In Scenario
2, the hacker retrieves the name from the pending transactions data which has not been
mined yet. In Scenario 3, that is the easiest, the hacker gets the name directly from the user
call to the contract. Using the model checker in Behaviour Interaction Priorities (BIP) [55]
and the Statistical Model Checking (SMC) to verify the probabilities, the following results
were obtained: In scenario 1 the hacker has 0 % success probability. In scenario 2 and 3,
the hacker has an average of 12 % and 25 % respectively to hack the register.

3.2.3. VERISOL (Verifier for Solidity)

VERISOL (Verifier for Solidity) [29] it aims at prototyping a formal verification and
analysis system for smart contracts developed using the Solidity programming language.
It is based on translating programs written in Solidity language into programs in Boogie
intermediate verification language, and then leveraging and extending the verification tool
chain for Boogie programs. According to [29], the verifier “VeriSol” is built on the Boogie
tool chain, because it can be used for both verification and counter-example generation.
VERISOL takes as input a Solidity contract annotated with assertions, and then it yields
one of the following three outcomes: fully verified, that means that the assertions in the
contract are guaranteed not to fail under any usage scenario. refuted that indicates at
least one input and invocation sequence of the contract functions under which one of the
assertions is guaranteed to fail. partially verified, that is the case when VERISOL can neither
verify nor refute contract correctness. It performs bounded verification to establish that the
contract is safe up to k transactions. As shown in figure 7, VERISOL has three modules,
namely (a) Boogie Translation from a Solidity program, (b) Invariant Generation to infer
a contract invariant as well as loop invariants and procedure summaries, and (c) Bounded
Model Checking. If VERISOL fails to verify contract correctness using monomial predicate
abstraction, it employs an assertion directed bounded verifier, namely CORRAL, to look for
a transaction sequence leading to an assertion violation [29]. The results of applied smart
contracts in VERISOL verifier are relatively good for simple contracts. But according to the
table of results in [29], the number of lines of Solidity code increases after the instrumentation
(in average 159 versus 79 before the instrumentation). In addition, VERISOL finds bugs in
4 of 11 well-tested contracts and precisely pinpoints the trace leading to the violation, but
the researchers did not mention the running time of VERISOL when it applied on original
contracts. This leads us to conclude that VERISOL is not suitable for complex contracts.

12

Figure 7: Schematic workflow of VERISOL

3.2.4. ZEUS FRAMEWORK

ZEUS [30] is a framework for automatic formal verification of smart contracts built by
IBM India Research to verify the correctness and validate the fairness of smart contracts.
ZEUS uses abstract interpretation and symbolic model checking. It is a tool-chain for smart
contract verification that consists of (a) policy builder, (b) source code translator, and
(c) verifier [30]. ZEUS takes as input the smart contracts written in high-level languages
and leverages user assistance to help generate the correctness and/or fairness criteria in an
eXtensible Access Control Markup Language (XACML) styled template [56]. It translates
these contracts and the policy specification into a low-level intermediate representation (IR)
by Low-Level Virtual Machine (LLVM) bitcode [57] encoding the execution semantics to
correctly reason about the contract behavior. It then performs static analysis atop the
IR to determine the points at which the verification predicates (as specified in the policy)
must be asserted. Finally, ZEUS feeds the modified IR to a verification engine that leverages
Constrained Horn Clauses (CHCs) [58] [59]. CHCs provide a suitable mechanism to represent
verification conditions, which can be discharged efficiently by SMT solvers (Satisfiability
Modulo Theories) and quickly ascertain the safety of the smart contract.

3.2.5. VeriSolid

VeriSolid [60] is an open-source and web-based framework that is built on top of We-
bGME [61] and FSolidM [62]. The VeriSolid framework introduces formal verification ca-
pabilities, by providing an approach for correct-by-design development of smart contracts.
First, the tool generates an augmented transition system from an initial transition system,
based on the operational semantics of supported Solidity statements. Second, a Behavior
Interaction-Priority (BIP) model of the contract is automatically generated from the aug-
mented transition system. Then, the specified properties are automatically translated to
Computational Tree Logic (CTL) [63]. The verification of safety and liveness properties
of the model can be verified using the BIP-to-NuSMV tool [55], to translate the BIP to
NuSMV, the input language of the nuXmv symbolic model checker) [52]. A new analysis
is made if the required properties are not satisfied by the model. As a final step, if all
properties are satisfied and the developers are satisfied with the design, Verisolid gener-
ates automatically an equivalent Solidity code of the contract. Figure 3.2.5 illustrates the
Workflow of VeriSolid.

13

Figure 8: Workflow of VeriSolid [60]

3.2.6. Formal Modeling and Verification of Smart Contracts (FMVSC)

The method in [64] aims to combine the formal methods and smart contracts to reduce
potential errors and costs during the contract development process. A general smart contract
template is provided from applying formal methods to smart contracts(it can be represented
by tuple and finite state machine). They used the PROMELA [65] (Process Meta Language)
to model a shopping smart contract (SSC) and then the model is verified by the model
checking SPIN [65] to verify the correctness and important properties of this model.

3.3. Runtime Verification

In the formal methods areas, runtime Verification is a computing system analysis based
on observing executions of a system that allow it to extract information from a running
system and using it to detect the system behaviors satisfying or violating certain correctness
properties [66]. Generation of a monitor from specifications and analyze system traces
against the generated monitor present the principal aspect of runtime verification. The input
of RV system are a system and a set of properties expressed in a formal specification language.
Runtime verification process composed from 3 stages [67]. First, a monitor generated from
proprieties. The monitor takes events produced by a running system and checks it against
the satisfaction of property. Second, the studying system is instrumented, then events
are generated to be used by the monitor. This steps often called the instrumentation of the
system. Finally, the system’s execution is analyzed by the monitor. Most of the applications
in runtime verification have been focused on the dynamic analysis of software. Now we
present you the runtime verification tool for samrt contracts called CONTRACTLARVA [68].

3.3.1. CONTRACTLARVA

In [68] a new concept in formal verification of smart contracts is applied by using the
runtime verification tool ”LARVA” [69]. The authors propose ”ContractLARVA” to ensure
that all execution paths followed at runtime satisfy the required specification [68]. In this
approach, different ways to react to violations are supported. An approach based on a
stake-placing strategy is also supported. In such approach, any party that can potentially
violate the contract pays in a stake before running the contract, which will be given to

14

aggrieved parties in case of a violation, but returned to the original owner if the contract
terminates without violations [68]. These are automatically transformed into a safe contract
which behaves just like the original one but, in addition, can identify when the specification
is violated and trigger remedial behavior. All is done in a decentralized manner. This work
used the subset of the DATE (Dynamic Automata with Timers and Events) without timers.
The work does not show any practical application of ”ContractLARVA” and all depends on
the consent of the parties on the stake-placing strategy.

