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Summary

Rapid eye movement (REM) sleep is a paradoxical state of wake-like brain activity occurring after non-
REM (NREM) sleep in mammals and birds. In mammals, brain cooling during NREM sleep is followed by
warming during REM sleep, potentially preparing the brain to perform adaptively upon awakening. If
brain warming is the primary function of REM sleep, then it should occur in other animals with similar
states. We measured cortical temperature in pigeons and bearded dragons, lizards that exhibit NREM-
like and REM-like sleep with brain activity resembling wakefulness. In pigeons, cortical temperature
decreased during NREM sleep and increased during REM sleep. However, brain temperature did not
increase when dragons switched from NREM-like to REM-like sleep. Our findings indicate the brain
warming is not a universal outcome of sleep states characterized by wake-like activity, challenging the

hypothesis that their primary function is to warm the brain in preparation for wakefulness.

Introduction

Sleep is a mysterious state of reduced environmental awareness found in animals ranging from jellyfish
to humans (Joiner 2016; Libourel and Herrel, 2016; Blumberg and Rattenborg, 2017; Nath et al., 2017,
Anafi et al., 2019; Iglesias et al., 2019; Kelly et al., 2019). Sleep in mammals is composed of two states,
non-rapid eye movement (NREM) sleep and REM sleep, typically distinguished from one another and
wakefulness by changes in brain and muscle activity. NREM sleep is characterized by the slow
alternation between periods of cortical neuronal silence (down-states) and periods with high firing rates
(up-states) that collectively give rise to high voltage, slow waves (0.5 — 4 Hz) in the
electroencephalogram (EEG) (Timofeev et al., 2001; Vyazovskiy et al., 2009). REM sleep is typically
characterized by continuous high firing rates comparable to wakefulness (Evarts, 1962; Mukhametov

and Strokova, 1977; Timofeev et al., 2001; Vyazovskiy et al., 2009; reviewed in Jones, 2016), resulting in



low voltage, high frequency EEG activity. In addition, muscle tone is reduced during NREM sleep, when
compared to wakefulness, and absent during REM sleep (Peever and Fuller, 2017). Nonetheless, brief
muscle twitches occur during REM sleep resulting in movements, such as rapid eye movements. The
patterns of brain activity that characterize NREM and REM sleep have been implicated in various forms
of synaptic plasticity (Chauvette et al., 2012; Tononi and Cirelli, 2014; Boyce et al., 2016; Li et al., 2017;
Klinzing et al., 2019), and twitching during REM sleep is thought to play a role in mapping the
sensorimotor cortex during development and possibly adulthood (Dooley et al., 2020; Blumberg et al.,

2020).

In addition to brain and muscle activity, other physiological processes also differ between NREM and
REM sleep in mammals. Notably, in most mammals examined, cortical and sub-cortical brain
temperature (Ty:) decreases during NREM sleep and increases during REM sleep (Kawamura and Sawyer,
1965; Hayward and Baker, 1969; Kovalzon, 1973; Obal et al., 1985; Wehr, 1992; Franken et al., 1992;
Gao et al., 1995; Landolt et al., 1995; Csernai et al., 2019; Hoekstra et al., 2019; Komagata et al., 2019;
see Hayward and Baker, 1968 and Hayward and Baker, 1969 for conflicting results in rhesus monkeys
(Macaca mulatta)). Brain warming during REM sleep is thought to result from an increase in blood flow
from the warmer body core to the brain to support this activity (Denoyer et al., 1991; Wehr, 1992;
Parmeggiani, 2007; Pastukhov and Ekimova, 2012; Bergel et al., 2018). In this regard, brain warming
might simply be a functionless biproduct of functions that require increased neuronal activity, such as
brain development and other types of synaptic plasticity. Alternatively, it has been proposed that
increased neuronal activity is the mechanism the sleeping brain employs to periodically warm itself
(Wehr, 1992; Lyamin et al., 2018). According to this hypothesis, brain warming is beneficial because it
counteracts cooling occurring during preceding NREM sleep, and thereby prepares the animal to awaken

and rapidly interact adaptively with the environment (Wehr, 1992; Lyamin et al., 2018). The brain



warming hypothesis remains largely untested, and it is unclear whether the brain warms during similar

sleep states in other taxonomic groups.

