A A Rubashkin 
email: andrey.rubashkin@gmail.com
  
P Iserovich 
  
M A Vorotyntsev 
  
Physical origin of Na + /Cl -selectivity of tight junctions between epithelial cells. Nonlocal electrostatic approach

Keywords: nanochannels, charge selectivity, ion resolvation energy, dielectric function, correlation length, permselectivity

Tight junctions (TJs) of epithelial cells play a key role in regulation of the ion exchange between NaCl solutions separated by the layer of these cells. Their functioning is based on a strong difference in the permeabilities of these channels for Na + and Cl - ion migrational fluxes owing to specific properties of the protein network inside TJs. It has been assumed in this study that this phenomenon originates from combination of two effects related to this specific TJ protein (claudin) which segments are partially located inside the TJ space. First, their ionogenic groups create a negative charge distributed inside TJs, thus inducing a difference between the Na + and Cl -concentrations inside this spatial region. Second, the effect of these negative charges is greatly enhanced owing to high energetic barriers for penetration of both ions into TJs from the external aqueous solution, due to a significantly lower values of their solvation energies inside this spatial region, compared to the aqueous solution. This effect has been attributed to the change of the nonlocal dielectric response of the polar medium inside the TJ region where the long-range water structure is modified by the contact with segments of claudin molecules distributed in this space. Acting together, these two factors lead to pronounced permselectivity of TJs with respect to singly-charged cations and anions, i.e. to much higher Na + concentration inside TJs, compared to the Cl -one. Derived expressions for the resolvation energies of ions as well as for their concentrations inside the TJ region on the basis of electrostatics of nonlocal dielectric media have been applied for interpretation of experimental data for the Na + /Cl -selectivity of such channels.

Introduction

Layer of epithelial cells separates the connective tissue from external medium filled with bulk NaCl solution. The tissue and the external solution are connected by Lateral Intracellular Space (LIS) channels of a relatively large cross-section filled with a neutral solution NaCl of the same concentration as that of the external solution, 0.15 M. A prominent specific feature of LIS channels between epithelial cells is the existence of tight junctions (TJs) where the channel's cross-section diminishes drastically, thus forming nanochannels between two parallel-plane plasmatic membranes of neighboring epithelial cells. Besides, TJs contain inside them a 3D network of various protein macromolecules that provide particular properties to the ion transport via them, in particular the permselective properties of the LIS channels as a whole. Detailed description of molecular physiology of TJs may be found e.g. in Ref [START_REF] Van Itallie | The molecular physiology of tight junction pores[END_REF].

Important role played by TJs in regulation of the ion and water transport through the monolayer of epithelial cells was studied experimentally by J. Fischbarg et al [START_REF] Sánchez | Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium[END_REF][START_REF] Fischbarg | The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force[END_REF]. It was found that the ion permeability via TJs is selective with respect to different singly-charged ions, this feature being dependent on the choice of the distributed protein. In particular, a marked Na + /Cl - selectivity (in favor of Na + ions) is provided by claudin macromolecules [START_REF] Van Itallie | The molecular physiology of tight junction pores[END_REF][START_REF] Colegio | Claudins create charge-selective channels in the paracellular pathway between epithelial cells[END_REF][START_REF] Anderson | Physiology and Function of the Tight Junction[END_REF] possessing negatively charged amino acid residues. Their other very specific property is a combination of this selectivity with respect to the ion transport with the ability to allow much larger-size molecules to pass via them.

This study is aimed at development of a theoretical model of the ion transport in such systems. First, the approach of the nonlocal electrostatics has been used to estimate the height of the energy barrier for the ion transfer into the TJ region from the bulk electrolyte solution, i.e. its resolvation free energy. Second, the equilibrium concentrations of Na + and Cl -ions inside the central region of the channel are analyzed with the use of the description which takes into account both the resolvation free energies of ions and the distributed charge of ionogenic groups at protein macromolecules. Results of this modelling are compared with experimental data on the pronounced Na + /Cl -selectivity of the claudin-containing TJs. It has allowed us to arrive at the conclusion that this specific feature of the system originates from a dual role of claudin molecules which are the origin of a negative charge distributed inside the channel and which affect dielectric properties of water inside the TJ space by increasing the value of its polarization correlation length, compared to that in the bulk electrolyte solution outside the channel.

Model of ion transport via TJs

Qualitative description of the phenomenon Fig. 1. Scheme of the ion transport via tight junction (TJ) between two epithelial cells 1 and 2. Distance between the parallelplane cells' membranes in the TJ region is about 40 Å. Length of the TJ region is about 1 µm. Migrational Na + and Cl -ion fluxes along the channel under the influence of imposed electric field are oriented in opposite directions. Both ions are to overcome a resolvation barrier (δWNa or δWCl) to enter the channel from the corresponding bulk solution. NaCl concentration inside the LIS (Lateral Intracellular Space) channel is identical to that of external bulk solution, c o = 0.15 M. Schematic presentation of the system is given in Fig. 1. Length and width of the TJ region exceed strongly its thickness which is typically about 4 nm, i.e. it is much larger than the molecular scale. Nevertheless, such channel possesses a strong Na + /Cl - ion selectivity in terms of the migrational ion transport along this space between LIS and external NaCl solution.

The ratio of the Na + and Cl -ion fluxes is determined by the product of the ratio of their diffusion coefficients, DNa/DCl, and of the ratio of their concentrations inside the channel, cNa(p)/cCl(p).

In view of the relatively large channel's thickness the former factor, DNa/DCl, can hardly be responsible for this property of TJs. As for the hypothetic effect of some diminution of the channel's cross-section for the ion transport due to the presence of claudin loops, it should stronger reduce the flux of larger-size transporting species, i.e. of the solvated Na + cation (values of the Stokes-Einstein radii for Na + and Cl -in water are 0.18 nm and 0.12 nm, respectively [START_REF] Rieger | Electrochemistry[END_REF]). Besides, its effect as a whole should be weak in view of low concentration of claudin segments inside the channel. Thus, one may conclude that the strong Na + /Cl -ion selectivity is because of a much higher Na + concentration inside the TJ channel, compared to the Cl -one.

Since the concentrations of these ions are identical in the outside NaCl solutions, a large ratio of the Na + and Cl -concentrations (i.e. much higher Na + concentration with respect to the Cl -one) inside the channel might be related to two factors.

One of them originates from the difference between the standard chemical potentials inside the pore and in the outer solution for each of the ions, δµ o Na and δµ o Cl, i.e. between the solvation free energies of the ion inside and outside the pore, δWNa and δWCl (for brevity these quantities are called below "resolvation energy" for the corresponding ion). However, we have not found a mechanism which might lead to such a drastic difference in the parameters for these ions, in order to ensure a strong preference in favor of the Na + ion.

Therefore, one should expect that a large ratio of the Na + and Cl -concentrations inside the channel is induced by the characteristic feature of TJs such as the presence of hydrophilic segments of a specific protein, claudin, located in TJs, some of them bearing anionic ionogenic groups ("acidic residues", aspardic and gluetamic acids, see Fig. 2 of [START_REF] Colegio | Claudins create charge-selective channels in the paracellular pathway between epithelial cells[END_REF]), i.e. negative charges distributed inside the TJ channel between two membranes of neighboring epithelial cells (see schematic picture in Fig. 1). In this context one can cite the study [START_REF] Colegio | Claudins create charge-selective channels in the paracellular pathway between epithelial cells[END_REF], where it was shown that modification of a TJ space by claudin molecules bearing positively charged groups led to inversion of their selectivity from the cationic type to the anionic one.

Permselectivity of polymeric and inorganic membranes is often ensured by such a distributed ("fixed") charge under the condition that the concentration of such ionogenic groups, cfix, is much higher than the concentration of the bulk solution outside the channel, c o . On the contrary, the ratio of these concentrations is quite opposite for conventional TJs: cfix is much lower than c o .

In such a situation the strong ion selectivity may only be achieved if the local concentrations of both ions are strongly diminished inside the channel, compared to the external solution. It means that both resolvation energies, δWNa and δWCl, must be negative and their absolute values should be much greater than the thermal energy, kT.

In view of the relatively large channel's thickness, the interaction of an ion in the central region of the channel with its membrane walls [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF][START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Calculation of free energy of charge transfer from the solvent into a pore[END_REF] is too weak to play a noticeable role. It means that one may neglect effects due to the restrictedness of the spatial region inside the channel and attribute the change of the ion's solvation energy inside the channel to the presence of the distributed protein. Namely, it has led us to the hypothesis that distributed claudin molecules play the second key role in the TJ functioning, via changing the long-range correlation length of water, due to its contact with segments of protein molecules inside this spatial region, compared to that in the outer water solution, while both the charge density distribution inside an ion and short-range dielectric properties of water remain unchanged inside the channel.

The theory below proposes a modeling of these features of the system. First, principles of the nonlocal electrostatics are described as the basis for the analysis of the electric potential distribution around an ion. Recently proposed novel IDA (inverse dielectric approximation) approach is used to express both this potential distribution and the solvation free energies of Na + and Cl -in bulk water, WNa or WCl, via the charge density inside the ion, ρ(r), and the longitudinal component of the nonlocal dielectric function in k-space, ε(k). Then, an analogous characteristic, εp(k), is introduced for the ion inside the channel where it is surrounded by an "effective medium" comprised of water and protein loops inside the TJ region; then, argumentation on the functional form of εp(k) is outlined. At last both the solvation energies of ions inside the channel, WNa(p) and WCl(p), as well as their resolvation energies, δWNa and δWCl, are evaluated.

Second, these results are used within the framework of the theory which relates the local concentrations of the ions, cNa(p) and cCl(p), via the resolvation energies as well as the concentrations of the outer bulk-water NaCl solution, c o , and of ionogenic groups of claudin molecules inside the channel, cfix. It enables us to evaluate the long-range correlation length of the polar medium inside the TJ region as a function of the ratio, cfix/c o , on the basis of experimental data for the ion selectivity of such channels.

Derived conclusions have turned out to be in conformity with the above qualitative analysis, in particular on negative and sufficiently large values of the resolvation energies of both ions as well as on a strong ion selectivity, S, owing to very low values of both ion concentrations inside the channel.

Electrostatics of local dielectric media

Electric interactions are mostly described within the framework of the simplest model where the solvent (water) is considered as a uniform local dielectric medium which occupies the whole space between the boundaries of the channel (outside solute species) and which is characterized by its (static) dielectric constant, εs, equal to 80 for bulk water at room temperature. Term "local dielectric" means that the polarization of the medium, P(r), in a spatial point, r, is proportional to the electric field, E(r), in the same point so that the local value of the displacement, D(r), in the same point is also proportional to E(r):

D(r) = ε E(r) (1) 
where ε = εs for water as a uniform local dielectric medium.