4. The Vulnerabilities analysis in SC: vulnerabilities detection

Vulnerabilities detection aims to improve the security of smart contracts. This can be
done by studying the possible vulnerabilities and verifying the smart contracts against a
list of already defined and well-known vulnerabilities patterns. The vulnerabilities detection
can also avoid mistakes, which makes smart contracts more secure. On other hand, the
Vulnerabilities detection is inefficient to analyze the complex smart contracts. Moreover,it
is easy to ignore some vulnerabilities, this is because of the non-exhaustive analysis. In
the rest section, we discuss the widely used smart contracts vulnerabilities detection tools
according to their verification methods. The methods we are going to explain are Symbolic
Execution, Fuzzing, Abstract Interpretation. Before beginning this section, table 1 briefly
explains some vulnerabilities mentioned in this survey.

Table 1: Types of smart contracts vulnerabilities
Vulnerabilities Vulnerability Mechanism

Re-entrancy Recursively calling a function from a fallback function

Integer over-
flow/underflow

When performing addition, subtraction, or storing user in-
put with integer variables that contain value limitations, over-
flow/underflow can occur

Transaction Order De-
pendency

Inconsistent transactions orders with respect to the time of invo-
cations

Call-stack depth limit Exceeding the limit of number of calls to a contract method

Block Timestamp De-
pendency

This vulnerability occurs when a contract uses the block times-
tamp as part of the conditions to perform a critical operation
(sending ether) and exploited from a malicious miner

Authentication through
tx.origin

This vulnerability occurs when a contract uses tx.origin for au-
thorization, which can be compromised by a phishing attack

DoS with unbounded
operations

This vulnerability is caused by improper programming with un-
bounded operations in a contract

Short address EVM does not check the validity of addresses
self-destruct/suicidal
contract

Contract is susceptible to be destroyed by unauthorized users

Unchecked and failed
send

Send Ethers without checking the conditions

Unsecured balance
The Ether balance in a contract is exposed because of the modifier
public to theft by an anonymous caller

Greedy contract Locking the contract fund or Ether balance indefinitely
Prodigal contract Leaking fund or Ether balance to arbitrary users

mishandled exceptions
When an exception is thrown in a smart contract through a call
from another contract and it is not managed properly by the caller

Gas overspent Contract code execution consumes more gas unnecessarily

15

4.1. Symbolic Execution

Symbolic execution is a popular program analysis technique that replaces the values of
program variables as symbolic expressions to discover all feasible execution paths by building
the control flow graph (CFG) [70]. There are path conditions for each symbolic path and
the path is feasible if its path condition is satisfactory. The resulting representation (CFG)
is checked by SMT-solvers to identify and detect vulnerabilities. Most researchers in the
smart contacts verification field take the symbolic execution way to find vulnerabilities. In
this section, we show different tools that use symbolic execution.

4.1.1. Oyente

OYENTE is a static analysis tool that detects security vulnerabilities. Designed by Luu
et all. [71], it is one of the earliest security tools for Solidity smart contracts. OYENTE
tool uses symbolic execution to check for the following vulnerabilities: transaction order-
ing dependency, reentrancy, timestamp dependence, and unhandled exceptions. The tool
takes as input the bytecode of a smart contract and a state of the Ethereum blockchain.
The Ethereum global state provides the initialized (or current) values of contract variables,
thus enabling more precise analysis. Oyente consists of four main components [71], namely
CFGBuilder, Explorer, CoreAnalysis and Validator. An illustration of the Oyente Workflow
can be seen in Figure 9. CFGBuilder builds a control flow graph from the smart contract

Figure 9: Oyente Workflow [71]

bytecode, where nodes are basic execution blocks, and edges represent execution jumps be-
tween the blocks. Then, the Explorer executes the smart contract code symbolically. The
output from the Explorer is fed as the input to the CoreAnalysis component. The identified
vulnerabilities are targeted to implement the logic in the CoreAnalysis module. Finally, the
last component is Validator which attempts to remove false positives, and then the results
are visualized to the users.

4.1.2. MAIAN

The authors of [72] built a dynamic tool to analyze contracts to find vulnerabilities across
long sequences of invocations of a contract. This tool extends the Oyente approach [71].
It can find the vulnerabilities directly from the bytecode of Ethereum smart contracts,
without requiring source code access. In this context, the smart contracts are divided in
three categories: greedy contracts, prodigal contracts, and suicidal contracts. The greedy
contracts can lock funds by being unable to send Ether, while the prodigal ones can leak

16

Ether to a user they have never interacted with. The suicidal contracts can kill the contract
or force it to execute the suicide instruction. MAIAN uses systematic techniques to find
the violations of the defined specific properties of traces in smart contract executions. Each
run of the contract called an invocation, may exercise an execution path in the contract
code under a given input context. It has two components, symbolic analysis and concrete
validation [72] as showing in Figure 10. The symbolic analysis component takes as input the

Figure 10: Architecture of MAIAN

contract bytecode and analysis specifications. The specifications include the vulnerability
category to search for and depth of the search space. A custom Ethereum virtual machine
was implemented to facilitate the symbolic execution of SC bytecode. Ethereum virtual
machine runs possible execution traces symbolically for each contract candidate until it
finds a trace which satisfies a set of predetermined properties. Every execution trace takes
a set of symbolic variables as its input. Once a contract is flagged, the symbolic analysis
component will return concrete values for these variables. In the final step, the symbolic
analysis component generated inputs, the concrete validation component takes these inputs
and checks the exploit of the contract on a private fork of Ethereum blockchain. It confirms
the correctness of bugs found in the candidate smart contract without affecting the state of
the contract on the Ethereum blockchain [72].

