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We study the combined effects of geometrical distribution and geomechanical deformation of fracture networks on fluid flow through fractured geological media based on numerical simulation.

We consider a finite-sized model domain in which the geometry of fracture systems follows a power law length scaling. The geomechanical response of the fractured rock is simulated using a hybrid finite-discrete element model, which can capture the deformation of intact rocks, the interaction of matrix blocks, the displacement of discrete fractures and the propagation of new cracks. Under far-field stress loading, the locally variable stress distribution in the fractured rock leads to a stress-dependent variable aperture field controlled by compression-induced closure and shear-induced dilatancy of rough fractures. The equivalent permeability of the deformed fractured rock is calculated by solving for the fracture-matrix flow considering the cubic relationship between fracture aperture and flow rate at each local fracture segment. We report that the geometrical connectivity of fracture networks plays a critical role in the hydromechanical processes in fractured rocks. A well-connected fracture system under a high stress ratio condition exhibits intense frictional sliding and large fracture

Introduction

Natural fractures often form complex networks in the Earth's crust and serve as important pathways for fluid migration in subsurface geological media [START_REF] Tsang | Flow channeling in heterogeneous fractured rocks[END_REF]. The geometrical distribution of these natural discontinuities controls the global connectivity of passage systems [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF], while the geomechanical deformation of contacting fracture surfaces under in-situ stress loading dominates the local transmissivity of individual channels [START_REF] Rutqvist | The role of hydromechanical coupling in fractured rock engineering[END_REF]. Thus, the understanding of fluid flow in fractured geological formations requires a comprehensive characterisation of both the geometrical properties and geomechanical responses of the embedded natural fracture networks [START_REF] Zimmerman | Hydromechanical behavior of fractured rocks[END_REF]Lei et al. 2017a).

Fracture patterns are spatially organised by mechanical interactions that emerge during their growth [START_REF] Munjiza | Combined single and smeared crack model in combined finite-discrete element analysis[END_REF], which creates a hierarchical geometry exhibiting long-range correlations from macroscale frameworks to microscale fabrics [START_REF] Barton | Fractal analysis of scaling and spatial clustering of fractures[END_REF]. Such geometrical complexities are often depicted in terms of fracture size, density, orientation and aperture as well as connectivity [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF]. By mimicking the distributions of these properties following statistical/stochastic principles, synthetic discrete fracture networks are often generated to represent natural discontinuity systems [START_REF] Dershowitz | Characterizing rock joint geometry with joint system models[END_REF], based on which subsurface fluid flow properties and processes can be studied [START_REF] Long | Porous media equivalents for networks of discontinuous fractures[END_REF][START_REF] Long | From field data to fracture network modeling: An example incorporating spatial structure[END_REF][START_REF] Berkowitz | Characterizing flow and transport in fractured geological media: A review[END_REF]Min et al. 2004a;[START_REF] Wang | Heterogeneous fluid flow in fractured layered carbonates and its implication for generation of incipient karst[END_REF]). Many theoretical and numerical investigations have suggested that the hydraulic connectivity of fracture networks, embedded in impervious or low permeability rocks, crucially controls the bulk permeability and fluid movements [START_REF] Hestir | Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories[END_REF][START_REF] Berkowitz | Analysis of fracture network connectivity using percolation theory[END_REF]Bour andDavy 1997, 1998;[START_REF] Renshaw | Connectivity of joint networks with power law length distributions[END_REF]de Dreuzy et al. 2001a;[START_REF] Liu | Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks[END_REF]).

In addition, the non-trivial impacts of variable fracture apertures on fluid flow have been analysed via making ad hoc hypotheses for their statistics (de Dreuzy et al. 2001b;[START_REF] Baghbanan | Hydraulic properties of fractured rock masses with correlated fracture length and aperture[END_REF][START_REF] Klimczak | Cubic law with aperture-length correlation: implications for network scale fluid flow[END_REF], whereas the sensitive nature of fracture openings in response to geomechanical processes were often omitted.