Modeling of the ion transport through TJs on the basis of this simple approach was given in Refs [START_REF] Rubashkin | Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions[END_REF][START_REF] Rubashkin | A model of electro-osmosis in a leaky tight junction of epithelial cells[END_REF]. However, it is hardly possible to explain the above unusual properties of TJs on the basis of the local dielectrics approach, see in particular estimates of the ion resolvation energy and of the TJ ion selectivity in section "Results of theoretical analysis and comparison with experimental data" below.

It is known that the dielectric response of water to the static electric field deviates near water boundaries from predictions of this simplest variant of the electrostatic theory. Namely, a weaker dielectric effect has systematically been observed. For example, potential distribution inside aqueous medium in contact with a charged plane (electrode surface) corresponds to the existence of a "compact layer" of water where the dielectric constant is significantly lowered, compared to εs [START_REF] Bockris | Modern Electrochemistry: Ionics[END_REF][START_REF] Kornyshev | Electrochemical Double Layers[END_REF]. Similar layer of a lower dielectric constant around a solvated ion has to be postulated for quantitative interpretation of experimental values of its solvation energy [START_REF] Damaskin | [END_REF]. More recently, direct measurements for a very thin water layer between two solid surfaces have demonstrated a very strong decrease of its effective dielectric constant [START_REF] Fumagalli | Anomalously low dielectric constant of confined water[END_REF]. All these results were traditionally ascribed to "specific properties of water near its boundaries owing to its modified structure, compared to that in the bulk solution, resulting in a limited ability of water dipoles to rotation".

Nonlocal dielectric formalism

One should keep in mind that all conclusions of the previous section are based on the simplified treatment of liquid water as a structureless local dielectric medium. This description is known to provide adequate results for static electric fields which change slowly in space. On the contrary, if the field varies at the scale comparable to the size of water molecules, then it is not the same in different parts of the molecule. Moreover, liquid water molecules form all time a network of hydrogen or/and donor-acceptor bonds so that if the electric field tries to rotate a molecule it results automatically in reorientation of neighboring ones due to their links [START_REF] Kornyshev | Electrochemical Double Layers[END_REF][START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF].

It means that the dielectric response of water to the imposed electric field, E(r), which changes in space at the molecular scale is no longer given by the above local relation between its polarization, P(r) (or the displacement, D(r)) and the electric field, E(r), Eq. ( 1). In this case its polarization, P, induced in a spatial point, r1, is determined by a combined action of the electric field distribution, E(r2), within a spatial region around this point:

α 1 αβ 1 2 β 2 2 ( ) = ( , ) ( ) d χ ∫ P E r r r r r (2) 
where χαβ(r1,r2) is nonlocal tensor (dielectric) susceptibility of the medium that is nonzero only if the distance between its arguments, r1 and r2, does not exceed strongly its (maximal) correlation length, Λ [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF] which is determined by the internal structure of liquid water within this spatial region.

Summation over repeating indices, e.g. over β in Eq (2), from 1 to 3 is implicitly assumed in Eq (2) and other relations below.

Use of the identity, D(r) = E(r) + 4π Р(r), leads to a nonlocal expression for the displacement via the electric field distribution:

α 1 1 2 β 2 2 ( ) = ( , ) ( ) d αβ ε ∫ D E r r r r r ( 3 
)
where the nonlocal (tensor) dielectric function of the medium, εαβ(r1,r2), is given by Eq (4):

εαβ(r1,r2) = δαβ δ(r1 -r2) + 4π χαβ(r1,r2) (4) 
Eq (3) is supplemented by conventional electrostatic equations:

div D(r) = 4π ρ(r), E(r) = -grad ϕ(r) (5) 
where ρ(r) is density of external (with respect to the medium) charges, ϕ(r) is electric potential distribution.

All these distributions are unambiguously determined if both the charge density distribution, ρ(r), and the dielectric function of the system, εαβ(r1,r2), are known within the whole space.

It was shown [START_REF] Vorotyntsev | Physical significance of an effective dielectric constant that depends on the distance from the electrode[END_REF][START_REF] Kornyshev | The effect of spatial dispersion of the dielectric permittivity on the capacitance of thin insulating films: Non-linear dependence of the inverse capacitance on film thickness[END_REF][START_REF] Vorotyntsev | Electric double layer structure in a surface-inactive electrolyte solution: effect of the stern layer and spatial correlations of solvent polarization[END_REF] that the nonlocal character of the dielectric response of a polar medium [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF] already leads to a weaker dielectric response near a boundary of water, even if the bulk-solution structure of water does not change up to the boundary. Nonlocal electrostatics has also been applied to the description of the dielectric exclusion of ions from very narrow pores of polymer membranes [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF][START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Calculation of free energy of charge transfer from the solvent into a pore[END_REF].

The nonlocal electrostatics concept [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF] has recently been applied for the first time [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF] to relate ion solvation energies inside the TJ space between epithelial cells to their Na + /Cl -selectivity. However, this analysis was based on the "unrestricted medium approximation" (UMA, see Appendix A4) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF] which does not take into account specific dielectric properties inside the cavity formed by the ion. Besides, simplest models for the nonlocal dielectric function have been used in [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF] (see Appendix A8 below) that disregard the "overscreening effect" [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Kornyshev | Overscreening" in a polar liquid as a result of coupling between polarization and density fluctuations[END_REF][START_REF] Bopp | Static nonlocal dielectric function of liquid water[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF]. Effects due to finite-size dipolar molecules [START_REF] Yu | Flory-type theories of polymer chains under different external stimuli[END_REF][START_REF] Yu | Nonlocal statistical field theory of dipolar particles forming chain-like clusters[END_REF] were not taken into account in [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF], either.

The goal of the actual study has been to perform such analysis of the ion transport inside TJs on the basis of the nonlocal dielectric formalism with the use of a more advanced IDA (inverse dielectric approximation) procedure of the nonlocal dielectric description. Then, several functional forms are used for the nonlocal dielectric function of the solvent, including both its simplified "three-pole" approximation and the dependence which takes into account the "overscreening effect" [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Kornyshev | Overscreening" in a polar liquid as a result of coupling between polarization and density fluctuations[END_REF][START_REF] Bopp | Static nonlocal dielectric function of liquid water[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF]. The corresponding mathematical equations are given in Appendix A while basic points of this analysis are discussed below.

Nonlocal dielectric formalism for spatially restricted media If a uniform and isotropic dielectric medium (e.g. water) occupies the whole space while the external charges are distributed inside the medium without disturbing its dielectric properties, in particular without forming interfacial boundaries, then the dielectric response of the medium may be characterized by a single characteristics, its longitudinal dielectric function, ε(k), while the Fourier transforms of the electric field, Eα(k), and its potential, ϕ(k), are proportional to that of the external charge density, ρ(k), see Appendix A1.

In real systems the polar medium does not occupy the whole space, i.e. it is limited by boundaries with other spatial regions where the dielectric properties are different. In particular, for an ion inside water there is always a solvent-free cavity where this ion is located so that its internal dielectric properties are totally different from those of water.

This problem makes the task of theoretical studies in such systems much more complicated. In particular, one has to deal with the nonlocal dielectric response of the polar medium not only far from its interfacial boundaries but also in the vicinity of them, e.g. near the surface of the ion inside the cavity. It is the reason why numerous studies of the ion solvation energy have been carried out within the framework of the "spatially unrestricted medium" approximation (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes: Anomalous behaviour of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF] where the existence of the cavity is disregarded, i.e. it is assumed that the polar medium occupies the whole unrestricted space, see Appendix A4 for more detail.

This approximation has got a very important advantage that the spatial distributions of the electric field, E(r), and of its potential, ϕ(r), for the spherically symmetrical systems can be related to the charge density of the ion, ρ(r), via an integration procedure, Eq (A9). At the same time it is quite unclear from this approximation itself both its degree of precision and where its predictions are not justified. This argument represents a motivation for the development of the nonlocal dielectric theory to take into account explicitly the restrictedness of the spatial region occupied by the solvent which requires inevitably to introduce extra assumptions.

It is universally assumed that the polarization fluctuations in points r1 and r2 belonging to different media (e.g. to the cavity and to the region occupied by the solvent) are not correlated, i.e. the nonlocal dielectric function, εαβ(r1,r2) in Eqs ( 3) and ( 4), is equal to zero for such pairs of points. It means that for any point r1 inside the nonlocal polar medium the integration in Eq (3) is only performed over the spatial region, V, occupied by this medium, Eq (A11), while the dielectric properties of the cavity occupied by the ion are described by the local relation, Eq (A12), see Appendix A2.

For the spatially symmetrical systems, e.g. for the spherical shape of the cavity and the ion charge density only dependent on the distance from the center, ρ(r), the electric field, E(r), and the displacement, D(r), are oriented along the radius-vector, r, while their amplitudes, E(r) and D(r), as well as the electric potential, ϕ(r), only depend on r (Appendix A3). In such systems the displacement, D(r), in any spatial point, r, is identical to the vacuum electric field, G(r), created in vacuum by the same set of charges, ρ(r), r, see Appendix A3.

It means that the distribution of the displacement in this case does not depend on the dielectric properties of either the polar solvent or the medium in contact, e.g. of the ion. Its amplitude, D(r), may be found by simple integration of the charge density of the ion, ρ(r), Eq (A19) in Appendix A3. Then, the electric field inside the cavity is given immediately by Eq (A12). At the same time its distribution inside the polar medium, i.e. outside the cavity, is related to the already known displacement, D(r), via an integral formula, Eq (A17), containing the inverse dielectric function of the polar medium within its spatial region, i.e. outside the cavity, ε -1 (r1,r2).

Two approaches which take into account the restrictedness of the spatial region occupied by the nonlocal polar medium have been proposed till now (Appendix A4). They both are based on a certain approximate relation between the dielectric function of the medium, εαβ(r1,r2) or ε -1 αβ(r1,r2), occupying a restricted volume, V, in Eq (A17) and this characteristics for the same but unrestricted bulk medium, εαβ(r1 -r2) or ε -1 αβ(r1 -r2), or their Fourier transforms, εαβ(k) in Eq (A1) or ε -1 αβ(k) in Eq (A4).

This heuristic consideration is inevitable at the actual stage since the only visible alternative way would be the direct modeling of dielectric properties of an ensemble of interacting solvent molecules inside a spatially restricted region, e.g. around a finitesize ion which (to our best knowledge) has never been performed as yet. In view of the non-uniform distribution of the electric field in this system, a reliable prediction of its nonlocal dielectric function, εαβ(r1,r2), dependent separately on two spatial arguments, would require to increase enormously the number of solvent molecules in the ensemble, compared to the case of an "unrestricted polar medium" where the dielectric function depends on a single spatial argument: εαβ(r1 -r2).

Application of the model approaches discussed below is based on the linear-response theory, i.e. on the assumption that the induced electric field, E(r), is proportional to the amplitude of the charge density, ρ(r), even though the relation between these distributions is nonlocal in space. The degree of validity of this requirement is not evident even for single-charge ions, especially for the distribution of the electric potential inside polar media where the nonlocal correlation function in k-space is strongly oscillating ("overscreening effect") [START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF]. Nevertheless, study of this question [START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF] resulted in conclusion that the approach of the linear nonlocal electrostatics might be applied for (at least semi-quantitative) calculation of the ion solvation free energy in water.

