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Abstract

We consider a class of abstract second order evolution equations with a restoring force that is
strictly superlinear at infinity with respect to the position, and a dissipation mechanism that is
strictly superlinear at infinity with respect to the velocity.

Under the assumption that the growth of the restoring force dominates the growth of the
dissipation, we prove a universal bound property, namely that the energy of solutions is bounded
for positive times, independently of the initial condition. Under a slightly stronger assumption,
we show also a universal decay property, namely that the energy decays (as time goes to infinity)
at least as a multiple of a negative power of t, again independent of the boundary conditions.

We apply the abstract results to solutions of some nonlinear wave, plate and Kirchhoff equa-
tions in a bounded domain.

[French version]
On considère une classe d’équations du deuxième ordre abstraites avec forces de rappel et de

frottement toutes deux surlinéaires à l’infini respectivement par rapport à l’élongation et à la
vitesse.

Sous une hypothèse assurant que la croissance du terme de rappel est supérieure à celle
du terme de frottement, on établit que l’énergie des solutions en temps t positif est bornée
indépendamment des conditions initales. Sous des conditions un peu plus fortes faisant jouer un
rôle particulier à l’origine, on montre en outre une convergence de l’énergie vers zero uniforme
pour t grand, comme une puissance négative de t multipliée par une constante indépendante de
l’état initial.

Ces résultats s’appliquent aux solutions d’équations d’ondes et de plaques semi-linéaires ainsi
qu’aux équations de type Kirchhoff dans un domaine borné avec diverses conditions au bord.
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1. Introduction

It is well known that a certain number of dynamical systems S(t) defined on a Banach space
X have the property of universal boundedness for all t > 0, in the sense that

∀t > 0, S(t)X is a bounded subset of X.

As a simple example we can consider the first order scalar ordinary differential equation

u′ + δ|u|ρu = 0,

where δ and ρ are positive real numbers. Indeed, integrating this differential equation we find
that

|u(t)| ≤
1

(ρδ)1/ρ
·

1

t1/ρ
∀t > 0,

independently of the initial condition u(0). This property extends classically to some classes of
nonlinear parabolic partial differential equations, for instance the semilinear parabolic equation
such as

ut −∆u+ δ|u|ρu = 0

with either Dirichlet or Neumann homogeneous boundary conditions. The result follows at once
from the maximum principle. We refer to [1] for a more elaborate quasilinear case.

It is natural to ask whether an analogous universal bound property holds true for second
order ordinary differential equations with superlinear dampings such as

u′′ + ω2u+ δ|u′|ρu′ = 0.

The answer is in general negative. Indeed, in the special case ω = ρ = δ = 1, this equation
has a solution with explicit expression u(t) = t2/4−1/2 for t ≤ 0 that extends uniquely for t ≥ 0.
Due to the autonomous character of the equation, the entire range of this unbounded solution is
contained in S(t)R2 for all positive times, and hence the universal boundedness fails.

The next step is to consider scalar second order equations with both superlinear damping
and superlinear restoring force, such as

u′′ + |u′|αu′ + |u|βu = 0. (1)

For this equation, P. Souplet [2] gave a definitive negative answer in the regime α ≥ β ≥ 0.
On the other hand, in the regime 0 < α < β, it was shown very recently in [3] that the universal
boundedness holds. More precisely, if we consider the classical energy

E(t) =
1

2
u′(t)2 +

1

β + 2
|u(t)|β+2,

the method of [3] yields the optimal estimate

E(t) ≤ Cmax
{

t−2/α, t−(α+1)(β+2)/(β−α)
}

∀t > 0,

where C does not depend on the initial data.
After this result, which can be easily extended in the finite dimensional vector framework, it

is reasonable to ask what happens in the regime 0 < α < β for wave equations such as

utt −∆u+ |u|βu+ |ut|
αut = 0, (2)
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with either Dirichlet or Neumann boundary conditions, or for analogous plate equations where
the Laplacian is replaced by a bi-Laplacian. The issue seems to be non-trivial because there is
no such maximum principle as in the parabolic case, and because without the nonlinear term
|u|βu the universal boundedness does not take place (see [4]).

Nevertheless, a natural slight change of the method of [3], inspired by a technique devised
in [5] involving a power of the total energy, gives the result for a large class of equations that fit
into a natural functional framework. For these equations, we prove in Theorem 3.2 the universal
bound for all positive times, and in Theorem 3.3 and Theorem 3.4 the universal decay at infinity
under slightly stronger assumptions. It should be even possible to extend the universal bound
and universal decay properties to some singular equations and systems such as those studied
in [6, 7], at least in the finite dimensional case.

The plan of the paper is as follows. In section 2 we introduce the general functional setting
and we list the assumptions that we need in the sequel. In section 3 we state and prove our
abstract results. In section 4 we show some examples of application of our abstract theory to
partial differential equations. Finally, in section 5 we present some negative results and open
problems.

2. Functional setting

Let H be a Hilbert space, and let V be another Hilbert space continuously imbedded into
H as a dense subspace. If we identify H with its dual H ′, we obtain a classical Hilbert triple
V ⊆ H ⊆ V ′. We denote norms by double bars, and scalar products and duality pairings by
angle brackets.

Let T > 0 be a real number. In the time interval [0, T ] or (0, T ) we consider evolution
equations of the form

u′′(t) +∇F (u(t)) + g(t, u′(t)) = 0, (3)

where F and g satisfy the following assumptions.

(F1) The function F : V → R is of class C1, and ∇F ∈ C0(V, V ′) is its gradient.

(G1) The function g : (0, T ) × V → V ′ is such that for every v ∈ L∞((0, T ), V ) the function
t → g(t, v(t)) belongs to L1((0, T ), V ′).

Under these assumptions we can introduce a notion of strong solutions to (3).

Definition 2.1 (Strong solutions). A strong solution to (3) is a function

u ∈ W 1,∞((0, T ), V ) ∩W 2,1((0, T ), V ′)

for which (3) holds true as an equality in L1((0, T ), V ′).

