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On the entrance at infinity of Feller processes
with no negative jumps

Clément Foucart 1, Pei-Sen Li 2 and Xiaowen Zhou 3

Abstract

Consider a non-explosive positive Feller process with no negative jumps. It is
shown in this note that when infinity is an entrance boundary, in the sense that
the entrance times of the process remain bounded when the initial value tends to
infinity, the process admits a Feller extension on the compactified state space [0,∞].
Moreover, when started from infinity, the extended Markov process on [0,∞] leaves
infinity instantaneously and stays finite, almost-surely. Arguments are adapted from
a proof given by O. Kallenberg [10] for diffusions. We also show that the process
started from x converges weakly towards that started from infinity in the Skorokhod
space, when x goes to infinity.

Keywords. Coming down from infinity; entrance boundary; Feller property; weak con-
vergence.

1 Introduction

In the last decade, a regain of attention in the literature has been paid to the study of
one-dimensional Markov processes at their boundaries. Such studies are of interest for
instance when the process is representing the size of a random population. There is a
large body of literature on this topic and we refer the reader for instance to the recent
articles of Bansaye et al. [2], [3], Döring and Kyprianou [5], Foucart [8], Le and Pardoux
[14] and [15], Li [16] and Li et al. [17]. See also the monography of Pardoux [18, Chapters
6 and 8].

In the latter cited works, the authors share the same interest to understand how the
population behaves when the initial size takes arbitrarily large values. Several behaviors
are possible. When the dynamics prevents the process to explode (i.e. to hit ∞ in
finite time) and yet allows the process to “start from infinity”; the boundary is called
an entrance. Such a phenomenon is ubiquitous in population models with self-regulation
properties or in models of statistical physics.

Several definitions of entrance boundary are given in the literature. The process is
often said to come down from infinity, when the first entrance times of compact sets are,
in some sense, uniformly bounded with respect to the initial state of the process.
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A rigorous definition in this vein can be found in Revuz and Yor [19, Chapter 3] and
Kallenberg [10, Chapter 23] and is stated as follows.

Definition 1.1. Let (Xt, t ≥ 0) be a positive Markov process. The boundary ∞ is said to
be an instantaneous entrance boundary for the process (Xt, t ≥ 0) if the process does not
explode and

∀t > 0, lim
b→∞

lim inf
x→∞

Px(Tb ≤ t) = 1 (1.1)

where Px(·) := P(·|X0 = x) and Tb := inf{t ≥ 0;Xt < b} for all b ∈ R+, with the
convention inf ∅ :=∞.

Although the meaning of condition (1.1) is intuitively clear, it does not guarantee a
priori, that the process X can be started at ∞.

Kallenberg [10] has designed elegant arguments for diffusions ensuring that indeed, if
the assumption (1.1) holds, then the diffusion process (Xt, t ≥ 0) has a regular version
started from infinity. The main purpose of this note is to observe that, more generally
if the process under study has no negative jumps and satisfies a Feller property on E :=
[0,∞), then the assumption (1.1) ensures that its semigroup can be extended into a Feller
semigroup on Ē = [0,∞]. As a direct consequence, any Feller process (Xt, t ≥ 0) on E,
with no negative jumps, satisfying (1.1) admits a càdlàg extension started from ∞.

The following equivalent conditions for (1.1) to hold, have already appeared in the
literature, see e.g. [17, Proposition 2.12] and [16, Theorem 1.11]. The proof is deferred
to Section 3.1. Denote by Ex the corresponding expectation under Px.

Lemma 1.2. Consider a positive strong Markov process (Xt, t ≥ 0) with no negative
jumps. For any b ∈ E, recall Tb its first passage time below b. The following statements
are equivalent:

(a) Condition (1.1) holds.

(b) For all large enough b, supx≥b Ex(Tb) <∞.

(c) lim
b→∞

lim
x→∞

Ex(Tb) = 0.

2 Main results

Recall E := [0,∞) and Ē := [0,∞]. Denote by Cb(E) the space of continuous bounded
functions on E and by C(Ē) the space of continuous functions on Ē, namely those in
Cb(E) with finite limits at ∞.

Consider a Markov process (Xt, t ≥ 0) with state space E. Denote by (Pt)t≥0 its
semigroup. Assume that

(i) for any f ∈ Cb(E), Ptf ∈ Cb(E),

(ii) for any f ∈ Cb(E) and x ∈ E, Ptf(x) −→
t→0

f(x).
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We shall say in the sequel that a process is Feller on the space Ē, if its semigroup satisfies
(i) and (ii) for any function f ∈ C(Ē) and any x ∈ Ē.

