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Abstract 

Purpose.- Radiomics are a set of methods used to leverage medical imaging and extract quantitative 

features that can characterize a patient’s phenotype. All modalities can be used with several different 

software packages. Specific informatics methods can then be used to create meaningful predictive 

models. In this review, we will explain the major steps of a radiomics analysis pipeline and then 

present the studies published in the context of radiation therapy. 

Methods.- A literature review was performed on Medline using the search engine PubMed. The search 

strategy included the search terms “radiotherapy”, “radiation oncology” and “radiomics”. The search 

was conducted in July 2019 and reference lists of selected articles were hand searched for relevance to 

this review. 

Results.- A typical radiomics workflow always includes five steps: imaging and segmenting, data 

curation and preparation, feature extraction, exploration and selection and finally modeling. In 

radiation oncology, radiomics studies have been published to explore different clinical outcome in 

lung (n=5), head and neck (n=5), esophageal (n=3), rectal (n=3), pancreatic (n=2) cancer and brain 

metastases (n=2). The quality of these retrospective studies is heterogeneous and their results have not 

been translated to the clinic. 

Conclusion.- Radiomics has a great potential to predict clinical outcome and better personalize 

treatment. But the field is still young and constantly evolving. Improvement in bias reduction 

techniques and multicenter studies will hopefully allow more robust and generalizable models. 

Résumé 

Objectif de l’étude.- La radiomique est un ensemble de méthodes utilisées pour exploiter l’imagerie 

médicale et extraire des caractéristiques quantitatives afin de définir le phénotype d’un patient. Toutes 

les modalités d’imagerie peuvent être utilisées avec différents logiciels. Des méthodes informatiques 

spécifiques sont nécessaires afin de pouvoir créer des modèles cliniques. Dans cette revue, nous 

expliquerons les principales étapes de ce type d’analyse puis nous présenterons les principales études 

réalisées dans ce domaine en oncologie radiothérapie. 

Méthodes.- Une revue de la littérature a été réalisée dans Medline à l’aide du moteur de recherche 

PubMed. La stratégie de recherche a inclus les termes «radiotherapy », « radiation oncology » et 

« radiomics ». La recherche a été réalisée en juillet 2019 et la liste générée a ensuite été explorée afin 

d’évaluer la pertinence de chaque article pour cette revue. 

Résultats.- Cinq étapes essentielles sont dénombrées au cours d’une étude de radiomique : 

l’acquisition et la délinéation de l’image, la préparation des données, l’extraction des caractéristiques, 

leur exploration et leur sélection et enfin la modélisation. En oncologie radiothérapie, la radiomique a 
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été mise en œuvre dans le contexte du cancer du poumon (n=5), des cancers ORL (n=5), de 

l’œsophage (n=3), du rectum (n=3), du pancréas (n=2) et des métastases cérébrales (n=2). La qualité 

de ces études rétrospectives est hétérogène et leur modèle n’a jamais été employé en pratique clinique. 

Conclusion.- La radiomique présente un grand potentiel dans la prédiction de l’efficacité et de la 

toxicité des traitements dans une optique de médecine personnalisée. Cette discipline est toutefois 

encore jeune et en constante évolution. Des améliorations dans les méthodes de réduction des biais et 

la coopération dans des études multicentriques devraient permettre d’espérer pouvoir créer des 

modèles plus robustes et applicables en pratique clinique. 

 

1. Introduction 

Imaging plays a central role in radiation oncology, from diagnosis to treatment planning and 

monitoring. The field is also evolving towards a new direction: with radiomics, images can be used to 

create digital biomarkers that can be leveraged to personalize treatments. Radiomics can provide a 

mathematical quantification of tumor phenotype using high-dimension data generated from segmented 

medical imaging. A very high number of features can be hand-crafted or automatically extracted from 

computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET), alone or 

combined, to be later correlated to tumor characteristics and clinical outcomes. These features must 

also be combined with other pertinent data, such as medical notes from electronic-health records, 

pathology, biology or genomics, to produce robust models. These models can then be used to improve 

the patient’s outcome. This field is evolving rapidly and holds many promises in radiation oncology. 