Remark 2.2. Every strong solution belongs in particular to the class

C0([0, T ], V ) ∩C1([0, T ], H),

and as a consequence the pointwise values u(t) ∈ V and u′(t) ∈ H are well defined for every
t ∈ [0, T ] (endpoints included). Moreover, the classical energy

E0(t) :=
1

2
‖u′(t)‖2H + F (u(t)) (4)
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belongs to W 1,∞((0, T ),R) and

E′

0(t) = −〈g(t, u′(t)), u′(t)〉V ′,V (5)

for almost every t ∈ (0, T ).

Now we assume that α and β are two positive real numbers, and that X and Y are two
Banach spaces that extend the original Hilbert triple V ⊆ H ⊆ V ′ to a chain of seven spaces
with continuous imbeddings

V ⊆ Y ⊆ X ⊆ H ⊆ X ′ ⊆ Y ′ ⊆ V ′. (6)

The following additional assumptions on F and g are needed in our abstract result concerning
the uniform bound property (see Theorem 3.2).

(F2) There exist real numbers δ1 > 0 and C1 ≥ 0 such that

F (u) ≥ δ1‖u‖
β+2
Y − C1, ∀u ∈ V. (7)

(F3) There exist real numbers δ2 > 0 and C2 ≥ 0 such that

〈∇F (u), u〉V ′,V ≥ δ2F (u)− C2. ∀u ∈ V, (8)

(G2) There exist real numbers δ3 > 0 and C3 ≥ 0 such that

〈g(t, v), v〉V ′,V ≥ δ3‖v‖
α+2
X − C3 (9)

for every v ∈ V and almost every t ∈ (0, T ).

(G3) For every (t, v) ∈ (0, T ) × V it turns out that g(t, v) ∈ X ′, and there exist real numbers
C4 ≥ 0 and D4 > 0 such that

‖g(t, v)‖X′ ≤ D4‖v‖
α+1
X + C4 (10)

for every v ∈ V and almost every t ∈ (0, T ).

The assumptions above are needed, in the simplified version with all Ci’s equal to zero, also
in our first version of the uniform decay property (see Theorem 3.3). In our second version of
the uniform decay property (see Theorem 3.4) we need two further assumptions, namely that
there exists a real number C5 > 0 such that

‖u‖α+2
X ≤ C5

(

‖u‖2H + ‖u‖β+2
Y

)

∀u ∈ V, (11)

and that we can estimate F (u) from below as follows.

(F4) There exists a real number δ4 > 0 such that

F (u) ≥ δ4‖u‖
2
H ∀u ∈ V. (12)

Remark 2.3. The notion of strong solutions, the computation of the time-derivative of the
energy in (5), as well as all the assumptions introduced above, can be extended in a standard
way to solutions defined in the half-line [0,+∞) or (0,+∞).
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3. Abstract results

3.1. Universal bound for all positive times

In this section we prove that, for all positive times, solutions lie in a bounded subset of the
phase space. We shall use the following simple universal bound property for a class of differential
inequalities which was stated and proved in [8, Lemma III.5.1], with a reference to J.M. Ghidaglia.

Lemma 3.1. Let T > 0 be a positive real number, and let Φ ∈ W 1,∞((0, T ),R) be a nonnegative
function. Let us assume that there exist positive real numbers ρ, γ and M such that

Φ′(t) ≤ −ρΦ(t)1+γ +M

for almost every t ∈ (0, T ).Then we have

Φ(t) ≤

(

1

γρt

)
1
γ

+

(

M

ρ

)
1

1+γ

∀t ∈ (0, T ).

Proof. This follows from the standard comparison principle since the function

Ψ(t) =

(

1

γρt

)
1
γ

+

(

M

ρ

)
1

1+γ

satisfies the inequality
Ψ′(t) + ρΨ(t)1+γ ≥ M.

Hence Ψ(t) ≥ Φ(t) for every t ∈ (0, T ) since Ψ(t) ≥ Φ(t) for t → 0+. �

We are now ready to state and prove the universal bound property for the solutions to (3)
in the regime 0 < α < β. We point out that in our main results below, as well as in Lemma 3.1
above, we do not ask solutions to be defined for t = 0. In some sense, our estimates are universal
because they do not depend on initial data, but even better because they do not even require
initial data.

Theorem 3.2 (Universal bound property). Let us consider the chain of functional spaces (6),
and let F and g be two functions satisfying assumptions (F1)–(F2)–(F3) and (G1)–(G2)–(G3)
of section 2.

Let T > 0 be a real number, and let u : (0, T ) → V be a strong solution to (3) according to
Definition 2.1.

Let us assume in addition that 0 < α < β, and let us set

γ := min

{

α

2
,

β − α

(α+ 1)(β + 2)

}

. (13)

Then there exist two real numbers Γ and Γ∗ such that

‖u′(t)‖2H + F (u(t)) ≤ Γ t−1/γ + Γ∗ ∀t ∈ (0, T ). (14)

The constants Γ and Γ∗ depend on the immersions (6), and on the constants that appear in
(7) through (10), but they are independent of T and u.
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Proof. To begin with, we introduce the energy

E(t) :=
1

2
‖u′(t)‖2H + F (u(t)) + C1 + 1. (15)

This energy coincides with the energy E0(t) defined in (4) up to an additive constant, and
therefore its time-derivative is again given by the right-hand side of (5). Due to assumption (7),
this new energy is bounded from below by 1, and therefore we can define the modified energy

Φ(t) := E(t) + εE(t)
γ
〈u(t), u′(t)〉H ,

where γ is defined by (13), and ε > 0 is a small parameter.
We claim that, for every ε > 0 small enough, the modified energy Φ has the following two

properties.

• It is a small perturbation of E in the sense that

1

2
E(t) ≤ Φ(t) ≤

3

2
E(t) ∀t ∈ (0, T ). (16)

• It satisfies the differential inequality

Φ′(t) ≤ −ε
δ2
8

(

2

3

)γ+1

Φ(t)γ+1 +
3C3

2
+ 2 (17)

for almost every t ∈ (0, T ), where δ2 and C3 are the constants that appear in (8) and (9),
respectively.