Dominant majority of theoretical studies to model the nonlocal properties of a spatially restricted medium have been performed within the framework of the "dielectric approximation" (DA) [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity, An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] where the nonlocal dielectric function of the polar medium inside region V, εαβ(r1,r2), has the same functional form as the one for the unrestricted region, i.e. for spatial points, r1 and r2, inside V it is given by Eq (A1). In particular, for spherically symmetrical systems the dielectric function of the nonlocal medium, ε(r1,r2), in relation between the amplitudes of the displacement, D(r), and of the electric field, E(r), in Eq (A16) is expressed via the longitudinal component of the dielectric function of the unrestricted medium in k-space, ε(k), Eq (A22).

This simple formulation of the problem for any configuration of the system (including non-symmetrical ones) and its ability to take into account different dielectric properties inside the outer region represent obvious merits of the DA approach. However, an analogous relation for the inverse dielectric function of the spatially restricted medium, ε -1 αβ(r1,r2) in Eq (A13) or ε -1 (r1,r2) in Eq (A17), is not valid, i.e. these functions depend separately on their spatial arguments and they have to be found via solving an integral equation, Eq (A14). For a symmetrical configuration thus found inverse dielectric function, ε -1 αβ(r1,r2), may be combined in Eq (A13) with the known displacement distribution, D(r) = G(r), e.g. for the spherically symmetrical systems, one can find the electric field distribution via Eq (A17).

The necessity to solve integral equation (A14) results in the use of the simplest approximation for ε(k) ("one-pole model" [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes: Anomalous behaviour of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity, An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF], see Appendix A8 for further discussion) in all papers where the DA approach has been applied.

Our analysis of the ion properties inside TJ channels below has been carried out for another approach, "inverse dielectric approximation" (IDA), proposed recently [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]. It assumes that the correlation function of polarization fluctuations in any two points, r1 and r2, of the spatially restricted polar medium in different time moments, <Pα(r1,t1) Pβ(r2,t2)>, is identical to that of the same medium in the unrestricted space. Then, the inverse dielectric function, ε -1 αβ(r1,r2) in Eq (A13), coincides with the one for the unrestricted medium, ε -1 αβ(r1 -r2) in Eq (A4) [START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF].

For the spherically symmetrical systems the amplitude of the electric field distribution, E(r) in Eq (A17), is expressed via the distribution of the displacement, D(r), identical to G(r), and the inverse dielectric function, ε -1 (r1,r2), which is immediately expressed via the longitudinal component of the dielectric function of the unrestricted medium in k-space, ε(k), Eq (A25). Thus, for any form of ε(k) and any distribution of the external charge, ρ(r), the distributions of the electric field and its potential may be found by integration, quite similar to the situation for the UMA approach.

It means that the IDA approach combines the principal advantages of two earlier ones, UMA and DA. Similar to DA, the IDA procedure allows one to take correctly into account the difference in dielectric properties of regions V (occupied by the nonlocal polar medium) and Vout (occupied by a local dielectric medium, Eqs (A12) and (A27)). At the same time the IDA procedure avoids the key problem of the DA one where one has to solve an integral equation, Eq (A14), for the inverse dielectric function of the restricted polar medium, ε -1 αβ(r1,r2). On the contrary, similar to the UMA procedure, the IDA one provides for certain configurations of the system an explicit expression for the electric field, Eq (A26), for any dielectric function of the bulk polar medium, ε(k), and for the any external charge distribution, ρ(r).

Potential distribution around ion inside nonlocal dielectric medium

If an ion is located inside a spherical cavity, r < ri, surrounded by a nonlocal isotropic dielectric medium while the charge density of the ion is spherically symmetrical with respect to the cavity center, ρ(r), then within the framework of the IDA approach one can derive a general expression for the electric potential distribution inside the region occupied by the medium, see Eqs (A40) and (A41) in Appendix A6 or their copies below, Eqs ( 6) and [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF]. Expression (6) contains the longitudinal component of the dielectric function of the unrestricted polar medium, ε(k), and the Fourier transform, ρ IDA (k, qcav) in Eq [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF], of the effective charge distribution, ρ IDA (r, qcav), see lines 2 in Figs. 2a and2b:
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The effective charge distribution, ρ IDA (r, qcav), is always equal to zero inside the ion (even if the charge density of the ion, ρ(r), is nonzero there, see Fig. 2a) while the integral of the charge density of the ion located inside the cavity, qcav in Eq (A33), is distributed in ρ IDA (r, qcav) uniformly over the cavity's surface.

For illustration of the difference between the charge density distribution of the ion, ρ(r), and the effective charge distribution, ρ IDA (r, qcav), let us consider a system where the former is nonzero inside the cavity, i.e. ρcav(r) ≠ 0 for r < ri, Such a case is illustrated in Fig. 2a for the ion charge density, ρ(r), used [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] for calculation of the solvation energy of Na + ion in water (SBS model). This figure provides such a comparison between ρ(r) which is nonzero both inside and outside the cavity (line 1) and the corresponding effective charge distribution, ρ IDA (r, qcav) (line 2). These functions are identical outside the cavity while they are quite different inside this region: the whole charge of the ion distributed inside the cavity, qcav, is replaced in the ρ IDA (r, qcav) function by its localization at the outer surface of the cavity; it is given by the Born-term contribution into ρ IDA (r, qcav), ρB(r, qcav) = (qcav / 4πri 2 ) δ(rri), see Eqs [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF] and (A30). The charge density of the Born model where the whole charge is located at the outer cavity surface, ρB(r, e) = (e / 4πri 2 ) δ(rri), Eq (A30), is also shown (line 3).

If the ion density, ρ(r), vanishes outside the cavity: ρ(r) = 0 at r > ri, then qcav is equal to the total charge of the ion, e, ρext(k) = 0, and for any distribution of the ion charge in the cavity, ρcav(r) at r ≤ ri, the potential outside the cavity is given by expression [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Calculation of free energy of charge transfer from the solvent into a pore[END_REF], see (A38):

1 2 i i 0 ( ) (2 / ) [ ( )] sin sin r e r r k k kr kr dk ∞ - - ϕ = π ε ∫ for r > ri (8)
i.e. it only depends on the total ion charge, e, but not on its particular distribution inside the cavity (r ≤ ri).

The second contribution to the effective charge distribution, ρ IDA in Eq ( 8), only appears if the ion charge is nonzero outside the cavity: ρ IDA (r) = ρext(r) ≠ 0 for r > ri (coincident lines 1 and 2 in Fig. 2a).

In all cases the electric field inside the cavity is determined by vacuum field, Eq (A27), so that it only depends on the dielectric constant inside the ion, εout , and on the charge density of the ion inside the cavity, ρcav(r) for r ≤ ri, while it is independent of either the charge density outside the cavity, ρext(r), or of the dielectric properties of the polar medium.

(a) (b)

Fig. 2. Illustration of the difference between the charge density of the ion, ρ(r) (line 1, red circles), and the corresponding "effective charge density", ρ IDA (r, qcav), defined by Eq (A35) (line 2, black dash line 2 at r = 1.17 Å and black solid line 2 at r > 1.17 Å) (a) as well as between their Fourier transforms, ρ(k) (line 1, red circles) and ρ IDA (k, qcav) (line 2, black solid) (b), divided by the total ion charge, e. Line 1 in Fig. 2a: smeared charge density of Na + ion for SBS model [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] which corresponds to case 2, Eq (A31), where the charge of the ion is distributed both inside and outside the cavity, ρext(r) for r > ri is given by Eq (A34), cavity radius: ri = 1.17 Å, qcav = 0.51 e, qext = 0.49 e, η = 0.35 Å. Lines 3 (dash green) in Figs. 2a and 2b: Born-model charge density where the whole ion charge is located over the surface of the cavity, ρB(r, e) = (e / 4πri 2 ) δ(rri), Eq (A30), while its Fourier transform is given by Eq (A38).

Eq [START_REF] Rieger | Electrochemistry[END_REF] resembles the result for the potential distribution derived with the use of the UMA approach [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes: Anomalous behaviour of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF], see Eq (A9):
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However, Eq (9) contains the Fourier transform, ρ(k), of the charge density of the ion, ρ(r), which is different from ρ IDA (k, qcav) if ρ(r) is nonzero inside the cavity (for r < ri), see Fig. 2b. Besides, predictions of Eq (9) are obviously incorrect inside the cavity: e.g. it predicts a varying potential (i.e. nonzero electric field) at r < ri for the Born model of the ion charge distribution, Eq (A30), while the electric field must be zero at r < ri if the dielectric response inside the cavity is local, Eq(A27). These problems have been resolved within the framework of the IDA approach, see Eq [START_REF] Rieger | Electrochemistry[END_REF].

Ion solvation free energy

According to Eq (A45) in Appendix A7, the IDA approach also provides a simple expression for the electrostatic contribution to the ion solvation energy for any distribution of the ion charge, in particular for the general case where it is nonzero both inside and outside the cavity:

( ) [ ] 2 IDA IDA cav 0 1/ 1 1/ ( ) ( , ) d W W k k q k ∞   ≈ = π -ε ρ   ∫ (10) 
where ρ IDA (k, qcav) is given by Eq [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF]. In the particular case where the charge density of the ion vanishes outside the cavity: ρext(r) ≡ 0 for r > ri, then Eq (9) takes a simpler form, Eq (A43):
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i.e. the solvation energy is fully determined by the total ion charge, e, being independent of the ion charge distribution inside the cavity. The opposite prediction of the UMA approach [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] based on Eq (A44):
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is not correct.

Models of the dielectric function of bulk water

The above expressions for the electric potential distribution and for the ion solvation energy include the longitudinal component of the bulk-solvent dielectric function in the k-space, ε(k). Various models for this function are discussed in Appendix A8. Some of them, e.g. "single-pole" or "three-poles" (3M) expressions, Eq (A46), were proposed from heuristic reasoning [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF]. Later studies of nonlocal dielectric function of bulk water, ε(k), based on molecular dynamic methods revealed a more complicated form of them due to a very strong structuration of the liquid leading to formation of polarization layers of alternating polarities [START_REF] Raineri | Static longitudinal dielectric function of model molecular fluids[END_REF]. This finding called "the overscreening effect" (OS) cannot be described with the use of "pole models" in Eq (A46). Recalculation of the molecular dynamic results [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] provided a novel model for the bulk-water dielectric function taking into account the OS effect, Eq (A47).