4.1.3. SmartCheck

SmartCheck [73] analyzes the high-level solidity source code of the smart contract to
find vulnerabilities using static analysis. It is also able to find a wide range of vulnerabil-
ities, such as the Re-entrancy. SmartCheck uses the Extensible Markup Language (XML)
syntax tree [74] to convert the solidity contract in an intermediate representation (IR). The
vulnerabilities are specified as XQuery path expressions that are used to search the vul-
nerability patterns in the Extensible Markup Language tree by using XPath queries on the
intermediate representation. The complex rules cannot be precisely described with XPath,
which leads to false positives. SmartCheck is written in Java with a command-line version
that is available on Github.

4.1.4. Slither

Slither [75] is a static analysis framework designed to provide granular information about
smart contract code. There are four use-cases provided by Slither framework (according to

17

[75]): 1) Automated vulnerability detection that detects smart contract bugs without user
intervention. 2) Automated optimization detection that detects code optimizations. 3) Code
understanding, to improve the user’s knowledge of the contracts and 4) Assisted code review,
which allows users to interact with Slither. Slither analyzes in a multistage procedure using
static analysis. Solidity compiler generates the Solidity Abstract Syntax Tree (AST) from
the contract source code; then Slither takes it as initial inputs. Slither recovers essential
information in the first stage, such as the contract’s inheritance graph, the control flow graph
(CFG), and the list of expressions. In the second stage, the entire code of the contract is
transformed into an internal representation language called SlithIR, which uses a single static
assessment (SSA) [76] to facilitate the computation of a variety of code analyses. In the final
stage, the information to the other modules is provided by computing a set of pre-defined
analyses using code analysis. Slither allows for the application of commonly used program
analysis techniques like dataflow and taint tracking.

4.1.5. Gasper

A static analysis tool named GASPER was developed by Chen and al. [77] that focus on
gas costly patterns from the existing smart contracts instead of the vulnerabilities. Gasper
looks for patterns such as dead code or expensive operations in loops to help contract
developers reduce gas costs. The authors of [77] identified 7 gas-costly patterns. Gasper
takes the bytecode as input to identify gas costly patterns. Gasper builds a control flow graph
from the EVM bytecode. Using the symbolic execution, Gasper finds all the reachable code
blocks in a candidate smart contract. First, Gasper disassembles its bytecode to construct
the control flow graph (CFG) of the smart contract. Then, symbolic execution starts from
the root node of the CFG and traverses the CFG. If a conditional jump is found, GASPER
checks its feasibility by querying the Z3 SMT-solver.

4.1.6. Mythril

Mythril [78] is a static security analysis tool for Ethereum smart contracts. It analyzes
the smart contracts interactively using the symbolic execution of backend LASER-Ethereum.
Then, the tool visualizes the CFG with the nodes containing disassembled code and the
edges being labeled by path formulas. A SMT-solver Z3 is used to exploiting the potential
vulnerabilities. Mythril can detect 8 types of vulnerabilities, such as the manipulated balance
vulnerability, the authentication through tx.origin vulnerability, Unchecked call, Unchecked
math, and others.

4.1.7. Osiris

Osiris [79] is a static analysis tool that combines symbolic execution and taints analysis
to detect integer bugs in Solidity smart contracts. It has evaluated according to a large
experimental dataset containing more than 1.2 million smart contracts. The tool covers
three different types of integer bugs: arithmetic bugs, truncation bugs, and signedness bugs.
Taint analysis is a technique that consists of tracking the propagation of data across the
control flow of a program and used by numerous integer error detection tools to reduce the
number of false positives [80]. It works at bytecode level and consists of three components:

18

symbolic analysis, taint analysis, and integer error detection (see Figure 11). The symbolic
analysis constructs a Control Flow Graph (CFG) and executes the different paths of the
contract. Every executed instruction passed to the taint analysis and then to the integer
error detection. The tool uses taint analysis (tracking the propagation of data across the
control flow of code) to distinguish between benign and malicious overflows. The integer
error detection component checks whether an integer bug is possible.

Figure 11: Architecture of Osiris

4.2. Abstract Interpretation

Abstract interpretation formalizes the idea of abstraction of mathematical structures
that aims to achieve the soundness in program analysis by giving over-approximate the
semantics of a program [81]. The concrete semantics is a mathematical characterization
that formalizes the set of all possible executions in all possible execution environments. In
smart contracts context, abstract interpretation ignores certain instructions while executing
the bytecode by translating instructions to another formalism (like DataLog [82]) and then
exploring all possible executions.

4.2.1. Vandal

Vandal [83] is a security analysis framework for Ethereum smart contracts. The EVM
bytecode is converted to the logic relations using an analysis pipeline as the first part.
The logic relations expose data and control-flow dependencies of the bytecode. The second
part is a set of logic specifications for security analysis problems. To express the logic
specifications for security analysis, Vandal uses the Souffle language [84]. The analysis
pipeline in Vandal consists of 5 components [83]: The scraper extracts bytecode of smart
contracts on a bulk basis; the disassembler that translates bytecode into opcodes(disassemble
patterns); the decompiler translates the low-level bytecode to a register transfer language
and the extractor introduce the logic semantic relations by the translation of the register
transfer language. Finally, the security analysis reports any possible vulnerabilities of the
examined smart contracts. Vandal can detect some vulnerabilities such as unchecked send,
re-entrancy, unsecured balance, destroyable contract, and use of origin problem [83].

19

4.2.2. Ethir

Based on the rule-based representations of the control flow graphs (CFG) produced by
the OYENTE tool [71], Ehtir [85] analyze sthe smart contracts statically. Unlike oyente,
Ethir includes all possible jump addresses. It disassembles the given bytecode and constructs
a CFG. Then, The basic blocks are transformed from a stack to a register-oriented view. The
control flow is represented as guarded rules to examine the conditional and unconditional
jump instructions by the high-level static analyzer SACO (Static Analyzer for Concurrent
Objects).

4.2.3. Securify

Securify is a static security analyzer for Ethereum smart contracts [86]. It takes Ethereum
virtual machine bytecode and security properties as inputs; then it checks the smart con-
tract behaviors with respect to a given property. A Security property consists of compliance
and violation patterns written in a domain-specific language that is derived from the known
attacks and the best practices. Securify’s analysis [86] consists of two steps: first, it sym-
bolically analyzes the contract’s dependency graph to extract precise semantic information
from the code. Then, it checks compliance and violation patterns that capture sufficient
conditions to prove whether a property exists or not. In other words, Securify decompiles
the Ethereum virtual machine bytecode into a stackless static-single assignment form and
represents the code as DataLog [82] facts (see Figure 12). It then infers facts from the con-
tract, such as data and control-flow dependencies. Finally, the security patterns are coded
as DataLog rules and check it against its facts.

