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Introduction

This work is motivated by the need to deliver the superior accuracy stress computations in long-term dynamic loadings, such as those needed for fatigue failure risk analysis under variable loads. The standard finite element displacement-based method provides the best approximation property only for quasi-statics applications [START_REF] Hughes | The finite element method: Linear static and dynamic finite element analysis[END_REF]. This no longer holds for dynamics, where an enhanced stress accuracy is provided by appealing to mixed finite elements with stress, strain and displacement field interpolated independently. The classical works on mixed finite elements [START_REF] Hughes | The finite element method: Linear static and dynamic finite element analysis[END_REF][START_REF] Boffi | Mixed finite element methods and applications[END_REF][START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] have mostly focused upon providing a better performance than traditional finite element method in terms of accuracy under some special condition with constraint such as locking or incompressibility. If it is important to treat locking phenomena in the case of almost incompressible materials or Poisson's ratio stiffening, several other attempts to improve the performance of finite element are related to incompatible mode method [START_REF] Hughes | Numerical assessment of some membrane elements with drilling degrees of freedom[END_REF][START_REF] Ibrahimbegovic | Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations[END_REF] or to stress field interpolation satisfying nodal point equilibrium [START_REF] Stein | An equilibrium method for stress calculation using finite element displacement models[END_REF]. In order to improve results accuracy for dynamics, the mixed finite element method was replaced by discontinuous Galerkin (e.g. [START_REF] Johnson | Numerical solution of partial differential equations by the finite element method[END_REF]) or more recently by isogeometric analysis (e.g. [START_REF] Hughes | Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement[END_REF]). In this paper, we seek to show that the finite element method can also keep superior accuracy for both statics and dynamics by using (regularized) variational formulation and hybrid-stress discrete approximation that allows to enforce stress vector components across element boundaries. Such interpolations have been proved successful for scalar field problems, such as in our recent work on electrostatics [START_REF] Moreno-Navarro | Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics[END_REF] where they are referred as Whitney element [START_REF] Bossavit | Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism[END_REF] or diffusion problems [START_REF] Dubois | Dual raviart-thomas mixed finite elements[END_REF][START_REF] Ervin | Computational bases for rtk and bdmk on triangles[END_REF] where they are referred as Raviart-Thomas discrete approximation.

The main novelty of this paper is to adopt a rigorous variational formulation and corresponding regularization that closely follows [START_REF] Hughes | On drilling degrees of freedom[END_REF], see also [START_REF] Ibrahimbegovic | Mixed finite element with drilling rotations for plane problems in finite elasticity[END_REF][START_REF] Ibrahimbegovic | A robust quadrilateral membrane finite element with drilling degrees of freedom[END_REF], which offers an improvement of stability properties. Such regularized variational formulation is used to eliminate the independent rotation field, and yet keep non-symmetric part of stress tensor. Since the stress is not restricted to be symmetric, it enables us to interpolate stress field by Whitney's approximation [START_REF] Moreno-Navarro | Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics[END_REF] or the lowest order of Raviart-Thomas (RT 0 ) vector space, see [START_REF] Dubois | Dual raviart-thomas mixed finite elements[END_REF][START_REF] Ervin | Computational bases for rtk and bdmk on triangles[END_REF]. In other words, the three-field variational formulation is then condensed into two-field variational formulation thanks to an additional Euler-Lagrange equation, which is a result of the regularized term. Several elements with drilling rotation in 2D problem are proposed based on the work [START_REF] Hughes | On drilling degrees of freedom[END_REF], in which the skew-symmetric of stress tensor is introduced to enforce the equality of independent rotations with the skew-symmetric part of the displacement gradient, see [START_REF] Hughes | Numerical assessment of some membrane elements with drilling degrees of freedom[END_REF][START_REF] Ibrahimbegovic | Mixed finite element with drilling rotations for plane problems in finite elasticity[END_REF][START_REF] Ibrahimbegovic | A robust quadrilateral membrane finite element with drilling degrees of freedom[END_REF]. Meanwhile, in this work, the enhanced finite element is based on the traditional constant stress/strain element, where three more nodes are added at mid-edges to place the degrees of freedom for stress field. The displacement field is approximated by conventional shape functions for triangles, see [START_REF] Hughes | The finite element method: Linear static and dynamic finite element analysis[END_REF]. Here, the stress degrees of freedom are actually components of normal traction at a corresponding element edge. This traction field is explicitly examined in the numerical examples. Besides the Raviart-Thomas interpolation, there exist other choices of stress interpolation, such as Brezzi-Douglas-Marini (BDM) [START_REF] Ervin | Computational bases for rtk and bdmk on triangles[END_REF][START_REF] Braess | Error indicators for mixed finite elements in 2-dimensional linear elasticity[END_REF]. However, this type of interpolation is slightly more complicated, and thus not easily implemented into existing finite element method. One of the advantages which can be observed in the Raviart-Thomas interpolation is that the stress vector or normal traction at a given edge of the proposed finite element is maintained continuously over entire domain, which is also advantageous for dynamics.

