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Abstract 

Protein 3D structures support their biological functions. As the number of protein 

structures is negligible in regards to the number of available protein sequences, prediction 

methodologies relying only on protein sequences are essential tools. In this field, protein 

secondary structure prediction (PSSPs) is a mature area, and is considered to have reached a 

plateau.  

Nonetheless, proteins are highly dynamical macromolecules, a property that could 

impact the PSSP methods. Indeed, in a previous study, the stability of local protein 

conformations was evaluated demonstrating that some regions easily changed to another type 

of secondary structure.  

The protein sequences of this dataset were used by PSSPs and their results compared to 

molecular dynamics to investigate their potential impact on the quality of the secondary 

structure prediction. Interestingly, a direct link is observed between the quality of the 

prediction and the stability of the assignment to the secondary structure state. The more stable 

a local protein conformation is, the better the prediction will be. The secondary structure 

assignment not taken from the crystallized structures but from the conformations observed 

during the dynamics slightly increase the quality of the secondary structure prediction. These 

results show that evaluation of PSSPs can be done differently, but also that the notion of 

dynamics can be included in development of PSSPs and other approaches such as de novo 

approaches.  

 

Key words: secondary structure prediction, molecular dynamics, protein structures, B-factors, 
RMSf, solvent accessibility, DSSP, PSIPRED, structural alphabet, helix, 
sheet, loop. 
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1. Introduction 

 The protein 3D structure directly supports their function(s). They are often analysed 

through the prism of classical repetitive secondary structures, namely α-helices and β-strands 

connected by loops (i.e. coil state) [1-4]. Nonetheless, the secondary structures are more 

complex than only a 3-state description. They include two other types of helices, namely 310- 

and π-helices [5-7], β-turns [8-10], polyproline type II helices [11, 12] and β-bridges [13]. 

Designed in 1983, Dictionary of Secondary Structure of Proteins (DSSP) remains the most 

widely used methodology to assign the protein secondary structures [13]. In fact, assigning 

secondary structure is not a so simple task and is associated to large number of known issues 

[14, 15], e.g. differences in the delimitation of the helix ends. Nowadays DSSP can be 

considered as a gold standard; it had been recently modified to change the assignment priority 

in the helical regions, which slightly increased the occurrence of the π-helix [16]. 

The number of protein sequences is incredibly higher than the number of avalaible 

protein structures (millions against >169.000 in the Protein DataBank [17]). Protein 

secondary structure predictions (PSSPs) remain essential, as it is not conceivable to have 

experimental structures associated to each known sequence. PSSPs are useful for instance for 

predicting protein folds, for building structural models of proteins, and in functional 

prediction methods such as binding site prediction. 

The first generation of PSSPs was based on simple analyses [18] and classical statics, 

e.g. Chou-Fasman and GOR approaches [19, 20], leading to a prediction rate around two 

thirds. The introduction of neural networks coupled with evolutionary information made a 

great impact increasing to 80% the prediction success rate [21, 22], while the deep learning 

approaches did not drastically improve it [23-25]. PSSP was thereby considered as a mature 

field [26], the prediction rates have reached a plateau of 82 to 84% [25, 27-30]. It was also 

commonly believed that a large fraction of the mistakes was due to insufficient precision in 
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the identification of the borders of the secondary structural elements. Different studies have 

estimated around 88% the theoretical limits of PSSPs [25, 31, 32], by taken into account the 

variations of secondary structure assignment between SSAMs, the divergence between 

homologous sequences, and the prediction errors at boundaries of repetitive helical and sheet 

structures [30].  

Nonetheless, another factor can (or even should) be taken into account, namely the 

inner dynamics of the proteins [33]. Obviously, protein structures are not rigid 

macromolecules, and the flexibility / mobility of a large part of the protein structures is 

essential for their biological function [34]. From the X-ray structures, experimental B-factors 

can be used to capture the protein flexibility [35, 36]. Molecular dynamics simulations are 

also valuable to apprehend this flexibility [37]. Sometimes, a simple minimisation made a 

change in a secondary structure assignment, as seen in [38], underlying the impact of 

crystallisation on the local protein conformations. 