Figure 12: Securify Workflow

4.2.4. MadMax

GRECH. and all [87] provide MadMax, a static program analysis technique to detect
gas-related vulnerabilities the integer overflows vulnerabilities automatically. It is the first
tool to detect so-called unbounded mass operations where a loop is bounded by a dynamic
property such as the number of users, causing the contract to always run out of gas passed
a certain number of users. MadMax uses the analysis pipeline and takes the EVM bytecode

20

as input to convert it into an intermediate representation. The main MadMax analysis
operates on the output of the Vandal decompiler using logic-based specifications then it
encodes properties of the smart contract into Datalog [82]. According to [87], this tool can
analyze all the contracts of the Ethereum blockchain in only 10 hours.

4.3. Fuzzing

Fuzz testing (fuzzing) is a software testing technique that provides random data called
FUZZ and used it into a computer program. Fuzz testing is used to check the vulnerability
of software [88]. It is a very cost-effective testing technique. Recently many projects use
fuzzing in smart contracts context to detect vulnerabilities such as ContractFuzzer [89] and
ReGuard [90].

4.3.1. ContractFuzzer

A dynamic tool called ContractFuzzer [89] used Fuzz testing to detect vulnerabilities in
smart contracts. This tool contains an offline EVM instrumentation tool (the responsible
for instrumenting the EVM) and an online fuzzing tool (which can monitor the execution
of smart contracts to extract information for vulnerability analysis). The ContractFuzzer
tool analyzes the ABI interface and the bytecode of the smart contract. Then, it extracts
the data types of each argument of ABI functions as well as the signatures of the functions
used in each ABI function. In addition to this, ContractFuzzer performs the ABI signature
analysis and indexes all smart contracts crawled from Ethereum. Then, the ContractFuzzer
generates inputs for the contracts based on the application binary interface (ABI). Before
the last step, the tool instruments the EVM to log smart contracts runtime behaviors and
records the executed instructions during fuzzing. Finally, a logs analysis is performed to
find vulnerabilities in the contract. ContractFuzzer can detect five types of smart contract
vulnerabilities, such as the reentrancy vulnerability and the unchecked call return value
vulnerability.

4.3.2. ReGuard

ReGuard [90], is a tool dynamic for detecting re-entrancy vulnerabilities through fuzzing.
It automatically generates flagged reentrant errors. ReGuard takes solidity code or bytecode
as inputs and then parses it into an intermediate representation (IR). The intermediate
representation (IR) of source code is an abstract syntax tree (AST) and the bytecode is a
control-flow graph. ReGuard has three main components: Contract Transformer, Fuzzing
Engine, and Core Detector. ReGuard transforms the intermediate representation (IR) to
C++ through the Contract Transformer. The fuzzing engine generates the random bytes
iteratively using runtime coverage information as feedback. ReGuard interprets the bytes
as transaction requests sent to the contract. Then, the tool executes the contract and
dumps runtime trace of analysis-relevant operations. The trace is a combination of the
C++ smart contract, transactions and a runtime library. Finally, The trace is passed to the
Core Detector for reentrancy analysis, and a report is made if any bugs are found.

21

5. Discussion and Future Directions

After investigating a set of tools related to the verification of the smart contracts, we
summarize the different characteristics in tables 2 and 3 and then, we draw some conclu-
sions. In table 2 there are six model-checking based tools, five theorem proving based tools,
and one runtime verification tool. Where theorem proving is unable to perform without
human intervention (the high skill of users are required), model checking requires no human
oversight. In contrast, theorem proving can hand complex system but model checking is
not feasible for complex data path. In case of negative results, model checking generates
counter-examples where theorem proving provides useful insight. Further, model checking
is fully automatic while theorem proving ranges from semi-automatic to interactive. Some
papers explain how runtime verification can avoid the traditional complexity problems in
model checking and theorem proving. But due to the cost and gas execution of smart con-
tracts every time we use runtime verification as well as its dynamic behavior, it is actually
not an efficient practical method for smart contracts.

Table 2: Formal Verification Tools

Tools
Verification
methods

Type Level
behavior
based

SC proper-
ties based

Code
transfor-
mation

[29] Model checking
Static analy-
sis

Solidity &
bytecode

7 X
Boogie
Transla-
tion

[64] Model checking
Static analy-
sis

Solidity
code

X X
PROMELA

[51] Model checking
Dynamic
analysis

Bytecode 7 X
Not appli-
cable

[54] Model checking
Dynamic
analysis

Solidity
code

X 7
Not appli-
cable

[60] Model checking
Dynamic
analysis

Smart con-
tract as
transition
system

X X BIP

[30]
Abstract in-
terpretation &
Model checking

Static analy-
sis

Solidity
code

7 X
AST anal-
ysis

[43] Theorem proving
Static analy-
sis

Bytecode X X K langauge

[37] Theorem proving
Static analy-
sis

Solidity
code &
Bytecode

7 X
F* Trans-
lation

[46] Theorem proving
Dynamic
analysis

Solidity
code

7 X
Not appli-
cable

[42] Theorem proving
Static analy-
sis

Bytecode 7 X
Control
flow graph

[44]
Abstract in-
terpretation &
Theorem proving

Static analy-
sis

Bytecode 7 7
Horn
clauses

[68]
Runtime verifica-
tion

Dynamic
analysis

Solidity
code

X X
Not appli-
cable

In table 2, for F* [37], the preliminary results and the suggested approach show that it
cannot handle all the Solidity syntaxes. The design of Zeus [30] is similar to VERISOL [29]

22

in that it translates Solidity to an intermediate language and uses SMT based solvers to
discharge the verification problem. Seven out twelve tools use the static analysis and the
remainder tools use dynamic analysis. F* and VERISOL can take the code or the bytecode
of smart contracts as inputs. Four Out twelve tools, [51], [54], [68] and [46] do not use the
translation of smart contracts to another intermediate language. Most of the tools in table
2 have used the model checker. The formal verification aimed to verify the correctness of
smart contracts but some tools can also detect security issues like Zeus [30], VERISOL [29],
F* [37] and K-EVM [43]. Most tools succeeded in some use-cases and their source codes
have been published on Github (except [30], [64], [51] and [54]). Five out twelve tools in
table 2 based on user behavior verification.