Birds exhibit NREM and REM sleep characterized by changes in EEG activity similar to those observed in
the mammalian cortex, despite differences in the organization of homologous neurons. In contrast to
the laminar organization of neurons, with apical dendrites spanning the layers of the mammalian cortex,
developmentally and functionally homologous (‘cortical’) regions of the avian brain, such as the visual
hyperpallium (homologue of the mammalian primary visual cortex) (Medina and Reiner, 2000;
Gunturkin et al., 2017; Briscoe and Ragsdale, 2018; Stacho et al., 2020), are composed of nuclear
structures consisting of densely packed stellate neurons (Olkowicz et al., 2016). Similar nuclear
structures comprise the dorsal ventricular ridge (DVR), a large brain region only found in sauropsids
(birds and non-avian reptiles), involved in performing cortex-like functions (Glntirkdn et al., 2017).
Despite this fundamental difference in cytoarchitecture, as in mammals, an increase in EEG and local
field potential (LFP) slow waves (approximately 1-5 Hz with a peak at 2 Hz) in the hyperpallium
distinguishes NREM sleep from wakefulness and REM sleep in birds (van der Meij et al., 2019). As in
mammals (Massimini et al., 2004; Huber et al., 2004), NREM slow waves travel through the hyperpallium
(van der Meij et al., 2019) and are homeostatically regulated in a local use dependent manner in pigeons
(Columba livia) (Lesku et al., 2011b; Rattenborg et al., 2019). In addition to wake-like EEG activity, as in
mammals, avian REM sleep is characterized by (at least partial) reductions in muscle tone (Dewasmes et
al., 1985; Rattenborg et al., 2019), twitching, including rapid eye movements, suppressed
thermoregulatory responses (Heller et al., 1983; Scriba et al., 2013), and its prevalence in young altricial
birds (Scriba et al., 2013). One notable difference between birds and mammals is the short duration

(typically <10 s) of bouts of REM sleep in birds (Tisdale et al., 2018b).

Interestingly, NREM-like and REM-like sleep were recently described in bearded dragon (Pogona

vitticeps) lizards (Shein-Idelson et al., 2016; Libourel et al., 2018; Norimoto et al., 2020). NREM-like sleep
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was characterized by high voltage, slow LFP ‘sharp-waves’ in the DVR, and REM-like sleep was
characterized by LFP activity resembling wakefulness and eye movements occurring under closed eye
lids. Although recent work has implicated the claustrum in the genesis of NREM sleep slow waves in
mice and the slow ‘sharp-waves’ in bearded dragons, the claustrum appears to generate these field
potentials via different mechanisms; in mice, the claustrum coordinates the synchronous inhibition of
cortical neurons across several cortical areas, resulting in the down-state of slow waves (Narikiyo et al.,
2020), whereas, in bearded dragons, bursts of neuronal activity (giving rise to LFP sharp waves)
propagate as traveling waves of excitation from the claustrum to the rest of the pallial DVR (Norimoto et
al., 2020; see also Tisdale et al., 2018a). Given this apparent difference and the fact that not all of the
components that typically characterize REM sleep in mammals and birds have been established in
bearded dragons, we refer to these states as NREM-like and REM-like sleep (Libourel and Barrillot,

2020).