Behavior of the inverse values of these dielectric functions, 1/ε 3M (k) and 1/ε OS (k), is shown in Fig. 3 as lines 1 and 2. Values of their parameters are specified in Appendix A8. One may note a drastic difference in the behavior of lines 1 and 2 for the 3M and OS models within a medium range of k values (where the latter reaches large negative values due to the "overscreening effect"). At the same time, graphs for these two models approach one another for sufficiently small and large k values. Further analysis of the ion transport through TJ channels has been carried out for both these models of the dielectric function in order to see whether the final conclusions are affected by this choice.

Resolvation free energy for ion transfer into TJ channel from outside water solution

The equilibrium distribution of an ion between the outside solution and the TJ channel is determined by the differences of both the average potential values (see below) and of the standard chemical potentials of the ion between these spatial regions. The latter (with the minus sign), i.e. the resolvation energy of the ion, δW, is equal to the difference of its solvation energies inside the TJ channel, Wp, and in the bulk solution outside this region, W.

In view of the large thickness of TJs and a low density of monomer units of the protein the local characteristics of the ion do not differ noticeably inside the channel and in the bulk solution, namely the charge distribution of the ion, ρ(r), and nonlocal dielectric properties of the water-protein medium in the close vicinity of the ion cavity surface. The latter means that its dielectric function, εp(k), is close to that of the bulk solution, ε(k), for relatively large k values, k > 1 A -1 . On the contrary, one may expect [START_REF] Rubashkin | Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions[END_REF] on the basis of experimental data for TJ pores [START_REF] Van Itallie | The molecular physiology of tight junction pores[END_REF][START_REF] Sánchez | Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium[END_REF][START_REF] Fischbarg | The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force[END_REF][START_REF] Colegio | Claudins create charge-selective channels in the paracellular pathway between epithelial cells[END_REF][START_REF] Anderson | Physiology and Function of the Tight Junction[END_REF] that the presence of the distributed monomer segments of the protein (e.g. claudin) inside the pore changes longer-range dielectric properties of this "effective medium", i.e. the εp(k) dependence at lower k values is different from ε(k) for the bulk solution.

Extended dynamical hydration shell around proteins studied [START_REF] Ebbinghaus | An extended dynamical hydration shell around proteins[END_REF] with the use of the Terahertz spectroscopy method revealed that the range of correlated water motion is extended for over 1 nm, i.e. at a larger distance than the longest correlation length of water in the bulk solution. Similar result of an extended correlation range of water around hydrated proteins was reported [START_REF] Matyushov | Dipolar response of hydrated proteins[END_REF] for its dipolar response. Studies of the water structure and its interaction with protein surfaces [START_REF] Raschke | Water structure and interactions with protein surfaces[END_REF] showed a slower relaxation of the interfacial water, compared to the bulk medium. Similar conclusion was made [START_REF] Modig | Dynamics of protein and peptide hydration[END_REF] on the basis of NMR data.

All these observations testify in favor of an extended correlation length of water inside TJ channels due to the presence of protein segments, Λp, compared to that in the bulk solution, Λ. Assuming that within this range of relatively small k values the inverse dielectric function inside the TJ channel in the k-space, εp(k), retains its "pole" form of ε(k) for the bulk water solution, The k dependences of the inverse values of the dielectric function, 1/εp(k), for the water-protein medium inside TJ channel are illustrated in Figs. 3a and 3b for the 3M (points 1') and OS (points 2') models. In conformity with the above expectations, comparison of 1 and 1' graphs (or of 2 and 2' ones) for the bulk water and inside the TJ channel shows that the value of the long-range correlation lengths, Λ or Λp, does not affect the function for sufficiently large k values (over 1 A -1 , Fig. 3a) while one can notice an effect for small values of k (Fig. 3b), i.e. for the long-range scale.

(1 + k 2 Λ 2 ) -1 ,
The solvation energy of an ion inside the pore, Wp, is given by the same formula, Eq [START_REF] Rubashkin | A model of electro-osmosis in a leaky tight junction of epithelial cells[END_REF] or Eq [START_REF] Bockris | Modern Electrochemistry: Ionics[END_REF] depending on the distribution of the ion charge, where the dielectric function of the bulk water, ε(k), is replaced by that inside the pore, εp(k), see Appendix A9.

Dependence of the solvation energy inside pores, Wp. on the ratio of the long-range correlation lengths inside pores and in bulk water, Λp/Λ, which expectedly exceeds 1 (see above) is illustrated in Fig. 4 for two (3M and OS) models of the dielectric function (lines 1,1' or 2,2', respectively), Eq (A46) or (A47), as well as for two distributions of the ion charge: entirely inside the cavity (lines 1,2), Eqs (A28) and (A48), or with its partial penetration into the polar medium outside the cavity (lines 1',2'), Eqs (A31) and (A49). For all these variants the solvation energy weakly changes (diminution) as a function of Λp/Λ. Choice among these ε(k) models or charge distributions of the ion leads to a much stronger shift of the solvation energy (for fixed values of the other parameters). 

2'

W p / kT Λ p / Λ Fig. 4. Na + solvation energy inside the TJ space, Wp (divided by kT), as a function of the ratio of the long-range correlation lengths inside pores and in bulk water, Λp/Λ, for various forms of the dielectric function and ion charge distribution. Line 1 and points 1' (black) correspond to localization of the ion charge inside the cavity (case 1), Eqs (A28) and (A48), for the 3M or OS model of 1/ε(k), Eq (A46) or (A47), respectively. Line 2 and points 2' (red) are given for partial distribution of the charge density of the ion outside the cavity (case 2, line 1 in Fig. 2a), Eqs (A31) and (A49), for the 3M or OS model of 1/ε(k), respectively. See Figs. 2 and 3 for other parameters.

As a result, the resolvation energy, δW = Wp -W, i.e. the difference between the ion solvation energies inside the pore and in the bulk water is given by expression (13) if the whole charge of the ion is located inside the cavity (including its outer surface) or by expression ( 14) if a fraction of this charge is located inside the cavity (total charge: qcav) while its other fraction is distributed inside the adjacent water shell:
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where ρ IDA (k, qcav) is given by Eq [START_REF] Kornyshev | The effect of polar solvent structure in the theory of dielectric exclusion of ions from polymer membrane pores. Setting of the problem. Calculation of potential[END_REF].

The resolvation energy, δW, depends on the ratio of the values of the long-range correlation length inside the TJ space and bulk water, Λp/Λ, which originates from the difference of the inverse values of the dielectric functions in bulk water and inside pores, 1/ε(k) -1/εp(k). Expressions for the latter are given in Eq (A52) for the 3M model and in Eq (A53) for the OS one in Appendix A9.

This function of k, 1/ε(k) -1/εp(k), is shown in Fig. 5 for both the three-mode (3M) approximation, Eq (A52), and the model taking into account the overscreening effect (OS), Eq (A53). In drastic contrast to the corresponding graphs for each of the functions, 1/ε(k) or 1/εp(k), which demonstrates a crucial difference in their behavior between 3M and OS models (Fig. 3) their difference, 1/ε(k) -1/εp(k), is almost the same for the 3M and OS approximations within the whole range of k values (Fig. 5).

Besides, the absolute values of this difference in Fig. 5 are much smaller than those for each function in Fig. 3. It is worth to note that the maximum in Fig. 5 is located at small values of k, i.e. at large distances in terms of r. These expressions for the difference, 1/ε(k) -1/εp(k), given by Eq (A52) for the 3M model or Eq (A53) for the OS one, have been used for calculation of the ion resolvation energy, δW, as a function of the ratio of long-range correlation functions inside pore and in bulk water, Λp/Λ (Fig. 6). For any distribution of the ion charge localized entirely inside the cavity (including its outer boundary, e.g. in the Born model), Eqs (A28) or (A30), this energy is given by Eq (13) while a more general expression for δW, Eq [START_REF] Fumagalli | Anomalously low dielectric constant of confined water[END_REF], is applied if the ion charge is distributed both inside the cavity (total charge: qcav) and outside it (ρext(r) function), Eq (A31). -δW p / kT Λ p / Λ Fig. 6. Ion resolvation energy for the cation Na + transfer from the outer water solution into the TJ region, δWp = Wp -W (divided by kT), as a function of the ratio of the long-range correlation lengths inside pores and in bulk water, Λp/Λ, for various forms of the dielectric function and ion charge distribution. Labels and parameters are identical to those in See Figs. 2 and3. Line 1 and points 1' correspond to the ion charge localization inside the cavity for 3M or OS model of 1/ε(k), Eq (A46) or (A47), respectively. Line 2 and points 2' are given for partial distribution of the charge density of the ion outside the cavity for the 3M or OS model of 1/ε(k), respectively.

In all 4 variants the resolvation energy is negative for the values of the correlation length inside pores, Λp, exceeding the one in bulk water, Λ. The absolute value of δW is increasing monotonously in parallel to their ratio, Λp/Λ, from its zero value for Λp = Λ up to 5.5 to 6 for Λp = 2Λ. It implies that this factor may play a significant role for the distribution of ions between pores and bulk solution, see below.

Since the values of the difference of inverse dielectric functions are practically identical numerically for the 3M and OS models (Fig. 5) the corresponding graphs in Fig. 6, line 1 and points 1' for the ion charge inside the cavity, or line 2 and points 2' for ion charge penetration into water, are overlapping. As for different ion charge distributions (1,1' compared to 2,2') there is a slight difference in their predictions. It is why the further analysis will only be performed below for one of the models for ε(k) but for two variants of the ion charge distribution.

In view of the relatively large thickness of the TJ region the solvent dielectric properties around the ion located in its central region cannot be affected by interaction with walls. Moreover, the structure of the first solvation shell around ion can hardly be modified by the presence of the distributed claudin since the concentration of its monomer segments is low, see below. It means that even if the IDA expression, Eq (A24), for the inverse dielectric function, ε -1 αβ(r1,r2), in the bulk solution fails, i.e. the correlation properties of water within this solvation shell are modified, due to the ion cavity formation or/and nonlinear field effects [START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF], the same changes would take place for the ion inside the TJ space.

As a result, the inverse dielectric function for the ion in the bulk solution, ε -1 (r1,r2) in Eq (A17), differs from its analog for the channel, εp -1 (r1,r2), only at the distances comparable to the longest correlation lengths, and, where the perturbations of the water structure induced by the ion's cavity or/and its charge have already relaxed so that
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In view of Eqs (A17) and (A19) where the charge density, ρ(r), the vacuum electric field, G(r), and the displacement, D(r), are identical for the bulk solution and inside the channel, the differences of the electric fields, E(r) -Ep(r), and of the potentials, ϕ(r) -ϕp(r), for these regions only depend on the combination, 1/ε(k) -1/εp(k), e.g. according to Eq (A40):
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It gives for the resolvation energy again the same Eq [START_REF] Fumagalli | Anomalously low dielectric constant of confined water[END_REF] for any distribution of the charge density of the ion and Eq (13) in the particular case.