According to table 3, we show different tools based on the three verification methods
used in vulnerabilities detection context: symbolic execution, abstract interpretation and
fuzzing. Those are the most used methods to detect smart contracts vulnerabilities.
Despite the fact that symbolic execution is widely used by the vulnerabilities detection
methods in smart contracts as showing in table 3, it has some limitations. The symbolic
execution cannot identify the infeasible paths and cannot proceed if the number of iterations
in the loop is known. Another issue is related to the invocation of any out-of-line code or
module calls.
As for abstract interpretation, it is more exhaustive than symbolic execution. Abstract
interpretation-based static analysis is automatic, sound and scalable.
In fuzzing (or fuzz testing) case, the great advantage is that the test design is extremely
simple, and free of preconceptions about system behavior. In contrast, Fuzzers usually find
the simple bugs but not the complex one. In addition, it suffers from some limitations
when doing black-box-testing. As shown in table 3, seven out of thirteen tools use the
symbolic execution method. Four methods use the dynamic analysis, and the remainder
tools use static analysis. Most of the tools take the smart contracts as bytecode level
excepted Smartcheck [73] and ReGuard [73](ReGuard supports both solidity and bytecode
level).

The table 4 summarizes the vulnerabilities and related attacks that can be detected by
the mentioned tools. More than half of the tools in table 4 (eight tools) can detect the
re-entrancy vulnerability.

To this day, and based on the existing tools the verification is successfully done only for
simple smart contract. Thus a future research direction could include the development of
approaches to address the complex smart contracts such as those that contain external calls
or loops. We can also conclude that both correctness and security assurance verification are
required to achieve the most of the smart contracts use. Thus, we suggest the combination
of model checking with abstract interpretation in order to increase the performance of the
verification tool. This can be efficient in the case of complex contracts and facilitate un-
derstanding the contracts which help us to avoid security issues before deploying the smart
contracts on the blockchain. This hybrid method could be also part of our future research
direction.

23

Table 3: Summary of all Vulnerabilities detection tools based on: Type, Level and verification methods

Tools Verification methods Type Level

Oyente Symbolic execution Static analysis Bytecode
OSIRIS Symbolic execution Static analysis Bytecode
MAIAN Symbolic exection Dynamic analysis Bytecode
SmartCheck Symbolic exection Static analysis Solidity code
Slither Symbolic exection Static analysis Bytecode
Mythril Symbolic exection Static analysis Bytecode
Gasper Symbolic exection Static analysis Bytecode
MadMax Abstract interpretation Static analysis Bytecode
Vandal Abstract interpretation Static analysis Bytecode
Ethir Abstract interpretation Static analysis Bytecode
Securify Abstract interpretation Dynamic analysis Bytecode
ContractFuzzer

Fuzzing Dynamic analysis Bytecode

ReGuard Fuzzing Dynamic analysis
Solidity or
Bytecode

6. Conclusion

In this survey, we show a detailed overview of the smart contracts verification methods.
Due to the immutable nature of distributed ledger technology on the blockchain, a smart
contract should work as intended before using it. Any bugs or errors will become permanent
once published and could lead to huge economic losses. Thus, ensuring the security of smart
contracts is important to achieve trust and continuity in the Blockchain-based business pro-
cess execution. To avoid such problems, verification is required to check the smart contract.
This verification relies on two major aspects: Security assurance and Correctness of smart
contracts. We focus on the verification frameworks related to the correctness and security
assurance of smart contracts, especially to the correctness based on Formal Verification and
vulnerabilities detection. Based on the investigated methods, one can conclude that they
verify only the simple smart contracts and not the complex ones. This motivates the need
to elaborate more work on the verification of smart contracts. In the future, we will work to
design and implement a new tool for verification of smart contracts that takes the benefit
of both formal verification methods and vulnerabilities detection methods.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, accessed: 2015-07-01 (Dec 2008).
URL https://bitcoin.org/bitcoin.pdf

[2] Y. Lu, The blockchain: State-of-the-art and research challenges, Journal of Industrial Information
Integration 15 (2019) 80–90. doi:10.1016/j.jii.2019.04.002.

24

Table 4: Summary of Vulnerabilities detection tools based on: vulnerabilities and related attacks

Tools Detecting Vulnerabilities Attacks

Oyente
Re-entrancy, Exception handling, Transaction
ordering, Block timestamp dependency, Call
stack depth limitation

Integer overflow/under flow The
DAO attack

Vandal
Re-entrancy, Unchecked and failed send, De-
stroyable/Suicidal contract, Unsecured bal-
ance, tx.origin

The DAO attack, Parity multisig
wallet attack

Ethir
Re-entrancy, Exception handling, Transaction
ordering, Block timestamp dependency

The DAO attack

Securify

Exception handling, Transaction ordering,
Call stack depth limitation, Unchecked and
Failed send, No Restricted write, No Re-
stricted transfer, Non-validated arguments

Parity multisig wallet attack

Osiris Integer bugs
Integer overflow/under flow at-
tack

MAIAN
Call stack depth limitation, Destroy-
able/Suicidal contract, Unsecured balance,
Greedy contracts, Prodigal contracts

Parity Multisig Wallet attack

Smartcheck

Re-entrancy, Transaction ordering, Block
timestamp dependency, Integer over/under
flow, unchecked, failed send, Destroy-
able/Suicidal contract, Unsecured balance

The DAO attack, Integer
Over/Under flow attack

Slither
Re-entrancy, Exception handling, Transaction
ordering, Block timestamp dependency

The DAO attack

Gasper Gas costly code patterns exist -

Madmax unbounded mass operations, integer overflows
The DAO attack, Integer
Over/Under flow attack

ContractFuzzer
Re-entrancy vulnerabilities, Unchecked call The DAO attack

ReGuard Re-entrancy vulnerabilities The DAO attack

Mythril
Re-entrancy vulnerabilities, Unchecked call,
tx.origin, Unchecked math, manipulated bal-
ance vulnerability

TheDAO attack

[3] S. Ølnes, J. Ubacht, M. Janssen, Blockchain in government: Benefits and implications of distributed
ledger technology for information sharing.