The smallness of ε depends only on the norms of the continuous imbeddings (6), and on all
the constants in (7) through (10), but it does not depend on T and u. All the constants K1, . . . ,
K18 that we introduce in the sequel of the proof have the same property.

If we prove the two claims above, then it is enough to select an admissible value of ε > 0, and
from (16), (17), and the conclusion of Lemma 3.1 we deduce for some positive constants Γ1, Γ2

E(t) ≤ 2Φ(t) ≤ 2Γ1 t
−1/γ + 2Γ2,

which implies (14).

Equivalence of the energies We show that (16) holds true whenever ε > 0 is small enough.
To begin with, we observe that, when α varies in (0, β), the value γ defined by (13) is the
minimum between an increasing and a decreasing function of α. The two functions coincide
when α = β/(β + 2), and in this case γ attains its maximum. This proves that γ ≤ β/(2β + 4),
and in particular

γ +
1

β + 2
+

1

2
≤ 1. (18)

Now from (15) we deduce that

‖u′(t)‖H ≤ [2E(t)]1/2 ,

while from the continuous imbedding Y ⊆ H and (7) we deduce that

‖u(t)‖H ≤ K1‖u(t)‖Y ≤ K2 (F (u(t)) + C1)
1/(β+2)

≤ K2E(t)
1/(β+2)

,
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and therefore

E(t)
γ
· |〈u(t), u′(t)〉H | ≤ E(t)

γ
· ‖u(t)‖H · ‖u′(t)‖H ≤ K3E(t)

γ+(1/2)+1/(β+2)
.

Recalling that E(t) ≥ 1, and keeping (18) into account, we conclude that

E(t)
γ
· |〈u(t), u′(t)〉H | ≤ K3E(t) (19)

so that (16) holds true whenever K3ε ≤ 1/2.

Differential inequality for the modified energy We show that Φ satisfies (17) when ε > 0 is
small enough. To begin with, we compute the time-derivative of Φ, and we write it in the form

Φ′(t) = −〈g(t, u′(t)), u′(t)〉V ′,V

(

1 + γεE(t)
γ−1

〈u(t), u′(t)〉H

)

+ εE(t)
γ
·
(

‖u′(t)‖2H − 〈∇F (u(t)), u(t)〉V ′,V

)

− εE(t)
γ
〈g(t, u′(t)), u(t)〉V ′,V . (20)

Let L1, L2, and L3 denote the terms in the three lines of the right-hand side.

• Let us estimate L1. From (19) we deduce that

E(t)
γ−1 ∣

∣〈u(t), u′(t)〉H
∣

∣ ≤ K3

and therefore
1

2
≤ 1 + γεE(t)γ−1〈u(t), u′(t)〉H ≤

3

2
(21)

provided that ε is small enough. Now we distinguish two cases.

– If 〈g(t, u′(t)), u′(t)〉V ′,V ≤ 0, then from (21) we obtain that

L1 ≤ −
3

2
〈g(t, u′(t)), u′(t)〉V ′,V ,

and hence from (9) we conclude that

L1 ≤
3C3

2
−

3δ3
2

‖u′(t)‖α+2
X .

– If 〈g(t, u′(t)), u′(t)〉V ′,V ≥ 0, then from (21) we obtain that

L1 ≤ −
1

2
〈g(t, u′(t)), u′(t)〉V ′,V ,

and hence from (9) we conclude that

L1 ≤
C3

2
−

δ3
2
‖u′(t)‖α+2

X .

In both cases it is true that

L1 ≤
3C3

2
−

δ3
2
‖u′(t)‖α+2

X .
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• Let us estimate L2. From (8) and (15) it follows that

〈∇F (u(t)), u(t)〉V ′,V ≥ δ2F (u(t))− C2 = δ2E(t)−K4 −K5‖u
′(t)‖2H ,

and hence, due to the continuous imbedding X ⊆ H , we obtain that

1

ε
L2 ≤ −δ2E(t)

γ+1
+K4E(t)

γ
+K6E(t)

γ
‖u′(t)‖2H

≤ −δ2E(t)
γ+1

+K4E(t)
γ
+K7E(t)

γ
‖u′(t)‖2X (22)

The first condition in the definition (13) of γ implies that

γ ≤
α(γ + 1)

α+ 2
, (23)

and therefore, since E(t) ≥ 1, we find that

E(t)
γ
≤ K8E(t)

α(γ+1)/(α+2)
, (24)

actually in this case with K8 = 1. Applying this inequality to the last term of (22) we
obtain that

1

ε
L2 ≤ −δ2E(t)

γ+1
+K4E(t)

γ
+K9E(t)

α(γ+1)/(α+2)
‖u′(t)‖2X . (25)

In order to estimate the second term in (25) we observe that

K4E(t)
γ
≤

δ2
4
E(t)

γ+1
+K10. (26)

In order to estimate the third term in (25), we apply Young’s inequality and we deduce
that

K9E(t)
α(γ+1)/(α+2)

· ‖u′(t)‖2X ≤
δ2
2
E(t)

γ+1
+K11‖u

′(t)‖α+2
X . (27)

Plugging (26) and (27) into (25) we conclude that

1

ε
L2 ≤ −

δ2
4
E(t)γ+1 +K11‖u

′(t)‖α+2
X +K10,

which means that when ε > 0 is small enough we obtain that

L2 ≤ −ε
δ2
4
E(t)γ+1 +

δ3
4
‖u′(t)‖α+2

X + 1.