As in mammals, during REM sleep in pigeons and REM-like sleep in bearded dragons, hyperpallial and
DVR neurons, respectively, fire at an elevated rate when compared to preceding sleep (Shein-ldelson et
al., 2016; van der Meij et al., 2019), and therefore might cause Ty, to increase via increased blood flow
from the animal’s warmer core. However, few studies have examined sleep state-related changes in Ty
in birds, and none have examined bearded dragons. In birds, four studies examined hypothalamic
temperature and one measured temperature in the nidopallium, a structure in the DVR. Graf and
colleagues (1987) present a 4-h plot of hypothalamic temperature occurring during wakefulness, NREM
and REM sleep in pigeons recorded at 10°C ambient temperature, but hypothalamic temperature did
not vary systematically with state. In rooks (Corvus frugilegus) recorded at 8 and 15°C, hypothalamic
temperature declined during NREM sleep, but a significant increase was not detected during REM sleep
(Szymczak et al., 1989). By contrast, Pastukhov and colleagues (2001) reported decreases and increases

in hypothalamic temperature during NREM and REM sleep, respectively, in pigeons recorded at 21°C. It



is unclear whether these differences are due to ambient temperature or the temporal resolution and
sensitivity of the thermistors used in the respective studies. Hypothalamic temperature was also
measured in sleeping ostriches (Struthio camelus), but the temporal resolution (once every 2 min) of the
thermistor was too low to identify sleep state-related changes in temperature (Lesku et al., 2011a). In
pigeons recorded at 22°C, temperature declined during NREM sleep, but a consistent change in
temperature was not detected during REM sleep in the nidopallium (van Twyver and Allison, 1972).
Given that variations in Ty are smaller near the surface of the brain in chickens (Gallus gallus
domesticus) (Aschoff et al., 1973), the thermistor may not have been sensitive enough to detect changes
in temperature during REM sleep in the nidopallium, a more superficial structure than the
hypothalamus. Thus, apart from one study of hypothalamic temperature in pigeons, a consistent
increase in temperature has not been detected during REM sleep in the birds examined. Moreover, the
study reporting an increase in hypothalamic temperature during REM sleep did not characterize how
temperature changed throughout and following bouts of REM sleep of different durations. It is also
unknown whether temperature increases during REM sleep in ‘cortical’ portions of the avian brain, an
apparent requisite for brain warming to have a positive impact on cognitive performance upon
awakening (Wehr, 1992). Finally, it is unknown whether Ty, varies with the type of sleep in bearded
dragons. To address these questions, and thereby expand our understanding of Ty, regulation during
sleep in non-mammals, we examined sleep state-related changes in temperature in the visual

hyperpallium of pigeons and DVR of bearded dragons.

Results

Across the night, pigeons experienced nearly one thousand (979.6 + 100.4) bouts of REM sleep lasting 6

+ 0.6 s (range, 1-30.7 £ 7.1s, N = 7). Figures 1A and B illustrate the relationship between brain state



and changes in Ty on 90- and 10-min time scales. Decreases and increases in T, Were related to the
occurrence of NREM and REM sleep, respectively, with the peak Ty associated with a bout of REM sleep
occurring after the bout ended (Figure 1B). To characterize the precise time course of Ty change during
bouts of NREM and REM sleep of varying durations (Figure 1C and 1D), we examined isolated bouts of
each state. Longer bouts of NREM sleep resulted in greater decreases in Ty (linear mixed effect model,
Table S1; Bo (intercept) + SE =-7.30*103 + 8.70*10%, p = 1.56*10%; B (slope) + SE =3.11*103+ 3.31*10%,
p = 8.55*107%) (Figures 1C and 2A) and longer bouts of REM sleep resulted in greater increases in Ty (Bo +
SE=7.86*103+5.70*10% p = 6.48*10°%; B + SE =3.37*10*+ 5.59*10°, p = 1.04*107) (Figures 1D and
2B). Tur peaked on average 9 s after a bout of REM sleep, regardless of bout duration (Bo+ SE=9.22
1.93, p=3.05*103; B + SE=3.37*10%+ 5.59*10°, p = 0.1) (Figures 1D and 2C). This hysteresis accounts
for the increase in Ty during short episodes of NREM sleep preceded by REM sleep (Figure 1B). Finally,
we found that REM sleep was more likely to occur (density per 15 s) at lower Ty (Bo = SE=2.18 £ 0.18, p

=2.21*105; B + SE = -0.50+ 0.08, p = 1.02*107%) (Figure 2D).