[4] H. Hassani, X. Huang, E. Silva, Banking with blockchain-ed big data, Journal of Management Analytics
5 (4) (2018) 256–275. doi:10.1080/23270012.2018.1528900.
URL https://doi.org/10.1080/23270012.2018.1528900

[5] S. Demirkan, I. Demirkan, A. McKee, Blockchain technology in the future of business
cyber security and accounting, Journal of Management Analytics 7 (2) (2020) 189–208.
doi:10.1080/23270012.2020.1731721.
URL https://doi.org/10.1080/23270012.2020.1731721

[6] S. Perera, S. Nanayakkara, M. Rodrigo, S. Senaratne, R. Weinand, Blockchain technology: Is it hype
or real in the construction industry?, Journal of Industrial Information Integration (2020) 100125.

[7] K. N. Griggs, O. Ossipova, C. P. Kohlios, A. N. Baccarini, E. A. Howson, T. Hayajneh, Healthcare
blockchain system using smart contracts for secure automated remote patient monitoring, Journal of

25

medical systems 42 (7) (2018) 130.
[8] C. Zhang, Y. Chen, A review of research relevant to the emerging industry trends: Industry 4.0, iot,

block chain, and business analytics, Journal of Industrial Integration and Management.
[9] W. Viriyasitavat, L. Da Xu, Z. Bi, A. Sapsomboon, New blockchain-based architecture for service

interoperations in internet of things, IEEE Transactions on Computational Social Systems 6 (4) (2019)
739–748.

[10] Y. Lu, Blockchain and the related issues: a review of current research topics, Journal of Management
Analytics 5 (4) (2018) 231–255. doi:10.1080/23270012.2018.1516523.
URL https://doi.org/10.1080/23270012.2018.1516523

[11] Everledger company.
URL https://www.everledger.io

[12] M. Dumas, R. Hull, J. Mendling, I. Weber, Blockchain technology for collaborative information systems
(dagstuhl seminar 18332), Dagstuhl Reports 8 (8) (2018) 67–129. doi:10.4230/DagRep.8.8.67.
URL https://doi.org/10.4230/DagRep.8.8.67

[13] M. von Rosing, S. White, F. Cummins, H. de Man, Business process model and notation - BPMN,
in: The Complete Business Process Handbook: Body of Knowledge from Process Modeling to BPM,
Volume I, 2015, pp. 429–453. doi:10.1016/B978-0-12-799959-3.00021-5.
URL https://doi.org/10.1016/B978-0-12-799959-3.00021-5

[14] C. D. Ciccio, A. Cecconi, M. Dumas, L. Garćıa-Bañuelos, O. López-Pintado, Q. Lu, J. Mendling,
A. Ponomarev, A. B. Tran, I. Weber, Blockchain support for collaborative business processes, Infor-
matik Spektrum 42 (3) (2019) 182–190. doi:10.1007/s00287-019-01178-x.
URL https://doi.org/10.1007/s00287-019-01178-x

[15] W. Viriyasitavat, D. Hoonsopon, Blockchain characteristics and consensus in modern business processes,
Journal of Industrial Information Integration 13 (2019) 32–39.

[16] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, J. Yellick, Hyperledger fabric: a distributed
operating system for permissioned blockchains, in: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018, 2018, pp. 30:1–30:15. doi:10.1145/3190508.3190538.
URL https://doi.org/10.1145/3190508.3190538

[17] Ibm hyperledger projects.
URL https://www.hyperledger.org/projects/composer

[18] L. Goodman, Tezos—a self-amending crypto-ledger white paper, 2014.
URL https://www.tezos.com/static/papers/white_paper.pdf

[19] Tezos documentation.
URL https://learn.tqtezos.com

[20] Tezos technology.
URL https://tezos.com

[21] D. D. Wood, Ethereum: A secure decentralised generalised transaction ledger, 2014.
[22] O. López-Pintado, L. Garćıa-Bañuelos, M. Dumas, I. Weber, Caterpillar: A blockchain-based business

process management system, in: Proceedings of the BPM Demo Track and BPM Dissertation Award
co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona,
Spain, September 13, 2017, 2017.
URL http://ceur-ws.org/Vol-1920/BPM_2017_paper_199.pdf

[23] R. Drechsler, Formal system verification, Springer, 2018.
[24] D. A. Peled, Formal methods, in: Handbook of Software Engineering, Springer, 2019, pp. 193–222.
[25] I. Bashir, Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts

explained, Packt Publishing Ltd, 2018.
[26] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, V. Santamaria, To blockchain or not to

blockchain: That is the question, IT Professional 20 (2) (2018) 62–74.
[27] M. Almakhour, L. Sliman, A. E. Samhat, W. Gaaloul, Trustless blockchain-based access control in

26

dynamic collaboration, in: Proceedings of the 1st International Conference on Big Data and Cyber-
Security Intelligence, BDCSIntell 2018, Hadath, Lebanon, December 13-15, 2018, 2018, pp. 27–33.
URL http://ceur-ws.org/Vol-2343/paper8.pdf

[28] M. Gelvez, Explaining the dao exploit for beginners in solidity (2016).
[29] S. K. Lahiri, S. Chen, Y. Wang, I. Dillig, Formal specification and verification of smart contracts for

azure blockchain, Vol. abs/1812.08829, 2018. arXiv:1812.08829.
URL http://arxiv.org/abs/1812.08829

[30] S. Kalra, S. Goel, M. Dhawan, S. Sharma, ZEUS: analyzing safety of smart contracts, in: 25th An-
nual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.
URL http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018\

_09-1_Kalra_paper.pdf

[31] H. Chen, M. Pendleton, L. Njilla, S. Xu, A survey on ethereum systems security: Vulnerabilities,
attacks and defenses, Vol. abs/1908.04507, 2019. arXiv:1908.04507.
URL http://arxiv.org/abs/1908.04507

[32] M. D. Angelo, G. Salzer, A survey of tools for analyzing ethereum smart contracts, in: IEEE Interna-
tional Conference on Decentralized Applications and Infrastructures, DAPPCON 2019, Newark, CA,
USA, April 4-9, 2019, 2019, pp. 69–78. doi:10.1109/DAPPCON.2019.00018.
URL https://doi.org/10.1109/DAPPCON.2019.00018

[33] P. Praitheeshan, L. Pan, J. Yu, J. Liu, R. Doss, Security analysis methods on ethereum smart contract
vulnerabilities: a survey, 2019.