The second line of development of element with enhanced performance in dynamics concerns corresponding time integration scheme capable of analyzing structural responses over long period of time. Several time integration schemes for dynamic problems are successfully developed, which are proved to remain stable for long-term computation, see [START_REF] Bathe | On a composite implicit time integration procedure for nonlinear dynamics[END_REF][START_REF] Erlicher | The analysis of the generalized-α method for non-linear dynamic problems[END_REF]. Here, the energy conserving scheme is introduced. More precisely, the total energy of system, consisting of the sum of kinetic and potential energies, is conserved in the elastic regime, see [START_REF] Armero | Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity[END_REF][START_REF] Leyendecker | Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams[END_REF]. A sound theoretical basis and straightforward procedure is presented to prove the unconditional stability property of the proposed scheme, which can support the computation for a large number of time steps. The basic idea of this scheme is the utilization of mid-point time integration scheme for the computation of displacement and stress within an interval of time step [START_REF] Nguyen | Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case[END_REF][START_REF] Ibrahimbegovic | Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations[END_REF], which is well-known for the higher accuracy compared to other schemes such as backward or forward Euler method [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF].

The paper outline is as follows. The variational formulation of linear elastodynamics using mixed functional is presented in Section 2. It is noted that this study is restricted only to small strain theory. Section 3 is devoted to numerical implementation of linear elastodynamics problem including the chosen discrete approximation of displacement and stress fields. Additionally, the energy conserving time integration scheme is developed to maintain the total energy of system over computational time. In Section 4, several illustrative simulations of the elastodynamics problem under static and dynamic loading scenarios are presented. In Section 5, we give the main results discussion and the conclusions.

Variational formulation of linear elastodynamics

In this section we follow closely the work of Hughes and Brezzi [START_REF] Hughes | On drilling degrees of freedom[END_REF], see also [START_REF] Ibrahimbegovic | Mixed finite element with drilling rotations for plane problems in finite elasticity[END_REF][START_REF] Ibrahimbegovic | A robust quadrilateral membrane finite element with drilling degrees of freedom[END_REF]. The problem is limited to linear elastodynamics problem with small strain theory. Let Ω ⊂ R 3 be an open set with piece-wise smooth boundary

∂Ω = ∂Ω u ∪ ∂Ω t and ∂Ω u ∩ ∂Ω t = ∅ (2.1)
where ∂Ω u denotes the displacement boundary and ∂Ω t the stress boundary. Both stress and displacement fields are considered as independent fields. The key point here is that the stress is not assumed to be symmetric, but the symmetry of stress tensor is enforced through corresponding moment equilibrium equation of the strong form of the problem ∀x ∈ Ω

div σ + f = ρü (1) skew σ = 0 (2) symm σ = C symm ∇u (3) u = ū| ∂Ωu and σn = t| ∂Ωt (4) (2.2)
where ( 1) to (4) are, respectively, the equilibrium equations, the symmetry conditions for stress, the constitutive equations and the boundary condition. The second-rank stress tensor is decomposed into symmetric and skew-symmetric parts

σ = symm σ + skew σ (2.3) where symm σ = 1 2 σ + σ T skew σ = 1 2 σ -σ T (2.4) 
The displacement gradient can be additionally decomposed into symmetric part defining the infinitesimal strain tensor

(u) := symm ∇u = 1 2 ∇u + ∇u T (2.5)
and the skew-symmetric part defining the infinitesimal rotation

ω(u) := skew ∇u = 1 2 ∇u -∇u T (2.6)
The following identity between arbitrary symmetric and skew-symmetric tensors is exploited for several forthcoming equations

symm k • skew h = 0 ∀k, h (2.7) 
For the isotropic material, the fourth-order elastic constitutive modulus tensor C is conventionally defined as

C =λ1 ⊗ 1 + 2µI s C ijkl =λδ ij δ kl + 2µ 1 2 (δ ik δ jl + δ il δ jk ); i,j,k ∈ [1,2,3] (2.8) where λ = vE (1 + ν)(1 -2ν) , µ = E 2(1 + ν) (2.9)
with E and ν as Young's modulus and Poisson's ratio, respectively. For the weak form of the boundary value problem, the mixed form of variational functional [START_REF] Hughes | On drilling degrees of freedom[END_REF] with three independent fields is given as follows

Π(u, ω, σ) = - 1 2 Ω symm σ • C -1 symm σdΩ + Ω σ • (∇u -ω)dΩ -Π ext (u) (2.10)
where u ∈ U, ω ∈ W and σ ∈ S are trial displacement, rotation and stress fields, respectively. The variational statement in Eq. (2.10) above requires that the stress tensor σ and the infinitesimal rotation tensor ω belong to the space of square integrable functions over the region Ω, L 2 (Ω):