Remark 2.1. Several definitions of “Feller processes” coexist in the literature. We are
following the definition given in Kallenberg’s book [10, Chapter 19, p.369]. In order to
deal with an entrance boundary at∞, the usual class C0 of continuous functions vanishing
at ∞ cannot be used. Recall however that when the state space is compact, as the case
for Ē, C0 can be replaced by C(Ē). Moreover, according to [10, Theorem 19.6], when the
state-space is compact, the strong continuity at 0 of the semigroup is equivalent to the
pointwise one.

Theorem 2.2. Consider a non-explosive Markov process (Xt, t ≥ 0) on E, with no nega-
tive jumps, satisfying (i), (ii) and the entrance boundary condition (1.1). Then (Xt, t ≥ 0)
can be extended into a Feller process over Ē such that under P∞, it starts from ∞, leaves
it instantaneously and stays finite, almost-surely:

P∞(X0 =∞) = 1 and P∞(∀t > 0, Xt <∞) = 1.

Remark 2.3. Theorem 2.2 holds true also for a process (Xt, t ≥ 0) valued in N with the
skip-free property (i.e. negative jumps of size at most −1). It is also worth mentioning
that the state-space E = [0,∞) does not play any specific role here and can be any real
interval (`, r) by replacing ∞ by the right-end boundary r everywhere in Definition 1.1,
in Theorem 2.2, and in the forthcoming Proposition 2.4, Theorem 2.5 and Corollary 2.7.

Theorem 2.2 applies for instance to diffusions, see e.g. [10, Chapter 23] where an
explicit condition equivalent to (1.1) is given in terms of the scale function and the speed
measure of the diffusion process. It is also invoked in Foucart et al. [9, Section 2.1] for
defining certain time-changed spectrally positive Lévy processes, started from infinity. An
explicit condition equivalent to (1.1) is found for this class of processes in [9, Theorem
3.1]. Other examples will be discussed in the sequel, see Corollary 2.9.

The next proposition states a regularity property of the first entrance times Tb under
the probability measures (Px, x ≥ 0). Denote by E∞ the expectation under P∞.

Proposition 2.4. Suppose that the assumptions of Theorem 2.2 hold. Let h be a contin-
uous function on [0,∞) that is either bounded or nonnegative and increasing. Then

(a) for any θ > 0, there exists bθ > 0, such that for all b ≥ bθ, E∞(eθTb) <∞;

(b) for any b > 0, if Tb <∞ P∞-a.s. and E∞(h(Tb)) <∞, then

Ex(h(Tb)) −→
x→∞

E∞(h(Tb)). (2.2)

In particular, we see from Proposition 2.4-(a) that, under P∞, one can find a large enough
b such that Tb has moments of all orders. The convergence (2.2) holds for instance with
the function h(x) = xn for any n ∈ N. Such a convergence of moments is crucial when
one wants to study the process started from infinity, from the sample paths started from
large but finite levels. We refer to [2], [3] and [9] where it is used for studying the speed
of coming down from infinity of different Feller processes with no negative jumps.

The last theorem states a general result for Feller processes valued in a compact state
space and clarifies in which sense the laws (Px)x≥0 converge as x goes to ∞ towards P∞.
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Theorem 2.5. Assume that X is a Feller process on [0,∞]. Let X(x) be the Markov
process started from x ∈ [0,∞] with càdlàg sample paths. Then the family of processes
(X(x))x∈[0,∞) converges weakly, in the Skorokhod topology, as x→∞ towards X(∞).

Remark 2.6. Theorem 2.5 does not require the assumption of absence of negative jumps.

A direct consequence of Theorem 2.2 and Theorem 2.5 is the following convergence in
law of the process started from x towards that started from ∞, when ∞ is an entrance
boundary.

Corollary 2.7. Suppose that the assumptions of Theorem 2.2 hold. Denote by (X(x))x∈[0,∞)

the family of processes started from x. Then, (X(x))x∈[0,∞) converges in law, in the Sko-
rokhod topology, as x→∞ towards X(∞).

Such a weak convergence was previously shown for different Markov processes, satis-
fying the conditions (i) and (ii), with∞ as entrance boundary. See for instance Donnelly
[6], Lambert [13, Corollary 3.10], Bansaye [1, Proposition 4.4] and Bansaye et al. [2], [3,
Lemma 2.1]. The arguments for establishing the weak convergence in these latter works
were requiring the stochastic monotonicity of the process in its initial values.