• Let us estimate L3. From (10) it follows that

∣

∣〈g(t, u′(t)), u(t)〉V ′,V

∣

∣ ≤ ‖g(t, u′(t))‖X′‖u(t)‖X

≤
(

C4 +D4‖u
′(t)‖α+1

X

)

‖u(t)‖X . (28)

From the continuous imbedding Y ⊆ X , assumption (7), and definition (15), we obtain
that

‖u(t)‖X ≤ K12‖u(t)‖Y ≤ K13 [F (u(t)) + C1]
1/(β+2)

≤ K13E(t)
1/(β+2)

. (29)
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The second condition in (13) implies that

γ +
1

β + 2
≤

γ + 1

α+ 2
, (30)

and therefore, since E(t) ≥ 1, from (29) we obtain that

E(t)
γ
· ‖u(t)‖X ≤ K13E(t)

γ+1/(β+2)
≤ K14E(t)

(γ+1)/(α+2)
. (31)

From this inequality and (28) we deduce that

1

ε
L3 ≤ K15E(t)(γ+1)/(α+2) +K16E(t)(γ+1)/(α+2)‖u′(t)‖α+1

X . (32)

In order to estimate the first term in (32), we observe that (γ + 1)/(α + 2) < γ + 1, and
therefore

K15E(t)
(γ+1)/(α+2)

≤
δ2
16

E(t)
γ+1

+K17. (33)

In order to estimate the second term in (32), we apply Young’s inequality and we obtain
that

K16E(t)
(γ+1)/(α+2)

‖u′(t)‖α+1
X ≤

δ2
16

E(t)
γ+1

+K18‖u
′(t)‖α+2

X . (34)

Plugging (33) and (34) into (32) we conclude that

1

ε
L3 ≤

δ2
8
E(t)

γ+1
+K18‖u

′(t)‖α+2
X +K17,

which means that when ε > 0 is small enough we obtain that

L3 ≤ ε
δ2
8
E(t)

γ+1
+

δ3
4
‖u′(t)‖α+2

X + 1.

From the estimates for L1, L2, and L3 we conclude that

Φ′(t) ≤ −ε
δ2
8
E(t)

γ+1
+

3C3

2
+ 2

whenever ε > 0 is small enough, and this implies (17) because of (16). �

3.2. Universal decay at infinity

In this section we prove two universal decay properties for solutions to (3). In the first result
we strengthen the assumptions by requiring that (F2)–(F3) and (G2)–(G3) hold true with all
Ci’s equal to zero. We obtain that the energy of solutions is bounded from above by a multiple
of a negative power of t, independent (both the power and the constant) of the solution itself.

At a first glance, the conclusion (36) resembles (14) with Γ∗ = 0. Nevertheless, we stress that
the value of γ is now different (it is the maximum instead of the minimum between the same two
quantities), and that now the conclusion is true for every t ≥ 1 for solutions that are defined on
the whole half-line (0,+∞).
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Theorem 3.3 (Universal decay under standard assumptions). Let us consider the chain of
functional spaces (6), and let F and g be two functions satisfying assumptions (F1)–(F2)–(F3)
and (G1)–(G2)–(G3) of section 2 with C1 = C2 = C3 = C4 = 0 and T = +∞. Let u : (0,+∞) →
V be a strong solution to (3) according to Definition 2.1.

Let us assume in addition that 0 < α < β, and let us set

γ := max

{

α

2
,

β − α

(α+ 1)(β + 2)

}

. (35)

Then there exists a real number D such that

‖u′(t)‖2H + F (u(t)) ≤ D t−1/γ ∀t ≥ 1. (36)

The constant D depends on the immersions (6), and on the constants that appear in (7)
through (10), but it is independent of u.

Proof. We consider the usual energy E0(t) defined in (4). From Theorem 3.2 we know that the
universal bound

E0(t) ≤ K1 ∀t ≥ 1 (37)

holds true with a constant independent of the solution. Then we introduce the modified energy

Φ(t) := E0(t) + εE0(t)
γ〈u(t), u′(t)〉H , (38)

where γ is defined by (35), and ε > 0 is a small parameter. Since γ might be less than 1, in order
to avoid differentiability issues we assume for the time being that E0(t) > 0 for every t > 0. At
the end of the proof we discuss the case where E0(t) = 0 for some t > 0.

We claim that, for every ε > 0 small enough, the modified energy Φ has the following two
properties.

• It is a small perturbation of E0 in the sense that

1

2
E0(t) ≤ Φ(t) ≤

3

2
E0(t). (39)

• It satisfies the differential inequality

Φ′(t) ≤ −ε
δ2
4

(

2

3

)γ+1

Φ(t)γ+1 (40)

for almost every t ≥ 1, where γ is defined by (35), and δ2 is the constant that appears in
(8).

As usual, the smallness of ε depends only on the norms of the continuous imbeddings (6),
and on all the constants appearing in (7) through (10), but it does not depend on u. All the
constants K2, . . . , K10 that we introduce in the sequel of the proof have the same property.

Let us assume that the two claims above have been proved. From the universal bound (37)
we know that Φ(1) ≤ 3K1/2. At this point it is enough to select an admissible value of ε > 0,
and integrating the differential inequality (40) we deduce that

Φ(t) ≤ K2 t
−1/γ ∀t ≥ 1,

which implies (36) because of (39).

10



Equivalence of the energies Arguing as in the corresponding paragraph of the proof of The-
orem 3.2 we find that now

γ +
1

β + 2
+

1

2
≥ 1, (41)

and again

E0(t)
γ |〈u(t), u′(t)〉H | ≤ K3 [E0(t)]

γ+(1/2)+1/(β+2)

Recalling (41) and the universal bound (37) we conclude that

E0(t)
γ |〈u(t), u′(t)〉H | ≤ K4E0(t). (42)

and hence (39) holds true whenever K4ε ≤ 1/2.

Differential inequality for the modified energy We show that Φ satisfies (40) when ε > 0 is
small enough. The time-derivative of Φ is given by (20), now with E0(t) instead of E(t). Let L1,
L2, and L3 denote the terms in the three lines of the right-hand side.

• Let us estimate L1. From (42) we deduce that

1 + γεE0(t)
γ−1〈u(t), u′(t)〉H ≥

1

2

provided that ε > 0 is small enough. Since now (9) holds true with C3 = 0, we conclude
that

L1 ≤ −
δ3
2
‖u′(t)‖α+2

X .