[34] Y. Murray, D. A. Anisi, Survey of formal verification methods for smart contracts on blockchain, in:
10th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2019, Canary
Islands, Spain, June 24-26, 2019, 2019, pp. 1–6. doi:10.1109/NTMS.2019.8763832.
URL https://doi.org/10.1109/NTMS.2019.8763832

[35] J. Liu, Z. Liu, A survey on security verification of blockchain smart contracts, IEEE Access 7 (2019)
77894–77904. doi:10.1109/ACCESS.2019.2921624.
URL https://doi.org/10.1109/ACCESS.2019.2921624

[36] J. Rushby, Theorem proving for verification, in: Summer School on Modeling and Verification of Parallel
Processes, Springer, 2000, pp. 39–57.

[37] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova,
A. Rastogi, T. Sibut-Pinote, N. Swamy, et al., Formal verification of smart contracts: Short paper, in:
Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, 2016,
pp. 91–96.

[38] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang,
A. Stefanescu, et al., Kevm: A complete formal semantics of the ethereum virtual machine, in: 2018
IEEE 31st Computer Security Foundations Symposium (CSF), IEEE, 2018, pp. 204–217.

[39] J. Harrison, Theorem proving for verification (invited tutorial), in: International Conference on Com-
puter Aided Verification, Springer, 2008, pp. 11–18.

[40] M. Nesi, A brief introduction to higher order logic and the hol proof assistant, 2011.
[41] Y. Hu, Exploring formal verification methodology for fpga-based digital systems, Sandia National

Laboratories, New Mexico, California.
[42] S. Amani, M. Bégel, M. Bortin, M. Staples, Towards verifying ethereum smart contract bytecode in

isabelle/hol, in: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, 2018, pp. 66–77.

[43] M. Sotnichek, Formal verification of smart contracts with the k framework, 2018.
[44] I. Grishchenko, M. Maffei, C. Schneidewind, Ethertrust: Sound static analysis of ethereum bytecode,

Technische Universität Wien, Tech. Rep.
[45] T. C. development team, The coq proof assistant, 1999 – 2018.

URL http://coq.inria.fr

[46] Z. Yang, H. Lei, W. Qian, A hybrid formal verification system in coq for ensuring the reliabil-

27

ity and security of ethereum-based service smart contracts, IEEE Access 8 (2020) 21411–21436.
doi:10.1109/ACCESS.2020.2969437.
URL https://doi.org/10.1109/ACCESS.2020.2969437

[47] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P. Strub, M. Kohlweiss, J. K. Zinzindohoue, S. Z. Béguelin, Dependent types and multi-monadic
effects in F, in: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, 2016, pp.
256–270. doi:10.1145/2837614.2837655.
URL https://doi.org/10.1145/2837614.2837655

[48] Solidity documentation.
URL Http://solidity.readthedocs.io

[49] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, S. Z. Béguelin, Probabilistic relational verifi-
cation for cryptographic implementations, in: The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, 2014,
pp. 193–206. doi:10.1145/2535838.2535847.
URL https://doi.org/10.1145/2535838.2535847

[50] C. Baier, J. Katoen, Principles of model checking, MIT Press, 2008.
[51] Z. Nehai, P. Piriou, F. F. Daumas, Model-checking of smart contracts, in: IEEE International Confer-

ence on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July 30 - August 3, 2018, 2018,
pp. 980–987. doi:10.1109/Cybermatics 2018.2018.00185.
URL https://doi.org/10.1109/Cybermatics_2018.2018.00185

[52] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri,
S. Tonetta, The nuxmv symbolic model checker, in: Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, 2014, pp. 334–342. doi:10.1007/978-3-319-08867-9 22.
URL https://doi.org/10.1007/978-3-319-08867-9_22

[53] M. C. Browne, E. M. Clarke, O. Grumberg, Characterizing finite kripke structures in propositional
temporal logic, Theor. Comput. Sci. 59 (1988) 115–131. doi:10.1016/0304-3975(88)90098-9.
URL https://doi.org/10.1016/0304-3975(88)90098-9

[54] T. Abdellatif, K. Brousmiche, Formal verification of smart contracts based on users and blockchain
behaviors models, in: 9th IFIP International Conference on New Technologies, Mobility and Security,
NTMS 2018, Paris, France, February 26-28, 2018, 2018, pp. 1–5. doi:10.1109/NTMS.2018.8328737.
URL https://doi.org/10.1109/NTMS.2018.8328737

[55] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time components in bip, in: Fourth IEEE
International Conference on Software Engineering and Formal Methods (SEFM’06), Ieee, 2006, pp.
3–12.

[56] R. Sinnema, E. Wilde, extensible access control markup language (xacml) xml media type, Internet
Engineering Task Force (IETF) (2013) 1–8.

[57] C. Lattner, V. Adve, Llvm: A compilation framework for lifelong program analysis & transformation,
in: International Symposium on Code Generation and Optimization, 2004. CGO 2004., IEEE, 2004,
pp. 75–86.

[58] N. Bjørner, K. L. McMillan, A. Rybalchenko, Program verification as satisfiability modulo theories.,
SMT@ IJCAR 20 (2012) 3–11.

[59] A. Gurfinkel, T. Kahsai, A. Komuravelli, J. A. Navas, The seahorn verification framework, in: Inter-
national Conference on Computer Aided Verification, Springer, 2015, pp. 343–361.

[60] A. Mavridou, A. Laszka, E. Stachtiari, A. Dubey, Verisolid: Correct-by-design smart contracts for
ethereum, in: Financial Cryptography and Data Security - 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers, 2019, pp. 446–465.
doi:10.1007/978-3-030-32101-7 27.

28

URL https://doi.org/10.1007/978-3-030-32101-7_27

[61] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz, T. Levendovszky, Á. Lédeczi,
Next generation (meta)modeling: Web- and cloud-based collaborative tool infrastructure, in: Pro-
ceedings of the 8th Workshop on Multi-Paradigm Modeling co-located with the 17th International
Conference on Model Driven Engineering Languages and Systems, MPM@MODELS 2014, Valencia,
Spain, September 30, 2014, 2014, pp. 41–60.
URL http://ceur-ws.org/Vol-1237/paper5.pdf

[62] A. Mavridou, A. Laszka, Tool demonstration: Fsolidm for designing secure ethereum smart contracts,
in: Principles of Security and Trust - 7th International Conference, POST 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, 2018, pp. 270–277. doi:10.1007/978-3-319-89722-6 11.
URL https://doi.org/10.1007/978-3-319-89722-6_11

[63] Y. Li, Y. Li, Z. Ma, Computation tree logic model checking based on possibility measures, Fuzzy Sets
and Systems 262 (2015) 44–59.