We now show how our main results apply to the so-called continuous-state nonlinear
branching processes. Those processes were defined and studied in [17]. Let {Bt}t≥0 be an
(Ft)-Brownian motion. Write ν for a σ-finite nonnegative measure on (0,∞) such that∫∞
0

(z ∧ z2) ν(dz) < ∞. Let {N(ds, dz, du) : s, z, u > 0} be an independent (Ft)-Poisson

random measure on (0,∞)3 with intensities ds ν(dz) du, and {Ñ(ds, dz, du) : s, z, u > 0}
be the corresponding compensated measure, namely Ñ(ds, dz, du) := N(ds, dz, du) −
ds ν(dz) du. Consider the following stochastic differential equation (SDE):

X
(x)
t = x+

∫ t

0

γ0(X
(x)
s ) ds+

∫ t

0

√
γ1(X

(x)
s ) dBs

+

∫ t

0

∫ ∞
0

∫ γ2(X
(x)
s− )

0

z Ñ(ds, dz, du).

(2.3)

Any solution to (2.3), whenever it exists, is called a general continuous-state nonlinear
branching process. In the two next results, we shall make the following general assump-
tion:

Condition H: there is a pathwise unique nonnegative càdlàg solution (X
(x)
t , t ≥ 0) to (2.3)

which is non-explosive and satisfies for any x ≤ y,

X
(x)
t ≤ X

(y)
t for all t ≥ 0 a.s. (2.4)

Existence and pathwise uniqueness are guaranteed for instance if the functions γi, for
i ∈ {0, 1, 2}, are locally Lipschitz. The comparison property (2.4) is fulfilled as soon as
γ2 is nondecreasing. We refer to [17, Theorem 3.1] and [12, Proposition 2.3, Theorem
5.3 and 5.5] for more details. Sufficient conditions for non-explosion of continuous-state
nonlinear branching processes are provided in [17, Theorem 2.8].

Any càdlàg process solution to (2.3) has no negative jumps and satisfies the condition
(ii). In the following proposition, we provide a sufficient condition on the drift γ0 entailing
the Feller property (i).
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Proposition 2.8. Assume that Condition H holds. If there exists θ > 0 such that for
any 0 ≤ x ≤ y,

γ0(y)− γ0(x) ≤ θ(y − x), (2.5)

then the semigroup of (Xt, t ≥ 0) satisfies the Feller property (i).

Combining Condition H, the one-sided Lipschitz condition (2.5) and the entrance
boundary condition (1.1), one can apply Theorem 2.2 and Corollary 2.7 to define processes
solution to (2.3) started from ∞. We sum up those results in the following corollary.

Corollary 2.9. Assume that Condition H holds. If (1.1) and (2.5) are satisfied, then the
flow of càdlàg strong solutions to (2.3), (X(x))x∈[0,∞), converges weakly, in the Skorokhod
topology, as x→∞, towards a non-explosive Feller process X(∞) started from infinity.

Remark 2.10. Condition H encompasses the comparison property (2.4), so that under

the assumptions of Corollary 2.9, for any t > 0, X
(x)
t increases almost-surely towards

X
(∞)
t <∞, as x goes to ∞.

Sufficient conditions for continuous-state nonlinear branching processes to satisfy (1.1)
are given in [17, Theorem 2.13] and [15, Theorem 2.2]. The problem of defining the
process started from infinity was left unanswered in these works. Corollary 2.9 enables us
to address this question and to give a sense, in terms of sample paths, to the phenomenon
of coming down from infinity.

To exemplify Corollary 2.9, consider the case for which γi(x) = x for all x ≥ 0, i = 1, 2
and γ0 is continuous on R+. In this setting, the process solution to (2.3) is also called
continuous-state branching process with competition. The nonlinear drift γ0 is interpreted
as modelling interactions between individuals, see Le and Pardoux [15]. The following
corollary combines some results established in [15] and Corollary 2.9.

Corollary 2.11. Assume that γi(x) = x for all x ≥ 0, i = 1, 2 and that γ0 is continuous
on R+, with γ0(0) = 0. If γ0 satisfies (2.5) and

∫∞
b

dx
|γ0(x)| < ∞ for some b > 0, then

Condition H and (1.1) are satisfied, and the process (X
(∞)
t , t ≥ 0), started from ∞, is

well-defined, comes down from infinity instantaneously and then stays finite almost-surely.

Remark 2.12. 1. An explicit example is the logistic continuous-state branching process
for which for all x ≥ 0, γi(x) = x, i = 1, 2 and γ0(x) = − c

2
x2 with c > 0. It satis-

fies (1.1), starts from infinity, “comes down” instantaneously, and then stays finite
almost-surely. We refer to [13], see also [8, Lemma 6.4] where (1.1) is established.