The presence of natural fractures can induce strong local stress perturbations in geological media subjected to far-field stress loading (Lei and[START_REF] Lei | A numerical study of stress variability in heterogeneous fractured rocks[END_REF]. The locally-varying stress distribution leads to variable normal and/or shear forces across fracture walls of widely-ranging sizes and orientations, producing a variety of fracture responses such as closure, sliding, dilatancy and propagation (Min et al. 2004b;[START_REF] Latham | Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[END_REF]Lei et al. 2016;[START_REF] Zhao | Application of discrete element approach in fractured rock masses[END_REF]. Since the conductivity of fractures is critically dependent on the third power of fracture apertures [START_REF] Witherspoon | Validity of cubic law for fluid flow in a deformable rock fracture[END_REF], these geomechanical processes accommodated in fractures can considerably affect the bulk hydrological properties of fractured porous media, especially if the matrix is much less permeable than fractures [START_REF] Rutqvist | Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings[END_REF]. Overburden-induced confinement of fractured rocks tends to reduce fracture apertures and suppress fluid flow [START_REF] Bandis | Fundamentals of rock joint deformation[END_REF][START_REF] Barton | Strength, deformation and conductivity coupling of rock joints[END_REF], leading to the general trend of decreased rock mass permeability with increased formation depth [START_REF] Rutqvist | The role of hydromechanical coupling in fractured rock engineering[END_REF]. On the other hand, large differential stresses imposed within the often critically-stressed crust can promote sliding and dilatancy along rough fractures, resulting in flow localisation and permeability enhancement, as revealed by many numerical simulation results (Sanderson and Zhang 1999;Min et al. 2004b;[START_REF] Baghbanan | Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[END_REF][START_REF] Latham | Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[END_REF][START_REF] Lei | Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock[END_REF][START_REF] Lei | Polyaxial stress-induced variable aperture model for persistent 3D fracture networks[END_REF]Lei et al. , 2017b;;[START_REF] Hu | Evolution of permeability in sand injectite systems[END_REF][START_REF] Lang | Relationship between the orientation of maximum permeability and intermediate principal stress in fractured rocks[END_REF][START_REF] Kang | Stress-induced anomalous transport in natural fracture networks[END_REF][START_REF] Karimzade | Modelling of flow-shear coupling process in rough rock fractures using three-dimensional finite volume approach[END_REF]). However, these previous modelling studies were mainly focused on sophisticated geomechanical processes while placing little emphasis on the role of geometrical properties, and therefore the analysis was usually only based on a specifically selected or generated fracture network.

In reviewing the extensive studies in the literature about hydromechanical processes in fractured rocks [START_REF] Rutqvist | The role of hydromechanical coupling in fractured rock engineering[END_REF]Lei et al. 2017a), we identify that little effort has been devoted to understanding the mutual effects of fracture network geometry and geomechanics on subsurface fluid flow as well as distinguishing the relative importance of each process. Thus, in this paper, we aim to use the state-of-the-art numerical simulation to gain insights into how these two aspects interactively affect the hydrological properties of fractured rocks. The remainder of the paper is organised as follows. Section 2 describes a set of approaches for modelling fracture network geometry, solid skeleton deformation, rough fracture behaviour and fluid flow field. Section 3 presents the model setup and boundary conditions for numerical experiments, with the simulation results further elucidated in Section 4. Finally, a discussion is given and conclusions are drawn in Section 5.

Methodology

Fracture network model

Natural fracture systems often exhibit a broad range of fracture lengths that can be described by a power-law statistical model with a density function given as [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF][START_REF] Lei | Tectonic interpretation of the connectivity of a multiscale fracture system in limestone[END_REF]:
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where l is the fracture length, L is the domain size, a is the power-law length exponent, D is the fractal dimension, and α is the density term. The only intrinsic characteristic length scales in this model are the smallest and largest fracture lengths, i.e. lmin and lmax, respectively. In numerical simulations, L is the scale of the modelling domain, which usually meets lmin << L << lmax. Extensive outcrop data suggest that generally D varies between 1.5 and 2.0, and a falls between 1.5 and 3.5 [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF].

The fracture intensity γ (also known as the mass density), i.e. total length of fractures per unit area, is related to the first moment of the density distribution of fracture lengths as:
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where l' denotes the fracture length included in the domain of an area AL = L 2 . The percolation parameter p as a connectivity metric of fracture networks is given by [START_REF] Bour | Connectivity of random fault networks following a power law fault length distribution[END_REF]:
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The higher p is, the more connected the system is. The network is statistically connected if p is greater than the percolation threshold pc, whose value is in general scale-invariant and within a narrow range between 5.0 and 7.0, i.e. pc = 6.0 ± 1.0. for two-dimensional (2D) random fracture networks with D = 2 [START_REF] Bour | Connectivity of random fault networks following a power law fault length distribution[END_REF].

Geomechanical model

The geomechanical model is based on a hybrid finite-discrete element method (FDEM) [START_REF] Munjiza | The Combined Finite-Discrete Element Method[END_REF], which can realistically capture the stress/strain evolution in intact rocks, interaction between matrix blocks, deformation of pre-existing fractures, and propagation of new cracks (Lei et al. 2017a).