Many challenges still need to be addressed: the adequate curation of quality data, the external 

validation of the models on independent cohorts and finally the validation of the approach in a 

randomized controlled phase 3 trial designed to prove the clinical relevance of radiomics. Many 

models have been created and published, but these studies often lack standardized evaluation on 

external cohorts of patients. Their reproducibility and generalization are still unsure, which explains 

why not a single model has been translated to clinical practice.  

In this review, we provide the necessary concepts to the radiation oncologists to understand the 

process involved in radiomics modeling. As the number of studies in the field is posed to steadily 

increase, we believe radiation oncologists should be able to distinguish the pitfalls, challenges and 

opportunities of radiomics when they are applied to their specialty. 

2. Material and methods 

A literature review was performed in the Medline database using the search engine PubMed. The 

search strategy included the search terms “radiotherapy”, “radiation oncology” and “radiomics”. 
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Reference lists of selected articles were hand searched for relevance to this review. The search was 

conducted in July 2019, and mainly identified studies published between 1997 and 2019. 

Search results were judged for relevance using the title, abstract and full text for inclusion in the 

analysis. Studies were included when they were published as full articles in English employing a 

radiomics technique in the field of radiation oncology. A preferred reporting items for systematic 

reviews and meta-analyses (PRISMA) flowchart of the studies selection process is shown in figure 1. 

3. Results 

3.1. The workflow of radiomics 

There are many different methods to create a pipeline of radiomics analysis, but these workflows 

always consist of five steps (figure 2): imaging and segmenting (1), data curation and preparation (2), 

feature extraction (3), feature exploration and selection (4) and modeling (5). 

3.1.1. Imaging and segmenting 

The first step of radiomics is the acquisition of quality images. The protocol used in CT, MR or PET 

will have a significant impact on all the following steps of the analysis. Ideally, all the images used in 

a study should be performed with the same machine and the same protocol. If this is not the case, it 

should be taken into account and corrected in the modeling step of the analysis. In all imaging 

modalities, vendor, machine and acquisition protocols are believed to be potential bias [1]. The 

determination of interscanner and intervendor variability of the features should be performed before 

modeling [2]. Since generalizability requires using multicenter cohorts, phantom studies can be used 

to assess these uncertainties to identify, correct or exclude the features depending on this variability.  

Before any extraction can be performed, a volume of interest needs to be defined. The analysis will 

focus on the pixels and voxels within that volume. In most cases, this volume is the tumor itself, or in 

some cases, the immediate surroundings of the tumor, the so-called “shell features”[3]. The variability 

in segmentation can create bias in the later steps of the analysis and should also be accounted for. 

Several (at least two) segmentations should be performed. Operators should be careful in excluding 

any irrelevant nearby structures that would undermine the model, such as bone, air, lymph node 

(figure 3). The features will be extracted from both segmentation and only the most robust features 

(the one who do not depend on the operator) will be selected for modeling. Methods to obtain 

reproducible segmentation involve the evaluation by several experts when a manual segmentation is 

performed or (semi)-automatic segmentation, using deep learning for instance [4].  

3.1.2. Data curation and preparation 

This crucial step can be very time-consuming, but needs to be performed rigorously. Several key 

elements must be defined before beginning any feature extraction or modeling: 
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• the imaging modality: CT, MR, PET or a combination; 

• the imaging protocol: field of view, slices thickness, injection timing; 

• the volume of interest: primary tumor, tumoral shell or one or several metastatic lesions; 

• the segmentation protocol: manual, or automatic, the number of segmentation needed, the 

review process; 

• the prediction target (the clinical outcome that will be predicted by the analysis): local control, 

survival or toxicity. 

Any and all of these decisions will impact the relevance of the model being created [5,6]. Beyond the 

radiomics features, other sources of data can be leveraged to create more complex, heterogeneous 

models, such as clinical phenotypes from electronic health records [7]. The final dataset will need to 

be correctly structured before the exploratory analysis can begin. 

3.1.3. Feature extraction 

Radiomics features are quantitative data extracted from images that can be classified into four 

categories [8] : 

• first order features describe the distribution of voxel intensities; 

• shape features are related to the shape of the volume; 

• texture features can reveal the intra-tumoral heterogeneity; 

• wavelets features calculate the intensity and texture features from wavelet decompositions of the 

original image. 

