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Highlights 20 

• A method is proposed to map seagrass cover in exposed intertidal meadows. 21 

• The method can be applied to seagrass meadows along the northwest Atlantic coast.   22 

• Sentinel-2-derived seagrass percent cover was mapped with an uncertainty of 14%.  23 

• Due to Sentinel-2 revisit time, it was possible to describe the seasonal cycle.  24 
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Abstract 26 

Accurate habitat mapping methods are urgently required for the monitoring, conservation, and 27 

management of blue carbon ecosystems and their associated services. This study focuses on 28 

exposed intertidal seagrass meadows, which play a major role in the functioning of nearshore 29 

ecosystems. Using Sentinel-2 (S2) data, we demonstrate that satellite remote sensing can be 30 

used to map seagrass percent cover (SPC) and leaf biomass (SB), and to characterize its 31 

seasonal dynamics. In situ radiometric and biological data were acquired from three intertidal 32 

meadows of Zostera noltei along the European Atlantic coast in the summers of 2018 and 33 

2019. This information allowed algorithms to estimate SPC and SB from a vegetation index 34 

to be developed and assessed. Importantly, a single SPC algorithm could consistently be used 35 

to study Z. noltei-dominated meadows at several sites along the European Atlantic coast. To 36 

analyze the seagrass seasonal cycle and to select images corresponding to its maximal 37 

development, a two-year S2 dataset was acquired for a French study site in Bourgneuf Bay. 38 

The potential of S2 to characterize the Z. noltei seasonal cycle was demonstrated for exposed 39 

intertidal meadows. The SPC map that best represented seagrass growth annual maximum 40 

was validated using in situ measurements, resulting in a root mean square difference of 14%. 41 

The SPC and SB maps displayed a patchy distribution, influenced by emersion time, mudflat 42 

topology, and seagrass growth pattern. The ability of S2 to measure the surface area of 43 

different classes of seagrass cover was investigated, and surface metrics based on seagrass 44 

areas with SPC ≥ 50% and SPC ≥ 80% were computed to estimate the interannual variation in 45 

the areal extent of the meadow. Due to the high spatial resolution (pixel size of 10 m), 46 

frequent revisit time (≤ 5 days), and long-term objective of the S2 mission, S2-derived 47 

seagrass time-series are expected to contribute to current coastal ecosystem management, 48 

such as the European Water Framework Directive, but to also guide future adaptation plans to 49 
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face global change in coastal areas. Finally, recommendations for future intertidal seagrass 50 

studies are proposed. 51 

 52 

Keywords: Zostera noltei; seasonal cycle; Earth Observation; Water Framework Directive; 53 

mudflats. 54 

 55 

1. Introduction 56 

Blue carbon ecosystems, such as seagrass meadows, have the capacity to sequester large 57 

amounts of carbon, surpassing even highly productive terrestrial ecosystems, such as tropical 58 

forests (McRoy and McMillan, 1977; Krause-Jensen et al., 2018; Saderne et al., 2019). In 59 

economic terms, the seagrass contribution to carbon sequestration has been estimated to be 60 

394 US$/ha/yr (Dewsbury et al., 2016). However, the local economic value of this ecosystem 61 

service can vary widely, as it is site-specific (Nordlund et al., 2018). Seagrass meadows also 62 

provide several other ecosystem services worldwide, such as sediment stabilization, wave 63 

energy reduction, regulation of nutrient cycles and water turbidity, and the supply of habitat, 64 

refuge, food, and nursery to a variety of faunal species (Nordlund et al., 2016; Dewsbury et 65 

al., 2016). For instance, nurseries provided by seagrass ecosystems are associated with 66 

approximately 20% of the main fisheries in the world, and this service has been valued at 1.8 67 

million US$/yr (Unsworth et al., 2018; Dewsbury et al., 2016). The overall economic value of 68 

seagrass meadow ecosystems has been estimated to be 34,000 US$/ha/yr. However, many 69 

gaps in the seagrass values used in such estimates remain (Costanza et al., 1997; Barbier et 70 

al., 2011; Dewsbury et al. 2016 ). Because of the services they provide, seagrass meadows are 71 

considered to be indicators of the health of the coastal ocean (Borum and Sand-jensen, 2019; 72 

Duarte, 1995). Seagrass ecosystems are vulnerable to natural and anthropogenic threats, 73 

including impacts generated in adjacent marine and terrestrial ecosystems, which are 74 
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responsible for the worldwide reduction and fragmentation of these valuable habitats. Such 75 

impacts include disease, natural disasters, nearshore urbanization and coastal development, 76 

dredging, reduction in water quality, introduction of non-native species, thermal stress, 77 

climate change, sediment contamination, and sea level rise (Duffy et al., 2019; Lin et al., 78 

2018; Orth et al., 2006; Phinn et al., 2018a; Soissons et al., 2018; Valle et al., 2014; Waycott 79 

et al., 2009, 2005).  80 

In order to establish a reference baseline of seagrass status, and to efficiently monitor, 81 

manage, and protect seagrass ecosystems, detailed knowledge of their worldwide spatial 82 

distribution and temporal dynamics is needed, in terms of percent cover, biomass, and 83 

primary production (Unsworth et al., 2019; Waycott et al., 2005; Hossain et al., 2015). 84 

However, mapping seagrass distribution is very challenging due to its widespread and 85 

dynamic nature. Large uncertainties therefore remain in global estimates of seagrass cover, 86 

with estimates of total area ranging ~7 fold, from 15 to 100 Mha (Short et al., 2007; Pendleton 87 

et al., 2012; Nordlund et al., 2018; Sani et al., 2019; Duffy et al., 2019). In particular, many 88 

regions predicted to support vast meadows are still uncharted. Obtaining and maintaining up-89 

to-date information on seagrass distribution has been identified as one of the main challenges 90 

for seagrass conservation (Unsworth et al., 2019).   91 

Since the 1990s, remote sensing has been proven to be an efficient, synoptic, and cost-92 

effective tool to monitor and map seagrass (Calleja et al., 2017; Ferguson and Korfmacher, 93 

1997; Hossain et al., 2015; Kutser et al., 2020; Lyons et al., 2013; Mumby and Harborne, 94 

1999; Roelfsema et al., 2014; Ward et al., 2003). Since the launch of the Landsat mission, 95 

seagrass mapping has benefited from an uninterrupted increase in satellite data quality, 96 

computing capability, and integration with in situ measurements, which together have boosted 97 

the use of remote sensing data for seagrass studies (Dekker et al., 2005). The use of remote 98 

sensing techniques is more challenging for seagrass landscapes than for terrestrial ones, due in 99 
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part to differences in spatial extent, which is usually much smaller for seagrass habitats. 100 

Compared to terrestrial areas, the spatial distribution of seagrass meadows is generally 101 

restricted to narrow and fragmented areas stretching along the coast. This type of spatial 102 

distribution limits the utility of medium resolution satellites (spatial resolution > 250 m) for 103 

seagrass mapping, as the seagrass signal can be masked by intra-pixel mixtures with other 104 

cover types. However, this is less of an issue for high spatial resolution remote sensing (≤ 10 105 

m), which enables small-scale features to be detected (Hedley et al., 2016; Kutser et al., 106 

2020). In this case, the main issue is instead obtaining enough suitable images to estimate 107 

seagrass dynamics, as the satellite revisit time may be insufficient, with cloud cover further 108 

reducing the number of exploitable images (Hedley et al., 2016; Hestir et al., 2015; Kovacs et 109 

al., 2018). Additional limitations are expected for intertidal seagrass remote sensing, given 110 

that even a small layer of water overlying the seagrass can introduce noise into the satellite 111 

data, and the observation of the meadow can even be impeded below turbid waters. Due to 112 

these issues, previous remote sensing studies of intertidal vegetation have been limited to the 113 

use of either high spatial/low temporal resolution data, such as Worldview, Pléiades, SPOT, 114 

or Landsat missions (Barillé et al., 2010; Echappé et al., 2018; Wang et al., 2018), or to high 115 

temporal/coarse spatial resolution data, such as MODIS (van der Wal et al., 2010; 116 

Vanhellemont, 2009). However, the launch of the first Sentinel-2 (S2) satellite in 2015 by the 117 

European Space Agency (ESA) enables new possibilities. With a constellation of twin 118 

satellites (S2A and S2B), the S2 mission now offers an unprecedented combination of high 119 

spatial and temporal resolutions at no-cost, suitable for seagrass mapping, as recently 120 

demonstrated in shallow water environments (Hedley et al., 2018; Traganos et al., 2018; 121 

Traganos and Reinartz, 2018).  122 

In comparison with subtidal meadows, intertidal seagrass ecosystems remain understudied 123 

(Hossain et al., 2015; Phinn et al., 2018b). Recent remote sensing studies of intertidal seagrass 124 
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have been based upon classification and machine learning techniques (e.g., Calleja et al., 125 

2017; Duffy et al 2018). Once seagrass areas are identified, quantitative information on cover 126 

and biomass distribution is still needed to study spatio-temporal seagrass dynamics and to 127 

model their carbon assimilation. In the present study, we explored the potential of S2 to map 128 

biological indicators of intertidal seagrass meadows and to characterize their seasonal 129 

dynamics. The first objective was therefore to develop and validate algorithms to quantify 130 

seagrass cover and biomass of an intertidal meadow dominated by Zostera noltei observed 131 

during emersion. As the algorithm was principally developed for a North Atlantic case study 132 

site, we also investigated the geographic robustness of the percent cover determination for 133 

two other intertidal ecosystems located along the European Atlantic coast. The second 134 

objective was then to apply the algorithms to S2 imagery to provide high spatial resolution 135 

maps of seagrass percent cover and leaf biomass that robustly represent seagrass distribution 136 

at its maximal seasonal development. Based on our results, we have provided some practical 137 

recommendations for seagrass remote sensing in intertidal areas, toward a consistent and 138 

rational framework for further studies on seagrass distribution, dynamics, and trends. 139 