In bearded dragons, brain (DVR) activity alternated between NREM-like and REM-like sleep throughout
most of the night (Figure 3A). The bearded dragons experienced 436 + 133.1 bouts of REM-like sleep
lasting 49 + 12.8 s (range, 8.8 £ 6.3 - 209.2 £ 81.9 s, N = 4). Ty either showed little change or decreased
across the night (Figure S1). Despite exhibiting bouts of REM-like sleep that lasted on average 8.2 times
longer than bouts of REM sleep in pigeons, average Ty, did not increase when the bearded dragons

switched from NREM-like to REM-like sleep (Figures 3B and S1).

Discussion

It has been proposed that brain warming during REM sleep enhances performance upon awaking (Wehr,

1992). For this to be true, warming should occur in sub-cortical and cortical structures, as adaptive



performance likely depends on the entire brain. Our results demonstrate that ‘cortical’ warming occurs

during REM sleep in pigeons, but not during a REM-like sleep in bearded dragons.

In pigeons, temperature in the visual hyperpallium decreased during NREM sleep and increased during
REM sleep. Although this pattern is consistent with one study of hypothalamic temperature in pigeons,
the average maximum increase was 10 times less in the hyperpallium (see figure 1A in, Pastukhov and
Ekimova, 2012). The smaller change in temperature in the hyperpallium, the most dorsal part of the
avian brain, is consistent with the observation that although temperature covaries throughout the brain
in awake and sleeping chickens, it varies less near the dorsal surface (Aschoff et al., 1973). Also, the
small magnitude of state-related changes in T, might explain why a consistent increase in nidopallial
temperature was not detected during REM sleep in the earlier study of pigeons (van Twyver and Allison,
1972), as the average maximum increase in Ty (0.01 °C) in the hyperpallium is equivalent to the

minimum sensitivity of the thermistor used to measure temperature in the nidopallium.

Although the sleep-state dependent changes in Ty in pigeons are qualitatively similar to those observed
in several mammals, the magnitude is much smaller. For example, the rate of cooling during NREM sleep
and the rate of warming during REM sleep are approximately 10 - 20 and 5 - 12 times slower,
respectively, than in rodents (Franken et al., 1992; Hoekstra et al., 2019). Moreover, the maximum
average temperature increase associated with long (13 - 15 s) bouts of REM sleep, including the 9 s lag
after REM sleep offset, is only 0.01°C in the hyperpallium. The reasons for this difference are unknown,
but might include insulation (feathers verses hair), the level of neuronal activity and associated blood
flow in the respective states, and the regulation of body temperature and the temperature of blood

reaching the brain (Porter and Witmer, 2016).

In contrast to the sleep state-related changes in Ty, in pigeons, DVR temperature did not increase when

bearded dragons switched from NREM-like to REM-like sleep. Based on research in mammals, the



absence of brain warming might be due to blood flow to the brain. Either the increase in neuronal firing
rate during REM-like sleep does not induce changes in blood flow or blood flow does increase, but a
sufficient temperature gradient does not exist between the brain and body core for this flow to cause
brain warming. In this regard, it would be important to know if dragons retain more heat acquired
through basking and activity in the body than the head, due to the lower surface area to volume ratio of
the body. It would also be informative to determine whether blood flow increases, as shown in rats

(Bergel et al., 2018), during REM-like sleep in bearded dragons.