• Let us estimate L2. Arguing as in the corresponding paragraph of the proof of Theorem 3.2,
and recalling that now C2 = 0, we find that

1

ε
L2 ≤ −δ2E0(t)

γ+1 +K5E0(t)
γ‖u′(t)‖2X .

The new definition (35) of γ implies that (23) holds true with the opposite sign, but on the
other hand now we know that E0(t) is bounded from above for t ≥ 1, and therefore again
the equivalent of inequality (24) holds true, and therefore

1

ε
L2 ≤ −δ2E0(t)

γ+1 +K6E0(t)
α(γ+1)/(α+2)‖u′(t)‖2X .

We estimate the last term by exploiting Young’s inequality as we did in (27), and we obtain
that

1

ε
L2 ≤ −

δ2
2
E0(t)

γ+1 +K7‖u
′(t)‖α+2

X ,

which means that when ε > 0 is small enough we conclude that

L2 ≤ −ε
δ2
2
E0(t)

γ+1 +
δ3
4
‖u′(t)‖α+2

X .

• Let us estimate L3. Arguing as in the corresponding paragraph of the proof of Theorem 3.2,
and recalling that now C4 = 0, we find that

1

ε
L3 ≤ E0(t)

γ ·D4‖u
′(t)‖α+1

X · ‖u(t)‖X ≤ K8E0(t)
γ+1/(β+2)‖u′(t)‖α+1

X .
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The new definition (35) of γ implies that (30) holds true with the opposite sign, but on the
other hand now we know that E0(t) is bounded from above for t ≥ 1, and therefore again
inequality (31) holds true. It follows that

1

ε
L3 ≤ K9E0(t)

(γ+1)/(α+2)‖u′(t)‖α+1
X .

We estimate the right-hand side by exploiting Young’s inequality, and we find that

1

ε
L3 ≤

δ2
4
E0(t)

γ+1 +K10‖u
′(t)‖α+2

X ,

which means that when ε > 0 is small enough we obtain that

L3 ≤ ε
δ2
4
E0(t)

γ+1 +
δ3
4
‖u′(t)‖α+2

X .

Plugging the estimates for L1, L2, L3 into the expression of Φ′(t), we conclude that

Φ′(t) ≤ −
δ2
4
εE0(t)

γ+1

for almost every t ≥ 1, and this implies (40) because of (39).

When the energy vanishes for some positive time It remains to consider the case where
E0(t) vanishes for some positive time. To begin with, from (5) and assumption (9) with C3 = 0
we deduce that E0(t) is nonincreasing. It follows that there are only two cases. If E0(t) = 0 for
every t ≥ 1, then the conclusion is trivial. Otherwise, there exists T > 1 such that E0(t) > 0 in
[1, T ), and E0(t) = 0 for every t ≥ T . In this case the conclusion is trivial for t ≥ T , while in the
interval [1, T ) both (39) and (40) hold true, leading to (36) also in this interval. �

In the last result we assume in addition that the chain of spaces (6) satisfies (11), and that
the function F satisfies also (F4). We obtain that the universal decay holds true with a better
exponent, equal to the first term in the maximum (35).

Theorem 3.4 (Universal decay under stronger assumptions). Let us consider the chain of func-
tional spaces (6), and let us assume that (11) holds true. Let F and g be two functions satisfying
assumptions (F1)–(F2)–(F3)–(F4) and (G1)–(G2)–(G3) of section 2 with C1 = C2 = C3 = C4 =
0 and T = +∞. Let u : (0,+∞) → V be a strong solution to (3) according to Definition 2.1.

Let us assume in addition that 0 < α < β.
Then there exists a real number D such that

‖u′(t)‖2H + F (u(t)) ≤ D t−2/α ∀t ≥ 1.

The constant D depends on the immersions (6), and on the constants that appear in all the
assumptions, but it is independent of u.

Proof. We consider the usual energy E0(t) defined in (4), and the modified energy Φ(t) defined
in (38), where now γ := α/2, and ε > 0 is again a small parameter. We assume, without loss
of generality, that E0(t) > 0 for every positive time, because otherwise we can argue as in the
last paragraph of the previous proof. Again we claim that, for every ε > 0 small enough, the
modified energy Φ is a small perturbation of E0 in the sense of (39), and it satisfies the differential
inequality (40) for almost every t ≥ 1. All the constants and the smallness of ε depend as usual
on the constants appearing in the assumptions, but they do not depend on u.

Again we know from Theorem 3.2 that the universal bound (37) holds true, and therefore
the conclusion follows again from the differential inequality and the equivalence of the energies.
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Equivalence of the energies From assumption (12) we obtain that

|〈u′(t), u(t)〉H | ≤
1

2
‖u′(t)‖2H +

1

2
‖u(t)‖2H ≤ K1E0(u(t)),

and hence, since E0(t) is bounded from above for t ≥ 1, we conclude that

εE0(t)
γ |〈u(t), u′(t)〉H | ≤ εK1E0(t)

γ · E0(t) ≤ εK2E0(t).

This proves that (39) holds true whenever K2ε ≤ 1/2.

Differential inequality for the modified energy We show that Φ satisfies (40) when ε > 0 is
small enough. The time-derivative of Φ is again given by (20) with E0 instead of E. Let L1, L2,
and L3 denote the terms in the three lines of the right-hand side.

We can estimate L1 and L2 by arguing as in the corresponding parts of proof of Theorem 3.3,
because in those parts we exploited only that γ ≥ α/2. When ε > 0 is small enough we obtain
that

L1 ≤ −
δ3
2
‖u′(t)‖α+2

X and L2 ≤ −ε
δ2
2
E0(t)

γ+1
+

δ3
4
‖u′(t)‖α+2

X .

In order to estimate L3, from (10) with C4 = 0 we deduce that

1

ε
L3 ≤ D4E0(t)

γ · ‖u′(t)‖α+1
X · ‖u(t)‖X .