3.1.3.1. Hand-crafted features 

Historically, radiomics features were extracted from the volume of interest using software freely-

available online, such as imaging biomarker explorer (IBEX), LIFEx, 3DSlicer, proprietary solutions, 

or “in-house” implementations of known extraction algorithms [9–16]. A comprehensive review of 

radiomics software is available [17]. Variability between these packages has rarely been assessed, but 

the few studies performed showed significant differences between packages used [18,19]. This is 

raising concerns regarding the reproducibility of any radiomics models [20–22].  

3.1.3.2. Deep learning extractors 

The intrareader and interreader variability that can result from manual segmentation and the variation 

in imaging and processing techniques for feature extraction greatly impact the models that are created. 

Deep learning offers several solutions in that setting by automating segmentation, extraction and 

learning of relevant radiographic features, without the need for human intervention, at any phase of the 

analysis pipeline. For that reason, deep learning could boost reproducibility, generalizability and 

accuracy and reduce potential bias of a model [23,4,24].  
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3.1.4. Feature exploration 

At this point, the dataset should be divided into training and validation datasets, that will be used to 

create the model, and a testing dataset. The train/validation/test ratios depend on the method of 

validation (see below), but most of the time 80% of the data will then be used for the training dataset 

and 20% for the testing dataset. The validation dataset will be resampled as 20% of the training 

dataset. It will be used to check for overfitting during the hyperparameter tuning of the model. The test 

dataset will be kept apart and used to validate the model after the training. 

All the following steps are performed on the training dataset alone. Performing exploratory analysis or 

feature selection with the test dataset will bias the model through a phenomenon known as “test 

leakage” (the model has already learned something from the test data). 

The exploration phase consists in assessing the robustness and relevance of the radiomics features that 

were previously extracted. The selection often involves controlling the inter-reader variability of the 

features by comparing the results of different segmentation. Only the best features, i.e. the one that are 

consistent across different segmentation, are included in the next step. 

Features highly correlated with existing, simpler, characteristics (clinical, biological features) do not 

add value to the model and should be eliminated. In the same manner, radiomics features that are 

correlated between themselves should not be further explored: only one of them can be included.  

3.1.5. Modeling 

3.1.5.1. Feature selection 

The features correlated with the outcome that is being explored should be kept for modeling. A good 

rule-of-thumb to define the number of features that should be included in a model is a ratio of three to 

ten patients for each feature included in the modeling should be respected. Several dimensionality 

reduction techniques are available and the best method depend on the analysis pipeline that will be 

later applied to create the model [25]. Modeling small populations using thousands of features will 

only find random, irrelevant, noise within the data and will promote overfitting: the model is very-well 

adapted to the known data, but will be unable to provide any valid prediction on other unknown, new, 

data (for example from another hospital).  

3.1.5.2. Modeling methodology 

There are countless methodologies to create a model with radiomics. From regression to deep learning, 

each has its own advantages and pitfalls [7]. If there are enough patients included in the cohort, 

solutions leveraging deep learning should be the preferred method in the years to come. Whichever 

solution has been selected, the model’s performance should be compared to a baseline, simple method. 
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Creating a highly complex deep learning model that provides performances similar to simpler 

statistical tests or machine learning algorithm should be avoided. 

3.1.5.3. Validation 

Depending on the number and availability of different patient cohort, a relevant method of validation 

should be chosen. If no external cohort is available and the number of patients is low (less than a 

thousand for example), a k-fold cross validation should be performed. The dataset is resampled into k 

equal sets; k-1 sets are used to train the model and the last remaining set is used to assess the model 

quality. This is done k times to test each set and the reported metrics is often the mean of the k 

iterations. If the number of patients is high, the preferred method of validation is leave-one-out where 

a percentage of the dataset is kept apart to create a separate test set and assess the model’s quality after 

training. If an external cohort is available, the model is trained on an internal cohort and validated on 

the external set to assess generalizability. 

The quality of the model is often reported using the receiver operating characteristic (ROC) curve or 

the area under the ROC curve (AUC), which quantifies the sensitivity and specificity of the model. 

AUC are typically reported with their confidence interval and are between 0 (worst) and 1 (best) [1]. 

3.2. Radiomics in practice 

In this part, we will present radiomics studies that have been published in the field of radiation 

oncology for each type of cancer (table 1). 