The FDEM model represents 2D fractured rock using an unstructured, fully-discontinuous mesh of three-node triangular finite elements, which are linked by four-node joint elements (Fig. 1). There are two types of joint elements: unbroken joint elements inside the matrix and broken joint elements along fractures (Lei et al. 2016). The joint elements (either broken or unbroken) are created and embedded between the edges of triangular element pairs before the numerical simulation and no remeshing is performed during later computation.

The motion of finite elements is governed by the forces acting on the elemental nodes [START_REF] Munjiza | The Combined Finite-Discrete Element Method[END_REF]):
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where M is the lumped nodal mass matrix, x is the vector of nodal displacements, fint are the internal nodal forces induced by the deformation of triangular elements, fext are the external nodal forces including external loads fl contributed by boundary conditions and body forces, cohesive bonding forces fb caused by the deformation of unbroken joint elements, and contact forces fc generated by the contact interaction via broken joint elements. The deformation of intact rocks is captured by linear-elastic constant-strain finite elements with the continuity constrained by the bonding forces of unbroken joint elements [START_REF] Munjiza | Combined single and smeared crack model in combined finite-discrete element analysis[END_REF]. The interaction of discrete matrix bodies is calculated based on the penetration of finite elements via broken joint elements [START_REF] Munjiza | Penalty function method for combined finite-discrete element systems comprising large number of separate bodies[END_REF].

The elasto-plastic fracturing in formation rocks is modelled by a smeared crack (i.e. cohesive zone) method that can capture the non-linear stress-strain behaviour of the plastic zone ahead of each fracture tip [START_REF] Munjiza | Combined single and smeared crack model in combined finite-discrete element analysis[END_REF]. The equations of motion of the FDEM model are solved through an explicit time integration scheme based on the forward Euler method.

Fracture constitutive model

The closure of rock fractures under compression is calculated based on a hyperbolic relation [START_REF] Bandis | Fundamentals of rock joint deformation[END_REF]) (Fig. 2a):
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where vn is the normal closure, σn is the effective normal compressive stress derived from the Cauchy stress tensor of adjacent finite elements, kn0 is the initial normal stiffness, and vm is the maximum allowable closure.

The shear deformation of rock fractures is calculated based on an elasto-plastic constitutive model with strain-softening [START_REF] Goodman | Methods of Geological Engineering[END_REF]; Saeb and Amadei 1992) (Fig. 2b). In the elastic phase, the shear stress τ increases linearly with the shear displacement u, and the slope of the stress-displacement curve is given by the shear stiffness ks. During this stage, the opposing fracture walls ride over each other's asperities, resulting in dilational displacement in the normal direction (Fig. 2c). The peak shear stress τp is eventually reached when the displacement arrives at the peak shear displacement up, beyond which the asperities begin to shear off and irreversible damage on the surfaces starts to occur. If the fracture continues to slide, the shear stress decreases linearly to the residual shear stress τr, during which the asperities are crushed and sheared off and the dilation continues. Finally, when the displacement exceeds the residual displacement ur, the shear stress remains constant (i.e. τ = τr), and no further dilation develops. The dependency of the shear behaviour of fractures on normal stress loading is described using a constant displacement model characterised with fixed up and ur values [START_REF] Goodman | Methods of Geological Engineering[END_REF]).

The peak shear stress τp is given by [START_REF] Ladanyi | Simulation of shear behavior of jointed rock mass[END_REF][START_REF] Saeb | Modelling rock joints under shear and normal loading[END_REF]:
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where as is the proportion of total fracture area sheared through asperities, i φ is the dilation angle, c

is the shear strength of the asperity (i.e. cohesion of the intact rock), and b φ is the basic friction angle which, for unweathered conditions, can be substituted using the residual friction angle r φ [START_REF] Barton | The shear strength of rock joints in theory and practice[END_REF]. If σn does not exceed the uniaxial compressive strength of the intact rock σu, the values of as and i φ are respectively given as (Ladanyi and Archambault 1969):
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where i0 φ is the initial dilation angle when σn = 0, and m1 and m2 are empirical parameters with suggested values of 1.5 and 4.0, respectively. The residual shear stress τr is given as [START_REF] Barton | The shear strength of rock joints in theory and practice[END_REF]:
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The dilational displacement vs under a constant normal stress condition is related to the shear displacement in an incremental form as (Saeb and Amadei 1992):
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The fracture aperture h under coupled normal and shear loadings is thus given by (Lei et al. 2016):
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where h0 is the initial aperture, and w is the separation of opposing fracture walls if the fracture is under tension. The local fracture permeability is then calculated based on the cubic law as h 2 /12 [START_REF] Witherspoon | Validity of cubic law for fluid flow in a deformable rock fracture[END_REF].