 140 

2. Materials and Methods 141 

2.1. Study sites  142 

Zostera noltei generally occupies large extents of the intertidal zone. Its distribution includes 143 

the Mediterranean, temperate North Atlantic, and North Pacific ecoregions (Short et al., 144 

2007). Our three study sites were located along the European North Atlantic coast, from 36 to 145 

47° N. From north to south, they were: (i) Bourgneuf Bay (France), (ii) Marennes-Oléron Bay 146 

(France), and (iii) Cadiz Bay (Spain) (Figure 1a). Bourgneuf Bay was the main study site, 147 

with Marennes-Oléron and Cadiz Bays used only for algorithm evaluation. 148 
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Bourgneuf Bay (2°05′W, 47°00′N) is located along the French Atlantic coast, south of the 149 

Loire Estuary (Figure 1e). It is a semi-diurnal macrotidal bay, with a maximal amplitude of 6 150 

m. It occupies a surface area of 340 km2, with one third corresponding to a large intertidal 151 

zone (Barillé et al., 2010). In this bay, turbidity is usually so high that benthic vegetation is 152 

not visible from above water (Dutertre et al., 2009; Gernez et al., 2014). Large monospecific 153 

Zostera noltei seagrass beds are located in the southwestern part of the bay (Figure 1b-e), 154 

where the coastline is protected from the Atlantic swell by the Noirmoutier Island and a rocky 155 

barrier. Beside seagrass, other types of benthic coverage can also be found, although to lesser 156 

extents: (i) bare sand and/or mud, (ii) benthic microalgae, and (iii) scattered patches of 157 

drifting macroalgae brought by waves and not fixed to the substrate.  158 

Marennes-Oléron Bay (1°13′W, 45°56′N) is also located along the French Atlantic coast. It is 159 

larger than Bourgneuf Bay, but has similar characteristics in terms of Z. noltei dominance and 160 

semi-diurnal tidal amplitude. The seagrass meadow, which covers an extensive area 161 

approximately 15 km long and 1.5 km wide, is part of a Natura 2000 protected area (Lebreton 162 

et al., 2009). As in Bourgneuf Bay, extensive areas of oyster farming activity are located near 163 

the seagrass meadow.  164 

Cadiz Bay (6°15′W, 36°28′N) is located along the southern Atlantic coast of Spain. The 165 

characteristics of the Z. noltei meadow in this bay are distinct from those of the French sites, 166 

in terms of climate, tidal context, turbidity, and biodiversity. The intertidal area is smaller 167 

than the sites along the French Atlantic coast, with a semi-diurnal tidal amplitude of 3.6 m, 168 

thus limiting the spatial extent of the seagrass beds. Even when Z. noltei dominates the 169 

meadow, some patches of Caulerpa prolifera and sediment with calcareous algae can be 170 

found. Unlike the French sites, the distribution of Z. noltei in Cadiz Bay is fragmented.   171 
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 172 

Figure 1.  173 

 174 

2.2. In situ measurements  175 

Field sampling was always performed during low tide. For each study site, seagrass percent 176 

cover (SPC) was determined in conjunction with radiometric measurements for algorithm 177 

development and evaluation. In Bourgneuf Bay, seagrass leaf biomass (SB) measurements 178 

were additionally performed. Data collection and processing are summarized in Figure 2, and 179 

detailed in the following subsections.  180 
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 181 

Figure 2. 182 

 183 

2.2.1. In situ seagrass percent cover and biomass measurements 184 

A total of 131 stations ranging from 0 (bare sediment) to 100% seagrass cover from the three 185 

study sites were randomly sampled (Table 1). At each station, SPC over a 20 cm-diameter 186 

circle, corresponding to the core area used for biomass sampling (Water Framework Directive 187 

-WFD, 2000/60/EC-) (Figure 3a), was measured. For each core surface area, a nadir-viewing 188 
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photograph of the core surface was acquired, from which seagrass percent cover (SPCcores) 189 

was computed using the ImageJ software (Diaz-Pulido et al., 2011). To estimate seagrass leaf 190 

biomass (SBcores), the sediment below the core area was sampled to a depth of approximately 191 

20 cm. Each sample was sieved with a 1 mm mesh and the seagrass leaves were weighted 192 

after drying for 48h at 60°C (Bargain et al., 2012; Barillé et al., 2010).  193 

Seagrass cover measurements were also performed for satellite retrieval validation along three 194 

1 km transects in Bourgneuf Bay, similar to the sampling designs of previous match-up 195 

exercises (Phinn et al., 2008; Lyons et al., 2011; Roelfsema et al., 2014). For each transect, 196 

sampling stations were separated by at least 40 m to avoid autocorrelation between adjacent 197 

stations. The stations corresponded to the center of S2 pixels and were geolocated at 198 

submetric accuracy using a Trimble® Geo 7 dGPS. For each pixel, five 0.25 m2 squares were 199 

positioned to form a cross within an area of approximately 25 m2 so as to take spatial 200 

patchiness into account (Burdick and Kendrick, 2001). For each square, SPC was estimated 201 

from a nadir-viewing photograph using the ImageJ software. The percent cover of each 202 

station was then computed as the average of the five squares (SPCinsitu). Unlike percent cover, 203 

the biomass map was not validated using in situ measurements, because the spatial scale 204 

(several 100 m2 pixels) rendered the destructive in situ measurement method unviable. 205 

 206 

Table 1. 207 
  Number of samples 

Site (year) Dates Rinsitu SPCcores 

 

SBcores SPCinsitu 

Bourgneuf Bay (2018) Sept. 14, 26, 28 20 20 20 69 

Bourgneuf Bay (2019) Sept. 1, 13, 18 59 59 23 79 

Marennes-Oléron (2019) Sept. 3 28 28 - - 

Cadiz Bay (2019) Sept. 29 24 24 - - 

Total  131 131 43 148 

 208 
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2.2.2. In situ radiometry 209 

The sky was cloud-free during the acquisition of all radiometric data, and all measurements 210 

were performed avoiding shadows over the targets. The upwelling radiance (Lcore, W m-2 sr-1 211 

nm-1) was measured at nadir from 350 to 2500 nm, at the center of the core surface, using an 212 

Analyzed Spectral Device field portable spectroradiometer (ASD Fieldspec). The 213 

downwelling radiance (Lreference, W m-2 sr-1 nm-1) diffusively reflected by a Spectralon white 214 

reference was also measured. The reflectance of the seagrass cover (Rinsitu, dimensionless) was 215 

estimated following Equation 1 (Milton et al., 2007). 216 

 217 

������� = �	
��
�������	�

                                                   Eq. 1 218 

 219 

The final dataset consisted of reflectance spectra spanning a range of SPC, from 0 to 100%.  220 

As the field work was performed within four-hour periods (corresponding to +/- 2 hours of 221 

low tide) and at different latitudes, the sun elevation and viewing geometry varied within the 222 

dataset. As a result, the raw reflectance spectra exhibited a large range of variability, due 223 

either to differences in seagrass cover and/or in acquisition geometry. In order to minimize the 224 

uncertainty caused by differences in measurement conditions, a multiplicative scatter 225 

correction (MSC; Isaksson and Kowalski, 1993) previously applied to seagrass reflectance 226 

data (Fyfe 2003) was adapted for application to our in situ datasets (see appendix for more 227 

details). Once corrected, the corresponding reflectance spectra were degraded to the spectral 228 

resolution of Sentinel-2A using its spectral response function (SRF; ESA, 2015).  229 

 230 

2.2.3. Selection of the vegetation index 231 

Many different vegetation indices (VIs) have previously been applied to multispectral remote 232 

sensing images to map intertidal seagrass beds (Bargain et al., 2012). In the present study, 233 
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several VIs suitable for S2 were tested using the Bourgneuf Bay datasets. An evaluation was 234 

performed for each of the following: normalized difference vegetation index (NDVI; Tucker, 235 

1979), normalized difference aquatic vegetation index (NDAVI; Villa et al., 2014, 2013), 236 

water adjusted vegetation index (WAVI; Villa et al., 2014), soil-adjusted vegetation index 237 

(SAVI; Huete, 1988), atmospherically resistant vegetation index (ARVI; Kaufman and Tanré, 238 

1992), modified narrow-band NDVI (mNDVI; Bargain et al, 2012), and modified normalized 239 

difference (mND; Sims and Gamon, 2002).  240 

We evaluated the robustness of each index in terms of differences in the VI vs. SPCcores 241 

relationship between 2018 and 2019, using an analysis of covariance (ANCOVA) (Table A1). 242 

In all cases, a linear regression was obtained. Only those VIs for which significant differences 243 

in the slope and intercept between 2018 and 2019 were not found were selected. We then 244 

merged the Bourgneuf Bay 2018 and 2019 datasets, and assessed the performance of the 245 

linear regression using the coefficient of determination (R2) and the root mean squared 246 

difference (RMSD). The best performance was achieved by the NDVI(665,842), 247 

NDVI(705,842), NDAVI(490,842), and ARVI(490,665,842) (Table A1). Besides its good 248 

performance, the NDVI(665,842) (hereafter NDVIcores) was finally selected for several 249 

reasons. First, it has been widely used and could be applied to most historical and current 250 

satellite sensors, thus allowing consistent long-term studies. Second, S2 data has a 10 m pixel 251 

size at 665 and 842 nm. Seagrass maps computed using other S2 spectral bands could be 252 

limited by a larger pixel size (20 or 60 m), thus decreasing the accuracy of the seagrass maps.  253 