3.2.1. Lung cancer 

One of the first robust studies published in 2014 included 1019 patients and explored the value of 

radiomics for prognosis in lung cancer [8]. Aerts et al. were able to predict survival in two 

independent external cohorts of patients and outperformed the gold standard of TNM status for 

patients with stage III non-small cell lung cancer treated with radiation alone or chemoradiation. Their 

reported concordance index (C-index, a measure of goodness of fit) was 0.65 (p= 2.9x10-9). Radiomics 

have also been used to model outcome after stereotactic body radiation therapy: in 2016, Huynh et al. 

successfully predicted distant metastasis in an independent validation dataset using radiomics (C-

index=0.67, p<0.1), even when none of the conventional and clinical features were prognostic [26]. In 

2018, Hosny et al. published a study using a convolutional neural network, a type of deep learning, for 

lung cancer prognostication using seven independent datasets to stratify patients on their mortality risk 

in order to better personalize treatments [27]. More recently, Xu et al. published a radiomics study 

relying on deep learning to predict treatment response from serial imaging. Patients (n=179) with stage 

III non-small cell lung cancer treated with chemoradiation were included and a model was developed 

to predict 2-year survival. AUC was 0.74 (p<0.05) [24]. Deep learning has also been used in the study 

published by Lou et al. to predict the outcome after stereotactic body radiation therapy and 
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individualize radiation dose, showing that research teams in the field are moving away from traditional 

hand-crafted radiomics and using more robust and stable deep learning approaches [23]. 

3.2.2. Head and neck cancer 

In head and heck, the study published by Aerts et al. in 2014 showed that radiomics modeling also 

provided good performances with a C-index of 0.69 (p=3.5x10-6). Radiomics have also been used to 

explore a wide range of clinical outcomes [28]. 

Yu et al. extracted 1683 features with IBEX from head and neck gross tumor volume with or without 

lymph nodes in order to predict human papilloma virus (HPV) status. A general linear model was used 

as it provided better AUC compared with various other models (such as random forest, support vector 

machine [SVM], decision trees, deep learning). The model performance was tested on two external 

datasets. AUC was 0,87 on the first and 0,92 on the second dataset. Clinical features, such as grade or 

TNM stage, were not used [29]. Kann et al. developed a convolutional neural network trained on 2875 

lymph nodes delineated from the CT scans of 270 patients to determine whether a lymph node was 

metastatic or not. On an independent test set, the model demonstrated an AUC of 0,91 (95%CI:0,85-

0,97) [30]. Ou et al.  created a radiomic signature to estimate overall survival [31]. Data from 120 

patients with stage III – IVb (TNM 2010) were included. OncoradiomicsTM was used to extract 544 

features, narrowed to 24 statistically significant features by logistic regression, from which a radiomic 

signature score was generated. The signature was able to predict 5-year survival with an AUC = 0,67 

95% CI (0,58 – 0,76). Finally, the MD Anderson Cancer Center head and neck quantitative imaging 

working group has also published a radiomic signature created on 465 patients with oropharyngeal 

cancer to assess the recurrence probability after intensity-modulated radiation therapy. Using IBEX, 

134 radiomic features were extracted from the primary gross tumor volume and narrowed to two 

features with decision tree modeling. Local tumor control for patients with a low-risk signature was 

94% at 5 years, compared to 62% to 80% for the patients with a high-risk signature [32]. 

3.2.3. Esophageal cancer 

For esophageal cancer, radiomics was used to predict pathologic complete response to preoperative 

chemoradiation. Van Rossum et al. created a model with the pretreatment (18F)-fluorodeoxylgucose-

PET from 217 patients that provided a C-index of 0.77 [33]. Radiomics have also been used to predict 

lung toxicity after radiation therapy: Cunliffe et al. used serial computed thoracic tomography and 

showed a correlation between radiomics-based features with radiation therapy dose and radiation 

pneumonitis development after chemoradiation for esophageal cancer [34]. AUC was between 0.59 

and 0.84. In a more recent study, Amyar et al. showed in a population of 97 patients treated by 

chemoradiotherapy that a three-dimensional (3D) convolutional neural network, applied on the 

baseline PET to predict the response to the treatment, outperformed bidimensional (2D) convolutional 

neural network architectures and more classical radiomics approaches (handcrafted feature extraction 
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with machine learning classifiers), with maximal AUC =  0.70±0.02, 0.67+/-0.08 and 0.62+/-0.04, 

respectively. Moreover, the addition of a margin around the target lesion seemed to increase the 

accuracy of the 3D convolutional neural network model (AUC=0.74±0.02) [35]. 