Modeling of charge (Na + /Cl -) selectivity of TJs

Equilibrium concentration of an ion, i, inside the TJ region is determined by its exchange with bulk solution outside the pore, see Appendix A10 for more detail. The distribution constant of this exchange, ci(p) / c o , depends on the differences between the values of both the standard chemical potential of the ion, i, between these spatial regions, µi(p) (o) -µi (o) (which is equal to its resolvation energy with the minus sign, -δWi, Eq (A56)) and its energies in the average electric field, zi F δϕ, Eqs (A54) and (A55), where zi F is the ion charge (per mole), δϕ is the potential difference between spatial points inside pores and in bulk solution. Both δWi and zi depend on the type of the ion, i = Na + or i = Cl -. Besides, the electroneutrality condition, (A60), is to be satisfied inside the channel that takes into account the charge densities of both ions as well as of the "fixed charge" due to ionogenic groups of the protein (claudin) distributed there. As a result, the equilibrium concentrations of Na + or Cl -inside the pore, cNa(p) and cCl(p), are significantly different.

The theoretical description of the corresponding calculation scheme is given in Appendix A10. The solution for the potential difference, δϕ, Eq (A62), and for the ratio of ion concentrations inside the channel, cNa(p) / cCl(p), Eq (A59), provide their expressions as functions of the concentration of charged claudin groups inside the TJ region (divided by the bulk solution concentration, c o ), cfix/c o , as well as of the resolvation energies of both ions via the parameters: nNa = exp (δWNa / RT), nCl = exp (δWCl / RT), Eq (A59). The charge selectivity of channel, Eq (A57), is equal to the product of the ratio of ion concentrations inside the channel, cNa(p) / cCl(p) , and of the ratio of their diffusion coefficients, DNa(p) / DCl(p):

SNa/Cl ≡ jNa(p) / jCl(p) = (DNa(p) / DCl(p)) cNa(p) / cCl(p) ( 17 
)

Results of theoretical analysis and comparison with experimental data

Experimentally found values of the selectivity factor, SNa/Cl, for several types of claudin-containing TJs exceed strongly 1 (see below) while the diffusion coefficient of Cl -inside the channel is expectedly larger than that of Na + . It means that TJs must be strongly permselective, i.e. the Na + concentration inside it, cNa(p), is to be much higher than that of Cl -, cCl(p). It implies that the system must correspond to limiting case 2 described by Eq (A64) of Appendix A10.

Volume density of charged (ionogenic) groups due to claudin segments distributed inside the channel, cfix, is much lower than the bulk-solution concentrations of Na + and Cl -, c o = 0.15 M, i.e. the parameter, Xfix = cfix/ c o , is much smaller than 1. Since limiting case 2 only takes place for large values of the dimensionless parameter: (Xfix) 2 / (nNa nCl), a small value of Xfix means an even smaller value of the product, nNa nCl = exp [(δWNa + δWCl) / kT], i.e. a sufficiently large negative value of the sum of the reorganization energies:

-(δWNa + δWCl) » kT (18) 
This condition can be rewritten via the standard Gibbs energy of the Na + and Cl -transfer from the bulk solution inside the channel, δGNaCl, or via the standard chemical potentials of these ions, µi(p) (o) and µi (o) , inside the channel and in bulk solution, respectively:

δGNaCl = µNa(p) (o) + µCl(p) (o) -µNa (o) -µCl (o) » kT (19)
Thus, the effect of sufficiently large negative values of the reorganization energies of ions is a key factor in interpretation of the observed selectivity of TJs.

According to Fig. 6, this condition for the reorganization energies may be interpreted as a marked change of the long-range correlation length of the polar medium inside the channel, Λp, compared to that for the bulk water, Λ.

Keeping this conclusion in mind, the dependence of the selectivity factor, SNa/Cl, on the ratio of the long-range correlation lengths inside pores and in bulk water, Λp/Λ (Fig. 7), has been calculated in Fig. 7 on the basis of Eqs (A57), (A58), (A59), (A62) and ( 13) (if the whole ion charge is located inside its cavity, r ≤ ri) or ( 14 

Λ P / Λ S Na/Cl Fig. 7. Predicted dependence of the charge (i.e. Na + /Cl -) selectivity factor for TJs, defined by Eq [START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF], as a function of the ratio of the correlation lengths inside the TJ space and in bulk solution, Λp/Λ, for various values of the claudin's charge density: Xfix = cfix / c o = 0.01 (lines 1,1'), 0.03 (lines (2,2') or 0.06 (lines 3,3'). Lines 1',2',3' correspond to the ion charge localization inside the cavity, i.e. found with the use of Eq (A50) for δWNa and δWCl; lines 1,2,3 correspond to the partial distribution of the charge density of the ion outside the cavity, i.e. found with the use of Eq (A51) for δWNa and δWCl. Concentration c o of NaCl in bulk solution c o = 0.15 M. Parameters of the charge density of the ion (for the SBS model [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF]): rNa = 1.17 Å, qcav,Na = 0.51 e, rCl = 1.64 Å, qcav,Cl = 0.61 e, η = 0.35 Å. Horizontal lines: 4 (absence of selectivity), 5 and 5' (experimental values), 6 (local dielectric response: ε = 80, εp = 40). Lines 7: neglect of effect of ion resolvation energies.

Since the previous analysis in Fig. 5 above has shown that essentially different expressions for the dielectric function of water in 3M and OS models lead to practically identical results for the difference, 1/ε(k) -1/εp(k), within the whole range of k values the calculations in Figs. 6 and7 give practically identical plots for the 3M and OS models (for the same set of other parameters). At the same time, localization of the whole ion charge inside its cavity, or its partial spreading outside the cavity (Fig. 2a), gives slightly non-coincident results for δW (Fig. 6) and consequently for the selectivity (Fig. 7), shown by dash (1',2'3') or solid (1,2,3) lines, respectively.

For identical values of the correlation lengths and the same ion charge distribution the selectivity factor is equal to the ratio of the diffusion coefficients, 0.66, marked by horizontal line 4. Growth of Λp/Λ leads to monotonous increase of SNa/Cl. One may also note a rise of SNa/Cl as a function of Xfix, for a fixed Λp/Λ value, in accordance with Eq (A64).

The value of the selectivity factor was measured experimentally for TJs between MDCK cells in contact with bulk aqueous solution of 0.15 M NaCl: Sexp = 4.5 [START_REF] Colegio | Claudins create charge-selective channels in the paracellular pathway between epithelial cells[END_REF] or Sexp = 10 [5] (shown by horizontal lines 5 and 5' in Fig. 7). Their crossing with a theoretical SNa/Cl vs. Λp/Λ graph determines the corresponding values of the ratio of the correlation lengths, Λp/Λ. In particular, for Xfix = 0.06 [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF] and Sexp = 4.5 this procedure gives around 1.49 for the ratio, i.e. Λp ≅ 1.49Λ ≅ 4.5 Å, for the ion charge localization entirely inside the ion cavity (line 3'), or around 1.56 for the ratio, i.e. Λp ≅ 1.56Λ ≅ 4.7 Å, for the ion charge density penetrating inside water (line 3). For a larger value of the selectivity factor, Sexp = 10, and the same concentration of charged protein groups, Λp ≅ 1.59 Λ ≅ 4.8 Å for line 3' or Λp ≅ 1.67 Λ ≅ 5.0 Å for line 3.

These results for the selectivity factor of TJs, S, are in agreement with those obtained in our preliminary study [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF] performed on the basis of the UMA approach for the Born model of the ion charge distribution, Eq (A30), and pole models for the dielectric function of the solvent. According to Eq (A50) for the ion resolvation energy, this agreement is a consequence of the absence of ion charges inside the cavity in the model of Ref [START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF] as well as due to practical independence of its values on the choice of the nonlocal dielectric function of water, see Fig. 6.

According to literature data [START_REF] Van Itallie | The molecular physiology of tight junction pores[END_REF][START_REF] Anderson | Physiology and Function of the Tight Junction[END_REF] the Na + /Cl -selectivity changes within a wide range for various types of epithelial cells. In particular, its value may reach the level of around 10 [5] (line 5' on Fig. 7). Fig. 7 shows that even such large values may be explained on the basis of the proposed nonlocal dielectric approach.

This possibility to interpret large values of the selectivity factor is directly related to the nonlocal character of the dielectric response of water. Even if one accepts an unrealistically low value for the dielectric constant of water inside TJs: εp = 40 (keeping in mind their large thickness), then δW = (e 2 / 2ri) (ε -1 -εp -1 ) so that SNa/Cl = 1.4 (shown as horizontal line 6 in Fig. 7), i.e. well below the lower experimental value, 4.5 (line 5 in Fig. 7), speaking nothing of its larger ones.

Conclusions

Our theoretical approach has provided an interpretation of a high selectivity of TJs between epithelial cells with respect to the Na + vs. Cl -transport between outside NaCl solutions. It has been concluded that it originates dominantly from a very high value of the ratio of their concentrations inside the channel, cNa(p) / cCl(p).

This large value of the concentrations' ratio in favor of Na + ions is a direct consequence of the negative charge created by ionogenic groups of claudin macromolecules distributed inside the TJ space.

In view of a low concentration of these claudin-based charges, cfix, compared to the NaCl concentration in outside solutions, c o , strong ion selectivity of TJs may only take place for a negative and sufficiently large value of the sum of the resolvation free energies of these ions, Eq [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF], i.e. of the standard Gibbs energy of the Na + and Cl -transfer from the bulk solution inside the channel, Eq [START_REF] Vorotyntsev | Physical significance of an effective dielectric constant that depends on the distance from the electrode[END_REF].

Since the distances between an ion inside the TJ space and its walls or claudin chains inside the channel are relatively large these interactions cannot be responsible for such high values of the ion resolvation energies. We have attributed them to another effect of distributed claudin molecules which modify the water structure inside the channel, in particular its nonlocal dielectric properties. Both the negative sign of the resolvation energies and their large values have been successfully explained with the use of the recently proposed IDA approach on the basis of the assumption that the water-protein interaction increases the long-range correlation length of the solvent inside the TJ space, Λp, compared to that in bulk water solution, Λ.

Such high values of the ion resolvation energies cannot be explained within the framework of the local electrostatics, even if one assumes a two-fold diminution of the local dielectric constant of water inside pores, 40, compared to its bulk value, 80. It implies the non-locality effects in the dielectric response of water play an important role in electric phenomena inside TJs.

APPENDIX A1. Nonlocal electrostatics of unrestricted media

If an uniform and isotropic dielectric medium is unrestricted, i.e. it occupies the whole space while the external charges are distributed inside the medium without disturbing its dielectric properties, in particular without forming interfacial boundaries, then its nonlocal dielectric function, εαβ(r1,r2), in relation (3) between the displacement, D(r), and the electric field, E(r), only depends on the difference between its spatial arguments, r1 -r2, and it is directly related to its Fourier transform, εαβ(k), which for such a medium may be written down via its longitudinal, ε(k), and transversal, εꓕ(k), components dependent on k = |k|:

3 1 2 1 2 1 2 ( , ) ( ) (2 ) ( ) exp[ ( )] , i d - αβ αβ αβ ε = ε -= π ε - ∫ r r r r k k r r k 2 2 ( ) ( / ) ( ) ( / ) ( ) k k k k k k k k αβ α β αβ α β ⊥ ε = ε + δ - ε k (A1)
where the integration (everywhere in this section) is performed over the whole space.