Analysis of the stability of protein local conformations was considered through 

molecular dynamics (MD) simulations [6]. In a first study focussed on helical regions, it was 

showed that only 3/4 of the residues associated to α-helices retain the conformation while this 

tendency drops to 40.5% for 310-helices. Similarly, the infrequent π–helices go to β-turn, bend 

and coil conformations, but not to α- or 310-helices. Only 310-helices goes to α-helices [6]. 

Additional analyses underlined that hydrogen bonded turn went more frequently to helical 

conformation while the non-bonded turn preferred to go to coil conformations [39]. 

These finding raised a simple question: ‘Can the dynamics of the protein explain 

(partially) erroneous protein secondary structure prediction?’ To answer to this question the 

protein MD dataset was used [6, 39-41]. Their sequences were predicted by PSSPs and 

compared with the results of simulations to see if the dynamics can have some influence the 

prediction. 
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2. Materials and Methods 

2.1 Data sets. A databank of 169 X-ray structures, taken from Protein Data Bank 

(PDB) [17] was extracted using ASTRAL 2.03 at 40% sequence identity [42, 43] (PDB ids 

and corresponding chain provided in Supplementary Data 1 of [39]). The databank was 

filtered out based on structure resolution better than 1.5 Å, and without presence of 

heteroatoms (other than water), without alternate, without missing or modified residues in the 

chain. Only globular proteins, with complete chain length ranging between 50 and 250 

residues, were selected. In-house parser was used to filter out and to fetch the information 

[44]. The 169 domains represent a rather equilibrated repartition among the different SCOP 

classes: all-α represents 18.9% of the chains, all-β 29.6%, α/β 24.8% and α+β 26.7%. This 

distribution is well distributed among all types of protein folds. 

 

2.2 Molecular dynamics simulations. Three molecular dynamic (MD) simulations were 

performed for each protein structure with GROMACS 4.5.7 software [45], using 

AMBER99sb force field [46]. Each protein structure was put in a periodic dodecahedron box, 

using TIP3P water molecules [47], and neutralised with Na+ or Cl- counter ions. The system 

was then energetically minimised with a steepest-descent algorithm for 2000 steps. The MD 

simulations were performed in isotherm-isobar thermodynamics ensemble (NPT), with 

temperature fixed at 300 K and pressure at 1 bar. A short run of 1ns was performed to 

equilibrate the system, using Berendsen algorithm for temperature and pressure control [48]. 

The coupling time constants were equal to 0.1 ps for each physical parameter. Then, a 

production step of 50 ns was done using Parrinello-Rahman algorithm [49] for temperature 

and pressure control, with coupling constants of T=0.1 ps and P=4 ps. All bond lengths were 

constrained with LINCS algorithm [50], which allowed an integration step of 2 fs. The PME 

algorithm [51] was used for long-range electrostatic interactions using a cut-off of 1 nm for 
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non-bonded interactions.  

This protocol was applied on each of the 169 protein chains. Conformations were saved 

every ps. For each MD simulation, the secondary structures were analysed and the structural 

deviation of each snapshot from the initial structure was measured. Trajectory analyses were 

done with the GROMACS software, in-house Python and R scripts. Root mean square 

deviations (RMSD) and root mean square fluctuations (RMSf) were computed on Cα atoms. 

Normalized RMSfs and normalized B-factors were computed as in [52]. 

 

2.3 Local protein conformation analyses. Secondary structure assignment was 

performed using DSSP [13] (with DSSP 2015 version 2.2.1) with default parameters [53]. 

DSSP provides an 8-state assignment with ‘H’ (α-helix), ‘G’ (310-helix), ‘I’ (π-helix), ‘T’ 

(hydrogen-bond turn), ‘S’ (bends, i.e. non-hydrogen-bond turn), ‘B’ (β-bridge), ‘E’ (β-strand) 

and a blank (coil). 