Our findings are consistent with the notion that sleep state-related changes in temperature are a trait
unique to endotherms. However, more species of birds, as well as mammals, need to be examined to
determine whether this is a general pattern. In addition, more reptiles need to be examined, especially
given that the changes in brain activity that define sleep states in bearded dragons have not been found
in all reptiles examined (Libourel and Herrel, 2016; Libourel et al., 2018). It would also be interesting to
examine small and large reptiles, as Ty during sleep might depend on a reptile’s size-dependent ability
to retain core heat acquired through basking and physical activity (Tattersall, 2016). Investigating sleep
and Ty in tegu lizards (Salvator merianae) that exhibit facultative endothermy during the reproductive
season (Tattersall et al., 2016; Tattersall, 2016) or in Galapagos marine iguanas (Amblyrhynchus
cristatus) that undergo periods of cooling while feeding at sea (Bartholomew, 1966; Butler et al., 2002),
would also be informative. Finally, Ty, should also be examined in other ectothermic animals, such as
zebrafish and cephalopods, wherein REM-like sleep states have been described (Leung et al., 2019;

Iglesias et al., 2019).

Our findings contribute to, but do not resolve, the debate over proposed homology between REM-like
sleep in bearded dragons and REM sleep in mammals and birds (Libourel and Barrillot, 2020). The
interpretation of our findings depends on the emphasis given to specific components of REM sleep

present in mammals and birds (Blumberg et al., 2020). If an increase in Ty is considered an essential



feature of REM sleep, then our findings suggest that REM-like sleep in bearded dragons is not
homologous to REM sleep in mammals and birds, and that REM sleep evolved independently in
mammals and birds, perhaps in association with the independent evolution of endothermy.
Alternatively, it is possible that the states are homologous and brain warming during REM sleep
secondarily emerged independently in mammals and birds. Clearly, further studies are needed to define
the essential components of REM sleep and their evolution (Blumberg et al., 2020; Libourel and Barrillot,

2020).

Brain warming might be an unimportant or even costly epiphenomenon of REM sleep in endotherms or
an advantageous component of this state. According to the brain warming hypothesis, warming during
REM sleep counteracts cooling during prior NREM sleep, and thereby prepares the animal to rapidly
interact adaptively with its surroundings upon awakening (Wehr, 1992; Lyamin et al., 2018). The brain
warming hypothesis is challenged by several lines of evidence (Gao et al., 1995; Lima et al., 2005;
Ungurean and Rattenborg, 2018). Notably, mammals and birds sleeping in riskier situations suppress
REM sleep (Lesku et al., 2008; Gravett et al., 2017; Lyamin et al., 2018; Tisdale et al., 2018) which,
according to the brain warming hypothesis, would render them less likely to respond adaptively to a
threat upon awakening. Nonetheless, it is worth considering the implications that our findings have for
this hypothesis. In pigeons, brain cooling during NREM sleep and warming (albeit small) during REM
sleep, as well as the increased density of REM sleep when Ty, is low, are consistent with the brain
warming hypothesis. However, even though ecologically important behaviors, such as courtship song in
male zebra finches (Taeniopygia guttata), can occur faster at naturally occurring higher brain
temperatures (Aronov and Fee, 2012), behavioral tests are needed to determine whether the small
increase in Ty during REM sleep in pigeons has an ecologically meaningful impact on performance upon
awakening. Finally, regardless of whether REM-like sleep in bearded dragons is homologous to REM

sleep in mammals and birds, the absence of brain warming suggests that the primary function (if one
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exists) of periods of increased neuronal activity during sleep is not to warm the brain. Other processes
linked to increased neuronal activity, such as learning, memory consolidation, and brain development,

are likely candidates for a shared function of increased neuronal activity during sleep.