2. The non-explosion of the process in Corollary 2.11 will be guaranteed by the assump-
tion

∫∞
0

(z ∧ z2)ν(dz) <∞. When the latter integral is infinite, different behaviors
at ∞ may occur, see for instance [8] for the case γ0(x) = − c

2
x2 for all x ≥ 0.

3. Examples of continuous-state nonlinear branching processes for which γi(x) 6= x,
i = 1, 2 and Corollary 2.9 applies can be found in [17, Page 2536]. For instance, if
ν(dz) = cα1{z>0}z

−1−αdz, with α ∈ (1, 2), cα > 0, γ0 = γ1 = 0 and γ2(x) = xr2 with
r2 > α, then the process solution to (2.3) can be started from infinity and comes
down from infinity. We refer to [16] for a different method allowing one to define
this process started from infinity.
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3 Proofs

3.1 Proof of Lemma 1.2

Recall the statement of Lemma 1.2. We show that (a) =⇒ (b). The condition (1.1) entails
that for any fixed t, there is b large enough from which, lim sup

x→∞
Px(Tb > t) < 1. This

implies that there exists xb ≥ b such that sup
x≥xb

Px(Tb > t) < 1. Since there are no negative

jumps, for any x ∈ [b, xb], Px(Tb > t) ≤ Pxb(Tb > t) < 1. Therefore, if b is large enough
then, for all x ≥ b,

Px(Tb > t) ≤ sup
x≥b

Px(Tb > t) < 1. (3.6)

In particular, we see that Px(Tb < ∞) > 0 for all x ≥ b and that there is t > 0 and a
large enough b such that

αb := sup
x≥b

Px(Tb > t) < 1.

We now work with those t and b. Let x > b, and n ∈ N, by using the Markov property at
time t

Px(Tb > nt) = Ex
[
1{Tb>t}1{Tb◦θt>(n−1)t}

]
= Ex

[
1{Tb>t}EXt

[
1{Tb>(n−1)t}

]]
≤ Px(Tb > t) sup

x≥b
Px(Tb > (n− 1)t).

Hence for all n ≥ 1, sup
x≥b

Px(Tb > nt) ≤ αb sup
x≥b

Px(Tb > (n−1)t) and sup
x≥b

Px(Tb > nt) ≤ αnb .

This entails supx≥b Ex(Tb) ≤
∑∞

n=0 α
n
b <∞.

We now show that (b) =⇒ (c). Note that the limits in (c) are monotone increasing in
x and decreasing in b. According to (b), for large enough b, Ex(Tb) <∞ for any x ≥ b so
that Px(Tb < ∞) = 1. Let x > x′ > b. By the absence of negative jumps and the strong
Markov property

Ex(Tb) = Ex(Tx′) + Ex′(Tb).

Letting x go towards ∞ and then x′ go towards ∞, we get

lim
x→∞

Ex(Tb) = lim
x′→∞

lim
x→∞

Ex(Tx′) + lim
x′→∞

Ex′(Tb).

By (b), lim
x→∞

Ex(Tb) <∞ and thus lim
x′→∞

lim
x→∞

Ex(Tx′) = 0. The last implication (c) =⇒ (d)

is a simple consequence of the Markov inequality. �

3.2 Proof of Theorem 2.2

Recall the statement of Theorem 2.2 and its assumptions. The arguments to prove The-
orem 2.2 are adapted from those of Kallenberg in [10, Theorem 23.13]. Let y > x > b.
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Since the process (Xt, t ≥ 0) has no negative jumps, Tb > Tx almost surely under Py.
Moreover for any t ≥ 0, {Tb < t} ⊂ {Tx < t, Tb − Tx < t} and

Py(Tb < t) ≤ Py(Tx ≤ t, Tb − Tx < t)

= Py(Tx < t)Px(Tb ≤ t) ≤ Px(Tb < t).

This implies that (Px(Tb < t), x ≥ 0) admits a limit as x goes to∞ and that (Ex(Tb), x ≥ b)
is non-decreasing in x. The inequality (3.6) ensures that lim

x→∞
Px(Tb < t) > 0. Recall also

that Lemma 1.2 states that (1.1) holds if and only if

sup
x≥b

Ex(Tb) −→
b→∞

0. (3.7)

For any function f ∈ Cb(E), one denotes by ||f || the supremum norm of f . We now show
that (Ptf(x), x ≥ 0) admits a limit as x goes to ∞ for any f ∈ Cb(E) with E = [0,∞).
Fix t ≥ 0, for any x > b,

Ptf(x) = Ex[1{Tb>t}f(Xt)] + Ex[1{Tb≤t}f(Xt)]

= Ex[1{Tb>t}f(Xt)] + Ex[1{Tb≤t}Pt−Tbf(XTb)]

= Ex[1{Tb>t}f(Xt)] + Ex[1{Tb≤t}Pt−Tbf(b)],

where we have used the strong Markov property at Tb ∧ t in the second equality and in
the third, the absence of negative jumps which implies XTb = b a.s. Set

g(a, s) := 1s≤tPt−sf(a) + 1s>tf(a).