Protein Blocks (PBs), a structural alphabet composed of 16 local prototypes [54], were 

also employed to analyse local conformations. Each specific PB is characterized by the φ, ψ 

dihedral angles of five consecutive residues [55-57]. PB assignment was carried out for every 

residue from every snapshot extracted from MD simulations using PBxplore tool [58]. 

Flexibility of each amino acid was quantified with the Neq (for equivalent number of PBs) 

[54], a statistical measurement similar to entropy. It represents the average number of PBs a 

residue may adopt at a given position. Neq is calculated as follows [54]: 

Neq = exp( − f
x

x=1

16

∑ ln f
x

)         (1) 

Where, fx is the frequency of PB x in the position of interest. An Neq value of 1 indicates 

that only one type of PB is observed, while a value of 16 is equivalent to an equal probability 

for each of the 16 states, i.e. random distribution. Neq was used for MD analyses [59] and even 

for disorder proteins [60]. 



Prediction and dynamics 

 7

2.4 Secondary structure prediction. Two different approaches were used to predict the 

secondary structure, namely PSIPRED (for PSI-blast based secondary structure PREDiction) 

[61, 62] and SSpro [63, 64]. The first one was based on the use of Artificial Neural Networks 

and evolutionary information, while the second one used more complex machine learning 

approach (Bidirectional Recursive Neural Networks) also with evolutionary information. 

PSIPRED and SSpro3 predicted three states (helical, extended and coil), while SSpro8 

predicted the 8 states proposed by DSSP [13]. SSpro8 results were simplified to generate a 3 

state prediction named SSpro8to3.  

It must be noticed that PSIPRED and SSpro3 did not reduce the 8 states to 3 states in a 

similar way. For PSIPRED [62, 65, 66], helical state was defined as ‘H’, ‘G’ and ‘I’, extended 

state was ‘E’ and rest is the coil state (‘T’, ‘S’, ‘B’, blank). It is slightly different for SSpro3 

[63, 64], helical state was only ‘H’, and ‘G’, extended state was ‘E’ and ‘B’, and coil state 

was (‘T’, ‘S’, ‘B’, ‘I’, blank).  

Two distinct prediction modes exist in SSpro, namely with homologues or without 

homologues. The with homologues mode added a specific search for homologous sequence in 

the PDB. If one (or more) sequence (s) was (were) found, it was used as supplementary 

information. The weights depended on the degree of detected homology (i.e. sequence 

identity). It would therefore improve largely the prediction, especially if highly related 

sequences are in the PDB. It was consequently an issue for this study as all the proteins 

included our dataset came from PDB. It biased the analysis, so the mode without homologues 

was the only one that had been taken into account. 

To assess the quality of the prediction, classical accuracy measure Q3 and Q8 were 

used, both simply corresponded to the number of cases correctly predicted: 

Q = TP / N 

With TP the number of true positive and N the number of residues used in the 
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prediction. 

Another criterion was also used, it focussed on the highly inadequate prediction (inad.), 

i.e. a residue predicted as extended when it was assigned as helical or inversely. To compare 

two distinct secondary structure prediction methods, an agreement rate was used. It was the 

proportion of residues associated with the same state (α-helix, β-strand and coil). Noted C3 

[14], it showed some similarity to Q3, it monitored if the two clustering were superimposable. 

PSIPRED also proposed an useful confidence index (CIndex) that ranged between 0 (poor 

predictability) and 9 (high predictability) as it was done previously by Rost and Sander [67]. 

 

2.5 Data analysis. Most of the analyses were done with R software [68] with some C 

[69] and Python [70] codes. 

  

3. Results 

3.1 Principle. The principle of the study was to look at the PSSPs and compare their 

results with results from MDs. Firstly, PSSPs results were independently analysed, namely, 

PSIPRED, SSPro3 and SSPro8to3 (SSPro8 reduced to 3 states). It was essential to evaluate 

the quality of prediction on this specific dataset to know their pertinences. Secondly, all 

PSSPs were directly compared to apprehend their specificities. Thirdly, the predictions have 

been analysed in the light of MDs results, underlying potential correlations between the 

quality of the prediction and the dynamics behaviours. Finally, the prediction have been re-

analysed in the light of the regions that have changed of secondary assignment during the 

simulations to see if incorrect predictions were linked to potential dynamical properties. 