S = {σ|σ ∈ L 2 (Ω)} W = {ω|ω ∈ L 2 (Ω); symm ω = 0} (2.11)
The space of trial displacements, however, must belong to the functions whose generalized derivative belongs to L 2 (Ω), i.e. a subset of the Sobolev space H 1 (Ω) denoted as H 1 0 (Ω) which satisfies the boundary condition on ∂Ω u

U = u|u ∈ H 1 0 (Ω) (2.
12)

The regularized functional (see [START_REF] Hughes | On drilling degrees of freedom[END_REF]) is derived by adding an extra term to improve the ellipticity of the standard functional

Π γ (u, ω, σ) = - 1 2 Ω symm σ • C -1 symm σdΩ + Ω σ • (∇u -ω)dΩ - 1 2 γ -1 Ω | skew σ| 2 dΩ -Π ext (u) (2.13)
Such a regularization allows us to make any convenient choice of finite element discrete approximation upon regularization. The external virtual work G ext (v) is formulated in the spirit of d'Alembert principle with an additional term from inertia force, which appears in elastodynamics problem

G ext (v) = - Ω ρü • vdV + Ω f • vdV + ∂Ωt t • vdA (2.14) 
The corresponding Euler-Lagrange equations are obtained by taking the variations with respect to the displacement v, stress τ and rotation ψ field:

G u (u, ω, σ; v) := ∂Ωt v • (σn -t) dA - Ω v • (div σ + f -ρü) dΩ = 0 G ω (u, ω, σ; ψ) := Ω ψ • skew σdΩ = 0 G σ (u, ω, σ; τ ) := Ω symm τ • C -1 symm σ -symm ∇u dΩ - Ω τ • skew ∇u -ω -γ -1 skew σ dΩ = 0 (2.15)
It is noted that the Gauss divergence theorem is employed to obtain the result in Eq. (2.15a).

Since the trial displacement v, stress τ and rotation ψ are arbitrary, all equations corresponding to the strong form in Eq. (2.2) can be recovered, plus an additional relationship from Eq. (2.15c) showing that ω = skew ∇u -γ -1 skew σ (2.16)

Here, we choose to eliminate the rotation field in mixed formulation above by using the additional relationship from Eq. (2.15c). This result is plugged back into the regularized functional in Eq. (2.13), and thus we recover a two-field variational formulation with displacement and stress as independent fields by exploiting the identity Eq. (2.7), which can be written as

Π γ (u, σ) = - 1 2 Ω symm σ • C -1 symm σdΩ + Ω symm σ • symm ∇udΩ + 1 2 γ -1 Ω | skew σ| 2 dΩ -Π ext (u)
(2.17)

The corresponding variational equation of the functional Π γ (u, σ) above with respect to the trial displacement field v can be written as follows:

G u (u, σ; v) = Ω σ • symm ∇vdV - Ω (f -ρü) • vdV - ∂Ωt t • vdA = 0 (2.18)
Similarly, by using again the identity Eq. (2.7), the corresponding variational equation of the functional Π γ (u, σ) above with respect to the trial stress field τ can be written as follows

G σ (u, σ; τ ) = Ω symm τ • symm ∇u -C -1 symm σ + skew τ • 1 γ skew σ) dV = 0 = Ω τ • symm ∇u -C -1 symm σ - 1 γ skew σ dV = 0 = Ω τ • symm ∇u -Ĉ-1 σ dV = 0 (2.19)
where we also use an optimal choice for γ = 2µ [START_REF] Hughes | On drilling degrees of freedom[END_REF]. We note that the new elasticity tensor in the above equation is formed by regrouping the symmetric and skew-symmetric part of stress tensor into a single stress tensor σ, which can be written as follows:

Ĉ-1 = C -1 • I s -C -1 • I a (2.20)
where the two fourth-order tensors I s and I a are given as follows (for more details see Appendix)

I s = 1 2 (δ ik δ jl + δ il δ jk ); I a = 1 2 (δ ik δ jl -δ il δ jk ) (2.21)
3 Numerical implementation and discrete approximations

In the following, we will simplify discussion to 2D plane strain case. In defining the discrete approximation, the variational formulation will first be restated in matrix notation. The details of mapping from tensor to matrix form are given in Appendix. The mapping operation L is introduced by taking advantages of plane strain condition. The second order tensor of stress and symmetric part of displacement gradient are transformed into 4 by 1 matrix:

σ = [σ ij ] (i,j)∈[1,2,3] →L(σ) := σ h =     σ 11 σ 22 σ 12 σ 21     symm ∇u = [ ij ] (i,j)∈[1,2,3] →L(symm ∇u) := h =     11 22 12 21     (3.1)
Finally, the fourth order tensor of elasticity is transformed into 4 by 4 matrix:

Ĉ-1 = Ĉ-1 ijkl (i,j,k,l)∈[1,2,3] → L( Ĉ-1 ) := D h 4×4 (3.2)

Space discretization: enhanced triangular element

One can choose any order of approximate functions for the displacement and stress fields.