3.2.4. Rectal cancer 

Radiomics have been used in several studies to predict pathologic complete response after neoadjuvant 

chemoradiation with MRI  or PET/CT with logistic regression or simpler artificial neural network, with 

correct accuracy (AUC=0.71-0.79 for the MRI model, not provided for the PET/CT model) [35-37]. 

The most robust study included 222 patients to build a radiomics signature with 30 MRI features 

[36][35]. The model was created with support vector machine and found an AUC of 0.9756 (95% 

confidence interval, 0.9185-0.9711) in the validation cohort. However, feature extraction from MRI is 

even more complex and less reproducible than CT scan, meaning that these results cannot be easily 

reproduced on another cohort [38][37]. For this reason, extracting features from treatment planning CT 

scans could be both easier and more reproducible. This approach was used and coupled with a deep 

learning approach with a 80% accuracy [39].  

3.2.5. Pancreatic cancer 

Only two studies have explored the role of radiomics for pancreatic cancer treated with radiation 

therapy. In 2016, Cui et al. included 139 patients and extracted features from prestereotactic body 

radiation therapy (18F)-fluorodeoxyglucose PET [40]. They created a signature with seven features to 

characterize tumor phenotypes, which was significantly associated with overall survival (p=0.002, 

hazard ratio 2.74). More recently, Cozzi et al. curated a cohort of 100 patients treated with stereotactic 

body irradiation in order to create a signature to predict overall survival (C-index 0.73, p=0.01) [41].  

3.2.6. Brain metastases 

Radiomics have been used in two studies for brain metastases: Cha et al. included 110 patients and 

directly trained a deep learning network (without feature extraction) to predict response after 

stereotactic body radiation therapy. AUC was 0.856 (68.2%-100%) in their study [42]. Peng et al. used 

radiomics to distinguish progression from radionecrosis after stereotactic body radiation therapy for 

brain metastasis. They included 66 patients with 82 lesions to create a signature with 51 features 

extracted from MR imaging. AUC was 0.81 [43]. Several other studies had similar results with fewer 

patients included [44,45]. Overall, the technical quality of the studies leveraging radiomics in brain 

tumors is not comparable to the studies published in lung or head and neck cancer. 

4. Discussion 

In all the studies detailed in paragraphs 3.2, the signatures or scores have been created using 

retrospective cohorts. Most of the time, these cohorts were small (around hundred patients) and no 
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external validation was performed. Radiomics as a field is still very young and exploratory. None of 

the models mentioned are being used in the clinical routine. The science behind radiomics may still 

seem immature in several regards: the methods used are very heterogeneous, quality control is often 

non-existent.  

Radiomics has a significant potential to improve medical care, but before it can actually deliver on 

these promises, we will need to better define the methods used, the quality criteria and the way to 

validate and then monitor the results of a model. The radiomics quality score has been proposed by 

Lambin et al. in order to better assess the robustness of a model [1]. We will also need national and 

international collaborations to share data and models [46]. Specific infrastructures and process, like 

common ontologies [47], will need to be defined because many technical and ethical challenges 

remain before this can be achieved.  

It is also possible that deep learning will actually replace the “traditional” radiomics pipeline 

altogether. Segmentation, feature extraction and filtering, and finally the modelling itself, could be 

better standardize through deep learning by limiting the intervention of humans at each of these steps. 

The interpretability of the models created with deep learning will need to be careful examined. This 

can now be somewhat easily done with the use for example of saliency maps that show the area of an 

image that explains the results of the model. We will rapidly move away from the five steps of 

modeling explained in this review and integrate them all into a deep learning algorithm. The question 

whether this will still be called “radiomics” is relevant. 

5. Conclusion 

Radiomics is a way to extract features from medical imaging and correlate them to clinical outcomes, 

such as treatment efficacy or toxicity. It could potentially be used to personalize radiation treatments. 