For any x and y larger than b,

|Ptf(y)− Ptf(x)| = |Ex[1{Tb>t}f(Xt)]− Ey[1{Tb>t}f(Xt)]

+ Ex[1{Tb≤t}Pt−Tbf(XTb)]− Ey[1{Tb≤t}Pt−Tbf(XTb)]|
≤ ||f ||(Px(Tb > t) + Py(Tb > t))

+
∣∣Ex [g(b, Tb)− f(b)1{Tb>t}

]
− Ey

[
g(b, Tb)− f(b)1{Tb>t}

]∣∣
≤ 2||f ||(Px(Tb > t) + Py(Tb > t)) + |Ex [g(b, Tb)]− Ey [g(b, Tb)]| .

From (1.1), we see that for x, y →∞ and then b→∞,

2||f ||(Px(Tb > t) + Py(Tb > t)) −→ 0.

Moreover, (3.7) entails supx Ex(Tb) <∞ which provides for any fixed b

lim
s→∞

sup
x≥0

Px(Tb > s) = 0.

The family of laws of Tb under Px for x ≥ 0, (Px◦T−1b , x ≥ 0), is therefore tight and admits
a unique limit since (Px(Tb < t), x ≥ 0) converges. Thus, (Px ◦ T−1b , x ≥ 0) converges
weakly and since the map s 7→ g(b, s) is bounded and continuous, therefore,

|Ex [g(b, Tb)]− Ey [g(b, Tb)]| −→
x,y→∞

0.
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Since |Ptf(y)− Ptf(x)| −→
x,y→∞

0, then for any sequence (xn, n ≥ 1) such that xn −→
n→∞

∞,

(Ptf(xn), n ≥ 1) is a Cauchy sequence and admits a limit in R. This limit does not depend
on the sequence (xn, n ≥ 1) and we set Ptf(∞) := lim

x→∞
Ptf(x). By the assumption of

non-explosiveness, for all x ∈ E, the transition kernels Pt(x, ·) := P(Xt ∈ ·|X0 = x)
are probability measures over E = [0,∞). Since the convergence Ptf(∞) := lim

x→∞
Ptf(x),

holds for any f ∈ Cb(E), the probability measures Pt(x, ·) over E converge weakly towards
Pt(∞, ·) as x goes to ∞. Taking the constant function f = 1, we see that Pt(∞, ·) is a
probability measure over E.

We proceed to check that (Pt) forms a Feller semigroup on Ē = [0,∞]. Recall C(Ē).
Let f ∈ C(Ē). By the assumption (ii), Ptf is continuous on E. By the definition,
Ptf(∞) = lim

x→∞
Ptf(x) <∞ and Ptf is continuous at ∞. Therefore, Pt maps C(Ē) into

itself. By the assumption (ii), for any x ∈ [0,∞), one has Ptf(x) −→
t→0

f(x), and it only

remains to show that Ptf(∞) −→
t→0

f(∞). Let ε > 0 and choose b large enough such that

supx≥b |f(x) − f(∞)| ≤ ε. Note that there is t small enough such that P2b(Tb ≤ t) ≤ ε.
Then,

|Ptf(∞)− f(∞)| ≤ lim
x→∞

(
Ex[|f(Xt)− f(∞)|1{Tb≤t}] + Ex[|f(Xt)− f(∞)|1{Tb>t}]

)
≤ 2||f ||P2b(Tb ≤ t) + ε

≤ (2||f ||+ 1)ε.