Limitations of Study

Our study has several limitations that should be taken into consideration. As we only studied pigeons
and bearded dragons, more species need to be examined to determine whether our findings apply to
other birds and reptiles. Additional studies are also needed to determine whether the relationship, or
lack thereof, between brain state and Ty depends on ambient temperature and the animal’s energetic
status. The impact that REM sleep-related brain warming has on waking performance should also be
examined in pigeons. Finally, additional research on bearded dragons is needed to establish the extent

to which NREM-like and REM-like sleep are homologous to NREM and REM sleep in mammals and bird
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Figure Legends

Figure 1. Brain temperature (Ty) during NREM and REM sleep in pigeons. (A) Ty dynamics related to
brain state across a 90-min period in a pigeon. Hypnogram (bottom plot) of brain state showing
wakefulness (W, green), rapid eye movement (REM) sleep (R, red), and NREM sleep (N, blue). Note the
frequent short bouts of REM sleep. (B) Expanded 10-min period, demarcated by the bar in A, showing
electroencephalogram (EEG) activity and Ty, both recorded from the hyperpallium, and eye movements
during NREM and REM sleep, color coded as in A on the bottom Ty recording. Lower amplitude EEG
activity and eye movements occur during REM sleep. Eye Mvt: left eye movements in the vertical (D,
dorsal; V, ventral) and horizontal (A, anterior; P, posterior) planes determined from pupillometry. (C)
Longer bouts of NREM sleep are associated with greater brain cooling. Lines show the change in T,
(mean £ 1 standard deviation) relative to Ty 10 s after NREM sleep onset (0 °C) for NREM sleep bouts in
10 s duration categories (i.e. 10’s = 10-19 s; 20’s = 20-29 s; etc.). The 20 s after the middle of each
category is plotted in grey, as it includes a mixture of the terminating state (wakefulness or REM sleep)
and any subsequent states. (D) Longer bouts of REM sleep are associated with greater brain warming.
Lines show the change in Ty (mean * 1 standard deviation) during 20 s of NREM sleep (blue) prior to
REM sleep onset (vertical blue bar), during bouts of REM sleep (red) in 3 s duration categories (i.e. 1-3's;
4-6s; etc.), and during 20 s of NREM sleep following REM sleep offset, defined as the middle of each
duration category. For each duration category, Ty is plotted relative to Ty 20 s (0 °C) prior to REM sleep

onset. Pigeon illustration by Damond Kyllo.
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Figure 2. Relationship between (A) NREM and (B) REM sleep bout length and change in brain

temperature (Tyr) in pigeons. Y-axis values are the peak decreases and increases in Ty associated with
bouts of NREM and REM sleep, respectively. (C) Relationship between REM sleep bout length and the
time to the peak maximum Ty, relative to the bout offset. (D) Relationship between REM sleep density
(seconds per 15 s, see Methods) and Tyr. Each plot shows the regressions for each pigeon (in blue and

red for NREM and REM sleep, respectively) and the estimates (in black) with 95% confidence intervals

(grey).

Figure 3. Brain temperature (Ty) during NREM-like and REM-like sleep in bearded dragons. (A) 10-min
local field potential (LFP) recording from the dorsal ventricular ridge (DVR) of a sleeping bearded dragon
showing state-related changes in brain activity. NREM-like sleep is characterized by higher LFP
amplitude and 6 [0.5—4 Hz]/B [11-30 Hz] ratio, when compared to REM-like sleep. The brain states are
color coded (NREM-like sleep, cyan; REM-like sleep, magenta) in the bottom Ty recording. The
electrooculogram (Eye Mvt) shows the association between eye movements and brain state. (B) Ter
recorded from the DVR of sleeping bearded dragons 10 s before and 30 s after the transition (vertical
blue bar) between NREM-like and REM-like sleep. Tyr values (mean + 1 standard deviation; see Figure S1
for individual data) are expressed relative to Tur 10 s before the transition. Note the absence of an
increase in Ty following the transition between sleep states. The slight drop in Ty, across the two states

reflects the decline in Ty across the night (Figure S1). Bearded dragon illustration by Damond Kyllo.
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