 

3.2 PSIPRED prediction analysis. The occurrence of assigned α-helix, β-sheet and 

coil state were of 35.8%, 24,5% and 39,7% respectively, an expected distribution seen in most 
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of the studies [15, 71, 72]. The prediction rate of secondary structure Q3 was excellent with 

83.6% on average, and more specifically 80.3% for the α-helix, 80.9% for the β-sheet and 

88.3% for the coil state. The results were particularly good in regards to β-sheet that can be 

considered as the most difficult secondary structure to predict [73]. Moreover, the number of 

inadequate problematic issue was highly limited, i.e. the α-helix predicted as β-sheet or 

inversely, it represented only 0.64% of the residues (see Table 1a).  

The prediction quality was directly linked to the PSIPRED’s CIndex (see Figure 1 and 

SI Table 1). For instance, 36.9% of the residues were predicted with a CIndex of 9, associated 

to a Q3 of 96.2%, dispatched between 98.7% for the coil, 96.1% for the β-sheets and 93.9% 

for the α-helices; corresponding inad was only equals to 0.03%.  

The Q3 values decreased with the CIndex values, from 96.2% (CIndex = 9) to 90.1% 

(CIndex = 8), 86.5% (CIndex = 7), 80.9% (CIndex = 6), 77.4% (CIndex = 5), 73.3% (CIndex 

= 4), 70.3% (CIndex = 3), 63.8% (CIndex = 2), 57.8%  (CIndex = 1) and 50.7%  (CIndex = 0, 

see SI Table 1). This drop was observed for the three-states with the same tendency. The 

confidence index was quite efficient, for instance for a CIndex value of 5 or higher, it 

corresponded to 73.9% of the residues with a Q3 of 90.7%, dispatched between 95.1% for the 

coil, 89.9% for the β-sheets and 86.7% for the α-helices; inad was only of 0.20%. Hence, the 

relationship can be considered very robust. 

 

3.3 SSpro3 prediction analysis. SSpro was an interesting tool as it can predict both 3-

states (SSpro3) and 8-states (SSpro8). Another option of SSpro was to mine PDB and used 

existing structures to enhance the prediction. In our case, it strongly biased the prediction rate, 

as all the dataset structures were present in the PDB. The SSpro3 (i.e. with homologues) 

accuracy Q3 reached 96.6%, with 97.9% for the β-sheets, 97.1% for the α-helix and 95.3% for 

the coil (see SI Table 2a). 
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Hence, the real accuracy prediction of SSpro3 (i.e. without homologues) was of 81.2%, 

with 84.5% for the α-helices, 82.5% for the coil and 74.4% for the β-sheets (see Table 1b). It 

was slightly less effective than PSIPRED (minus 2.4%) with an increase of the α-helices 

prediction rate of 4.4%, and a decrease of 5.8% for the coil by and of 6.5% for the β-sheets. 

Its inad was also higher (1.4%). 

It must be noticed that the definition of the three-states was slightly different between 

PSIPRED and SSpro3, the helical state comprised for the first one the α-helices, π-helices and 

310-helices, while π-helices were excluded for the second. At the contrary, extended state for 

SSpro3 encompassed β-strands and β-bridges, while these last were considered as coil for 

PSIPRED. The assignment difference affected less than 2% of the residues. 

 

3.4 SSpro8to3 prediction analysis. Without homologous structure mining, the Q8 

accuracy of SSpro8 values reached 69.4% (see SI Table 2b for the results with homologous 

proteins). The α-helix state was well predicted at 92.2%, while β-sheet dropped to 83.3%, coil 

was only of 66.6% and (hydrogen-bond) turn of 55.5%. The remaining was poorly predicted 

with accuracy of 8.7% for the bends and of 2.3% for the 310-helix. β-bridge and π-helix were 

never predicted. Some clear disequilibrium were observed such as 72.5% of π-helix and 

36.0% for the 310-helix were predicted as α-helix, and 55.1% of β-bridge and 49.1% of bends 

were predicted as coil (see SI Table 2c).  