Fluid flow model

Fluid flow through the fractured rock with multiple intersecting fractures and permeable matrix is further solved. Single-phase steady-state flow of incompressible fluid with constant viscosity through porous media, in absence of sources and sinks, is governed by the continuity equation and Darcy's law, which are reduced to a Laplace equation as:
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where k is the intrinsic and isotropic permeability of the porous media with local variability permitted, and p is the fluid pressure calculated at the nodes of unstructured finite element grids. The element-wise constant barycentric velocity is resolved based on the pressure gradient vector field by applying Darcy's law given by:
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where u e is the vector field of element-wise constant velocities, p e is the local element pressure field, µ is the dynamic fluid viscosity, and k e is the local permeability of a matrix volumetric element with an assumed constant value or a lower dimensional fracture element having a stress-dependent value, i.e. h 2 /12. By applying a prescribed macroscopic pressure differential on each pair of opposite boundary surfaces with no-flow conditions on the remaining ones parallel to the flow direction, pressure diffusion is computed for all fracture and matrix elements of the entire domain. The equivalent permeability of the fractured media is then derived using element volume weighted averaging of pressure gradients and fluxes:
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where u e j is the element-wise barycentric velocity in the j direction, ∂p e /∂xi is the element pressure gradient along xi, and kij is the components of the permeability tensor.

Model setup

In this study, we generate a series of 2D synthetic fracture networks in a square domain of size L = 10 m (Fig. 3). The location and orientation of fractures are assumed purely random, i.e. nominally homogeneous (i.e. D = 2.0) and isotropic. The fracture lengths follow the power-law scaling, with the bounds given by lmin = L/50 = 0.2 m and lmax = 50L = 500 m. We explore five different length exponent cases, i.e. a = 1.5, 2.0, 2.5, 3.0 and 3.5, and four mean fracture intensity scenarios, i.e. γ = 1.25, 2.5, 3.75 and 5.0 m -1 . For each combination of a and γ, ten realizations are generated, with their p values also derived. As shown in Fig. 3, when a ≤ 2.0, the system is dominated by domain-sized, very large fractures; when a ≥ 3.0, the system mainly consists of small fractures; when 2.0 < a < 3.0, both large and small fractures tend to be important. It can also be noted that an increased a leads to a reduction in the geometrical connectivity, i.e. decreased p. The fracture networks generated here cover the scenarios of below (p < 5.0), around (5.0 ≤ p ≤ 7.0) and beyond (p > 7.0) the percolation threshold, representing the disconnected, transitional and connected regimes, respectively.

The assumed material properties of the fractured rocks are given in Table 1 based on typical ranges for crystalline rocks in the literature [START_REF] Lama | Handbook on mechanical properties of rocks: testing techniques and results[END_REF][START_REF] Bandis | Fundamentals of rock joint deformation[END_REF][START_REF] Zoback | Reservoir Geomechanics[END_REF]. The energy release rates are estimated based on empirical correlations [START_REF] Zhang | An empirical relation between mode-I fracture toughness and the tensile strength of rock[END_REF][START_REF] Jin | Determination of rock fracture toughness KIIC and its relationship with tensile strength[END_REF]. The problem domain containing distributed fractures is discretized using an unstructured mesh with an average element size of 0.05 m. The penalty term and damping coefficient are chosen to be 500 GPa and 2.0 × 10 5 kg/m•s, respectively, based on the recommendations in the literature [START_REF] Munjiza | The Combined Finite-Discrete Element Method[END_REF][START_REF] Mahabadi | Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials[END_REF]. Effective far-field stresses are loaded orthogonally to the model (Fig. 4a), and we consider three different scenarios: (i) Sx = 5.0 MPa, Sy = 5.0 MPa, (ii) Sx = 10.0 MPa, Sy = 5.0 MPa, and (iii) Sx = 15.0 MPa, Sy = 5.0 MPa, such that the effective far-field stress ratio Sx/Sy is 1.0, 2.0, and 3.0, respectively. Single-phase steady-state fluid flow through the deformed fractured rock having a stress-dependent aperture field is further modelled by imposing the classical permeameter boundary condition (Fig. 4b): two opposite boundary surfaces of the model domain have a fixed pressure drop (i.e. 10 kPa), while the two orthogonal boundaries parallel to the flow direction are impervious.