Then, one may resolve Eq (3) with respect to the electric field:

1 1 1 2 2 2 ( ) ( , ) ( ) d E D - α αβ β = ε ∫ r r r r r (A2)
where the (tensor) inverse dielectric function, ε -1 αβ(r1,r2), satisfies to relation (A3) for all points r1 and r2 within the whole space:

1 1 2 2 3 2 1 3 ( , ) ( , ) d ( -) - αβ βγ αγ ε ε = δ δ ∫ r r r r r r r (A3)
By means of the Fourier transformation of relation (A3) one can derive expression (A4) for ε -1 αβ(r1,r2) for an unrestricted medium:
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Fourier transformation of Eqs (A2) and [START_REF] Anderson | Physiology and Function of the Tight Junction[END_REF] gives relations for the Fourier transforms of D(r) and E(r):

Eα(k) = ε -1 αβ(k) Dβ(k) (A5) i kβ Dβ(k) = 4π ρ(k), Eα(k) = -ikα ϕ(k) where ( ) ( ) exp( ) d i ρ = ρ - ∫ k r kr r (A6)
Then,

ϕ(k) = (ikα / k 2 ) Eα(k) = (ikα / k 2 ) ε -1 αβ(k) Dβ(k)
The use of expression (A4) for ε -1 αβ(k) gives the general solution for the Fourier transform of the potential distribution, ϕ(k), for any set of external charges and for any shape of the longitudinal dielectric function of the medium, ε(k):

ϕ(k) = (4π / k 2 ) [ε(k)] -1 ρ(k) (A7)
Let us consider a particular case where the external charge density is spherically symmetrical, i.e. ρ(r) in Eqs ( 5) and (A6)

∫ (rβ / r) exp (ikr) dΩr = -4πi (kβ / k) j1(kr), where j1(x) = x -1 cos xx -2 sin x (A20)

Then, the expression contains the combination:

εαβ(k) (kβ / k). Its transversal component: (δαβ -kα kβ / k 2 ) ⊥ ε (k) (kβ / k),
vanishes, i.e. the transversal dielectric function does not affect the electric field distribution for symmetrical systems. As a result, only depends on the longitudinal dielectric function, ε(k):

εαβ(k) (kβ / k) = (kα / k) ε(k) (A21)
It gives the final expression for the dielectric function of the spherically symmetrical system, ε(r1,r2) in Eq (A16):
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One can easily verify that exactly the same expression for ε(r1,r2) would be obtained for a different formula for εαβ(r1 -r2) instead of Eq (A1):

3 1 2 1 2 1 2 ( , ) ( ) (2 ) ( ) exp[ ( )] , i d - αβ αβ αβ ε = ε - = π ε - ∫ r r r r k k r r k εαβ(k) = δαβ ε(k) (A23)
which was used in previous publications with the use of the DA approximation [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity, An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]. This identity justifies the previously derived results.

For determination of the electric field and potential distributions inside region V occupied by the nonlocal polar medium, under conditions of the symmetry of the system, one may use Eq (A13) where the inverse dielectric function of the medium inside region V, ε -1 αβ(r1,r2), is related to its dielectric function, εαβ(r1,r2), by Eq (A14). Unlike the case of an unrestricted polar medium, or the UMA approximation, the inverse dielectric function of the medium inside region V, ε -1 αβ(r1,r2), depends separately of two spatial arguments (not only of their difference).

Serious shortcoming of this approach originates from the integral character of Eq (A14). As a consequence, determination of the electric field distribution inside the water region, V, requires one to solve an integral equation for ε -1 αβ(r1,r2). Due to this reason explicit results within the framework of the DA approach have only been obtained for the simplest form of the dielectric function of the polar medium, i.e. for its one-mode model [START_REF] Fumagalli | Anomalously low dielectric constant of confined water[END_REF][START_REF] Kornyshev | The effect of spatial dispersion of the dielectric permittivity on the capacitance of thin insulating films: Non-linear dependence of the inverse capacitance on film thickness[END_REF][START_REF] Vorotyntsev | Electric double layer structure in a surface-inactive electrolyte solution: effect of the stern layer and spatial correlations of solvent polarization[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Kornyshev | Overscreening" in a polar liquid as a result of coupling between polarization and density fluctuations[END_REF][START_REF] Bopp | Static nonlocal dielectric function of liquid water[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity, An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF], see Appendix A8 for further discussion.

3. Third approach, inverse dielectric approximation (IDA), has been proposed recently [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]: it looks similar to the DA one but in relation to the inverse dielectric function, ε -1 αβ(r1,r2), in Eq (A13). It means that for all points, r1 and r2, inside region V this function coincides with its expression for the unrestricted polar medium in Eq (A4) so that it can be directly expressed via its Fourier transform, ε -1 αβ(k), which can be written down via the longitudinal and transversal dielectric functions in the kspace, Eq (A4):

ε -1 αβ(r1,r2) ≈ [ε -1 αβ(r1 -r2)]IDA = (2π) -3 ∫ ε -1 αβ(k) exp [ik(r1 -r2)] dk (A24)
For the spherically symmetrical systems the transformations already used for calculation of ε(r1,r2) for the DA approach allow one to derive an analogous expression for the corresponding inverse dielectric function in Eq (A17) within the framework of the IDA approximation via same the longitudinal component of the dielectric function in the k-space, ε(k):
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For any form of the longitudinal dielectric function in the k space, ε(k), one can find the function, ε -1 (r1,r2), analytically or numerically.

Similar to the case of the DA approach, one can verify that the same formula, Eq (A25), for ε -1 (r1,r2) takes place for the bulksolvent dielectric function given by Eq (A23) which was used in references [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF].

Even though the DA and IDA approaches look similar the latter provides enormous advantages, compared to the former one, for certain systems (described in [START_REF] Yu | Electrostatic models in the theory of solutions[END_REF]), where the spatial distribution of the displacement, D(r), is identical to that of the vacuum electric field, G(r), for the same distribution of external charges. This condition is satisfied for many systems of a high symmetry, in particular for spherically symmetrical ones (including an ion of a spherical shape inside a polar solvent), see Eq (A19). As a result, the displacement distribution, D(r), may be found without specifying the (local or nonlocal) dielectric properties of the media, as soon as the external charge density, ρ(r), is known:

Unlike the DA approach, the IDA one expresses the inverse dielectric function of the nonlocal medium inside the restricted spatial region, ε -1 αβ(r1,r2), via the Fourier transform of dielectric function of the unrestricted medium, εαβ(k) in Eq (A24). Thus, the electric field distribution may be found by integration:

1 α 1 αβ 1 2 β 2 2 V ( ) = ( , ) ( ) d - ε ∫ E G r r r r r for points r1 inside region V, ( A26) 
For particular symmetrical configurations this relation may be additionally simplified, see e.g. a set of Eqs (A15), (A17) and (A25) for the spherical symmetry.

Within the spatial regions where the dielectric properties are local the fields E and G in the same point are proportional:

As it is shown below the expressions for the potential distribution outside the cavity and for the ion (re)solvation energy within the framework of the IDA procedure are expressed in case 2 via effective charge distribution, ρ IDA (r, qcav), different from the real ion charge distribution inside the cavity region, ρ(r) = ρcav(r) for r ≤ ri, Eq (A31), while ρext(r) is identical to the one given by Eq (A31):

ρ IDA (r, qcav) = ρB(r, qcav) + ρext(r), ρB(r, qcav) = (qcav / 4πri 2 ) δ(r -ri) (A35)
Thus, in the effective charge distribution, ρ IDA (r, qcav) (A46) Fig. 2a), the whole ion charge inside the cavity, qcav, is displaced to the outer surface of the cavity while the charge distribution outside the cavity, ρext(r), remains unchanged.

A6. Electric field/potential distribution

For any spherically symmetrical ion charge distribution, ρ(r), the electric field distribution inside the cavity, E(r), is given by Eqs (A19) and (A27), i.e. by Eq (A36) for its absolute values:

E(r) = G(r) / εout = q(r) / εout r 2 for r < ri (A36)
In particular, if the ion charge vanishes inside the cavity, e.g. as the one for the Born model, Eq (A30), the electric field is equal to 0 therein:

E(r) = 0 for r < ri if ρ(r) = 0 for r < ri (A37)
As the whole, Eq (A36) is valid inside the cavity, i.e. it depends on both the charge distribution inside the cavity and the local dielectric properties, εout, while it is unaffected by dielectric properties of the medium surrounding the cavity (if the ion charge distribution is independent of this factor).

The distribution of the electric field outside the cavity, i.e. inside region V occupied by the polar medium, is given by combination of Eq (A17 11), Eq (A25) and an expression for the vacuum field, G(r), see the previous section. Then, the results for both the electric field, E(r), and its potential, ϕ(r), can be expressed via the bulk-medium dielectric function, ε(k), and parameters related to the ion charge distribution, ρ(r) [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]. If the ion charge is located entirely inside the cavity, r < ri, or at its external surface, r = ri (case 1 above), ρcav(r) in Eq (A28), including the Born model, Eq (A30), as a particular variant, then the electric field and its potential distributions inside the external region, r > ri, are independent of the particular form of the charge density of the ion, i.e. they are proportional to the total ion charge, e [START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]. In particular, the expression for the potential has the form [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]: 
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where ρB(k, e) = e sin kri / kri is the Fourier transform of the Born model charge distribution, ρB(r, e) in Eq (A30), see line 3 in Fig. 2b.

If the ion charge is located at least partially outside the cavity (case 2), Eq (A31), in particular Eq (A34) for ρext(r) in this region, then the potential represents the sum of two contributions: from all charges inside the cavity (including its external boundary), and from the external charges [START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]: where ρ IDA (k, qcav) (illustrated by line 2 in Fig. 2b) is the Fourier transform of the effective charge distribution, ρ IDA (r, qcav), defined by Eq (A35), which is equal to the sum of the Fourier transforms of the Born model charge density, ρB(r, qcav), for the total charge inside the cavity, qcav, and of the charge density outside the cavity, ρext(r), given by the formulas: where the Fourier transform at k = 0, ρext(0), is directly related to total ion charges inside the cavity, qcav, and outside it, qext(∞), a set of three "pole terms" ("3M model"):

3 1 2 3M 2 2 2 1 2 1 = 1 ε ( ) 1+ ( λ ) 1+ ( λ ) 1+ ( ) C C C k k k k - - - Λ (A46)
which were interpreted as contributions related to the electronic polarization (term 1), orientational (infrared) degrees of freedom (term 2) and a long-range structure due to intermolecular hydrogen bonding (Debye mode, term 3). Values of the parameters in Eq (A46) were taken as: λ1 = 0.5 Å, λ2 = 1 Å, Λ = 3 Å for the corresponding correlation lengths; ε1 = 1.8, ε2 = 5, ε3 = εS = 78 for the intermediate (term 1 or 2) or long-range (term 3) dielectric constants; C1 = 1 -1/ε1 = 0.44, C2 = 1/ε1 -1/ε2 = 0.35, C3 = 1/ε2 -1/ε3 = 0.19 for the corresponding coefficients in Eq (A46).