 254 

2.2.4. Development and evaluation of seagrass algorithms 255 

Algorithm development and evaluation was performed over a large range of NDVIcores (0.12 – 256 

0.77), SPC (0 – 100%), and SB (0 – 175.18 g DW m-2) using the Bourgneuf Bay merged 257 

dataset (Figure 3). The dataset was randomly split into two groups: one for algorithm 258 
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development (60% of data), and one for algorithm evaluation (the remaining 40%). SPC data 259 

from the two other sites were also used for algorithm evaluation, and its performance was 260 

then evaluated for the three sites independently. 261 

While a linear relationship was found between NDVIcores and SPCcores (Figure 3b), a non-262 

linear relationship was found between NDVIcores and SBcores (Figure 3c). An exponential fit 263 

(i.e., NDVI����� = � ∙ �1 − ���� !	
��"#$%&&) was obtained (R2 = 0.92; p < 0.001), but 264 

saturation occurred for samples with NDVIcores ≥ 0.65. We therefore decided to develop the 265 

SB algorithm using only samples within the range 0.20 ≤ NDVIcores ≤ 0.65, using a linear 266 

model.  267 

 268 

Figure 3. 269 

 270 

2.3. Satellite data   271 

2.3.1. S2 image acquisition and processing  272 

Geolocated Level-2A Sentinel-2A/B images of Bourgneuf Bay were downloaded from the 273 

European Space Agency (ESA) data portal (https://scihub.copernicus.eu). Level-2A data have 274 
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already been atmospherically-corrected using the Sen2Cor processor algorithm (Main-Knorn 275 

et al., 2017), and were distributed as bottom-of-atmosphere reflectance (Rsat-S2, 276 

dimensionless). We selected only cloud- and shadow-free low tide images (water level at the 277 

harbour of Noirmoutier Island, L'Herbaudière < 3.20 m of the Lowest Astronomical Tide 278 

(LAT)), reducing the final S2 dataset to 42 images (see Table A2 for details). All satellite data 279 

processing was performed using the Sentinel Application Platform (SNAP; http://step.esa.int). 280 

The atmospheric correction performance was evaluated using two S2 scenes and concomitant 281 

in situ reflectance of three types of targets: bare sediment, full seagrass cover, and mixed 282 

substrate. The latter included substrates with bare sediment, seagrass, and/or macroalgae. 283 

Different strategies were used for the different target types to obtain the best possible match-284 

ups. For homogeneous areas, namely the areas of bare sediment and dense seagrass cover, the 285 

average of the Rinsitu measurements were compared with the average of several pixels 286 

identified as these substrates in the field. For validation over mixed-cover areas, three pixels 287 

coinciding with the coordinates of 20 Rinsitu samples were extracted, and the mean reflectance 288 

of those pixels was compared with the mean of the in situ measurements. 289 

NDVIS2 was computed for the entire S2 dataset using the bands centred at 665 and 842 nm. 290 

To select only the intertidal zone, we applied a geographical mask based on the bathymetric 291 

map provided by the French Naval Hydrographic and Oceanographic Service (SHOM). The 292 

lower limit of the selected area was set to 0 m LAT, while the uppermost limit was restricted 293 

to 4.5 m LAT (Barillé et al., 2010). Areas of rocky substrate covered by macroalgae near 294 

seagrass beds were excluded based on Geographical Information System (GIS) data (Barillé 295 

et al., 2010). Finally, pixels outside the 0.12 – 0.80 NDVIS2 range were masked. The lower 296 

boundary corresponded to either bare sediment (Figure 3b) or contamination by a layer of 297 

water. The upper boundary was estimated from our radiometric measurements as the 298 

saturation of NDVIcores over dense seagrass cover, plus five percent, which was added to 299 
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create the upper biomass limit mask to account for very dense biomass that can occur in the 300 

field, but which was not included in our dataset. According to Barillé et al. (2010), values 301 

higher than 0.8 can be assumed not to correspond to seagrass, but to the accumulation of 302 

drifted macroalgae. All SPC and SB maps were reprojected to the WGS84 UTM30N 303 

coordinate reference system. 304 

 305 

2.3.2. Assessing seasonal variability for optimal S2 seagrass mapping 306 

In order to select the dates most representative of the annual growth peak, the seasonal 307 

variability of NDVI was investigated using the 42 selected S2 images. For each image, 308 

clusters of 3 x 3 pixels (900 m2) were selected from within the seagrass meadow using the 309 

following criteria: (i) summer NDVIS2 > 0.67; (ii) located within a homogeneous area in terms 310 

of NDVIS2; and (iii) not biased by different tidal heights (Figure A2). According to these 311 

criteria, only seagrass-dominated pixels with high summer biomass were selected, and pixels 312 

covered by a layer of water during satellite acquisition were avoided. The median NDVIS2 and 313 

the interquartile range (IQR) were computed from the clusters of each image. The NDVIS2 314 

time-series was used to assess seasonal seagrass variability in 2018 and in 2019.  315 

In order to compare seasonal seagrass changes with those of the background sediment, we 316 

also extracted reflectance from bare sediment pixels. Ten 3 x 3 pixel clusters were selected 317 

based on the following criteria: (i) summer NDVIS2 < 0.2; (ii) located in homogeneous areas 318 

in terms of NDVIS2; and (iii) not biased by different tidal heights (Figure A2). The NDVIS2 319 

values from seagrass pixels were fit to a Gaussian model to characterize the seagrass growing 320 

season and to detect the annual maximum. A criterion of 10% change from the baseline value 321 

(i.e., the median of the background pixels in the spring) was used to identify the timing of 322 

increasing and decreasing phases (Jönsson and Eklundh, 2004). 323 

 324 
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2.3.4. Comparing S2 with very high-resolution seagrass mapping  325 

To evaluate the representativeness of the S2 pixel size, one very high-resolution WorldView-326 

02 (WV02, pixel size 2 m) scene was acquired over Bourgneuf Bay during low tide for 327 

September 27, 2018, and was compared with the S2 image acquired for September 26, 2018. 328 

The WV02 scene was delivered orthorectified as top-of-atmosphere radiance. The surface 329 

reflectance (Rsat-WV02) was obtained using the Fast Line-of-sight Atmospheric Analysis of 330 

Hypercubes (FLAASH; Adler-Golden et al., 1998; Anderson et al., 2002) atmospheric 331 

correction, available in ENVI 5.0 (Harris Geospatial). As the image was obtained during very 332 

clear sky conditions, the atmosphere was modelled using a US standard atmospheric model, 333 

with a visibility of 100 km, and a maritime aerosol model that considers the influence of both 334 

oceanic winds and the presence of aerosols from terrestrial origins. The performance of the 335 

atmospheric correction was assessed using a similar procedure as for S2.  336 

NDVI was computed from Rsat-WV02 using the bands centered at 660 and 835 nm (NDVIWV02). 337 

In order to take the spectral differences between WV02 and S2 into account, NDVIWV02 was 338 

recalibrated to NDVIS2 using our in situ hyperspectral library of seagrass reflectance spectra 339 

and the SRFs of both sensors (Equation 2). 340 

 341 

NDVI'()*+���,-�.�,��/ = 1.0239 ∙ NDVI'()*  + 0.0089                      Eq. 2 342 

  343 

NDVIS2 and NDVIWV02-recalibrated were compared over 100 S2 pixels randomly distributed 344 

within the seagrass meadow. For each S2 pixel, a cluster of 5 x 5 WV02 pixels were extracted 345 

from the same area (100 m2). A seagrass percent cover (SPCWV02) map was then computed 346 

from NDVIWV02-recalibrated using the S2 algorithm and masks. Both WV02- and S2-derived 347 

seagrass area were compared in order to assess the impact of small-scale spatial variability on 348 
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seagrass maps. The comparison was done sequentially for areas covered by an increasing SPC 349 

from sparse (20 – 30%) to dense cover (> 90%). 350 

 351 

2.4. Statistics for algorithm performance evaluation and map validation 352 

Algorithm performance, in situ and satellite product match-ups, and comparison between S2 353 

and WV02 products were evaluated using the regression coefficient of determination (R2), 354 

slope of the linear regression, RMSD (Equation 3), bias (Equation 4), and mean absolute 355 

difference (MAD; Equation 5), where N is the number of observations, and x corresponds to 356 

modelled or observed data. All statistics were computed using the MATLAB software. 357 

 358 

RMSD =  :∑ �<=
>�??�>,A+<B�"BCD,A %E
F+G

FHIG                                     Eq. 3 359 

 360 

bias = ∑ �<=
>�??�>,A+<B�"BCD,A %
F

FHIG                                        Eq. 4 361 

 362 

MAD = ∑ O<=
>�??�>,A+<B�"BCD,AO 
F

FHIG                                          Eq. 5 363 

 364 

3. Results 365 

3.1. Percent cover and biomass algorithm development 366 

Both seagrass percent cover and biomass were modelled from NDVI (Figure 4) using a linear 367 

model (Equation 6; R2 = 0.98; p < 0.001, and Equation 7; R2 = 0.83, p < 0.001). In order to 368 

avoid NDVI saturation, the biomass algorithm was limited to 0.20 ≤ NDVI ≤ 0.65, and pixels 369 

with NDVI > 0.65 were assumed to have at least 51.40 g DW m-2 of leaf biomass.  370 