SSpro8to3 corresponded to use the 8 states prediction to a classical 3 states. The Q3 of 

SSpro8to3 without homologous proteins equalled to 80.8% (see Table 1c) with prediction rate 

of 86.2% for α-helix, 81.2% for β-sheet, and 75.8% for coil; inad was of 1.7% (see SI Table 

2d for the results with homologous proteins).  

 

3.5 Comparison of the two prediction approaches. As the Q3 values of PSIPRED, 
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SSpro3 and SSpro8to3 may seem very close (i.e. 83.6, 81.2 and 80.8%, respectively), one can 

wonder if they did not make similar predictions.  

The predictions were so compared. The C3 values of PSIPRED vs SSpro3 equalled to 

83.1% (see SI Table 3a) and of PSIPRED vs SSpro8to3 to 82.8% (see SI Table 3b).  Hence, 

nearly 1 residue on five was predicted differently. 81.1% of α-helix predicted by SSpro3 were 

predicted as α-helix and 17.8% as coil by PSIPRED. 77.9% of β-sheet predicted by SSpro3 

were predicted as β-sheet and 21.3% as coil by PSIPRED. 0.65% of the residues were 

antithetically predicted (α-helix for one, β-sheet for the other). The predictions of PSIPRED 

and SSpro were so significantly different (p-values of 3.10-2). 

A major interest of PSIPRED was the robust CIndex values. Surprisingly, this index 

could be also used for SSpro results (see SI Figure 1). The differences were limited and the 

trends highly similar (see SI Table 4). 

 

3.6 Secondary structure prediction in the light of protein dynamics. The MD 

simulations of the 169 proteins were assigned in terms of secondary structure by DSSP [13, 

53], and the 8-states description was reduced to the 3-state description. 41.2% of the residues 

remained always associated to the same initial secondary structure assignment. To analyse the 

potential impact of protein dynamics, 6 classes, named MD classes, were defined. They were 

based on the initial assigned state: (i) the residue always assigned to the initial secondary 

structure assignment, i.e. 100% (41.2% of the residues), (ii) between >100 and 90% (39.6%), 

(iii) between > 90 and 70% (9.4%), (iv) between > 70 and 50% (4.4%), (v) between > 50 and 

10% (4.47%) and (vi) less than 10% (0.95%). 

Figure 2 showed the decline of the Q3 prediction rates in regards to the diminution of 

the assignment stability. Q3 decreased (black line in Figure 2) from (i) 93.8% to (ii) 85.6%, 

(iii) 66.3%, (iv) 57.2% and finished when the stability was less than 50% at (v) only 46.2% 
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and (vi) 34.1%. This plot highlighted a direct relationship between the quality of the 

prediction and the local conformation stability. 

Interestingly the α-helix (red line in Figure 2) was the most properly predicted for MD 

classes (i) and (ii) (Q3 of 98.5% and 89.4%). This feature was slightly different from the 

information provided by CIndex analysis that emphasized more the coil state (see Figure 1). 

A similar tendency was seen for SSpro (see SI Figure 2), α-helices being always better 

predicted than β-sheet, especially when the stability was better than 50%, i.e. MD classes (i) 

to (iv). 

Prediction analyses of dynamical behaviours both in terms of normalized B-factors (see 

Figure 3a) and normalized RMSf (see Figure 3b) can be seen as counter intuitive at the first 

sight. Indeed, as the normalized B-factors and normalized RMSf mean (black lines) and the 

median values (red lines) decreased with the decrease of the confidence index, i.e. higher was 

the certainty of the prediction, higher was the flexibility. CIndex of 9 was a perfect example, 

the mean and the median normalized B-factor values equalled to 0.13 and -0.22, i.e. higher 

than for CIndex of 0 with values of -0.04 and -0.25, respectively. This unexpected tendency 

came from the wrong predictions that were in limited number for high CIndex, but still 

present. Hence, for CIndex of 9, erroneous mean prediction (brown line) equalled to 0.23 

when the correct mean prediction (blue line) equalled to 0.12. Similar tendencies can be 

observed also with RMSFs (see Figure 3b). Occurrences of the first CIndex values were the 

most populated while the last were associated with fewer occurrences (see also Figure 1). 