More recent studies of the nonlocal dielectric properties of bulk water, ε(k), based on molecular dynamic methods [START_REF] Raineri | Static longitudinal dielectric function of model molecular fluids[END_REF] revealed a more complicated form of them originated from a very strong structuration of the liquid leading to formation of polarization layers of alternating polarities. This finding called "the overscreening effect" (OS) cannot be described with the use of "pole models" in Eq (A46). Recalculation of the molecular dynamic results [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] provided a novel model for the bulkwater dielectric function taking into account the OS effect: 1 of Ref [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF] where Λ = 3 Å).
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A9. Resolvation free energy for ion inside a pore compared to the bulk solution

As it is discussed in the principal part of the manuscript, experimental data give evidences in favor of a larger value of the longest correlation length of water in the vicinity of proteins, Λp, compared to that for the bulk water. Then, the whole dielectric function in the k-space, εp(k), of the "effective medium" inside TJ channels, composed of water and distributed protein (e.g. claudin) chains, may be obtained from the one for the bulk water, ε(k), in Eqs (A46) or (A47) via replacement of Λ by Λp.

Then, the electrostatic contribution to the solvation free energy of the ion inside the TJ space, Wp, depending on the ion charge distribution, is given by the same general expression, Eq (A43) or Eq (A45), where the dielectric function of the bulk water, ε(k), is replaced by that inside the pore, εp(k): where ρ IDA (k, qcav) is given by Eq (A41). It is assumed that the ion charge distribution, ρ(r), is the same in bulk medium and inside the pore, i.e. the corresponding Fourier transforms, ρB(k, e) or ρB(k, qcav) and ρext(k), are identical in Eqs (A43) and (A48) as well as in Eqs (A45) and (A49).

As a result, the resolvation energy, δW = Wp -W, i.e. the difference between the ion solvation energies inside the pore and in the bulk water is given by expression (A50) if the whole ion charge is located inside the cavity (including its outer surface) or by expression (A51) if a fraction of ion charge is located inside the cavity (total charge: qcav) while its other fraction is distributed inside the adjacent water shell: 
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The resolvation energy, δW, depends on the ratio of the values of the long-range correlation length inside the TJ region and bulk water, Λp/Λ, which originates from the difference of the inverse values of the dielectric functions in bulk water and inside pores, 1/ε(k) -1/εp(k), which has the form of Eq (A52) or (A53) for the 3M or OS models for the dielectric function in Eq (A46) or (A47 ), respectively:
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Fig. 3 .

 3 Fig. 3. Functional form of the 1/ε(k) function where ε(k) is the longitudinal component of the nonlocal dielectric function in kspace. Bulk-water dielectric function: line 1 (3M model, Eq (A46)); line 2 (OS model, Eq (A47)). Dielectric function of the medium inside TJs (next section): points 1' (3M model); points 2' (OS model) for Λp = 2Λ. Values of other parameters are given in the text. (a) Broad range of k values (logarithmic scale). (b) Range of small k values.

Fig. 5 .

 5 Fig. 5. Functional form of the difference between the inverse dielectric functions in bulk water and inside pores, 1/ε(k) -1/εp(k), for two models of the bulk-water dielectric function, ε(k): line for 3M model, Eq (A52); points for OS one, Eq (A53). See Fig. 3 for parameters (Λp = 2Λ). (a) Broad range of k values (logarithmic scale). (b) Range of small k values.

  ) (if the charge density of the ion is spread partially outside the ion cavity) for several values of the fixed charge density, i.e. of the parameter: Xfix = cfix / c o .

.

  The ρext(k) function in Eq (A41) may be represented explicitly for the exponential form of the external charge density, Eq (A34):ρext(k) = ρext(0) k -1 (1 + k 2 η 2 ) -2 (ri 2 + 2 ri η + 2 η 2 ) -1 [k η (ri + 2η + ri k 2 η 2 ) cos k ri + (ri + η + ri k 2 η 2k 2 η 3 ) sin k ri]

  λ1, λ2, Λ and Ci (i = 1, 2, 3) have the same values as those in Eq (A46); other parameters: A = 50, B = 5 Å 2 , α = 0.8 Å -1 , κ = 3 Å -1 , λ = 0.15 Å (it corresponds to the ε OS (k) model in Table

  ion charge is also present outside the cavity (A49)

  

only depends on the distance from a center, r = |r|, so that its Fourier transform, ρ(k), is a function of k = |k|: 0 ( ) (4 / ) ( ) sin k k r r kr dr

Then, the potential and electric field distributions are given for any form of the dielectric function of the medium by the formulas [15-18, 25, 31-33]: 

A2. Nonlocal electrostatics of spatially restricted media

Such calculation of the potential becomes a much more mathematically complicated problem if the nonlocal polar medium only occupies a certain restricted spatial region, V, while the dielectric properties outside this region, i.e. inside region Vout, are essentially different from those inside V. In particular, for an ion embedded into a polar solvent there exists a cavity inside the medium where the ion is located (Vout) and where the dielectric properties are totally different, compared to those of the solvent inside region V.

For an ion inside the TJ channel the region, V, occupied by the solvent is restricted by both the ion cavity surface and walls of the channel. In our further consideration of this system the latter effect is disregarded for ions in the central region of the channel in view of its relatively large thickness (about 4 nm).

Even though general equations ( 2)-( 5) are still valid the nonlocal dielectric function of the whole system, εαβ(r1,r2), is to take into account specific properties of all media in contact.

It is universally assumed that correlations between the polarization fluctuations in spatial points belonging to different regions, V and Vout, are absent, i.e. < Pα(r1,t1) Pβ(r2,t2) > = 0 for any points where r1 is inside V, r2 is inside Vout and vice versa. Then, the same property is also valid for the nonlocal dielectric function of the whole system in Eq (3): εαβ(r1,r2) = 0 for such points r1 and r2 [START_REF] Zubarev | Nonequilibrium Statistical Thermodynamics[END_REF]. As a result, the integration in nonlocal relations given by Eqs ( 2) and ( 3) is to be only performed over the spatial points, r2, of the region around the other point, r1. For example, for an ion inside a bulk solvent the integration in Eqs ( 2) and

(3) for any point, r1, inside the polar medium is made over the whole spatial region, V, occupied by the solvent, i.e. outside the cavity occupied by the ion, e.g.:

Even though the nonlocal dielectric function, εαβ(r1,r2), in Eqs (A1) and (A11) characterizes the same polar medium the appearance of the cavity implies its possible difference for these systems, i.e. the nonlocal dielectric function, εαβ(r1,r2), in Eq (A11) characterizes properties of spatially restricted nonlocal polar medium (e.g. water) and it depends generally on each spatial argument, r1 and r2, separately, i.e. not via their difference, r1 -r2, as it was in the case of a spatially unrestricted polar medium, Eq (A1).

While the electric field has always got a potential, Eq [START_REF] Anderson | Physiology and Function of the Tight Junction[END_REF], this property may violate for the displacement of a nonlocal medium inside a non-symmetrical spatial region, even if its dielectric function is isotropic and uniform, i.e. rot D is not equal to zero.

It is generally accepted that the outside region, Vout, is occupied by a local dielectric medium, i.e. Eq (1) is valid therein where ε is equal to its dielectric constant, εout [START_REF] Yu | A modified Poisson-Boltzmann theory: Effects of co-solvent polarizability[END_REF][START_REF] Yu | On the theory of electric double layer with explicit account of a polarizable cosolvent[END_REF][START_REF] Yu | Theory of electrosorption of water from ionic liquids[END_REF]:

For such non-uniform systems relation (A11) may be considered as an integral equation for the electric field distribution, E(r).

Its solution for points r1 belonging to V is given by the formula:

where the (tensor) inverse dielectric function, ε -1 αβ(r1,r2), satisfies to the relation for all points r1 and r2 belonging to region V:

The electric distributions inside the water region, V, and outside of it are usually coupled via the conventional continuity conditions (for the potential, ϕ, and the normal component of the displacement, Dn) in each point of the separating surface(s).

A3. Spatially restricted media: spherically symmetrical systems

It is assumed that an isotropic and uniform nonlocal medium occupies a spatial region, V, where its boundary represents a sphere, r = ri (or boundaries as a set of spheres having the same center, r = 0), the outside region (e.g. the cavity where the ion is located) is occupied by a local dielectric, Eq (A12), while the distribution of the ion charge is spherically symmetrical, ρ(r).

Then, the symmetry reasoning gives the relations:

where D(r), ϕ(r) and E(r) = -dϕ(r)/dr only depend on r = |r|.

Then, Eqs (A11) and (A13) give:

where the newly defined nonlocal dielectric function, ε(r1,r2), and the inverse dielectric function, ε -1 (r1,r2), are functions of r1 and r2.

Spherically symmetrical systems possess a very important property [START_REF] Yu | Electrostatic models in the theory of solutions[END_REF]: the distribution of the displacement, D(r) in Eqs (A15) -(A17), is identical to the vacuum electric field, G(r), for the same distribution of external charges, ρ(r), so that it may be found without specifying the (local or nonlocal) dielectric properties of the media, via solving the set of equations:

Its solution has the form:

where q(r) is the ion charge which is located inside the sphere of the radius, r.

Inside the polar medium, expression (A19) for D(r) may be inserted into Eq (A17), i.e. the distribution of the electric field, E(r), may be found as soon as the inverse dielectric function of the system, ε -1 αβ(r1,r2), is known.

A4. Approximations for nonlocal dielectric functions of spatially restricted media

Calculation of the electric field and potential distribution for the above problem of two (or more) media in contact requires to specify the dielectric properties of these media, in particular those of the polar solvent, εαβ(r1,r2) in Eq (A11) or ε -1 αβ(r1,r2) in Eq (A13).

Three different schemes for their determination have been proposed till now.

1. The earliest calculation procedure was proposed in the paper of Dogonadze and Kornyshev [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF] and actively used later [17-18, 25, 31-33, 58-59], mostly for the system: spherical ion surrounded by water. Existence of the cavity occupied by the ion was disregarded, i.e. the polar medium was assumed to occupy the whole space, while the charge density of the ion, ρ(r), was distributed inside this region, without perturbing (nonlocal) dielectric properties of the medium.

Thus, all equations (A1)-(A10) are applicable, in particular the potential distribution for this "spatially unrestricted medium" approximation (UMA) is given by Eq (A9) for any longitudinal component of the nonlocal dielectric function of the bulk medium, ε(k), and for any distribution of the charge density of the ion, ρ(r). This approach was called "immersed charge approximation" in Ref. [START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF].