For the simplicity of implementation, the both displacement and stress fields are discretized by functions with low orders. The well-known constant strain/stress triangle element (CST) is selected as the element to enhance its performance, in which the physical meaning for the degree of freedom of stress field is additionally discussed. The conventional discretization method is employed for displacement field [START_REF] Hughes | The finite element method: Linear static and dynamic finite element analysis[END_REF], while the Raviart-Thomas vector space with the lowest order (RT 0 ) [START_REF] Dubois | Dual raviart-thomas mixed finite elements[END_REF][START_REF] Ervin | Computational bases for rtk and bdmk on triangles[END_REF] is introduced to approximate stress field. For time approximation, the appropriate time-stepping integration is consequently formulated to preserve the total energy of system in dynamics. The resulting discrete problem is solved in a single level of computation, with the global set of equilibrium equations at time step n+1/2. Let us consider a domain Ω ⊂ R 2 , represented by the discrete triangular mesh as a set T of triangle Ω e such that Ω = ∪ Ω e ∈T Ω e . The common parts between two neighboring triangles are either an edge, two corner nodes, a midpoint node or empty. In the parent coordinate system, the coordinate of vertex node 1, 2 and 3 are (0,0), (0,1) and (1,0), respectively. These nodes contain the degrees of freedom for the displacement field. Meanwhile the mid-edge nodes 4, 5 and 6 are (1/2,1/2), (0,1/2) and (1/2,0). These nodal degrees of freedom correspond to stress field. The shape functions to interpolate displacement field at any point in the given element Ω e is given as follows:

N 1 = 1 -ξ -η, N 2 = ξ, N 3 = η
At any time-step n+1/2, the displacement and strain fields are interpolated from displacement nodal values d, by using these linear shape functions N

u h n+1/2 | Ω e = N d h n+1/2 | Ω e h n+1/2 | Ω e = Bd h n+1/2 | Ω e ; B = ∇ s N (3.3)
To interpolate the stress field, the lowest order Raviart-Thomas basis function (RT 0 ) is utilized, with the normal basis functions given as:

Φ1 (ξ, η) = √ 2 ξ η , Φ2 (ξ, η) = ξ -1 η , Φ3 (ξ, η) = ξ η -1 (3.4)
For any midpoint ĝj along edge j ∈ [1, 2, 3], we can show that the independence property of normal basis function Φi (ĝ j )

• ni = 1, if j = i 0, if j = i (3.5)
where ni is the normal vector along edge i ∈ [1, 2, 3], which is opposite node i as shown in Fig. 1. The basis functions Φi are mapped back to physical coordinate space by the Piola transformation represented with an affine function F . Since one common edge between two elements in physical space can be mapped into two different edges (with different lengths) in parent coordinate, the terms |e k | and |ê k | (length of considered edges in the physical and parent space respectively) are added into Eq. (3.6) to maintain Eq. (3.5) in physical coordinate, see [START_REF] Ervin | Computational bases for rtk and bdmk on triangles[END_REF]. The notation J T and |J T | are the Jacobian matrix and its determinant of corresponding affine function. Hence, the basis function at edge i in the physical coordinate system is now written as follows Φi -→

Φ i (x) = P( Φi )(x) := |e k | |ê k | J T |J T | Φi (x) Φ i (g j ) • n i = 1, if j = i 0, if j = i (3.6)
The independence property of basis function in parent space is maintained by the Piola transformation to physical space as in Eq. (3.6b). The stress field is now written as a combination of these independent basis functions. Let us consider two faces in x and y direction of the infinitesimal element, on which the stress components could be combined to define stress vector at corresponding face

σ h 11 σ h 12 = σ h 1 | Ω e = τ 1 1 Φ 1 + τ 2 1 Φ 2 + τ 3 1 Φ 3 σ h 21 σ h 22 = σ h 2 | Ω e = τ 1 2 Φ 1 + τ 2 2 Φ 2 + τ 3 2 Φ 3 (3.7)
Casting the above terms in the correct order in Eq. (3.1a), the stress interpolation can thus be formulated in matrix form as follows:

σ h n+1/2 | Ω e = Sτ h n+1/2 | Ω e (3.8) 
By using the results in Eq. (3.7) and Eq. (3.6b), the traction due to stress tensor at the edge i can be expressed as follows

t h i = σ h • n h i = σ h 1 • n h i σ h 2 • n h i ≡ τ i 1 τ i 2 (3.9)
Thus, the couple (τ i 1 , τ i 2 ) in Eq. (3.7) actually represents the components of a traction vector at the edge i. Since τ i 1 , τ i 2 are also the degrees of freedom, chosen same on a given edge which is shared by a couple of neighboring triangular elements, this type of interpolation guarantees the continuity of normal traction vector on an edge between two neighboring elements.