Matrix permeability km is assumed to be 1 × 10 -18 m 2 , which gives a high fracture-matrix permeability contrast so that the flow is predominated by fractures [START_REF] Matthäi | Fluid flow partitioning between fractures and a permeable rock matrix[END_REF].

The models constructed are numerically solved using the methods described in Section 2. It is worth pointing out that the advantages of our approaches compared to many other previous studies/methods (e.g. Min et al. 2004b;[START_REF] Baghbanan | Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[END_REF] include the simulation of crack growth in intact rocks and the consideration of fluid flow in permeable matrix. Newly-formed cracks under stress loadings may cause the coalescence of initially isolated fractures/clusters, the capture of which is essential for modelling the hydromechanical behaviour of fracture networks around the percolation threshold. The consideration of fluid flow in permeable matrix is important for studying fracture networks below the percolation threshold, where fluid cannot migrate purely through fractures.

Results

Geomechanical responses

We analyse the geomechanical responses of the fractured rocks associated with a range of combinations of length exponent a and fracture intensity γ values under different far-field stress conditions. The simulation results for the case of γ = 2.5 m -1 are shown in Fig. 5, while the results for other cases of γ = 1.25, 3.75 and 5.0 m -1 are given in Figs. S1, S2 and S3, respectively, of the supplementary material. Below, we take Fig. 5 as an example to elucidate the key geomechanical processes in fracture networks and similar phenomena or trends can also be observed in Fig. S1-S3.

Fig. 5a shows the distributions of local maximum principal stresses in the fractured rocks with γ = 2.5 m -1 and different a values. When the far-field stress condition is isotropic, i.e. Sx = Sy = 5.0 MPa, the local stress distribution is very uniform. As the far-field stress ratio Sx/Sy increases, stress fluctuations emerge in the system, especially when Sx/Sy reaches 3. It can be seen that the high stress bands tend to align with the orientation of the applied far-field maximum principal stress but are significantly distorted due to the presence of pre-existing discontinuities. It seems that with the increase of a (i.e.

the system is more dominated by small fractures), the stress patterns become less heterogeneous.

Fig. 5b shows the distribution of shear displacements in the stressed fracture networks. When the far-field stresses are isotropically loaded, almost no shear displacement occurs in the system, irrespective of the geometrical distribution of fracture populations. As Sx/Sy increases to 2, noticeable shear displacements are accommodated along some of the large fractures that are oriented to favour frictional sliding. When Sx/Sy equals to 3, preferentially-oriented, large fractures in the networks of a ≤ 2.0 are highly reactivated for shear slip, whereas the remaining relatively smaller fractures experience much less shearing. In the fracture networks of a ≥ 3.0, which are dominated by small cracks, frictional sliding is strongly suppressed, although some intermediate fractures might exhibit slight shear. In the fracture networks of 2.0 < a < 3.0, which consist of both large and small fractures, some large structures tend to be moderately sheared while the small cracks are mostly restrained for any sliding.

In Fig. 5c, we show the distribution of fracture apertures in the fractured networks under the combined effects of compression-induced closure and shear-induced dilatancy. When Sx/Sy = 1, all fractures are evenly compressed and exhibit an aperture much lower than the initial value, i.e. 0.1 mm.

As Sx/Sy increases to 2, some traversing fractures in the networks of a ≤ 2.0 exhibit large apertures because of shear-induced dilation along these dominant structures that are preferentially-oriented for sliding. However, some small fractures sub-parallel to Sy seem to be more closed due to the increased Sx, compared to those under isotropic compression. When Sx/Sy reaches 3, in the networks of a ≤ 2.0, drastic enlargement of fracture apertures occurs along those highly-sheared large discontinuities due to the dilational behaviour of dislocated rough fracture walls. However, the fracture networks of a ≥ 3.0 exhibit much less fracture opening, although some intermediate fractures still experience small amount of shear-induced aperture increase. In the fracture networks of 2.0 < a < 3.0, large fractures are associated with shear-induced wider apertures while small fractures only exhibit closure manner.