Hence, the prediction errors were more associated to the ‘flexibility’ than the ‘rigidity’ of the 

proteins.  

The relative surface accessibility (see Figure 3c) also provided a similar view with 

mean and median values that slightly decreased with the quality of the predictions, but again, 

the erroneous predictions were associated to more accessible regions (mean and median 
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relative surface accessibility of 30-35% for the CIndex value of 9, while their false prediction 

had relative surface accessibility higher than 45%).  

Number of equivalent (Neq, see Figure 3d) provided a slightly different view as the 

mean values increased with confidence index. It was logical as Neq is a local conformation 

measure (on 5 residues) while B-factors and RMSf depended of global measures (on the 

whole protein structure). It underlined the interest of a local measure and that more it 

changed, more difficult was it to predict.  

The analyses of SSpro (see SI Figure 3) showed similar tendencies for normalized B-

factors, relative accessibility, normalized RMSf and Neq. Thus, these four criteria indicated 

that the accuracy of the prediction correlated with the dynamic properties of the proteins. It 

was indispensable to look both experimental B-factor and computational RMSf as they 

encompassed similar notions (rigidity to flexibility), but shared a limited correlation (around 

0.45 as observed previously [52]); they therefore have different specificities. To see that these 

two distinct criteria give results going in similar directions was very positive in order to be 

able to draw conclusions from these analyzes. [33]. 

 

3.7 Secondary structure prediction assessed in the light of protein dynamics. For 

more than 5% of the residues, the most frequently observed secondary structure state was not 

the one initially assigned (see SI Table 5). On these 5.4% of the residues, the coil state 

represented 77.4% of the residues; they mostly went to helical state for 59.3% and extended 

state for 18.2%. The helical state corresponded to 10.4% of these residues and went only to 

coil state. The extended state represented 12.2% of these residues and mainly went to coil 

state (12.0%), and very rarely to helical state (0.2%). 

The secondary structure prediction was evaluated again using this new assignment. 

Table 2 provided the Q3 accuracy showing an increase from 83.6% to 84.1%; the inadequacy 
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rate decreased from 0.64% to 0.54%. Prediction of helical state increased from 80.3% to 

84.4%, extended state remained stable from 80.9% to 80.8%, and coil state decreased from 

88.3% to 86.1%. Interestingly, the increase of the prediction mainly concerned the best 

CIndex values (see SI Table 6 and SI Figure 4). Helical state won for every CIndex value 

while coil state always decreased. 

For SSpro3, the interest was more limited with a limited improvement of Q3 from 

81.2% to 81.4%. It was also mainly directed by the helical state that increased from 84.5% to 

87.5%, and the extended state from 74.4% to 74.9%; the coil state decreased from to 82.5% to 

80.5% (see SI Table 7a). For SSpro8to3, the Q3 did not change too much from 80.8% to 

80.7%. Again, it was the helical structure that gained from 86.2% to 89.9%, the extended 

structures increased lightly from 81.2% to 81.6%, while the coil greatly decreased again from 

75.8% to 73.7% (see Table 7b). For both SSpro methods, the number of problematic 

predictions mixing helical and extended structures increased by 0.2% to 1.4% and 1.7%. 

Hence, the idea to use dynamical properties suited more PSIPRED approach than SSpro. 