Discrete approximation of the weak form

With the chosen interpolation of displacement and stress fields, the discrete weak forms in Eq. (2.18) and Eq. (2.19) for a typical element Ω e can be written in matrix notation as follows: where the corresponding matrices are

G e u (u, σ; v) = δv T Ω e ρN T NadV + Ω e B T Sτ dV - Ω e N T f dV - ∂Ω e t N T tdA = 0 G e σ (u, σ; ι) = δι T Ω e S T BddV - Ω e S T DSτ dV = 0 (3.10) Index n + 1/2 is
F e := Ω e S T BdV ; M e := Ω e ρN T NdV ; η = ∂a n+1/2 /∂d n+1/2 (3.12)
In a similar manner, from discrete approximation of the weak form for Eq. (3.10b), we get

h e,(i+1) n+1/2 (u, τ ) = h e,(i) n+1/2 (u, τ ) + ∆h e,(i) n+1/2 (∆u, ∆τ ) = 0 h e,(i) n+1/2 (•) := Ω e S T BdV d (i) n+1/2 - Ω e S T DSdV τ (i) n+1/2 ∆h e,(i) n+1/2 (•) := F e ∆d e,(i) n+1/2 -H e,(i) n+1/2 ∆τ e, (i) n+1/2 (3.13) 
where the corresponding matrix is

H e n+1/2 := Ω e S T DSdV (3.14)
The set of linearized discrete governing equations in matrix notation is now established with unknown nodal displacement and stress fields at each iteration:

A nel e=1 ηM e F e,T F e -H e n+1/2 ∆d e,(i) n+1/2 ∆τ e,(i) n+1/2 = -A nel e=1 r e,(i) u,n+1/2 (•) h e,(i) n+1/2 (•) (3.15)
Having obtained the solution at each iteration by using of Newton-Raphson iterative method, the stress and displacement nodal values are updated

τ (i+1) n+1/2 = τ (i) n+1/2 + ∆τ (i) n+1/2 d (i+1) n+1/2 = d (i) n+1/2 + ∆d (i) n+1/2 (3.

16)

Remark: Iterative index (i) implies that we have also implemented this element for the viscoplasticity, where D vp,(i) matrix is used at each new iteration. The yield function φ is defined as a function of von Mises stress tensor norm J 2

φ(σ) = 3J 2 /σ 2 f -1 J 2 = 1 2 dev(σ) • dev(σ) (3.17)
where σ f is the yield stress, dev(σ) is the deviatoric part of stress matrix. Three Gauss points are employed for numerical integration. At each Gauss point, the physical stress σ n+1/2 is computed correspondingly from the traction field τ n+1/2 by Eq. 3.8.

Time discretisation: time-stepping integration scheme

In this section, an energy conserving (EC) scheme for the linear elastodynamics problem, is developed to guarantee the stability of the computation over long period, see also [START_REF] Nguyen | Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case[END_REF]. The mid-point time integration scheme is employed to maintain the second-order accurate O(∆t 3 ) solution, see [START_REF] Artioli | Second-order accurate integration algorithms for von-mises plasticity with a nonlinear kinematic hardening mechanism[END_REF]. Accordingly, the nodal velocity and acceleration at the time step t n+1/2 can be formulated in the form of nodal displacement and velocity

v n+1/2 = (d n+1 -d n )/∆t a n+1/2 = (v n+1 -v n )/∆t (3.18)
The increment of displacement field within an interval of time step is computed by using the mid-point approximation:

d n+1 -d n = 1 2 ∆t(v n+1 + v n ) (3.19)
This equation can be formed in an alternative expression showing the simple update of position vector:

d n+1 = d n + u; u := 1 2 ∆t(v n+1 + v n ) (3.20)
The stress state at t n+1/2 is selected in the following algorithmic form, which is left open to be explained shortly:

τ alg n+1/2 := 1 2 (τ n+1 + τ n ) (3.21)
By choosing a test displacement vector δd T = d n+1 -d n , a work done by both the internal f int and external f ext can be elaborated from the weak form of balance equation in Eq. (3.11b)

(d n+1 -d n ) T f int = (d n+1 -d n ) T f ext
The internal work includes two components of kinetic and potential energy:

(d n+1 -d n ) T f int = (d n+1 -d n ) T Ω B T Sτ n+1/2 dV + (d n+1 -d n ) T Ω ρN T Na n+1/2 dV
The work done by inertia force can be simplified thanks to results obtained in Eq. (3.18b) and Eq. (3.19)

(d n+1 -d n ) T Ma n+1/2 = 1 2 (v n+1 + v n ) T M (v n+1 -v n ) = 1 2 v T n+1 Mv n+1 - 1 2 v T n Mv n = K n+1 -K n (3.22)
where K n+1 is the kinetic energy of system at time t n+1 . It is noted that the mass matrix M is symmetric, so this identity holds: v T n+1 Mv n -v T n Mv n+1 = 0. The work done by potential force can also be expressed as a combination of 2 groups

(d n+1 -d n ) T F T τ n+1/2 = 1 2 (d n+1 -d n ) T F T (τ n+1 + τ n ) = 1 2 d T n+1 F T τ n+1 - 1 2 d T n F T τ n + 1 2 d T n+1 F T τ n - 1 2 d T n F T τ n+1 L
(3.23) Since the scalar L has variables from both time step t n and t n+1 , further simplification of L should be elaborated. Via exploiting the result in Eq. (3.13b) with a test stress function chosen as δτ T = τ n+1 -τ n , the following identity is derived based on the fact that the matrix H is always a symmetric matrix:

(τ n+1 -τ n ) T Fd n+1/2 -Hτ n+1/2 =0 ⇒ 1 2 d T n+1 F T τ n+1 - 1 2 τ T n+1 Hτ n+1 - 1 2 d T n F T τ n + 1 2 τ T n Hτ n = 1 2 d T n+1 F T τ n - 1 2 d T n F T τ n+1 L (3.24)
With the last identity on hand, Eq. (3.23) can further be rewritten as follows

(d n+1 -d n ) T F T τ n+1/2 = 1 2 d T n+1 F T τ n+1 - 1 2 d T n F T τ n + 1 2 d T n+1 F T τ n+1 - 1 2 τ n+1 Hτ n+1 - 1 2 d T n F T τ n + 1 2 τ n Hτ n = d T n+1 F T τ n+1 - 1 2 τ T n+1 H e τ n+1 P n+1 -(d T n F T τ n - 1 2 τ T n H e τ n ) Pn = P n+1 -P n (3.25)
where P n+1 is the potential energy of system at time t n+1 . From the above derivation, one can express the balance of the internal energy and external work in following equation

(K n+1 + P n+1 ) E n+1 -(K n + P n ) En = δd T f ext ∆W ⇔E n+1 -E n =∆W (3.26) 
We can conclude that the algorithmic constitutive equations Eq. (3.26) would conserve the total energy E n+1 = E n + ∆W for any bounded external loading. This property is viewed as "unconditionally stable", see [START_REF] Hughes | Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis[END_REF][START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF].

Numerical examples

Several numerical simulation are presented in this section to illustrate the performance of the enhanced triangular element and the corresponding time-stepping integration scheme. All the computations are programmed as so-called user-defined element and subroutines in FEAP v8.4, see [START_REF] Taylor | Feap-finite element analysis program[END_REF]. The output data is then post-processed via Matlab scripts for plotting.

The patch test

The patch test can reveal any spurious modes which may exist in the element. In this test, model 1 (1 × 1 in size) is denoted by a domain with homogeneous material while model 2 (2 × 1 in size) is denoted by a domain with non-homogeneous material including 2 different properties, see [START_REF] Auricchio | Isogeometric collocation for elastostatics and explicit dynamics[END_REF]. In model 1, the regular and irregular mesh corresponds to case 1 and case 2, respectively. The same material is applied for either mesh where elastic modulus E = 200 and ν = 0.499 for incompressible condition. The numerical displacement at point A is (0.01, -9.95.10 -3 ), matching with the 'exact' solution. This solution is obtained by using σ 22 ≈ 0, the details of stress-strain relation are given in Appendix

∆l x l x = 11 = (1 -ν 2 ) E σ 11 ⇒ ∆l ux(A) = 1 -ν 2 E σ 11 p =0.01 ∆l y l y = 22 = (-ν -ν 2 ) E σ 11 ⇒ ∆l uy(A) = -ν -ν 2 E σ 11 p = -9.95.10 -3 (4.1)
The displacement field in case 1 is shown in Fig. 3(a-d). In both cases, the vertical component of traction τ y vanishes at a midpoint of any given edge while the horizontal counterpart's magnitude τ x on vertical edge dominates those on the horizontal and inclined edges, see Fig. 3(e,f). The stress σ 11 is constant as expected over entire domain for both cases. ), matching with the solution from higher order approximation by isogeometric element, see [START_REF] Auricchio | Isogeometric collocation for elastostatics and explicit dynamics[END_REF]. The corresponding displacement field is shown in Fig. 4(a,b). The vertical component of traction τ y vanishes at a midpoint of any given edge while the horizontal counterpart's magnitude τ x on vertical edge dominates those on the horizontal and inclined edges, see Fig. 4(c). The stress σ 11 is constant as expected over entire domain for both cases. Finally, we conclude that the proposed element passes the patch test. The deflection at point M(5,1) computed by the proposed element (eCST) is compared against the counterpart obtained by conventional constant stress/strain triangle element (CST) and four-node quadrilateral element (Q4) under several mesh configurations. The 'exact' solution is computed by a very fine mesh of nine-node quadrilateral element (Q9). As shown in Fig. 5(b), the rate of convergence and accuracy of eCST element is better than all the others. Detailed results are given in two cases. A coarse mesh with 6 by 1 elements in each direction is denoted case 1, while a finer mesh 12 by 6 elements in each direction is denoted case 2. The displacement field in case 1 is shown in Fig. 6(a,c). The finer mesh in case 2 yield the better contour of displacement field as in Fig. 6(b,d). The deformed shape is shown in Fig. 6(e,f). The illustration of traction field is depicted in finer mesh. The horizontal and vertical vertical components of traction (τ x ,τ y ) for case 2 are shown in Fig. 7(a,b), respectively. The values are normalized with respect to the corresponding maximum. The traction vector on midpoint of each edge is given in Fig. 7(c). It is expected that there are 2 different zones including tension and compression as depicted in Fig. 7(d). We conclude that the proposed element passes the higher order patch test. Detailed results are given in two cases. A coarse mesh with 4 by 1 elements in each direction is denoted case 1, while a finer mesh with 12 by 6 elements in each direction is denoted case 2. The displacement field in case 1 is shown in Fig. 9(a,c). The finer mesh in case 2 yields the smooth contours of displacement field, as in Fig. 9(b,d). The deformed shape is shown in Fig. 9(e,f). The illustration of traction field is depicted with finer mesh. The horizontal and vertical components of traction (τ x ,τ y ) for case 2 are shown in Fig. 10(a,b), respectively. The values are normalized with respect to the corresponding maximum. The traction vector on midpoint of each edge is given in Fig. 10(c). It is expected that there are 2 different zones including tension and compression as depicted in Fig. 10(d).