 371 

SPC����� = 172.06 ∙ NDVI����� − 22.18                    Eq. 6 372 
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 373 

SB����� = 91.17 ∙ NDVI����� − 7.86;   for NDVI����� ≤ 0.65                       Eq. 7 374 

Figure 4. 375 

 376 

3.2. Evaluation of percent cover and biomass algorithm performance 377 

The performance of the SPC algorithm was assessed using the independent in situ datasets 378 

collected from three regions along the European Atlantic coast (Bourgneuf, Marennes-Oléron, 379 

and Cadiz Bays). SPCcores was predicted from NDVIcores with very good accuracy (RMSD < 380 

5%, R2 ≥ 0.98; Table 2). Performance was consistent across all sites, suggesting that the same 381 

algorithm can be used to seamlessly map seagrass cover over a large geographic range, from 382 

36°N (Cadiz Bay) to 47°N (Bourgneuf Bay). Quite good accuracy was also obtained for SB 383 

prediction (RMSD = 5.31 g DW m-2, R2 = 0.88; Table 2), despite the limited number (N =12) 384 

of samples available for evaluation corresponding to SBcores ≤ 51.4 g DW m-2.   385 

 386 

 387 

 388 

 389 

 390 
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Table 2. 391 

Parameter/Dataset R2 slope RMSD Bias MAD N 

SPC/Bourgneuf Bay (evaluation set) 0.98 1.00 4.94% 3.69% 3.69% 22 

SPC/Marennes-Oléron 0.99 1.06 3.73% -5.57% 5.71% 28 

SPC/Cadiz Bay 0.98 0.92 4.54% -4.03% 4.97% 24 

SB/Bourgneuf Bay (evaluation set) 0.88 0.74 5.31 g DW m-2 -1.54 g DW m-2 5.28 g DW m-2 12 

 392 

 393 

3.3. Satellite-based intertidal seagrass mapping 394 

3.3.1. Evaluation of atmospheric correction performance 395 

Our results suggest that the performance of the ESA standard atmospheric correction is 396 

sufficient for S2 studies of emerged intertidal seagrass meadows (Figure 5). The comparison 397 

of the spectral shape and amplitude between Rsat-S2 and Rinsitu showed good agreement, 398 

independent of the type of target (i.e., bare sediment, dense seagrass cover, or heterogeneous 399 

substrate; Figure 5a and b), with overall good accuracy (R2 = 0.971, p < 0.001, RMSD = 400 

0.011; Figure 5c). The remaining difference could be attributed to either small-scale spatial 401 

variability within a pixel, to field measurement uncertainties (related to, for instance, the time 402 

lapse between target and white reference measurements, or to the difference between the 403 

satellite instantaneous field-of view (IFOV) and the field measurement viewing angle), and/or 404 

to atmospheric correction uncertainties (Thome et al., 2003). Note that the use of a VI based 405 

on a band-ratio further minimizes any spectral bias between Rinsitu and Rsat-S2. Over the 406 

validation targets, the difference in NDVI between S2 and in situ measurements was on the 407 

order of 15%.  408 

 409 
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410 
Figure 5.  411 

 412 

For WV02, the FLAASH atmospheric correction systematically overestimated the amplitude 413 

of the reflectance over the three types of targets, despite preserving overall spectral shape 414 

(Figure 6). Note that, in addition to atmospheric correction and field measurement 415 

uncertainties, the difference in the date of S2 and WV02 data acquisition may also be 416 

responsible for the observed differences between the two products. The consistent 417 

overestimation of Rsat-WV02 in the red and NIR spectral bands resulted in an underestimation of 418 

the NDVI, by approximately 20%.  419 

 420 

 421 
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 422 

Figure 6. 423 

 424 

3.3.2. S2 characterization of the Z. noltei seasonal cycle 425 

In Bourgneuf Bay, the NDVIS2 exhibited a consistent seasonal cycle characterized by a late 426 

summer maximum and a winter minimum (Figure 7). Such a seasonal cycle was expected for 427 

this seagrass species in the temperate North Atlantic (Vermaat and Verhagen, 1996). The 428 

dataset combined S2 images from two different orbital cycles (#137 and #94) and two sensors 429 

(onboard S2A and S2B). We did not observe any significant difference between the orbits or 430 

between the sensors, suggesting that the S2 constellation is consistent enough to be combined 431 

to characterize the seasonal dynamics of intertidal seagrass meadows. We then applied a 432 

Gaussian model to the NDVIS2 time-series to better appraise the phenological cycle of Z. 433 

noltei in Bourgneuf Bay (dashed lines in Figure 7, with R2 = 0.93, p<0.001, and RMSD = 434 

0.054 for 2018; and R2 = 0.98, p<0.001, and RMSD= 0.028 for 2019). While the number of 435 

cloud-free acquisitions was consistently high throughout 2018, in 2019, no cloud-free S2 436 

acquisition was available during low tide after September 29. However, this limited March–437 

September date range seemed sufficient to reconstruct the seasonal cycle based on resulting 438 

the Gaussian fit. In both years, the growing season started in mid-May and ended in early-439 

December. The seagrass peak occurred on September 10 ± 3 days in 2018, and on September 440 

4 ± 3 days in 2019. The period of maximum growth was similar in both years, with NDVIS2 441 
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remaining within 5% of the maximum from August 22 – September 28 in 2018 and from 442 

August 14 – September 26 in 2019. Interestingly, the data dispersion was higher in terms of 443 

IQR during the increasing and decreasing phases than during the summer maximum, 444 

suggesting that the seagrass growth dynamics and decline are spatially heterogeneous within 445 

the meadow. 446 

The seasonal variation observed in the Bourgneuf Bay seagrass meadow was compared to that 447 

of reference pixels located outside the seagrass-covered area and identified as bare sediment 448 

during the summer field observations (black circles in Figure 7). In these background pixels, 449 

the annual NDVIS2 variation did not exceed 0.24, and was highest in the spring. Such a 450 

temporal pattern is consistent with the expected seasonal cycle of benthic microalgae in 451 

Bourgneuf Bay (Echappé et al., 2018). From winter to early spring, the NDVIS2 time-series of 452 

the seagrass meadow was similar to that of the background pixels, suggesting at least a 453 

substantial reduction, if not a complete loss, of the above-ground seagrass biomass in the 454 

winter. During this period, the NDVI was indeed below the detection limit of sparse seagrass 455 

cover, very likely corresponding to benthic diatoms (Barillé et al., 2010).  456 

 457 

 458 

Figure 7.   459 
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3.3.3. S2 maps of seagrass percent cover and biomass 460 

Based on our analysis of the seasonal cycle, the S2 scenes captured on September 14, 2018 461 

and September 16, 2019 were selected to compute the seagrass percent cover (SPCS2) and 462 

seagrass leaf biomass (SBS2) maps during the seagrass annual maximum. In situ SPC 463 

measurements available from during the annual peaks in 2018 and 2019 were used to validate 464 

the SPC maps. The match-ups showed satisfactory results (R2 = 0.79, p < 0.001, RMSD = 465 

14%, bias = -2.09%, and MAD = 10.45%; N = 64), and a linear regression with a slope of 466 

0.94, close to the 1:1 line (Figure 8), was obtained. Relatively limited deviation from this 467 

relationship was observed for high percent cover (> 80%), likely due to the spatial 468 

homogeneity of dense seagrass patches, whereas the patches of low and intermediate cover 469 

were more heterogeneous, thus displaying greater variability. Due to NDVI saturation at high 470 

seagrass biomass, it was not possible to estimate leaf biomass beyond a NDVI saturation 471 

threshold of 0.65. In the biomass maps presented in Figure 9, pixels with NDVIS2 > 0.65 were 472 

assigned to a class of leaf biomass ≥ 51.4 g DW m-2. 473 

 474 

 475 

Figure 8. 476 
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The S2 seagrass percent cover and biomass maps during the period of annual maximum 477 

growth in Bourgneuf Bay are shown in Figure 9. Seagrass distribution showed an elevational 478 

pattern, with a marked upper limit at the 4 m LAT isobath close to the shoreline, and a lower 479 

limit corresponding to the 2 m LAT isobath. The densest part of the meadow was observed 480 

above the 3 m LAT isobath. Superimposed upon the overall vertical zonation, the seagrass 481 

spatial distribution also exhibited several small-scale patterns. For example, areas of low SPC 482 

that orthogonally streaked the meadow were observed along the tidal channels (Figures 9 and 483 

10; see also photograph in Figure 1c for an in situ view).  484 

At a first glance, the overall spatial distribution of Z. noltei was more or less similar in 2018 485 

and 2019, with a small increase in the meadow-averaged SPC from one year to the next, from 486 

30.86 ± 29.95 to 33.43 ± 28.16% (non-parametric test on two paired samples = 1.2284e+10, p 487 

< 0.01), and in SB, from 19.37 ± 15.40 to 21.58 ± 14.87 g DW m-2 (non-parametric test on 488 

two paired samples = 1.2824e+10, p < 0.01). However, while the area of medium to high 489 

seagrass cover (SPC ≥ 50%) increased from 2018 (3.02 km2) to 2019 (3.38 km2), an opposite 490 

trend was observed in the areas of highest seagrass cover and biomass between the two years. 491 