The pointwise continuity of the semigroup at t = 0 is therefore satisfied on [0,∞] and
finally the semigroup on Ē satisfies (i) and (ii) and is Feller. Theorem 19.15 in [10]
provides the existence of a strong Markov process (Xt, t ≥ 0) with càdlàg paths started
from∞. We denote its law by P∞. Note that for any t > 0, Pt(∞, E) = P∞(Xt <∞) = 1.
It remains to show that P∞(∀t > 0, Xt < ∞) = 1. By the assumption for any x ∈ E,
(Xt, t ≥ 0) does not explode under Px. Let s > 0. By the Markov property at time s
under P∞,

P∞(∃t > s;Xt =∞) = E∞(PXs(∃t > 0; X̃t =∞))

where X̃ is a copy of X. Since P∞(Xs < ∞) = 1, we have that for any s > 0, P∞-a.s.
PXs(∃t > 0; X̃t =∞) = 0. Hence P∞(∃t > s;Xt =∞) = 0, which allows one to conclude
since s is arbitrary. �

3.3 Proof of Proposition 2.4

Assume that (1.1) holds and recall E∞ the corresponding expectation under P∞. We show
first the exponential moment property stated in (a). Recall that under P∞, Tb decreases
as b goes to ∞. Denote by T∞ = inf{t > 0;Xt <∞} its limit. By Theorem 2.2, T∞ = 0
P∞-a.s. Let θ > 0. Fix t > 0. By Lebesgue’s theorem

lim
b→∞

P∞(Tb > t) = 0. (3.8)
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Hence, there exists bθ > 0, such that for all b ≥ bθ, e
θtP∞(Tb > t) < 1. Moreover for any

n ≥ 1, by the Markov property, we get P∞(Tb > nt) ≤ P∞(Tb > t)n and for any b ≥ bθ

E∞(eθTb) = E∞
[
θ

∫ Tb

0

eθsds

]
+ 1 = θt

∫ ∞
0

eθtsP∞(Tb > ts)ds+ 1

= θt
∞∑
n=0

∫ n+1

n

eθtsP∞(Tb > ts)ds+ 1

≤ θteθt
∞∑
n=0

(
eθtP∞(Tb > t)

)n
+ 1 <∞.

We establish now the convergence in (2.2). Denote by θ the shift operator, see e.g. [10,
p.146]. For any x > b > 0,

Tb ◦ θTx = Tb − Tx −→ Tb as x→∞, P∞ -a.s. (3.9)

By the strong Markov property,

E∞[h(Tb)] = E∞[h(Tb)− h(Tb ◦ θTx)] + Ex[(h(Tb))].

Recall (3.9) and that h is either bounded or nonnegative and increasing. By applying
Lebesgue’s theorem, we get

E∞[h(Tb)] = lim
x→∞

Ex[h(Tb)].

�

3.4 Proof of Theorem 2.5

Define the metric ρ on Ē = [0,∞] by ρ(x, y) = |e−x − e−y| for any x, y ∈ Ē and let D be
the space of càdlàg functions f : E → Ē. We endow D with the Skorokhod topology, for
which we refer, for instance, to Ethier and Kurtz’s book [7, Chapter 3, p.116]. The proof
of Theorem 2.5 follows by combining Lemma 3.1 (tightness) and Lemma 3.2 (convergence
of finite dimensional laws), given below, and by applying [7, Corollary 9.3].

Let (Pt)t≥0 be a Feller semigroup on C(Ē). Let A : D → C(Ē) be the generator of
(Pt)t≥0 with D its domain. Then by [10, Theorem 19.4], we see that D is dense in C(Ē)

with respect to the supremum norm || · ||. For each x ∈ Ē, denote by X(x) = (X
(x)
t )t≥0 the

corresponding Feller process with initial value x > 0 and càdlàg paths. From Dynkin’s
formula, see [10, Theorem 19.21], we have for any bounded stopping time τ , and any
f ∈ D

E[f(X(x)
τ )] = f(x) + E

[∫ τ

0

Af(X(x)
s )ds

]
.

Lemma 3.1. The sequence of processes (X(x))x>0 is relatively compact in distribution,
i.e. every subsequence has a subsequence that converges in distribution in D.
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Proof. Since D is dense in C(Ē), for any ε > 0 and f ∈ D , there exists g ∈ D such
that ||f 2− g|| < ε. Applying the Markov property and Dynkin’s formula we have for any
bounded stopping time τ and constant h > 0,

E[(f(X
(x)
τ+h)− f(X(x)

τ ))2] = E[f 2(X
(x)
τ+h)− f

2(X(x)
τ )]

− 2E
[
f(X(x)

τ )E[f(X
(x)
τ+h)− f(X(x)

τ )|Fτ ]
]

≤ 2ε+ E[g(X
(x)
τ+h)− g(X(x)

τ )] + 2||f ||
∣∣∣E(E[f(X

(x)
τ+h)− f(X(x)

τ )|Fτ ]
)∣∣∣

= 2ε+ E
[∫ τ+h

τ

Ag(X(x)
s )ds

]
+ 2||f ||

∣∣∣∣E [∫ τ+h

τ

Af(X(x)
s )ds

]∣∣∣∣
≤ 2ε+ ||Ag||h+ 2||f || · ||Af ||h.