Cook's membrane

Cook's membrane test proposed in [START_REF] Cook | Improved two-dimensional finite element[END_REF] presents the shear dominated behavior and also displays the effects of mesh distortion, as shown in Fig. 11. The material properties are chosen as: elastic modulus E = 1, ν = 0.33 for quasi-incompressible condition and ν = 0.499 for incompressible condition. A total vertical load p = 1 applied at right end. The deflection at point 3(48,60) computed by the proposed element (eCST) is compared against the counterpart obtained by conventional constant stress/strain triangle element (CST) and four-node quadrilateral element (Q4) with several mesh configurations. The 'exact' solution is computed by a very fine mesh of nine-node quadrilateral element (Q9). As shown in Fig. 12, the rate of convergence and accuracy of eCST element is better, especially for incompressible case with ν = 0.499. Detailed results are given in two cases with ν = 0.33 to represent the incompressible condition. A coarse mesh with 2 by 2 elements in each direction is denoted as case 1, while a finer mesh with 8 by 8 elements is denoted as case 2. The displacement field in case 1 is shown in Fig. 13(a,c). The finer mesh in case 2 yields the smooth contours of displacement field, as shown in Fig. 13(b,d). The deformed shape is shown in Fig. 13(e,f). The illustration of traction field is depicted with finer mesh. The horizontal and vertical components of traction (τ x ,τ y ) for case 2 are shown in Fig. 14(a,b), respectively. The values are normalized with respect to the corresponding maximum. The traction vector on midpoint of each edge is given in Fig. 14(c). It is expected that there are 2 different zones including tension and compression as depicted in Fig. 14(d). 

Dynamic loadings

A simple cantilever beam 10 × 1 is selected to simulate the vibration under a dynamic pulse. There are two models with different load setting: axial and shear pressures as shown in Fig. 16(a). The same fine mesh (10 by 2 elements in each direction) is generated in both cases to allow a wave propagation in the beam under the pulse. A triangle pulse with a peak of pressure p 0 = 1 is introduced to both models as shown in Fig. 16(b), which leads subsequently to free vibrations of the system. These loading scenarios are chosen as shown in Table 1. The EC scheme is employed to compute the evolution of displacement and traction fields. Regarding model 1, the amplitude of displacement in both directions at node 123 is shown in Fig. 17(a,c,e,g). It is noted that the displacement in horizontal direction is larger than its counterpart in vertical direction since the axial pulse is introduced. As shown in Fig. 17(b,d,f,h), the similar trend can be observed for the first several steps in traction at node 82. As shown in Fig. 18, the results show that the total internal energy of system is conserved exactly under free vibration in every case in model 1. It is noted that longer duration of loading leads to higher total energy gained by the system. These cases are fully under elastic regime. As shown in Fig. 19, the results show that the total internal energy of system is conserved exactly under free vibration in every case for model 2. It is noted that longer duration of loading leads to higher total energy gained by the system. These cases are fully under elastic regime. Regarding model 2, the amplitude of displacement in both direction at node 123 is shown in Fig. 20(a,c,e,g). Since the shear pulse is introduced, the displacement in vertical direction is larger than its counterpart in horizontal direction. The traction at node 82 is shown in Fig. 20(b,d,f,h).

To implement the visco-plasticity, the same material is employed with additional properties including yield stress σ f = 0.5 and viso-plastic parameter η = 1/10 -8 . By using case 3 in model 1, the dynamic responses are computed under the visco-plastic regime, as shown in Fig. 21.

The corresponding nodes and elements can be found in Fig. 16(a). The total energy is not conserved anymore due to the visco-plastic dissipation as shown in Fig. 21(a). One can employs the energy-decaying time integration scheme to control the computational stability by dissipating the total energy of system monotonically, see [START_REF] Nguyen | Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case[END_REF]. At the same locations, the given displacement and traction in Fig. 21(b,c) are not much different from those in Fig. 17(e,f). The von Mises stress J 2 at element 19 fluctuates more frequently than the counterpart at element 39 since it takes a time-lapse for the wave to travel through the half right end, as shown Fig. 21(d). It is also noted that the energy-conserving is slightly perturbed under the viscoplastic regime due to the existence of viscoplastic strain, which is not likely to fully reduce the scheme performance to the first-order accuracy.