For example, the area of densest meadow surface (SPC ≥ 80%) decreased from 1.28 to 0.68 492 

km2 between 2018 and 2019. Similarly, the surface area of biomass ≥ 51.4 g DW m-2 493 

decreased from 0.74 to 0.15 km2 between 2018 and 2019. Although investigating the causes 494 

underlying this interannual variability was beyond the scope of the present study, these 495 

detailed maps demonstrate the ability of S2 to quantitatively monitor spatio-temporal changes 496 

in seagrass distribution, enabling such investigation in future works.   497 

 498 
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 499 

Figure 9. 500 
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 501 

Figure 10. 502 

 503 

Besides providing valuable interannual observations, S2 also makes it possible to study the 504 

seasonal variability in seagrass spatial distribution. Selected examples of SPC maps are shown 505 

at different phases of the seasonal cycle (Figure 7) to illustrate the variations in spatial 506 

patterns observed throughout the year (Figure 11). A striking difference is observed between 507 

early spring (Figure 11a) and early summer (Figure 11b). This example illustrates the rapid 508 

dynamic of seagrass development, from a roughly bare surface to an established meadow 509 

covering 5.18 km2 (SPC ≥ 20%) three months later. Even if some areas displayed specific 510 
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temporal dynamics, an overall synchronicity prevailed in the establishment of the summer 511 

meadow. Then, while the meadow’s extension and spatial patterns were roughly the same 512 

from mid-July to the end of September, the density of the cover varied significantly 513 

throughout the summer period, with a clear SPC maximum in mid-September (Figure 11g-i). 514 

Even if the overall spatial structure did not significantly change from mid- to the end of 515 

September, a decline in SPC was already noticeable (mostly in the western part of the 516 

meadow), with a decrease in the densest areas (SPC > 50%), from 3.02 to 2.57 km2, within 517 

only two weeks (Figure 11c, d). The meadow then rapidly declined, and by mid-December the 518 

above-ground cover had almost completely disappeared in most parts of the meadow (Figure 519 

11e). While a more quantitative analysis of the yearly changes in seagrass spatial patterns (as 520 

done, for example, in Echappé et al., (2018) and Daggers et al., (2020) for 521 

microphytobenthos) is out of the scope of the present study, these selected examples 522 

nonetheless demonstrate the interest of spatial-rich and highly-resolute S2 time-series for 523 

macroscale studies of seagrass landscape dynamics. 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 
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 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

Figure 11.  560 
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3.3.4 Comparing S2 with very high-resolution seagrass mapping 561 

The S2-WV02 comparison showed an overall agreement (R2 = 0.78, N = 100, p< 0.001, 562 

RMSD = 0.073) despite underestimation by NDVIWV02-recalibrated (Figure 12a). While the NDVI 563 

underestimation was consistent with the WV02 reflectance overestimation (Figure 6), it could 564 

also be attributed to differences in viewing angles and/or spatial resolutions of the two 565 

sensors. The difference in NDVI also influenced the computation of seagrass cover, and 566 

associated surface area estimations. The SPCS2 areas were systematically larger than the 567 

SPCWV02 areas (Figure 12b). This overestimation was lower in dense areas (SPC ≥ 50%) than 568 

in sparse areas where the number of small and fragmented seagrass patches is expected to 569 

smooth out NDVIS2 due to the difference in spatial resolution (i.e. the same surface of 100 m2 570 

corresponds to 1 S2 pixel vs. 25 WV02 pixels).  571 

Despite the aforementioned differences, the spatial distribution of SPCS2 and SPCWV02 572 

presented similar patterns (Figure 13), diverging mainly in the detection of small-scale 573 

features such as narrow tidal channels, which were not detected by S2, and in noise level, 574 

which was higher for WV02 due to its higher spatial resolution. 575 

 576 

 577 

Figure 12. 578 
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 579 

Figure 13. 580 

 581 
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4. Discussion 582 

Describing the spatial distribution of seagrass meadows is important for the monitoring and 583 

management of this protected habitat. In the present study, we showed that S2 data can be 584 

used to describe the spatio-temporal dynamics of Zostera noltei intertidal meadows. Seagrass 585 

percent cover and leaf biomass were the two biological descriptors that were remotely-sensed, 586 

with strengths and limitations that will be discussed in the next sections.  587 

 588 

4.1. Seagrass percent cover and leaf biomass 589 

In this study, the ubiquitous NDVI was chosen from among different VIs to retrieve two 590 

biological descriptors of seagrass communities: percent cover and leaf biomass. The NDVI 591 

has been broadly demonstrated to be a good descriptor of vegetation dynamics for many types 592 

of ecosystems, including wetlands (e.g., Doughty and Cavanaugh, 2019; Echappé et al., 2018; 593 

Pettorelli et al., 2005; Prabhakara et al., 2015; Zoffoli et al., 2008). Previous works on 594 

intertidal seagrass remote sensing reported a quasi-linear relationship between NDVI and Z. 595 

noltei percent cover (Valle et al., 2015), supporting the SPC-NDVI relationship observed in 596 

our work. A linear regression between NDVI and percent cover was also observed for a 597 

variety of terrestrial crops (Prabhakara et al., 2015).  598 

The validation of our SPC algorithm suggests that the empirical SPC-NDVI relationship 599 

found in this work is intrinsic to Z. noltei, but independent of time and region, and thus 600 

applicable to other intertidal systems dominated by this species. The SPC maps were 601 

validated with in situ SPC measurements, with match-ups showing a RMSD of 14%. Errors in 602 

geolocation and intrapixel heterogeneity (such as the presence of puddles) may have 603 

contributed to the differences found between in situ and satellite data. The limitation of the 604 

equations proposed here to compute the biological descriptors is that they can only be applied 605 

with high accuracy during the summer maximum, and in meadows dominated by Z. noltei. 606 
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Seasonal changes in pigment concentration and composition have previously been described 607 

for Z. noltei (Bargain et al., 2013). These are expected to have an effect on the spectral 608 

response and, therefore, on the NDVI. Due to this, different relationships between seagrass 609 

biological descriptors and NDVI are expected in the spring and in the fall.  610 

The biomass descriptor was more difficult to develop for two reasons: first, it had a non-linear 611 

relationship with NDVI, but this saturation with increasing biomass was expected (Bargain et 612 

al., 2012). Secondly, we did not collect validation samples, which would be destructive (i.e., 613 

removing seagrass from large areas). The latter constraint may be partly overcome using 614 

unmanned aerial vehicles (UAV), which can acquire images with a spatial resolution on the 615 

order of centimeters (2-5 cm) (Duffy et al. 2018). Biomass could then be sampled from 616 

smaller surfaces, allowing map validation with a much more limited impact (Sani et al., 617 

2019). A different challenge for remote sensing techniques is the estimation of below-ground 618 

biomass (BGB), as reflectance only provides information on above-ground data. This is an 619 

important issue, since previous authors have pointed out that a significant proportion of 620 

carbon reserves is stored in BGB in seagrass ecosystems, and blue carbon assimilation models 621 

require this information (Sani et al., 2019). Previous works have reported highly variable 622 

AGB/BGB ratios between species and sites, highlighting the need for additional core 623 

sampling to obtain site-specific AGB/BGB ratios (Githaiga et al., 2017; Postlethwaite et al., 624 

2018) so as to model BGB from AGB estimates.  625 

 626 

4.2. S2 capabilities for seagrass mapping 627 

The application of the SPC algorithm based on NDVIS2 allowed the highest spatial resolution 628 

offered by S2 to be used, producing SPC maps at a pixel size of 10 m. Comparing satellite-629 

derived SPC at different spatial resolutions (i.e., 10 vs. 2 m) showed that the pixel size of S2 630 

is sufficient to accurately describe the overall spatial distribution of intertidal Z. noltei 631 
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meadows, making temporally-robust (i.e., frequent revisit time) seagrass indicator monitoring 632 

possible to implement at no-cost. We also compared the pixel size of S2 with that of Landsat8 633 

(L8; 30 m) (figure not shown). We observed that some geomorphological features, such as 634 

tidal channels, could not be detected at this 30 m pixel size (Hedley et al., 2016), whereas they 635 

are visible on the S2 maps (Figure 13). Therefore, in this study, 10 m was found to be an 636 

appropriate pixel size to observe meadows covering several square kilometres, although 637 

Landsat may remain useful for meadows covering hundreds of square kilometres or even to 638 

follow temporal trends in the overall state of the meadow (Ward et al., 1997). 639 

The French Bourgneuf Bay study site benefited from the overlap of two S2 orbits at this study 640 

site, reducing the revisit time from 5 to 2-3 days. This doubles the number of images 641 

produced for this area, allowing a satisfactory sample size after applying the tidal height and 642 

cloud cover restrictions (Hedley et al., 2016; Hestir et al., 2015). Even when only ~20% of the 643 

scenes were suitable for the application of our algorithms, the number of scenes was sufficient 644 

to characterize the seasonal cycle of Z. noltei and to select the best images during the 645 

maximum annual peak, since the seasonal variability revealed in this work matched the 646 

unimodal seasonal pattern previously described for this species along western European 647 

coasts (Perez-Llorens and Niell, 1993, Vermaat and Verhagen, 1996, Peralta et al, 2005). This 648 

seasonal pattern has mainly been attributed to seasonal patterns in temperature and daily light 649 

availability (Soissons et al., 2018). A detailed phenological analysis was beyond the scope of 650 

this work, which instead demonstrates the potential of S2 for seasonal seagrass studies at the 651 

pan-European level. 652 

Both the annual variation in sun elevation and the orbital difference in the sensor view 653 

geometry can influence measured reflectance due to the anisotropy of the observed target. 654 