Therefore, by Jensen’s inequality and the arbitrariness of ε,

lim
δ→0

lim sup
x→∞

sup
τ≤t

sup
h∈[0,δ]

E|f(X
(x)
τ+h)− f(X(x)

τ )| = 0 t > 0,

where the second supremum is over all stopping time τ ≤ t for the process X(x). Then by
Aldous’ criterion of tightness, see e.g. [10, Theorem 16.11 and Lemma 16.12, p.314], for
any f ∈ D , (f ◦X(x))x>0 is relatively compact in distribution. Finally, since D is dense
in C(Ē), applying [7, Theorem 9.1 p.142] we see that (X(x))x>0 is relatively compact in
distribution. Note that Ē is compact, thus the compact containment condition, needed
for [7, Theorem 9.1 p.142] to apply, holds. �

Lemma 3.2. The finite-dimensional distributions of X(x) converges weakly to that of
X(∞) as x→∞.

Proof. We are going to prove that for any sequence {t1 < t2 < · · · < tn} ⊂ E and
{f1, f2, . . . , fn} ⊂ C(Ē),

lim
x→∞

E[f1(X
(x)
t1 )f2(X

(x)
t2 ) . . . fn(X

(x)
tn )] = E[f1(X

(∞)
t1 )f2(X

(∞)
t2 ) . . . fn(X

(∞)
tn )]. (3.10)

If (3.10) holds, then by the Stone-Weierstrass theorem, see e.g. [11, Theorem 7.29] for
any Fn ∈ C(Ēn) we have

lim
x→∞

E[Fn(X
(x)
t1 , X

(x)
t2 , . . . , X

(x)
tn )] = E[Fn(X

(∞)
t1 , X

(∞)
t2 , . . . , X

(∞)
tn )].

Obviously, (3.10) holds for n = 1. Assume that (3.10) holds for n = m. Then by the
Markov property

E[f1(X
(x)
t1 )f2(X

(x)
t2 ) . . . fm+1(X

(x)
tm+1

)]

= E[f1(X
(x)
t1 )f2(X

(x)
t2 ) . . . fm(X

(x)
tm )E[fm+1(X

(x)
tm+1

)|Ftm ]]

= E[f1(X
(x)
t1 )f2(X

(x)
t2 ) . . . fm(X

(x)
tm )Ptm+1−tmftm+1(X

x
tm)].

By the Feller property, the map x 7→ fm(x)Ptm+1−tmftm+1(x) is continuous and bounded.
Then we can finish the proof of (3.10) by induction. �
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3.5 Proof of Proposition 2.8

Recall (X
(x)
t , t ≥ 0) the solution to (2.3) and the statement of Proposition 2.8. Let bL be

the set of bounded Lipschitz continuous functions on E and L(f) denotes the Lipschitz
constant of f ∈ bL . For f ∈ Cb(E) and M > 0, let

fM(x) =

{
f(x), 0 ≤ x ≤M,

f(M), x > M.

It follows from the Stone-Weierstrass theorem that there exists a sequence of bounded
Lipschitz functions (f

(n)
M )n≥1 such that

||f (n)
M − fM || → 0 as n→∞. (3.11)

Since by the assumption, X
(x)
t ≤ X

(y)
t a.s. for any t ≥ 0 and 0 ≤ x < y, for any 0 ≤ x < y,

by (2.5)

E(|X(y)
t −X

(x)
t |) = E(X

(y)
t −X

(x)
t ) = y − x+

∫ t

0

E(γ0(X
(y)
s )− γ0(X(x)

s ))ds

≤ y − x+ θ

∫ t

0

E(X(y)
s −X(x)

s )ds.

By Gronwall’s Lemma,
E(|X(y)

t −X
(x)
t |) ≤ eθt|x− y|

for all t. Thus, for any f ∈ bL ,

|Ptf(x)− Ptf(y)| ≤ L(f)eθt|x− y|, (3.12)

which entails that Ptf ∈ bL . Define

gM(x) =


0, 0 ≤ x ≤M/2,
2x
M
− 1, M/2 ≤ x ≤M,

1, x > M.