We further calculate the length-averaged mean shear displacement u and mean fracture aperture h of each fracture network and examine their variation as a function of various geometrical properties, i.e. a, γ and p, under different far-field stress loading conditions (Fig. 6). When Sx/Sy = 1, u is almost zero and insensitive to the change of a, γ or p (Fig. 6a, c and e), while h is also independent of a, γ or p (Fig. 6b, d andf) and exhibits a value much lower than the initial aperture of h0 = 0.1 mm. As Sx/Sy increases, more frictional sliding is accommodated in the system due to the enhanced differential stress load. When Sx/Sy > 1, u increases significantly with the decrease of a (Fig. 6a) or increase of p (Fig. 6e), suggesting that the fracture networks associated with larger fractures or better connectivity tend to accommodate more frictional sliding driven by deviatoric stress loading. Similarly, h increases considerably with the decrease of a (Fig. 6b) or increase of p (Fig. 6f), as a result of fracture dislocation and dilation under differential stresses. Especially, in the well-connected fracture systems (p > pc) subjected to high stress ratio loading (Sx/Sy = 3), the resulting aperture h can become even larger than the initial aperture h0 (Fig. 6f) due to the combined effects of geometrical properties and geomechanical processes. In addition, it is noticed that both u and h seem to be almost uncorrelated with γ (Fig. 6c andd). A further interpretation and discussion can be found in in Section 5.

Hydrological properties

We derive the hydrological properties of the deformed fractured porous rocks from the single-phase steady-state flow simulation. Fig. 7 shows the distribution of local fluid flow velocity in different fracture systems subjected to the far-field stress condition of Sx = 15.0 MPa, Sy = 5.0 MPa and with the macroscopic pressure drop imposed along the x (Fig. 7a) or y (Fig. 7b) direction. The simulation results for other far-field stress conditions are given in the supplementary material (Figs.

S4 and S5

). In the networks that are below the percolation threshold (p < pc), the flow velocity is extremely low, since fluid has to migrate via intact rocks of low permeability that bridge disconnected fractures. On the other hand, the well-connected networks (p > pc) accommodate significantly high flow velocities along through-going discontinuities, whereas the "background" small cracks with "dead-ends" provide much lower velocities. If the system is around the percolation threshold (p ≈ pc), e.g. the fracture network of a = 2.5 and γ = 5.0 m -1 , only one or two globally-connected pathways exist(s)

for fast fluid migration, whereas other locally-connected clusters permit much slower flow. In such a critically-connected system (p ≈ pc), multiple clusters bounded by large fractures seem to exhibit distinct regimes of velocity magnitudes, implying the dominant roles of large discontinuities on the flow field.

Fig. 8 shows the variation of the equivalent permeability keq (either kxx or kyy) of the fractured rocks as a function of various geometrical properties, i.e. a, γ and p, under different far-field stress loading conditions. It can be seen that, with the increase of a, the permeability generally decreases (Fig. 8a andb), because the system becomes more controlled by small fractures, which geometrically have less probability to form connected pathways (i.e. poorer connectivity) and geomechanically have less opportunity to experience frictional sliding (i.e. smaller dilation). Due to these geometrical and geomechanical effects, keq is very sensitive to stress loading if a is small (e.g. a = 1.5), whilst almost independent of the far-field stress state if a is large (e.g. a = 3.5). The rock mass permeability seems to increase with γ, but the trend exhibits large uncertainties (Fig. 8c andd). On the contrary, the correlation between keq and p is very significant (Fig. 8e andf). If the fracture network is disconnected (p < pc), keq is very small, due to the flow-restriction caused by low permeability rocks that isolate discrete fractures or fracture clusters from connecting with each other across the entire domain. The stress-dependent fracture deformational behaviour therefore exerts very minor impacts on keq.

However, as the fracture network becomes gradually connected (p ≥ pc), an abrupt increase in keq occurs, since the interconnected backbones of high transmissivity (compared to matrix rocks) start to take the controlling role in carrying fluid migration, which further leads to the variation of keq in response to the change of boundary stress loading as a result of the important geomechanical processes illustrated in Figs. 5, S1 and S2.

We further derive analytical solutions to investigate the relationship between keq and p. We characterise their correlation based on the three different regimes: disconnected (p < pc), transitional (p ≈ pc) and connected (p > pc). If the system is connected, fluid flow is controlled by interconnected fractures that form the major pathways and the equivalent permeability of the percolated fracture system may be predicted using the percolation theory (Stauffer and Aharony 1985):