This is defined by its bidirectional reflectance distribution function (BRDF), which depends 655 

on the type of target. Over terrestrial vegetation, the directional effects are generally lower 656 
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than 6% (Vermote et al., 2009). Consequently, a low BRDF effect is expected for intertidal 657 

areas, since areas covered by water were excluded in this work. Interestingly, NDVI is less 658 

impacted by anisotropy effects than single-band reflectance, because the directional difference 659 

is similar in the red and NIR spectral regions (Roy et al., 2017), minimizing its influence on 660 

the band ratio index (Bréon and Vermote, 2012; Vermote et al., 2009). In our NDVIS2 time-661 

series, there was no significant orbital bias for pixels with 100% seagrass cover, nor for bare 662 

sediment pixels (i.e., 0% seagrass cover). In summary, S2 can be considered to be a robust 663 

tool for monitoring intertidal seagrass beds due to its sufficient revisit time, viewing angle, 664 

and spatial resolution, as well as the quality of the ESA standard atmospheric correction.  665 

 666 

4.3. Characterization of seasonal variability: a prerequisite to interannual comparison 667 

Interannual studies of seagrass dynamics require seasonal variability to be taken into account, 668 

since only images from within the same season can be consistently analyzed without 669 

artificially creating temporal bias (Roelfsema et al., 2013). This is especially important for 670 

high turnover species, such as Z. noltei (Peralta et al., 2005), which can explain the drastic 671 

change in both NDVI and percent cover observed between September 14 and 29, 2018 672 

(Figure 11c-d), when the dense meadow area (SPC ≥ 50%) decreased from 3.02 to 2.57 km2, 673 

with a greater change in the western area than in the eastern one. Such a rapid change is 674 

remarkable and can mainly be explained by changes in vegetation state. Additionally, for 675 

interannual studies, it is recommended to focus on the maximum growth period, since the 676 

spatial variability of the NDVI is lower than during increasing and decreasing phases (see 677 

IQR in Figure 7).  678 

Nevertheless, key dates of the seasonal cycle may fluctuate between years. Therefore, the 679 

seasonal cycle should be characterized on a year-by-year basis to determine which scene 680 

corresponds to the seasonal maximum. The influence of the seasonal cycle is expected to have 681 
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a latitudinal pattern, probably being less at lower latitudes, where the seasons themselves are 682 

less pronounced (Lyons et al., 2013) than at higher latitudes. In any case, this source of 683 

variability merits further investigation. 684 

 685 

4.4. Water level considerations 686 

Water molecules have high absorption in the red and IR spectral regions. For this reason, the 687 

spectral reflectance spectrum of an intertidal object varies drastically with degree of emersion. 688 

In a macrotidal environment, the tidal variability can significantly impact the spatio-temporal 689 

distribution of remotely-sensed parameters, such as seagrass NDVI, and, consequently, SPC. 690 

Figure 14 illustrates these effects, as the estimate of the whole meadow surface area 691 

(corresponding to 0.12 ≤ NDVI ≤ 0.8) decreased from 11.6 km2 on September 1 to 4.15 km2 692 

on September 11, 2019, due to contrasting tidal heights (0.24 vs. 3.25 m LAT). In conclusion, 693 

we recommend the selection of images with as low a water level as possible so as to 694 

maximize the area able to be mapped. The maximum tidal height that allows seagrass 695 

meadows to be mapped using satellite data necessarily requires prior knowledge of the area, 696 

as it depends on the tidal amplitude, bathymetry/elevation, and location of the seagrass 697 

meadow itself.  698 
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Figure 14.  699 

 700 

4.5. Recommendations for an areal extent metric   701 

A relevant variable to characterize the status of seagrass ecosystems is the total area of the 702 

meadow. This is used by the European Water Framework Directive (WFD) to evaluate the 703 

quality of coastal waters (Papathanasopoulou et al., 2019), and is usually a key parameter 704 

used to detect temporal trends. Estimation of the total area of a seagrass meadow therefore 705 

needs to make use of the most robust calculations possible (i.e., be subject to the lowest 706 

possible uncertainties, as incorrect estimates can lead to inappropriate management). Remote 707 
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sensing, with its synoptic coverage, can provide lower cost and less time-consuming surface 708 

estimates compared with traditional field techniques. However, remote sensing data are also 709 

characterized by a number of uncertainties in intertidal meadows. As we saw from the 710 

comparison between SPC from S2 and WV02, the areas associated with the greatest 711 

uncertainty in terms of spatial resolution were those where SPC < 50%. The background 712 

contribution is also lower for SPC ≥ 50%, and the debatable issue of using a lower threshold 713 

used to distinguish bare sediment from seagrass meadow with low percent cover can be 714 

avoided. We therefore suggest adding two surface metrics based on seagrass areas with SPC ≥ 715 

50% and SPC ≥ 80 % to estimate the interannual variation in the areal extent of the meadow. 716 

The choice of a surface metric impacts the ecological status assigned by the European WFD 717 

(see for example case study #2 in Papathanasopoulou et al., 2019), and the plasticity of 718 

remote sensing data makes it possible to consistently investigate different metrics and 719 

indicators.  720 

In a previous study based on the analysis of SPOT images to assess the areal extent of the 721 

seagrass meadow, Barillé et al. (2010) observed an overall increase in the seagrass beds in 722 

Bourgneuf Bay over a 15-year period from 1991 to 2005. They also reported dramatic and 723 

rapid variation in the meadow’s surface area between 1996 and 1998. In the present study, the 724 

total surface of the seagrass meadow in 2018 and 2019 was comparable with the largest 725 

surface of the 1991 – 2005 time-series. However, in such a highly dynamic ecosystem 726 

(Philippart and Dijkema, 1995; Charpentier et al., 2005), we cannot infer the trajectory of the 727 

seagrass meadows in between. Completing the 12-year gap (2006 – 2017) with SPOT and/or 728 

Landsat archive imagery will allow the analysis of the interannual variability based on images 729 

acquired during the season of maximum development. However, due to the limited number of 730 

historical images per year, the seasonal cycle cannot be described with the same temporal 731 

resolution as we have done with S2 in this work (see paragraph 4.3). Despite this possible 732 
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source of variability, an interesting perspective would be to construct a 30-year time-series 733 

(1990 – 2020) starting with SPOT imagery (Barillé et al., 2010) and continuing with S2 (this 734 

study), all the more as this kind of continuity was expected from the launch of the S2 mission 735 

(Hagolle et al., 2015). Such a spatially-rich and long-term time-series could represent a 736 

valuable dataset for environmental management programs, such as the European WFD 737 

(Papathanasopoulou et al., 2019). 738 

 739 

4.6. Recommendation for multi-sensor NDVI time-series 740 

To obtain NDVI time-series spanning two or three decades, different multispectral sensors 741 

must be used and intercalibrated. The S2 time-series is limited by the recent launch of S2A in 742 

2015, and a longer revisit time prior to the launch of S2B in 2017. Longer and/or more 743 

complete NDVI time-series could be obtained from historical and on-going satellite missions 744 

such as SPOT, Landsat, or Worldview. With all of them, it is possible to calculate the NDVI, 745 

but at different spatial and spectral resolutions; hence they are not equally suitable. In such 746 

cases, sensor inter-calibration is required. Since the spectral response functions impact the red 747 

and NIR values, we provide a parameterization to rescale the NDVI from several 748 

multispectral missions (SPOT, L8, Worldview2, Pléiades, Quickbird, and Ikonos) to S2 749 

(Table 3). These parameterizations were obtained from our hyperspectral in situ dataset by 750 

simulating NDVI values for different sensors using their respective SRF (Cundill et al., 2015; 751 

González-Audícana et al., 2006; USGS, 2018). For consistency with a previous study based 752 

on the long-term analysis of SPOT imagery (Barillé et al., 2010), we redefined the NDVI 753 

thresholds to distinguish two classes of seagrass cover: sparse cover (20% < SPC < 50%) and 754 

dense cover (SPC ≥ 50%), and provided consistent thresholds for all sensors (Table 4). To 755 

complement the NDVI inter-calibration, the difference in the acquisition geometry of each 756 

sensor has to be taken into account. For example, the differences between the field-of-view of 757 



39 
 

S2 and L8 (20.6° and 15° respectively) need to be compensated through BRDF modelling 758 

(Claverie et al., 2018). Moreover, to reduce processing uncertainties, the same type of 759 

atmospheric correction should be applied whenever possible (Barnes et al., 2014). 760 

 761 

 762 

Table 3. 763 

Sensor m b 

SPOT1 1.0574  0.0246 

Landsat-8 0.9915 0.0076 

Worldview2 1.0239 0.0089 

Pléiades 1.1035 0.0076 

Quickbird 1.0993 0.0186 

Ikonos 1.2022 0.0182 

 764 

 765 

Table 4. 766 

 Seagrass cover 

Mission Sparse Dense 

Sentinel-2 0.25 - 0.42 0.42 - 0.80 

SPOT1 0.21 - 0.37 0.37 - 0.73 

Landsat-8 0.24 - 0.42 0.42 - 0.80 

Worldview2 0.24 - 0.40 0.40 - 0.77 

Pléiades 0.22 - 0.37 0.37 - 0.72 

Quickbird 0.21 - 0.37 0.37 - 0.71 

Ikonos 0.19 - 0.33 0.33 - 0.65 

 767 

 768 
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5. Conclusions 769 

In this work, we developed and validated algorithms to estimate seagrass percent cover (SPC) 770 

and seagrass leaf biomass (SB) from Sentinel-2 (S2) remote sensing data. These algorithms 771 

were derived using in situ measurements made in Z. noltei-dominated meadows in multiple 772 

years and locations. The geographic extent of our sampling makes the algorithms applicable 773 

from North Africa to North Europe, where Z. noltei occurs. The detailed description of 774 

algorithm development and assessment also sets guidelines to easily adapt the algorithm to 775 

meadows dominated by other species, as long as the emerged seagrasses can be observed 776 

during low-tide. The performance of S2 intertidal seagrass meadow mapping at a pixel size of 777 