Conclusions

In this work, we have exploited the regularized mixed variational formulation of linear elastodynamics in order to eliminate the independent rotation field and provide a reduced formulation suitable for constructing hybrid-stress discrete approximation with independent displacement and stress fields. The proposed variational framework presents a rigorous development for eliminating the rotation field from the regularized functional (proposed earlier in [START_REF] Hughes | On drilling degrees of freedom[END_REF] for drilling rotations), which is now recast in the format that appears to be optimal for delivering high stress accuracy in statics and in dynamics. Both displacement and stress fields, which are interpolated as independent variables, are made continuous across element boundaries. In particular, the standard discrete approximation with linear shape functions is chosen for displacement field, whereas the stress field is discretized by using the lowest order of Raviart-Thomas-type interpolations preserving the continuity of traction.

The resulting triangular finite element is first tested for enhanced performance under static loading conditions, showing a superior performance to many other low-order discrete approx-imations for either elastic of viscoplastic behavior. For extending such enhanced performance to dynamics framework, we implemented the energy-conserving scheme to preserve the total energy of system in free vibration phase, which controls the overall stability of numerical computation over a long period of time. We have extensively tested this formulation and discrete approximation to find a very satisfying performance of this element when applied to both statics and dynamics problems, which remains superior to many other available low-order elements.
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Appendix: Mapping constitutive equation into matrix notation

For non-symmetric stress tensor, the constitutive equation is

symmσ = C ⇔ 1 2 (σ ij + σ ji ) = C ijkl kl (5.1) where = symm ∇u ⇔ ij = 1 2 (u i,j + u j,i ); i,j ∈ [1,2,3] C = λ1 ⊗ 1 + 2µI s ⇔C ijkl = λδ ij δ kl + 2µ 1 2 (δ ik δ jl + δ il δ jk ); i,j,k ∈ [1,2 ,3] (5.2) 
Regarding fourth-order tensor 

1 ⊗ 1 = δ ij δ kl 1 ⊗ 1 =                        1 
  ij=33                      (5.3) 
Regarding fourth-order tensor I s = 1 2 (δ ik δ jl + δ il δ jk ) (5.9)

I s =                        1 
Hence, the second-order tensor in Eq. (2.19) can be written as follows 

L(C -1 symmσ - 1 γ skewσ) = C -1    
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 20 Fig. 20: Model 2-displacement and traction

Fig. 21 :

 21 Fig. 21: Model 1-Case 3: Dynamics under visco-plastic regime

5 )σ 11 1 2

 51 -order elasticity tensor C = λ1 ⊗ 1 + 2µI s After executing an operation of double contraction, the constitutive equation symmσ = C • is now written as follows   (σ 12 + σ 21 ) 1 2 (σ 13 + σ 31 )

6 ) 1 2 1 2 7 ) 1 2 1 2

 611711 Applying the plane strain condition 13 , 23 , 33 = 0, the mapping L(•) from tensor to matrix notation yields (σ 12 + σ 21 ) (σ 21 + σ 12 )The above equation leads to the form of inverse of elasticity matrix C -1 (σ 12 -σ 21 ) (σ 21 -σ 12 )

=

  Dσ (5.10) 

  only shown where it is needed. By linearizing the first equation Eq. (3.10a),

	we get							
	r	e,(i+1) u,n+1/2 (u, τ ) = r	e,(i) u,n+1/2 (u, τ ) + ∆r	e,(i) u,n+1/2 (∆u, ∆τ ) = 0
	r	e,(i) u,n+1/2 (•)	:=	Ω e	ρN T Na e,(i) n+1/2 dV +	Ω e	B T Sτ	e,(i) n+1/2 dV
									f int	(3.11)
					-	Ω e	N T f	e,(i) n+1/2 dV -	2 ∂Ω e	N T t e,(i) n+1/2 dA
									fext
	∆r	e,(i) u,n+1/2 (•) := ηM e ∆d	e,(i) n+1/2 + F e,T ∆τ	e,(i) n+1/2

Table 1 :

 1 Load groups for EC scheme

  11 + λ 22 + λ 33 µ 12 + µ 21 2µ 12 µ 13 + µ 31 µ 21 + µ 12 λ 11 + (λ + 2µ) 22 + λ 33 µ 23 + µ 32 µ 31 + µ 13 µ 32 + µ 23 λ 11 + λ 22 + (λ + 2µ) 33

				
			1 2 (σ 21 + σ 12 ) 1 2 (σ 31 + σ 13 ) 1 2 (σ 32 + σ 23 ) σ 22	1 2 (σ 23 + σ 32 ) σ 33	
			(λ + 2µ)
	=	  