( )
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where β is an universal exponent and equals to 1.1 for 2D systems [START_REF] Hestir | Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories[END_REF][START_REF] Berkowitz | Percolation theory and its application to groundwater hydrology[END_REF], and kc is the equivalent permeability when p-pc equals to unity. kc is expected to be controlled by single fracture permeability, because the system is close to the percolation threshold and the connectivity is ruled by a limited number of "red links" (Davy et al. 2006a). Thus, we postulate that kc = λh 3 /12L, where h is the fracture aperture, λ is the number of red links and L is the domain size. We take pc = 6.0, L = 10 m and λ = 3 (p approaches pc from above). Then, for the three different stress cases of Sx/Sy = 1.0, 2.0 and 3.0, we choose h = 0.05, 0.07 and 0.11 mm (Fig. 6), respectively, and thus derive k0 to be 3.0 × 10 -15 , 8.6 × 10 -15 and 2.5 × 10 -14 m 2 , respectively. The analytical solutions based on these parameters show an excellent match to the numerical results for the connected regime (see the dashed lines in the region of p > pc in Fig. 8e andf). For the disconnected regime (p < pc), keq is related to lacunarity which characterises the gaps (i.e. rock bridges) between isolated fractures or clusters. Thus, keq is insensitive to stress loading that mainly affects fractures. We suspect the equivalent permeability follows:
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where km is the matrix permeability (keq = km if p = 0) and ζ is an exponent. The value of ζ is derived as follows: if pc-p is unity, keq = kmpc ζ = kc, which gives ζ = log(kc/km)/log(pc). By taking pc = 6.0 and λ = 1 (p approaches pc from below), we also obtain an excellent match to the simulation data (see the dashed lines in the region of p < pc in Fig. 8e andf). The rationale of determining the number of red links λ is given as follows. When p approaches pc from below, i.e. p approaches 5.0, one red link is expected and therefore λ = 1. When p approaches pc from above, i.e. p approaches 7.0, two more traversing flow channels may be added and thus λ = 3 (see the definition of the percolation parameter in Eq. ( 3), which indicates that if p increases by 1, one more domain-sized percolating channel is added into the system). For the narrow transitional regime (p ≈ pc), we only use a simple interpolation from the solutions of the two neighbouring regimes (see the dashed lines in the region of p ≈ pc in Fig. 8e andf). We have further tested the analytical formulation for a different matrix permeability value (km = 1 × 10 -21 m 2 ) in the supplementary material (Fig. S6) and a good match to numerical results is also obtained.

Discussion and conclusions

In this paper, we presented a systematic investigation into the hydromechanical processes (e.g. stress distribution, fracture closure, shear dilation and fluid flow) in fracture networks of a broad range of geometrical distributions subjected to different stress loading conditions. We examined the variation of hydromechanical properties (e.g. shear displacement, fracture aperture and equivalent permeability) as a function of various geometrical properties (e.g. length exponent a, fracture intensity γ and percolation parameter p). We found that fracture intensity γ is not a good proxy for the hydromechanical behaviour of rock masses, because it poorly (or not at all) indicates the connectivity state of fracture networks (as manifested in Fig. 3 where the networks with the same γ value can have very different connectivity conditions). This observation is consistent with our field characterisation data at the Grimsel Test Site, Switzerland, where a very poor correlation was found between the interval transmissivity (derived from pulse tests) and fracture spacing (fracture intensity measured in 1D based on borehole logs) [START_REF] Brixel | Anomalous pressure diffusion in sparse fracture systems: Insights from hydraulic and thermal field experiments at the Grimsel Underground Research Laboratory[END_REF]). Thus, it is essential to characterise the length distribution of fracture populations in addition to the measurement of fracture intensity (or fracture spacing), as suggested by many previous studies [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF][START_REF] Davy | A likely universal model of fracture scaling and its consequence for crustal hydromechanics[END_REF]. The combination of the information of fracture length and intensity permits the calculation of the percolation parameter, which is metric of the fracture network connectivity and serves as an excellent proxy to the hydromechanical behaviour of fractured rocks. This is consistent with past research findings in the literature about the connectivity control on the solid deformation [START_REF] Zhang | Numerical study of critical behaviour of deformation and permeability of fractured rock masses[END_REF][START_REF] Harthong | Strength characterization of rock masses, using a coupled DEM-DFN model[END_REF]Lei and Gao 2018) and fluid flow [START_REF] Hestir | Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories[END_REF][START_REF] Bour | Connectivity of random fault networks following a power law fault length distribution[END_REF][START_REF] Renshaw | Connectivity of joint networks with power law length distributions[END_REF]de Dreuzy et al. 2001a) of fractured geological media, while our work further advanced the understanding on the mutually-existing, interactively-acting impacts of geometrical connectivity and geomechanical condition on hydrological performance of the system.