10 m was estimated with a RMSD of 14%. Such a spatial resolution enabled the observation 778 

of characteristic features of the meadow, also revealed in 2 m spatial resolution maps from 779 

WV02 that allowed the monitoring of patch dynamics within the meadow. Valuable 780 

information about seasonal seagrass dynamics was also able to be obtained due to the frequent 781 

S2 revisit time, and it was possible to characterize the seasonal cycle of the seagrass meadow 782 

for two consecutive years on a refined time-scale. At the French Bourgneuf Bay case study 783 

site, the Z. noltei seasonal cycle was characterized by a growing season from mid-May to the 784 

beginning of December, a late-summer maximum, and a winter minimum, matching the 785 

overall temporal variation found from previous works based on in situ observations. Future 786 

work of interest would be the automated retrieval of the phenological parameters developed 787 

here to study interannual changes over a broader geographic scale to evaluate latitudinal 788 

patterns in phenology. Since images may be from any time within a given temporal window 789 

around the peak of maximum development depending on availability and suitability (i.e., ± 15 790 

days), and because of the influence of water height on the interpretation of low tide images, 791 

our results call for caution in satellite image selection for this intertidal habitat, providing 792 

instructions to perform unbiased studies. The S2 dataset is quite recent, but could be 793 
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complemented by multispectral satellite time-series to investigate long-term changes in 794 

seagrass dynamics. For this purpose, we provide guidelines to inter-calibrate a multi-sensor 795 

NDVI database, and recommend the application of consistent atmospheric correction, if 796 

possible, so as to avoid instrumental biases and misinterpretation of temporal changes.  797 
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Appendix 1144 

As the radiometric measurements were taken within a time interval of approximately four 1145 

hours (± 2 hours from low tide), the illumination angle naturally changed between the 1146 

radiometric acquisitions. The multiplicative scatter correction (MSC; Isaksson and Kowalski, 1147 

1993, Fyfe, 2003) technique consists of applying a multiplicative factor and an offset to each 1148 

sampled reflectance spectrum. These factors were obtained from linear least-squares 1149 

regressions between every single spectrum and a reference. A key step in this technique is the 1150 

choice of the reference. As in our case the measurements were not performed over the same 1151 

target, a single reference could not be used for all spectra, and different references were 1152 

computed according to the range of seagrass percent cover. For each area and year sampled, 1153 

we simulated a series of 11 reflectance references for hypothetical seagrass percent cover, 1154 

varying from 0 to 100% at 10% intervals. First, the 0% and 100% references were obtained 1155 

from the average of > 3 measurements over the pure substrates, corresponding to bare 1156 

sediment and full seagrass cover respectively. Then, the intermediate reference spectra were 1157 

computed through a linear combination of the references of these two pure substrates. Second, 1158 

the reflectance dataset was clustered into 11 classes by seagrass cover (0-5%, 5-15%, ..., 85-1159 

95%, 95-100%), and the corresponding reference spectrum was used to apply the MSC 1160 

correction to all in situ spectra within each cluster. The radiometric MSC correction applied to 1161 

in situ spectra clearly improved the quality of the data (Figure A1a, b). Also note that, even 1162 

though this correction was applied independently to each dataset, it improves the significance 1163 

of ANCOVA tests performed between datasets collected in Bourgneuf Bay in 2018 and 2019. 1164 

The shape and amplitude of the corrected spectra exhibited variations consistent with the 1165 

progressive increase in seagrass cover. Also, the goodness-of-fit was improved by applying 1166 

the MSC correction, showing better adjustment with SPCcores (Figure A1c, d). 1167 

 1168 
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 1169 

Figure A1: (a) Raw reflectance spectra as a function of wavelength obtained from Equation 1170 

1. (b) Reflectance spectra corrected following the MSC technique. In panels (a) and (b), the 1171 

same intensity gradient was used, with darker colors representing higher percentages of 1172 

seagrass cover. (c-d) Seagrass percent cover measured in situ (SPCcores) in Bourgneuf Bay as a 1173 

function of NDVIcores. Green dots refer to data collected in 2018 and blue dots to data from 1174 

2019. Panel (c) presents NDVIcores data derived from Rinsitu spectra before MSC correction, 1175 

while panel (d) shows Rinsitu spectra following the application of MSC correction.    1176 

 1177 
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Table A1. Multispectral vegetation indices (VIs) tested in this study to describe seagrass 1178 

percent cover (SPCcores) with their corresponding equations. For each spectral index that did 1179 

not show significant differences between 2018 and 2019 (i.e., ANCOVA p > 0.05), the 1180 

coefficient of determination (R2) (with p < 0.01 for all linear regressions) and RMSD between 1181 

the in situ percent cover and the VI are provided. The following VIs were compared: 1182 

normalized difference vegetation index (NDVI), normalized difference aquatic vegetation 1183 

index (NDAVI), water adjusted vegetation index (WAVI), soil-adjusted vegetation index 1184 

(SAVI), atmospherically resistant vegetation index (ARVI), modified narrow-band NDVI 1185 

(mNDVI), and modified normalized difference (mND).  1186 

 1187 

 1188 

 1189 

 1190 

  MSC corrected spectra 

 Index Equation ANCOVA 

(p) 

R2 RMSD 

NDVI(665,842) ��842% −  ��665%
��842% +  ��665% 

0.243 0.978 4.14 

NDVI(705,842) ��842% −  ��705%
��842% +  ��705% 

0.964 0.955 5.88 

NDAVI(490,842) ��842% −  ��490%
��842% +  ��490% 

0.492 0.977 4.19 

WAVI(490,842) �1 + 0.5% ��842% −  ��490%
��842% +  ��490% + 0.5 

1.03e-08 Not 
evaluated 

Not 
evaluated 

SAVI(665,842) �1 + 0.5% ��842% −  ��665%
��842% +  ��665% + 0.5 

0.000 Not 
evaluated 

Not 
evaluated 

ARVI(490,665,842) ��842% −  ��665% − ���490% − ��665%%
��842% +  ��665% − ���490% − ��665%% 

0.107 0.956 5.82 

mNDVI(490,665,842) ��842% −  ��665%
��842% +  ��665% − 2��490% 

0.194 0.820 11.7 

mNDVI(443,665,740) ��740% −  ��665%
��740% +  ��665% − 2��443% 

0.055 0.853 10.6 

mND(443,705,740) ��740% −  ��705%
��740% +  ��705% − 2��443% 

0.921 0.851 10.7 
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Table A2. Date and time of S2 image acquisitions during low tide and cloud-free conditions 1191 

used in this work. Satellite information (S2A/B), orbit number, tidal height (m), and tidal 1192 

stage at the time of image acquisition, phase of seagrass seasonal cycle, and usage of the 1193 

scene for this work are also provided. Dates coincident with fieldwork are highlighted in bold.  1194 

Date 
Time 

(GMT) 
Satellite 

Orbit 

Number 

Tidal 

height 

(m) 

Tidal stage 
Phase of Seagrass 

seasonal cycle 
Scene used for 

30/03/2018 10:56:19 S2B 094 1.84 Spring tide Latency phase Seasonal cycle 

17/04/2018 11:06:51 S2A 137 0.64 Spring tide Latency phase 

Seasonal cycle, Evaluation of 

impacts of seasonal variability 

on SPC 

19/04/2018 10:56:19 S2B 094 1.46 Spring tide Latency phase Seasonal cycle 

04/05/2018 10:56:21 S2A 094 2.50 Spring tide Latency phase Seasonal cycle 

19/05/2018 10:56:19 S2B 094 2.23 Spring tide Increasing phase Seasonal cycle 

13/06/2018 10:56:21 S2A 094 2.01 Spring tide Increasing phase Seasonal cycle 

26/06/2018 11:06:21 S2A 137 2.95 Neap tide Increasing phase Seasonal cycle 

28/06/2018 10:56:19 S2B 094 1.61 Spring tide Increasing phase Seasonal cycle 

01/07/2018 11:06:19 S2B 137 1.81 Spring tide Increasing phase Seasonal cycle 

13/07/2018 10:56:21 S2A 094 1.24 Spring tide Increasing phase 

Seasonal cycle, Evaluation of 

impacts of seasonal variability 

on SPC 

16/07/2018 11:06:21 S2A 137 1.32 Spring tide Increasing phase Seasonal cycle 

02/08/2018 10:56:21 S2A 094 2.99 Neap tide Increasing phase Seasonal cycle 

01/09/2018 10:56:21 S2A 094 3.19 Spring tide Peak 

Selection of pixels to 

reconstruct seasonal cycle, 

Seasonal cycle  

09/09/2018 11:06:09 S2B 137 2.01 Spring tide Peak Seasonal cycle 

14/09/2018 11:06:51 S2A 137 1.08 Spring tide Peak 

Seasonal cycle, SPC and SB 

maps, Evaluation of impacts of 

seasonal variability on SPC 

24/09/2018 11:08:01 S2A 137 2.17 Spring tide Peak Seasonal cycle 

26/09/2018 11:00:29 S2B 094 1.08 Spring tide Peak 

Atmospheric correction 

evaluation, Seasonal cycle. 