From (11), (7) and (12) we obtain that

‖u‖α+2
X ≤ C5

(

‖u‖2H + ‖u‖β+2
Y

)

≤ K3F (u(t)) ≤ K3E0(t),

and therefore
1

ε
L3 ≤ K4E0(t)

γ+1/(α+2) · ‖u′(t)‖α+1
X .

Now we observe that

γ +
1

α+ 2
≥

γ + 1

α+ 2
,

and thus from the universal bound (37) we deduce that

1

ε
L3 ≤ K5E0(t)

(γ+1)/(α+2) · ‖u′(t)‖α+1
X .

Finally, from Young’s inequality we conclude that

1

ε
L3 ≤

δ2
4
E0(t)

γ+1
+K6‖u

′(t)‖α+2
X ,

which means that when ε > 0 is small enough we obtain that

L3 ≤ ε
δ2
4
E0(t)

γ+1
+

δ3
4
‖u′(t)‖α+2

X .

At this point the conclusion follows as in the proof of Theorem 3.3. �
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4. Universal bound/decay for PDEs

In this section we apply the abstract result of section 3 to some hyperbolic partial differential
equations. Throughout this section, we assume that N is a positive integer, Ω ⊆ R

N is a bounded
open set with smooth boundary (regular enough to have classical Sobolev imbeddings and H2

regularity for the Dirichlet or Neumann Laplacian up to the boundary), T is a positive real
number, and h ∈ L∞((0, T ), L2(Ω)) is a function that plays the role of a forcing term in the
equations.

4.1. Semilinear wave equations

Statement of the problem and well-posedness. Let us consider, in a cylinder (0, T )×Ω or (0,+∞)×
Ω, semilinear wave equations of the form

utt −∆u+ b|u|βu− λu+ c|ut|
αut − µut = h, (43)

where α, β, b, c are positive real parameters, and λ, µ are real parameters. Let us add initial
conditions

u(0, x) = u0(x), ut(0, x) = u1(x), (44)

and either homogeneous Dirichlet boundary conditions

u(t, x) = 0 in (0, T )× ∂Ω,

or homogeneous Neumann boundary conditions

∂u

∂n
(t, x) = 0 in (0, T )× ∂Ω.

If we assume that
(N − 2)β ≤ 2, (45)

then H1(Ω) is continuously imbedded into L2β+2(Ω). In this case the initial-boundary-value
problem is classically well-posed for initial data (u0, u1) ∈ H1

0 (Ω)×L2(Ω) in the case of Dirichlet
boundary conditions, and for initial data (u0, u1) ∈ H1(Ω) × L2(Ω) in the case of Neumann
boundary conditions. Here “well-posedness” refers to weak solutions, while strong solutions
exist under additional regularity assumptions on the initial data and on the forcing term h. We
refer to Proposition II.2.2.1 and Theorem II.3.2.1 in [9] for the construction of weak and strong
solutions.

The abstract framework. The problem fits in the abstract framework of section 2 if we set

F (u) :=
1

2
‖∇u‖2L2(Ω) −

λ

2
‖u‖2L2(Ω) +

b

β + 2
‖u‖β+2

Lβ+2(Ω)
,

and
[g(t, v)](t, x) := c|v(x)|αv(x) − µv(x)− h(t, x), (46)

and we choose the functional spaces

H := L2(Ω), X := Lα+2(Ω), Y := Lβ+2(Ω), (47)

with V := H1
0 (Ω) in the case of Dirichlet boundary conditions, and V := H1(Ω) in the case

of Neumann boundary conditions. The verification of (F1) and (G1) is quite straightforward
with this choice of the functional spaces. Let us check the remaining abstract assumptions of
section 2.

14



• Assumption (F2). Inequality (7) holds true, both in the Neumann and in the Dirichlet
case, because of the super-quadratic power β + 2. If we want (7) to be true with C1 = 0,
then in the Neumann case we have to assume that λ ≤ 0, while in the Dirichlet case it is
enough to assume that λ ≤ λ1(Ω), where λ1(Ω) denotes the first eigenvalue of the Dirichlet
Laplacian in Ω.

• Assumption (F3). Inequality (8) is always true with δ2 = 2 and C2 = 0, for every admissible
value of the parameters.

• Assumption (G2). From (46) it follows that

〈g(t, v), v〉V ′,V = c‖v‖α+2
Lα+2(Ω) − µ‖v‖2L2(Ω) −

∫

Ω

h(t, x)v(x) dx

≥ c‖v‖α+2
Lα+2(Ω) − µ‖v‖2L2(Ω) − ‖h(t, x)‖L2(Ω)‖v‖L2(Ω).

At this point inequality (9) follows from the imbedding Lα+2(Ω) ⊆ L2(Ω), and from the
super-quadratic growth of the power α+ 2.

If we want (9) to hold true with C3 = 0, we have to assume both that µ ≤ 0, and that
h ≡ 0.

• Assumption (G3). Setting for simplicity σ := (α+2)/(α+1), we observe that X ′ = Lσ(Ω).
From (46) we deduce that

|[g(t, v)](t, x)| ≤ c|v(x)|α+1 + |µ| · |v(x)| + |h(t, x)|

≤ K1|v(x)|
α+1 +K2 + |h(t, x)|. (48)

Since σ ≤ 2, when we compute the norm in Lσ(Ω) we obtain that
∥

∥K2 + |h(t, x)|
∥

∥

Lσ(Ω)
≤ K3 + ‖h‖Lσ(Ω) ≤ K3 +K4‖h‖L2(Ω) ≤ K5,

and
∥

∥K1|v(x)|
α+1

∥

∥

Lσ(Ω)
= K1‖v‖

α+1
Lα+2(Ω).

Plugging these two estimates into (48) we obtain (10).

Finally, (10) holds true with C4 = 0 of we assume that µ = 0 and h ≡ 0.

• Assumption (F4). Inequality (12) holds true in the case of Dirichlet boundary conditions
if λ < λ1(Ω). Indeed, in this case we can apply Poincaré inequality and deduce that

F (u) ≥
1

2
‖∇u‖2L2(Ω) −

λ

2
‖u‖2L2(Ω) ≥

1

2
(λ1(Ω)− λ)‖u‖2L2(Ω).