 

4. Discussion & Conclusion 

PSSP was supposed to reach a theoretical plateau close to 88% [25, 74], i.e. 12% less 

than a perfect prediction. Different factors explained this difference. Some were linked to 

biophysical constrains, methodological limitations or evolutionary variations, e.g. protein 

secondary structure formation are controlled by long-range interactions [75], and by the 

environment [76], exact sequence fragments can be found in helices as in sheets (namely 

chameleon sequences [77], a property that could make the prediction more complex), and 

protein structure can be constrained in crystals [78]. Another point was that proteins are 

dynamical flexible macromolecules, the local protein conformation changes during proteins’ 

lifetime [6, 39, 79], often with links to their functions [80-83]. 
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PSSPs were assessed at Critical Assessment of Methods of Protein Structure Prediction 

(CASP), but were dropped after CASP 4. As noted by Moult and colleagues [27]: “It is likely 

that these methods are as close to accurate as they will ever be, given that secondary structure 

is partially determined by tertiary factors. Very small improvements continue to be made but 

probably only as a consequence of increased sequence database size.” Nonetheless, PSSPs are 

are still particularly used today. For instance, de novo protein structure prediction, protein 

structural classification, or fold recognition approaches often used PSSP [22, 24, 25, 30, 84-

86]. Following our analysis of protein dynamics behaviours [6, 39, 41], a logical and intuitive 

question rose: ‘Is the prediction of a given secondary state easier when the residue is in a 

rigid region, while a flexible region has less constraints and so information to predict it?’ 

Two points were important for this study: (i) the choices of PSSPs and (ii) the information for 

protein dynamics.  

Concerning the first point, at least dozens of methods have been published [30] and the 

choices could be easily criticized. It was dictated by simplicity of installation and usage, a 

good number of papers’ citations, and also author’s personal experience. PSIPRED was quite 

intuitive as it was one of the most famous approaches, while SSpro was easy to use and also 

highly recognized and efficient (Q3 of 83.6% and 81.2%, respectively, see Table 1). 

Moreover, PSIPRED proposed a prediction confidence index that was highly pertinent and 

robust (see Figure 1). 

Concerning the second point, different options could be considered, experimental ones 

such as Nuclear Magnetic Resonance (NMR) [87], and/or computational ones with Normal 

Mode Analysis [88] or the usage of server for fast modelling of protein structure flexibility, 

e.g. CABS-flex [89, 90]. As for the previous criteria, the choice of protein X-ray structures 

and molecular dynamics was partly personal. It was classical and recognized, but also had 

shown interesting correlations with previously presented approaches [91]. It seemed logical to 
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use this protein structure dataset [6, 39, 41]. 

This study underlined that more stable was the assignment of secondary structure better 

was the prediction (see Figure 2). For instance, the PSIPRED Q3 accuracy of the residues 

always assigned to the same secondary structure during all the simulations (100%) equalled to 

93.8% while it drastically dropped to 34.1% when the initial assignment was conserved less 

than 10% of the times. This strong relationship was found in the light of MD classes, but also 

with CIndex classes, using experimental B-factors, and computational RMSf, relative 

accessibility and Neq. For instance, analysis of true and false prediction showed that the 

highest normalized B-factors and normalized RMSf values have poorest prediction rates. 

The link between protein dynamics and protein secondary structure prediction was 

direct. Hence, using the most observed secondary structure assigned state as new assignment 

(corresponding to a change for 5.4% of the residues) provides an increase of Q3 value from 

83.6% to 84.1% (see Table 2). It mainly benefited to residues originally associated to coil 

regions that are now considered as helical regions (more than half of the cases). This last 

result underlined the interest to take into account protein flexibility [39, 92, 93] both in the 

evaluation, but also the assignment [94]. It must be noticed that these tendencies were limited 

to the 3-states prediction. Indeed, the 8-states prediction was characterized (i) by two non-

predicted (and rare) states, namely π-helix [7] and β-bridge [13], (ii) the 310 helix, turns and 

bends [9] prediction did not gain by using MD results, being biased to prediction of α-helix 

for the two first and coil for the last one (data not shown). It could also underline the 

potentiality of improvement for these more complex predictions. 