[64] X. Bai, Z. Cheng, Z. Duan, K. Hu, Formal modeling and verification of smart contracts, in: Proceedings
of the 7th International Conference on Software and Computer Applications, ICSCA 2018, Kuantan,
Malaysia, February 08-10, 2018, 2018, pp. 322–326. doi:10.1145/3185089.3185138.
URL https://doi.org/10.1145/3185089.3185138

[65] E. Mikk, Y. Lakhnech, M. Siegel, G. J. Holzmann, Implementing statecharts in PROMELA/SPIN,
in: 2nd Workshop on Industrial-Strength Formal Specification Techniques (WIFT ’98), October 20-23,
1998, Boca Raton, FL, USA, 1998, pp. 90–101. doi:10.1109/WIFT.1998.766303.
URL https://doi.org/10.1109/WIFT.1998.766303

[66] Y. Falcone, K. Havelund, G. Reger, A tutorial on runtime verification, Engineering Dependable Software
Systems (2013) 141–175doi:10.3233/978-1-61499-207-3-141.

[67] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli, C. Colombo, Y. Falcone, A. Fran-
calanza, S. Krstić, J. M. Lourenço, et al., A survey of challenges for runtime verification from advanced
application domains (beyond software), Formal Methods in System Design 54 (3) (2019) 279–335.

[68] J. Ellul, G. J. Pace, Runtime verification of ethereum smart contracts, in: 2018 14th European De-
pendable Computing Conference (EDCC), IEEE, 2018, pp. 158–163.

[69] C. Colombo, G. J. Pace, Runtime verification using LARVA, in: RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools, September 15, 2017, Seattle, WA, USA, 2017, pp. 55–63.
URL http://www.easychair.org/publications/paper/Jwmr

[70] J. C. King, Symbolic execution and program testing, Communications of the ACM 19 (7) (1976) 385–
394.

[71] L. Luu, D. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, 2016, pp. 254–269. doi:10.1145/2976749.2978309.
URL https://doi.org/10.1145/2976749.2978309

[72] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, A. Hobor, Finding the greedy, prodigal, and suicidal contracts
at scale, in: Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018,
San Juan, PR, USA, December 03-07, 2018, 2018, pp. 653–663. doi:10.1145/3274694.3274743.
URL https://doi.org/10.1145/3274694.3274743

[73] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, Y. Alexandrov,
Smartcheck: Static analysis of ethereum smart contracts, in: 1st IEEE/ACM International Work-
shop on Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg,
Sweden, May 27 - June 3, 2018, 2018, pp. 9–16.
URL http://ieeexplore.ieee.org/document/8445052

[74] A. V. Aho, R. Sethi, J. D. Ullman, Compilers, principles, techniques, Addison wesley 7 (8) (1986) 9.
[75] J. Feist, G. Grieco, A. Groce, Slither: a static analysis framework for smart contracts, in:

Proceedings of the 2nd International Workshop on Emerging Trends in Software Engineering

29

for Blockchain, WETSEB@ICSE 2019, Montreal, QC, Canada, May 27, 2019, 2019, pp. 8–15.
doi:10.1109/WETSEB.2019.00008.
URL https://doi.org/10.1109/WETSEB.2019.00008

[76] B. K. Rosen, M. N. Wegman, F. K. Zadeck, Global value numbers and redundant computations, in:
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages,
San Diego, California, USA, January 10-13, 1988, 1988, pp. 12–27. doi:10.1145/73560.73562.
URL https://doi.org/10.1145/73560.73562

[77] T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour your money, in: IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt,
Austria, February 20-24, 2017, 2017, pp. 442–446. doi:10.1109/SANER.2017.7884650.
URL https://doi.org/10.1109/SANER.2017.7884650

[78] B. Mueller, Smashing ethereum smart contracts for fun and real profit, HITB SECCONF Amsterdam.
[79] C. F. Torres, J. Schütte, R. State, Osiris: Hunting for integer bugs in ethereum smart contracts, in:

Proceedings of the 34th Annual Computer Security Applications Conference, 2018, pp. 664–676.
[80] M. Pomonis, T. Petsios, K. Jee, M. Polychronakis, A. D. Keromytis, Intflow: improving the accuracy

of arithmetic error detection using information flow tracking, in: Proceedings of the 30th Annual
Computer Security Applications Conference, 2014, pp. 416–425.

[81] P. Cousot, Formal verification by abstract interpretation, in: A. Goodloe, S. Person (Eds.), NASA
Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Pro-
ceedings, Vol. 7226 of Lecture Notes in Computer Science, Springer, 2012, pp. 3–7. doi:10.1007/978-3-
642-28891-3 3.
URL https://doi.org/10.1007/978-3-642-28891-3_3

[82] J. Ullman, Principles of database and knowledge-base systems, volume volume i-fundamental concepts
(1988).

[83] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, B. Scholz, Vandal: A
scalable security analysis framework for smart contracts, CoRR abs/1809.03981. arXiv:1809.03981.
URL http://arxiv.org/abs/1809.03981

[84] H. Jordan, B. Scholz, P. Subotić, Soufflé: On synthesis of program analyzers, in: International Confer-
ence on Computer Aided Verification, Springer, 2016, pp. 422–430.

[85] E. Albert, P. Gordillo, B. Livshits, A. Rubio, I. Sergey, Ethir: A framework for high-level analysis
of ethereum bytecode, in: Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, 2018, pp. 513–520.
doi:10.1007/978-3-030-01090-4 30.
URL https://doi.org/10.1007/978-3-030-01090-4_30

[86] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, M. T. Vechev, Securify: Practical
security analysis of smart contracts, in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, 2018, pp. 67–82.
doi:10.1145/3243734.3243780.
URL https://doi.org/10.1145/3243734.3243780

[87] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, Y. Smaragdakis, Madmax: Surviving out-of-
gas conditions in ethereum smart contracts, Proceedings of the ACM on Programming Languages
2 (OOPSLA) (2018) 1–27.

[88] G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks, Evaluating fuzz testing (2018) 2123–2138.
[89] B. Jiang, Y. Liu, W. Chan, Contractfuzzer: Fuzzing smart contracts for vulnerability detection, in:

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
2018, pp. 259–269.

[90] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, B. Roscoe, Reguard: finding reentrancy bugs in smart
contracts, in: 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion), IEEE, 2018, pp. 65–68.

30