In the case of Neumann boundary conditions, inequality (12) holds true if λ < 0 (and
indeed 0 is the first eigenvalue of the Neumann Laplacian).

• Assumption (11). In the regime 0 < α < β this inequality is always true with C5 = 1
because it amounts to saying that

∫

Ω

|u(x)|α+2 dx ≤

∫

Ω

|u(x)|2 dx+

∫

Ω

|u(x)|β+2 dx,

which in turn follows from the inequality yα+2 ≤ y2 + yβ+2, true for every y ≥ 0.
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Results. We are now ready to apply our abstract theory to the semilinear wave equation (43).
To be more precise, first we apply the results of section 3 to strong solutions, and then we extend
them to weak solutions. This can be done by approximation, because all bounds provided in
section 3 do not depend on the regularity of the solution, but just on the constants that appear
in the assumptions.

Proposition 4.1 (Semilinear wave equation – Universal bound/decay). The following state-
ments apply to the semilinear wave equation (43) under the assumptions described above, and in
particular in the regime 0 < α < β, with β satisfying (45).

(1) In both Neumann and Dirichlet cases, there exist two real numbers Γ and Γ∗ such that any
weak solution in (0, T ) satisfies

‖ut‖
2
L2(Ω) + ‖∇u‖2L2(Ω) + ‖u‖β+2

Lβ+2(Ω)
≤ Γ t−1/γ + Γ∗ ∀t ∈ (0, T ), (49)

where γ is defined by (13).

(2) In the Neumann case, if we assume that λ = µ = 0 and h ≡ 0, then there exists a real
number D such that any weak solution in (0,+∞) satisfies

‖ut‖
2
L2(Ω) + ‖∇u‖2L2(Ω) + ‖u‖β+2

Lβ+2(Ω)
≤ D t−1/γ ∀t ≥ 1, (50)

where γ is defined by (35).

(3) In the Neumann case, if we assume that λ < 0, µ = 0, and h ≡ 0, then there exists a real
number D such that any weak solution in (0,+∞) satisfies

‖ut‖
2
L2(Ω) + ‖u‖2H1(Ω) ≤ D t−2/α ∀t ≥ 1.

(4) In the Dirichlet case, if we assume that λ < λ1(Ω), µ = 0, and h ≡ 0, then there exists a
real number D such that any weak solution in (0,+∞) satisfies

‖ut‖
2
L2(Ω) + ‖∇u‖2L2(Ω) ≤ D t−2/α ∀t ≥ 1. (51)

Remark 4.2. Let us comment on the bounds obtained in Proposition 4.1 above.

• Concerning (49), the bounds obtained for ∇u and ut are worse, as t → 0+, than the bound
obtained for u. We do not know whether this corresponds to a real phenomenon or it is
just due to our technique.

• Concerning (50), the bounds obtained for∇u and ut are better, as t → +∞, than the bound
obtained for u. Again we do not know whether this corresponds to a real phenomenon or
it is just due to our technique. One might think of a kind of homogeneization effet.

In general, the optimality of these decay rates is a challenging open problem. We refer to
section 5 for further comments.

4.2. Semilinear plate equations

Let us consider, in a cylinder (0, T ) × Ω or (0,+∞) × Ω, semilinear plate equations of the
form

utt +∆2u+ b|u|βu− λu + c|ut|
αut − µut = h, (52)

where α, β, b, c are positive real parameters, and λ, µ are real parameters. Let us add initial
conditions (44), and either hinged boundary conditions

u(t, x) = ∆u(t, x) = 0 in (0, T )× ∂Ω,
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or clamped boundary conditions

u(t, x) =
∂u

∂n
(t, x) = 0 in (0, T )× ∂Ω.

If we assume that
(N − 4)β ≤ 4, (53)

then H2(Ω) is continuously imbedded into L2β+2(Ω). In this case the initial-boundary-value
problem is classically well-posed for initial data in (H2(Ω)∩H1

0 (Ω))×L2(Ω) in the case of hinged
boundary conditions, and for initial data in H2

0 (Ω) × L2(Ω) in the case of clamped boundary
conditions. Again “well-posedness” refers to weak solutions, while strong solutions exist under
additional regularity assumptions on the initial data and on the forcing term h.

This problem fits in the abstract framework of section 2 if we define g(t, v) as in (46), we
consider the spaces H , X , Y as in (47), and then we set

F (u) :=
1

2
‖∆u‖2L2(Ω) −

λ

2
‖u‖2L2(Ω) +

b

β + 2
‖u‖β+2

Lβ+2(Ω)
,

and V := H2(Ω) ∩H1
0 (Ω) in the case of hinged boundary conditions, or V := H2

0 (Ω) in the case
of clamped boundary conditions.

The verification of the abstract assumptions of section 2 is analogous to the case of the
semilinear wave equation. As a consequence, from Theorem 3.2 and Theorem 3.3 we obtain the
following result (first for strong solutions, and then for weak solutions by a density argument).

Proposition 4.3 (Semilinear plate equation – Universal bound/decay). The following state-
ments apply to the semilinear plate equation (52) under the assumptions described above, and in
particular in the regime 0 < α < β with β satisfying (53).

(1) Both in the clamped and in the hinged case, there exist two real numbers Γ and Γ∗ such
that any weak solution in (0, T ) satisfies

‖ut‖
2
L2(Ω) + ‖∆u‖2L2(Ω) + ‖u‖β+2

Lβ+2(Ω)
≤ Γ t−1/γ + Γ∗ ∀t ∈ (0, T ),

where γ is defined by (13).

(2) Both in the clamped and in the hinged case, if we assume in addition that µ = 0, λ < λ1(Ω)
(where now λ1(Ω) is the first eigenvalue of the bi-Laplacian with the corresponding boundary
conditions), and h ≡ 0, then there exists a real number D such that any weak solution in
(0,+∞) satisfies

‖ut‖
2
L2(Ω) + ‖u‖2H2(Ω) ≤ D t−2/α ∀t ≥ 1.