Comparison with WV02 map  

27/09/2018 11:22:32 WV02  0.96 Spring tide Peak 
Evaluation of S2 spatial 

resolution 

29/09/2018 11:08:29 S2B 137 1.79 Spring tide Decreasing phase 
Seasonal cycle, Evaluation of 

impacts of seasonal variability 
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 1195 

on SPC 

09/10/2018 11:09:39 S2B 137 1.43 Spring tide Decreasing phase Seasonal cycle 

08/11/2018 11:12:49 S2B 137 1.29 Spring tide Decreasing phase Seasonal cycle 

13/11/2018 11:13:11 S2A 137 3.16 Neap tide Decreasing phase Seasonal cycle 

10/12/2018 11:04:31 S2A 094 1.59 Spring tide Latency phase 

Seasonal cycle, Evaluation of 

impacts of seasonal variability 

on SPC 

23/03/2019 11:07:21 S2A 137 0.32 Spring tide Latency phase Seasonal cycle 

09/04/2019 10:56:21 S2A 094 1.71 Spring tide Latency phase Seasonal cycle 

19/04/2019 10:56:21 S2A 094 1.00 Spring tide Latency phase Seasonal cycle 

19/05/2019 10:56:21 S2A 094 0.99 Spring tide Latency phase Seasonal cycle 

06/06/2019 11:06:29 S2B 137 1.12 Spring tide Increasing phase Seasonal cycle 

16/06/2019 11:06:29 S2B 137 2.50 Spring tide Increasing phase Seasonal cycle 

18/06/2019 10:56:21 S2A 094 1.17 Spring tide Increasing phase Seasonal cycle 

21/06/2019 11:06:21 S2A 137 2.00 Spring tide Increasing phase Seasonal cycle 

03/07/2019 10:56:29 S2B 094 1.35 Spring tide Increasing phase Seasonal cycle 

06/07/2019 11:06:29 S2B 137 1.41 Spring tide Increasing phase Seasonal cycle 

16/07/2019 11:06:29 S2B 137 2.10 Spring tide Increasing phase Seasonal cycle 

21/07/2019 11:06:31 S2A 137 2.11 Spring tide Increasing phase Seasonal cycle 

31/07/2019 11:06:21 S2A 137 2.58 Spring tide Increasing phase Seasonal cycle 

02/08/2019 10:56:29 S2B 094 0.61 Spring tide Increasing phase Seasonal cycle 

20/08/2019 11:06:21 S2A 137 2.10 Spring tide Peak Seasonal cycle 

01/09/2019 10:56:19 S2B 094 0.24 Spring tide Peak 
Atmospheric correction 

evaluation, Seasonal cycle 

11/09/2019 10:56:29 S2B 094 3.25 Neap tide Peak 
Evaluation of impacts of tide 

height on SPC   

16/09/2019 10:57:01 S2A 094 1.16 Spring tide Peak Seasonal cycle 

19/09/2019 11:07:21 S2A 137 2.16 Spring tide Peak Seasonal cycle 

29/09/2019 11:08:41 S2A 137 0.99 Spring tide Decreasing phase Seasonal cycle 
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 1196 

Figure A2: Median NDVIS2 of seagrass samples (dimensionless, in solid dots) used to 1197 

reconstruct the seasonal cycle as a function of tidal height (m). Open dots correspond to 1198 

background samples. Error bars represent the IQR. 1199 

 1200 

  1201 
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Figure captions  1202 

Figure 1. Study area. (a) Locations of study sites along the northeastern Atlantic coast. (b-c) 1203 

Field view of the Bourgneuf Bay seagrass meadow in September, 2018. (d) Close-up of high 1204 

percent cover of Zostera noltei in Bourgneuf Bay in 2018. (e) Quasi true-color composition 1205 

(R: 660 nm, G: 545 nm, B: 480 nm) of the Worldview2 image acquired on September 27, 1206 

2018 for Bourgneuf Bay, showing the seagrass meadow, macroalgae, and aquaculture areas.  1207 

Figure 2. Flowchart of the main methodological steps used in the present study to compute: 1208 

(a) seagrass percent cover (SPC) and (b) seagrass leaf biomass (SB) from S2 data. 1209 

Figure 3. (a) Selected photos of seagrass cover before core sampling, illustrating the 1210 

differences between 0 and 100% cover. (b-c) Relationship between the S2-simulated in situ 1211 

NDVI (NDVIcores) and seagrass biological descriptors obtained from the 2018 (green dots) 1212 

and 2019 (blue) core data from Bourgneuf Bay. Panels (b) and (c) represent NDVIcores as a 1213 

function of seagrass percent cover (SPCcores) and seagrass leaf biomass (SBcores; g DW m-2) 1214 

respectively, encompassing the entire dataset (including both developing and evaluation 1215 

subsets).  1216 

Figure 4. Linear models used for algorithm development: (a) SPCcores vs. NDVIcores and (b) 1217 

SBcores vs. NDVIcores. 1218 

Figure 5. Validation of S2 atmospheric correction over the Bourgneuf Bay emerged seagrass 1219 

meadow. (a) Comparison between in situ (Rinsitu; solid line with circles) and satellite (Rsat-S2; 1220 

dashed lines with squares) reflectance spectra in 2018, for three types of target: bare sediment, 1221 

mixed area, and dense seagrass cover in orange, black, and green lines respectively. (b) Same 1222 

as in (a) but for 2019, and for only two types of target: bare sediment and dense seagrass 1223 

cover. (c) Match-ups between Rsat-WV02 and Rinsitu in 2018 and 2019, using all S2 spectral 1224 

bands from 443 – 865 nm.  1225 

Figure 6. Same as in Figure 5, but for the validation of WV02 atmospheric correction on the 1226 

September 27, 2018. 1227 

Figure 7. NDVIS2 seasonal cycle in Bourgneuf Bay intertidal seagrass beds in 2018 and 2019, 1228 

from March to December. Red and blue symbols correspond to the NDVI of the seagrass 1229 

pixels (median ± IQR), with the dashed line corresponding to a Gaussian model fit. In 1230 

Bourgneuf Bay there is overlap of two S2 orbital cycles, with orbits #137 and #94 in blue and 1231 

red respectively. Black symbols correspond to the background pixels extracted over bare 1232 

sediment (median ± IQR). No distinction between the two orbits was done for the background 1233 
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pixels. The green arrows correspond to the dates of images selected to best represent 1234 

maximum annual growth and used for mapping.  1235 

Figure 8. Validation of S2-derived seagrass percent cover (SPCS2) vs. in situ measurements 1236 

(SPCinsitu) acquired in 2018 (green dots) and 2019 (blue dots). The dashed line shows the 1237 

linear regression between SPCS2 and SPCinsitu, whereas the continuous line shows the 1:1 1238 

relationship. 1239 

Figure 9. Sentinel-2 maps of (a-b) NDVI, (c-d) seagrass percent cover (SPC), and (d-e) leaf 1240 

seagrass biomass (SB), during summer maximum in Bourgneuf Bay (2018 for panels on the 1241 

left side and 2019, on the right). The grayscale background corresponds to areas of seagrass 1242 

beds. The black lines show the 0 – 3 m (LAT) isobaths. 1243 

Figure 10. (a) Close-up of the seagrass percent cover map during the Z. noltei annual peak in 1244 

2018 based on Sentinel-2 data, with white arrows pointing to intertidal channels. (b) Location 1245 

of the close-up panel within the seagrass meadow. The black lines show the 0 – 3 m (LAT) 1246 

isobaths.  1247 

Figure 11. Demonstration of seasonal changes in seagrass percent spatial distribution using 1248 

S2 images of different seasonal cycle stages in 2018: (a) latency phase on April 17, (b) 1249 

increasing phase on July 13, (c) annual peak on September 14, (d) decreasing phase on 1250 

September 29, and (e) latency phase on December 10. Panels (f-j) are close-ups of the area 1251 

indicated in panels (a-e) within the seagrass meadow. 1252 

Figure 12. (a) Comparison of NDVIWV02-recalibrated obtained on September 27, 2018 with 1253 

NDVIS2 obtained on September 26, 2018. (b) Effective total surface occupied by seagrass (in 1254 

km2) derived from S2 (in black bars) and WV02 (in gray bars) for different classes of SPC ≥ 1255 

20%.  1256 

Figure 13. SPC maps at different pixel sizes, using (a) S2 data (10 m) from September 26, 1257 

2018 and (b) WV02 data (2 m) from September 27, 2018. Panels (c-f) show two close-up 1258 

areas in within the seagrass beds, indicated in panels (a) and (b). 1259 

Figure 14. Demonstration of the effect of tidal differences on NDVIS2 spatial distribution on 1260 

(a) September 1, 2019 and (b) September 11, 2019. (c) The NDVIS2 obtained along one 1261 

transect (indicated in the maps of panels (a) and (b)) from September 1, 2019 (green line) and 1262 

September 11, 2019 (in orange). Black arrows indicate the waterfront that corresponds to the 1263 

boundary between emersed and immersed areas at the time of image acquisition on both 1264 



64 
 

dates. The blue area shows the difference in the waterfront distance (in image pixels) along 1265 

the transect between the two dates. 1266 

 1267 

Table captions  1268 

Table 1. Summary of fieldwork campaigns, including dates and sample size per parameter.  1269 

Table 2. Uncertainty metrics (R2, slope, RMSD, Bias, MAD, and sample size (N) used to 1270 

validate seagrass algorithms with datasets from the three regions.   1271 

Table 3. S2/MSI NDVI adjustment for other multispectral sensors. For each sensor, the gain 1272 

(m) and offset (b) has to be used in a linear equation: NDVI/S2 = m NDVI/sensor + b. 1273 

Table 4. NDVI ranges for sparse/dense seagrass cover classes for several multispectral 1274 

sensors. 1275 