Interestingly, the only case of a change in the assignment from extended to helical 

regions was a small region of a Plasmodium falciparum lactate dehydrogenase. The β-strands 

analysed with DSSP were short and highly twisted. Using STRIDE [95] software to assign, a 

methodology highly related to DSSP (i.e. 95% of identical assignment [72]), the region was 
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considered as coil not β-strands. Indeed, secondary structure assignment methodologies were 

not always optimal, and divergences between different approaches were common [7, 14, 71, 

96-98]. 

This study showed that the use of flexibility and/or dynamics could be an interesting 

addition to the analyses of proteins as (i) it had direct implication in the quality of the 

predictions, and (ii) that further improvements could be made. It provided interesting insight 

for potential use of secondary structure predictors to spot flexible regions in the protein. 

These analyses would need to distinguish between wrong prediction and flexible properties, 

probably using confidence index values in a first step.   

It also underlined the possibility to evaluate, taking into account the flexibility / 

dynamics of proteins, the prediction rates of PSSPs. It also provided the idea of including this 

notion of dynamics directly in predictive methods, whether for PSSPs, but also other 

methodologies based on them, such as de novo approaches. Most the approaches have tried to 

improve the methodologies, but the information used was often similar to the one used in 

PHD near 30 years ago [21]. It also underlined that evolutionary information was able to 

provide information about the local protein dynamics, and partially explained why no 

substantial improvements in the field of protein secondary structure prediction have been 

reported during the last two decades. 
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Legends 

 
Figure 1. Prediction rate per confidence index values for PSIPRED. Is given per confidence 
index value, the Q3 in black, the prediction rate of α-helix in red, of β-sheet in brown and coil 
in blue. The occurrence of each confidence index value is provided as histogram. 
 
Figure 2. Prediction rate per MD class for PSIPRED. Is given per MD class, the Q3 in black, 
the prediction rate of α-helix in red, of β-sheet in brown and coil in blue. The occurrence of 
each MD class is provided as histogram. 
 
Figure 3. Analyses of PSIPRED prediction. For each classes of confidence index (CI) is given 
the mean and median values of (A) normalized B-factors (nBfactors), (B) normalized RMSf 
(nRMSf), (C) relative accessibility (rSA), and (D) Neq. Black lines are the mean values, red 
lines are the median values, is also provided the corresponding values for true and false 
prediction, in grey mean true prediction, in brown mean false prediction, in orange median 
true prediction, and in pink median false prediction. 
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(a) 

PSIPRED          DSSP              H             C                E 

H 35.8 80.3 18.4 1.3 

C 39.7 4.5 88.3 7.2 

E 24.5 0.77 18.29 80.9 

Q3 83.6 

inad. 0.64 

 

 

(b) 

SSpro3          DSSP              H             C                E 

H 35.5 84.5 13.6 1.8 

C 39.0 8.3 82.5 9.2 

E 25.5 2.9 22.6 74.4 

Q3 81.2 

inad. 1.4 

 

(c) 

SSpro8to3          DSSP              H             C                E 

H 35.5 86.2 10.9 2.8 

C 39.0 10.5 75.8 13.7 

E 25.5 2.9 15.9 81.2 

Q3 80.8 

inad. 1.7 

 

 

Table 1. Secondary structure prediction assessment. (a) PSIPRED, (b) SSpro3 and (c) 

SSpro8to3. SSpro3 and SSpro8 are used without the help of homologous structures. Is 

provided the corresponding frequency as assigned by DSSP and the confusion matrix between 

observed and predicted secondary structures. Finally is given the global prediction rate Q3 and 

percentage of highly inadequate prediction (named inad. for helix residue predicted as sheet 

and inversely) 

 

 



 

 

DSSP MD             H            C               E 

H 33.1 84.0 14.9 1.1 

C 42.7 6.3 86.1 7.6 

E 24.2 0.7 18.4 80.8 

Q3 84.1 

inad. 0.54 

 

Table 2. Secondary structure prediction when the assignment is taken as the most frequent 

ones observed during MD simulations. See Table 1 for legend. 

 

 