4.3. Quasilinear equations of Kirchhoff type

Let us consider, in a cylinder (0, T ) × Ω or (0,+∞) × Ω, quasilinear integro-differential
equations with averaged damping of the form

utt −∆u− b

(
∫

Ω

|∇u|2 dx

)β/2

∆u+ c

(
∫

Ω

|ut|
2 dx

)α/2

ut − λu − µut = h, (54)

where α, β, b, c are positive real parameters, and λ, µ are real parameters. Let us add initial
conditions (44), and homogeneous Dirichlet boundary conditions (Neumann boundary conditions
are not allowed in this case, as shown in Remark 4.5 below).
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This problem fits in the form of (3) if we set

F (u) :=
1

2
‖∇u‖2L2(Ω) +

b

β + 2
‖∇u‖β+2

L2(Ω) −
λ

2
‖u‖2L2(Ω), (55)

and
[g(t, v)](t, x) := c‖v‖αL2(Ω)v(x) − µv(x) + h(t, x).

As for the functional spaces, we choose H = X = L2(Ω), V := H1
0 (Ω), and Y any space

between V and H , endpoints included. The verification of the abstract assumptions of section 2
is similar, and sometimes simpler, to the case of the semilinear wave equation. We leave the
details to the interested reader.

Existence of weak or strong global solutions to these equations is a big open problem, and
it is known to be true only in special cases, for example when both the initial data and the
forcing term are analytic and satisfy suitable compatibility conditions. We refer to [10, 11, 12]
for further details. To remain on the safe side, we can assume that both initial state (u0, u1) and
forcing term h(t, x) are finite linear combinations of eigenfunctions of the Dirichlet Laplacian.
In this case the problem is equivalent to a finite system of ordinary differential equations, and
existence of global strong solutions in the sense of Definition 2.1 is substantially trivial.

In any case the functions F and g fit in the abstract framework of section 2, and therefore
all (weak or strong) solutions, provided they exist, satisfy the universal bound/decay properties
in the energy space, as follows.

Proposition 4.4 (Quasilinear Kirchhoff equation – Universal bound/decay). The following
statements apply to the quasilinear Kirchhoff equation (54) under the assumptions described
above, and in particular in the regime 0 < α < β with Dirichlet boundary conditions.

(1) There exist two real numbers Γ and Γ∗ such that any weak solution in (0, T ) satisfies

‖ut‖
2
L2(Ω) + ‖∇u‖β+2

L2(Ω) ≤ Γ t−1/γ + Γ∗ ∀t ∈ (0, T ),

where γ is defined by (13).

(2) If we assume in addition that µ = 0, λ < λ1(Ω) (where λ1(Ω) is the first eigenvalue of
the Dirichlet Laplacian), and h ≡ 0, then there exists a real number D such that any weak
solution in (0,+∞) satisfies

‖ut‖
2
L2(Ω) + ‖∇u‖2L2(Ω) ≤ D t−2/α ∀t ≥ 1.

Remark 4.5. The universal bound/decay properties do not hold for (54) with homogeneous
Neumann boundary conditions. This is evident when λ = 0 and h ≡ 0, in which case all constant
functions are solutions. From the technical point of view, we observe that in the Neumann case
there is no choice of the function space Y that guarantees that the function F (u) defined by (55)
satisfies (7), because there is no way to control u in terms of ∇u.

Remark 4.6. Several variants of (54) fit into our abstract framework. We just mention the
degenerate hyperbolic equation

utt −

(
∫

Ω

|∇u|2dx

)β/2

∆u+

(
∫

Ω

|ut|
2dx

)α/2

ut = 0, (56)

even with “local” damping

utt −

(
∫

Ω

|∇u|2dx

)β/2

∆u+ |ut|
αut = 0.
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Existence of global solutions is a widely open problem, if we exclude very special cases such
as finite linear combinations of eigenfunctions for the first equation (see [13] for a non-degenerate
equation with local nonlinear dissipation). For all these equations our theory provides the uni-
versal bound and the universal decay for all solutions that are proved to exist and do satisfy the
nergy identities.

5. Negative results and open problems

We already know that the universal bound property of Theorem 3.2 may fail when 0 ≤ β ≤ α.
The basic example is the result in [2] concerning the ordinary differential equation (1). This result
has some simple spin-offs in terms of partial differential equations, for example

• in the case of semilinear wave equations of the form (2) with homogeneous Neumann
boundary conditions in a bounded open set, with initial data that do not depend on space
variables (indeed also the solution does not depend on space variables, and the equation
reduces to (1)),

• in the case of the Kirchhoff equation (56) with Dirichlet boundary conditions and initial
data that are multiples of the same eigenfunction of the Dirichlet Laplacian (indeed the
solution is the product of the eigenfunction itself with a solution to a scalar ordinary
differential equation of the form (1)).

A less trivial example where the universal bound property is known to fail is the case of
equation

utt −∆u+ |ut|
αut = 0 (57)

with homogeneous Dirichlet boundary conditions in a bounded open set with smooth boundary
(see [4, Theorem 1]). This example motivates the following question, whose answer does not
seem to follow from any result presently established.

Open problem 1. Does there exist a counterexample to the uniform bound/decay property for
solutions to equation (2) with Dirichlet boundary conditions, of course in the regime 0 ≤ β ≤ α?

Another interesting question concerns the optimality of the decay estimates, for example in
the case of the semilinear wave equation. In the case of Neumann boundary conditions, the
consideration of solutions that are constant in space reveals that the estimates for u and ut

provided by (50) are optimal (it is the trivial sense of the energy inequality). The optimality of
the estimates on ∇u, as well as the case of Dirichlet boundary conditions, remains a challenging
problem, even in one space dimension.

Open problem 2. Are the estimates on |∇u| provided by (50) optimal? Are the estimates on
u, ut and |∇u| provided by (51) optimal?

The last question above is connected to the classical problem concerning the decay rate of
individual solutions to the simpler equation (57). We refer to [14, Problem 4.1] for further details
on this problem.
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