But the field is still very young and the quality of the studies published is heterogeneous. Several 

evolutions will keep allow significant improvements: the promotion of collaboration, the use of 

multicenter cohorts, the replacement of hand-crafted techniques by automated deep learning 

algorithms should let us hope that the models created will be robust enough to be translated into 

clinical practice. 
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Figure legends 

Figure 1. Review of studies on radiomics in the context of radiation therapy: Preferred reporting items 

for systematic reviews and meta-analyses (PRISMA) flowchart for studies selection. 

Figure 2. The radiomics workflow. 

Figure 3. Radiomics for radiation therapy: An example of multimodal segmentation for locally-

advanced rectal cancer showing the importance of excluding air, stool or any other irrelevant structure 

from the volume of interest. 









Table 1. Studies using radiomics to model clinical outcome in radiation oncology. 

 

Cancer Imaging 

technique 

Number 

of 

patients 

Features extracted or deep 

learning methods 

Results Reference 

Lung CT 1,019 Intensity, shape, texture and 

wavelet 

Overall survival after radiotherapy: C-index=0.65, p= 2.9x10-9 8 

CT 113 Volume, diameter and LoG 

3D RLGL 

Overall survival after stereotactic body radiation therapy: C-

index = 0.67, p-value<0.1 

26 

CT 1,194 deep learning: 3D 

convolutional neural 

network 

2-year overall survival after chemoradiation: AUC = 0.70 (95% 

CI: 0.63–0.78), p < 0.001 

27 

CT 179 deep learning: convolutional 

neural network 

2-year overall survival after stereotactic body radiation therapy: 

AUC = 0.74 (p<0.05) 

24 

CT 1,275 deep learning: convolutional 

neural network 

Treatment failure after stereotactic body radiation therapy: C-

index = 0.77 (95% CI: 0.69–0.9) 

23 

Head and 

neck 

CT 1,019 Intensity, shape, texture and 

wavelet 

Overall survival after radiotherapy: C-index=0.69, p=3.5x10-6 8 

CT 315 Shape, texture, and 

grayscale intensities 

Assess HPV status: AUC=0.87-0.92 29 

CT 270 deep learning: convolutional 

neural network 

Lymph node metastatic status: AUC=0.91 (95%CI: 0.85-0.97)   30 

CT 120 OncoradiomicsTM Predict 5-year survival: AUC=0.67 (95% CI: 0.58 – 0.76) 31 

CT 465 134 features extracted with 

IBEX 

Signature to predict tumor control: low-risk=94% at 5 years, 

high-risk=62% to 80% 

32 

Esophageal (18F)-FDG-PET 217 Total lesion glycolysis, 

texture and geometry 

Complete pathologic response after chemoradiation: C-

index=0.77 

33 

CT 106 Intensity and texture Predict radiation pneumonitis: AUC=0.59-0.84 34 

(18F)-FDG-PET 97 deep learning: convolutional 

neural network 

Complete response after chemoradiatiation: AUC=0.74 35 

Rectal MRI 222 30 selected features Predict pathologic response after neoadjuvant chemoradiation: 

AUC=0.9756 (95%CI: 0.9185-0.9711) 

35 

(18F)-FDG-PET 86 Intensity, texture and total 

lesion glycolysis 

Signature associated with disease-free survival  36 



CT 95 Intensity and texture Predict pathologic response after neoadjuvant chemoradiation: 

accuracy=80% 

38 

Pancreas (18F)-FDG-PET 139 Shape, intensity and texture Signature significantly associated with overall survival 

(p=0.002, hazard ratio: 2.74) after stereotactic body radiation 

therapy 

39 

CT 100 Texture Predict overall survival after stereotactic body radiation therapy 

(C-index = 0.73, p=0.01) 

40 

Brain 

metastases 

MRI 110 deep learning Predict response after stereotactic body radiation therapy: 

AUC=0.856 (68.2%-100%) 

41 

MRI 66 Intensity and texture Distinguish true progression from radionecrosis after 

stereotactic body radiation therapy: AUC=0.81 

42 

3D: three-dimensional; 95 % CI: 95 % confidence interval; AUC: area under the curve; C-index: concordance index; CT: computed tomography; FDG: 

fluorodeoxyglucose; HPV: human papilloma virus; IBEX: imaging biomarker explorer; LoG: laplacian of gaussian; MRI: magnetic resonance imaging; PET: 

positron emission tomography; RLGL: run low gray level. 