Fix t and x and denote by Pt(x, ·) the law of X
(x)
t . For any ε > 0, we can choose M, δ > 0,

such that for each y ∈ ((x− δ) ∨ 0, x+ δ)

|Ptf(y)− PtfM(y)| ≤ 2||f ||Pt(y, [M,∞))

≤ 2||f ||
(
Ptg

M(x) + |PtgM(y)− PtgM(x)|
)

≤ 2||f ||
(
Pt(x, [M/2,∞)) +

2eθt

M
|x− y|

)
< ε/4 (3.13)

where, for any Borel set A, Pt(y, A) := Pt1A(y) and for the third inequality we used
(3.12). From (3.11), we see that there exists n ∈ N such that

||fM − f (n)
M || ≤ ε/8. (3.14)
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Since Ptf
(n)
M ∈ bL , there is δ′ < δ such that for y ∈ ((x− δ′) ∨ 0, y + δ′),∣∣Ptf (n)

M (x)− Ptf (n)
M (y)

∣∣ ≤ ε/4 (3.15)

Combining (3.13), (3.14) and (3.15), we see that for y ∈ ((x− δ′) ∨ 0, y + δ′),

|Ptf(x)− Ptf(y)| ≤ |PtfM(x)− PtfM(y)|+ |Ptf(x)− PtfM(x)|+ |Ptf(y)− PtfM(y)|
≤
∣∣Ptf (n)

M (x)− Ptf (n)
M (y)

∣∣+ 2||fM − f (n)
M ||

+|Ptf(x)− PtfM(x)|+ |Ptf(y)− PtfM(y)|
≤ ε/4 + ε/4 + ε/4 + ε/4 = ε.

Thanks to the arbitrariness of ε, we can complete the proof. �

3.6 Proof of Corollaries 2.9 an 2.11

3.6.1 Proof of Corollary 2.9

Recall Corollary 2.9. Assume that (1.1) is satisfied. Under Condition H, the solution
of (2.3) has no negative jump and is right-continuous, so that condition (ii) is satisfied.
By Proposition 2.8, under the assumption (2.5), the process (Xt, t ≥ 0) satisfies (i). As-
sumptions of Theorem 2.2 are therefore fulfilled and the process admits a Feller extension
started from infinity. The weak convergence is a consequence of Corollary 2.7. �

3.6.2 Proof of Corollary 2.11

Consider now the continuous-state branching processes with competition. These processes
are solution to the SDE (2.3) with γi(x) = x for all x ≥ 0 and i = 1, 2, with a continuous
function γ0 satisfying γ0(0) = 0.

Assume that γ0 satisfies the one-sided Lipschitz condition (2.5). We establish that
(2.5) combined with

∫∞
0

(z ∧ z2)ν(dz) < ∞, entails Condition H. Dawson and Li [4,
Theorem 2.1] ensures that Equation (2.3) admits a unique nonnegative càdlàg solution

(X
(x)
t , t ≥ 0), started from x ∈ [0,∞). Moreover, the assumption γ0(0) = 0, combined

with (2.5) entails that γ0(x) ≤ θx for all x ≥ 0. Assumptions of [4, Theorem 2.2] are
thus satisfied and the comparison property (2.4) holds true. A second application of [4,

Theorem 2.2] ensures that for all x ≥ 0 and all t ≥ 0, X
(x)
t ≤ Z

(x)
t where (Z

(x)
t , t ≥ 0) is

a supercritical continuous-state branching process with Lévy measure ν, started from x.
By the assumption

∫∞
0

(z ∧ z2)ν(dz) < ∞, the process (Z
(x)
t , t ≥ 0) has finite mean and

thus is non-explosive. By comparison, the process (X
x)
t , t ≥ 0) is thus also non-explosive

for any x ∈ R+, and finally Condition H holds true.

It remains to establish (1.1). Note that (2.5) is hypothesis (H1) in [15]. Assume that
γ0 satisfies γ0(0) = 0 and (2.5). By [15, Theorem 2.2] and its proof, see [15, page 10], for
any b > 0, if

∫∞
b

dx
|γ0(x)| <∞, then sup

x≥b
Ex(Tb) <∞. Thus, by Lemma 1.2, if

∫∞
b

dx
|γ0(x)| <∞

for some b > 0, then (1.1) is satisfied. Hence Theorem 2.2 and Corollary 2.9 apply. �
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to thank Leif Döring for mentioning the proof of Kallenberg during the 3th Workshop on
Branching Processes and Related Topics held in 2017 in Beijing.

References

[1] V. Bansaye. Approximation of stochastic processes by non-expansive flows and com-
ing down from infinity. Ann. Appl. Probab. 29 (2019), no. 4, 2374–2438.

[2] V. Bansaye, P. Collet, S. Martinez, S. Méléard, and J. San Martin. Diffusions from
Infinity, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5781–5823.
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