Based on our simulation results in Section 4, it seems that the "connectedness" of the fracture system is a prerequisite for notable hydromechanical processes taking effect in fractured rocks. Thus, the system is almost insensitive to the stress loading conditions if it is disconnected. This is because when the fracture network is not percolated, fluid needs to migrate via isolated clusters and the matrix in between them. Hence, the system has an "in series" flow structure (i.e. isolated clusters are linked with each other by matrix), such that the bulk permeability is approximated by the harmonic mean of the permeabilities of different components (de Marsily 1986) and thus more ruled by the matrix (because it has a low permeability and dominates the harmonic mean). As the system gradually approaches the percolation threshold from below, the size of matrix blocks that form the gaps between isolated clusters is reduced and, therefore, the equivalent permeability increases although the system is still disconnected (Fig. 8e andf). For the connected regime, the system has an "in parallel" flow structure consisting of multiple traversing channels, such that the bulk permeability is approximated by the arithmetic mean of the permeabilities of different components (de Marsily 1986) and thus controlled by fractures (because they has high permeability and dominate the arithmetic mean). Since fracture aperture (and thus fracture permeability) is dependent on the stress state, the equivalent permeability of fractured rocks also shows a strong dependency on the far-field stress loading.

However, it is worth pointing out that the shear-induced aperture enlargement under high stress ratio conditions tends to enlarge the bulk permeability by several times but still within an order of magnitude. We infer that geomechanical processes tend to exert a secondary-order influence (compared to the first-order role of geometrical connectivity) causing stress-dependent variation of permeability within about one order of magnitude, for which similar permeability variation ranges were also reported in previous studies based on 2D fracture networks (Min et al. 2004b;[START_REF] Baghbanan | Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[END_REF][START_REF] Latham | Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[END_REF][START_REF] Lei | Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock[END_REF]). However, more pronounced stress effects might be expected in 3D fracture systems [START_REF] Lei | Polyaxial stress-induced variable aperture model for persistent 3D fracture networks[END_REF](Lei et al. , 2017b)), which may be of interest for further investigations based on computationally expensive 3D simulations. Further work may also be needed to explore more complicated scenarios of fracture networks such as anisotropic discontinuity orientations [START_REF] Lei | Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock[END_REF], multiple domain sizes (Min et al. 2004a), variable initial apertures [START_REF] Kang | Stress-induced anomalous transport in natural fracture networks[END_REF], fractal spatial organisations (Davy et al. 2006b), and non-linear mechanical-to-hydraulic aperture correlations [START_REF] Co;2 Renshaw | On the relationship between mechanical and hydraulic apertures in rough-walled fractures[END_REF] for testing the generality and sensitivity of the observed phenomena in the current paper.

To conclude, we observed that the geometrical connectivity of fracture networks plays a critical role in the hydromechanical processes in fractured rocks. A well-connected fracture system under a high stress ratio exhibits intense frictional sliding and considerable fracture opening, eventually leading to fast fluid migration and large bulk permeability. Such a connected network is more suppressed for shearing activities under a more isotropic compression, exhibiting a lower permeability compared to that under a high stress ratio loading. A disconnected fracture network is composed of multiple clusters isolated from each other by geomechanically stiffer and hydraulically less permeable matrix rocks, producing mainly fracture closure behaviour and slow fluid flow, with low equivalent permeability insensitive to the far-field stress state. We derived an analytical solution for the relationship between the equivalent permeability of fractured rocks and the percolation parameter of fracture networks, which showed an excellent match to the numerical simulation results. We suggested that the flow through a well-connected system is governed by traversing fractures or clusters "in parallel" and thus the equivalent permeability is sensitive to stress loading (due to the stress dependency of fracture permeability), whilst the flow through a disconnected system is more ruled by matrix, which links isolated clusters "in series", and therefore very insensitive to stress loading. The observation and analysis of interactively superimposed geometrical and geomechanical effects on hydrological properties of fractured geological media as presented in this paper has important implications for understanding heterogeneous subsurface fluid flow and upscaling rock mass permeability. 15) and ( 16).

Table 1 Material properties of the fractured rocks [START_REF] Lama | Handbook on mechanical properties of rocks: testing techniques and results[END_REF][START_REF] Bandis | Fundamentals of rock joint deformation[END_REF][START_REF] Zoback | Reservoir Geomechanics[END_REF]). 
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 4 Fig. 4. Model set-up for: (a) geomechanical simulation (b) fluid flow simulation. x S ∞ and y S ∞

Fig. 5 .

 5 Fig. 5. Distributions of (a) local maximum principal stress, (b) shear displacement and (c) fracture

Fig. 6 .
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