An important advantage of this procedure is the simplicity of calculations of various electric characteristics, mostly via a single integration (as soon as ε(k) and ρ(r) are known). At the same time its neglect of "cavity effects", i.e. of the existence of the region (inside the ion) possessing quite different dielectric properties represents its serious drawback which in certain situations leads to mistaken results [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF]. In particular, Eq (A9) for the potential distribution is used not only inside region V occupied by the polar medium but also inside the outer region, Vout.

2. Another procedure is based on the so-called dielectric approximation (DA) [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: I[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity, An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]. It is assumed that for any pair of points, r1 and r2, belonging to the water region, V, the nonlocal dielectric function, εαβ(r1,r2), retains its bulk water expression given by Eq (A1). At the same time this approach takes into account the existence of the other medium (or other media) inside the outer region(s) possessing different dielectric properties, e.g. inside the half-space occupied by another medium, or inside the cavity occupied by the ion.

Mathematically this DA approach is based on Eq (A12) inside the outer region, Vout, and Eq (A11) for points r1 inside region V (with integration over region V) where the nonlocal dielectric function of the polar medium inside restricted region V, εαβ(r1,r2), has the same functional form as the one for the unrestricted region, i.e. for spatial points, r1 and r2, inside V it is given by Eq (A1).

Expression for the nonlocal dielectric function, ε(r1,r2), dependent on two scalar variables, in Eq (A16) which couples the amplitudes of the displacement and the electric field for the spherically symmetrical systems, may be simplified with the use of Eq (A1) via the Fourier transform of bulk-water dielectric function, εαβ(k). Integration over the angles, dΩr2,in Eq (A16) may be carried out with the use of the formula:

A5. Ion charge distributions and vacuum electric field: spherically symmetrical configuration

In relation to the problem of the ion passage through TJs we are to consider electric properties of an ion located either inside the central region of this space or in the bulk solvent. In the former case the distance between the ion center and the channel's walls is over 1 nm so that one can neglect the perturbation of the electric field around the ion inside the spatial region which determines its solvation (free) energy. On the other hand, nonlocal dielectric properties of the solvent inside the channel are modified owing to the protein (e.g. claudin) chains.

Then, the system will be described as a spherically symmetrical ion (its charge distribution, ρ(r), dependent on the radial coordinate, r, is discussed in the next section) located inside a spherical cavity (its radius, ri, and its dielectric constant, εout) while the nonlocal polar medium (water) characterized by the longitudinal component of its dielectric function, ε(k) (different in the bulk solvent and inside the TJ channel), occupies the region outside the cavity, r > ri.

Then, in view of the spherical symmetry of the system all vector variables, G, D and E, in any spatial point, r, are oriented along the radius-vector, r, their absolute values (G, D and E) and the scalar variables (in particular, electric potential, ϕ) are functions of the distance from the center of the cavity, r, see Eq (A15).

Eq (A19) gives an expression for the displacement via the ion charge, q(r), which is located inside the sphere of the radius, r.

Outside the region where this charge density, ρ(r), is nonzero the charge, q(r), tends to the total charge of the ion, e.

Inside the polar medium, i.e. for r > ri, expression (A19) for D(r) may be inserted into Eq (A17) for the distribution of the electric field, E(r), where the integration is carried out outside the cavity while ε -1 (r1,r2) is given by Eq (A25).

This result for the electric field may be further simplified depending on the form of the distribution of the ion charge density, ρ(r).

As it has been demonstrated [START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF] one should distinguish two cases.

1. The whole ion charge is located entirely inside the cavity (r < ri) or at its external surface (r = ri), ρcav(r), i.e. the charge density of the ion vanishes outside the cavity: ρcav(r) ≠ 0 for r ≤ ri, ρext(r) = 0 for all values of the radius, r, outside the cavity, r > ri (A28) so that q(r) = e, D(r) = G(r) = e / r 2 for r > ri.

(A29)

Its simplest variant is given by the Born model of the ion [15-18, 25, 60] where the total ion charge, e, is uniformly distributed over the surface of the cavity (line 3 in Fig. 2a):

ρB(r, e) = (e / 4πri 2 ) δ(rri) (A30) so that Eq (A29) gives the displacement distribution within the whole region occupied by the polar medium.

2. The ion charge is distributed both inside the cavity, ρcav(r) for r ≤ ri (as in case 1 above), but also outside the cavity, ρext(r):

It means that it penetrates into the adjacent solvation shell where the dielectric properties are already determined by the polar medium [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]. At the same time the remaining charge density of the ion (normally it is a major fraction of the ion charge, qcav) is located inside the cavity or at its surface.

Such "smeared" distribution of the ion charge [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Kornyshev | Overscreening" in a polar liquid as a result of coupling between polarization and density fluctuations[END_REF][START_REF] Bopp | Static nonlocal dielectric function of liquid water[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF] is illustrated by line 1 in Fig. 2a.

Then, inside the whole region, r > ri, occupied by the medium one can rewrite Eq (A19) for the q(r) and G(r) distributions:

where qcav is the total charge of the ion located inside the cavity (including its external boundary) while qext(r) is only related to the charge density of the ion outside the cavity, i.e. located inside the polar medium: If the charge density of the ion outside the cavity may be approximated by an exponential function (see e.g. [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF]), then:

In case 1 above the charge density of the ion vanishes outside the cavity, r > ri, so that qext(r) is equal to zero, qcav = e, Eq (A32) is reduced to Eq (A29) [START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF].

as well as to their sum, i.e. the total ion charge, e = qcav + qext(∞):

A7. Ion solvation free energy

Let us consider first the electrostatic contribution into the solvation energy of an ion inside a polar medium, W, for case 1 above, where the whole ion charge is located entirely inside its cavity (its radius: ri), Eq (A28). Within the framework of the inverse dielectric approximation (IDA), Eq (A24), one can derive a simple expression for W IDA [START_REF] Rubashkin | Calculation of Na+/Cl-selectivity in tight junctions between epithelial cells by methods of nonlocal electrostatics with pole models of dielectric function without an overscreening effect[END_REF][START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF] which can also be rewritten with the use of the Fourier transform of the Born-model charge density, ρB(k, e), Eqs (A38) and (A30):

It should emphasized that Eq (A43) shows that the solvation energy for any ion charge distribution inside the cavity is always given by its expression for the particular case, i.e. for the Born model of the charge distribution.

Expression for W UMA derived with the use of the unrestricted medium approximation (UMA, see above), which disregards the existence of the ion cavity where dielectric properties are quite different from those for the surrounding polar medium, seems to look very similar [START_REF] Damaskin | [END_REF][START_REF] Fumagalli | Anomalously low dielectric constant of confined water[END_REF][START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF]:

but it contains the Fourier transform, ρ(k), of the real ion charge distribution, ρ(r), instead of the Born-model expression, ρB(k, e), in its IDA expression, Eq (A43), see lines 1 in Figs. 1a and1b. As a result, the energy, W UMA , depends on the functional form of the ion charge distribution inside the cavity, ρcav(r).

This result contradicts directly to the general conclusion of any theory which takes into account the existence of a spherical cavity where dielectric properties are different from those of the surrounding polar medium [START_REF] Vorotyntsev | Model nonlocal electrostatics. II. Spherical interface[END_REF][START_REF] Vorotyntsev | A new approach in the theory of spatially-restricted nonlocal dielectric media[END_REF][START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]: for any spherically symmetrical charge density, ρcav(r), located inside the cavity the solvation energy is determined only by the total ion charge inside the cavity, qcav, defined by Eq (A33).

On the contrary, Eq (A43) for the IDA approach is in full conformity with this general assertion since W IDA is only dependent on the total ion charge, e, which is located inside the cavity.

More complicated expression has been derived for case 2 above where the charge density of the ion is nonzero both inside the cavity, ρcav(r), and inside the solvent layer adjacent to the cavity surface, ρext(r), Eq (A31) [START_REF] Vorotyntsev | Uniformity ansatz for inverse dielectric function of spatially restricted nonlocal polar medium as a novel approach for calculation of electric characteristics of ion-solvent system[END_REF]:

This formula may be rewritten with the use of the Fourier transforms of the effective charge density of the ion, ρ IDA (k, qcav), i.e. via ρB(k, q) and ρext(k), defined by Eq (A41):

Eq (A45) generalizes Eq (A43): if the charge density of the ion outside the cavity is absent: ρext(r) ≡ 0 for r > ri, then ρext(k) ≡ 0 and qcav = e.

Expression (A45) for W(ri) looks again similar to that for the UMA approach, Eq (A44). However, analogous to Eq (A43), Eq (A45) is in conformity with the above general conclusion: the solvation energy is only determined by the total ion charge inside the cavity, qcav, but it does not depend on its specific distribution, ρcav(r), inside the cavity. On the other hand, this energy is affected by the ion charge distribution outside the cavity, i.e. inside the polar medium, ρext(r).

Comparison of Eq (A44) for the UMA approach with Eq (A45) of the IDA one demonstrates again the contradiction of the former to the general conclusion of the independence of W on the specific distribution of the charge density of the ion inside the cavity, contrary to the IDA prediction.

A8. Models of the dielectric function of bulk water

Two models have been actively applied for calculation of the ion solvation energies.

Initially the Fourier transform of the longitudinal component of the dielectric function of water, ε(k), was described [START_REF] Dogonadze | Polar solvent structure in the theory of ionic solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between two solvents[END_REF] as A10. Modeling of charge (Na + /Cl -) selectivity of TJs

The proposed approach to calculation of the ion resolvation energy, δWp, i.e. of the difference between its solvation energies inside pores and in bulk water, is used below for analysis of the so called charge (or Na/Cl) selectivity factor [START_REF] Van Itallie | The molecular physiology of tight junction pores[END_REF] for TJs, i.e. nanopores between two parallel-plane lipid bilayers which contain segments of protein macromolecules (claudin) bearing negatively charged groups.

Besides the long-range correlation length inside the pore, Λp, the ion resolvation energy, δW, also depends on the radius of the cavity inside water created by the ion which is different e.g. for Na + and Cl -: rNa = 1.17 Å, rCl = 1.64 [START_REF] Gourary | Wave Functions for Electron-Excess Color Centers in Alkali Halide Crystals[END_REF]. The corresponding values of the resolvation energy of these ions are denoted below as δWNa and δWCl.

Both ions inside pores are in equilibrium with the bulk aqueous NaCl solution of c o concentration. Therefore, the values of the electrochemical potential of each ion inside pores and in bulk solution are equal to one another so that:

where δϕ is the average potential difference between spatial points inside pores and in bulk solution, subscript (p) is used for quantities inside pores, quantities in bulk solution are given without subscript, cNa(p) and cCl(p) are the average ion concentrations inside pores. Difference of standard chemical potentials of the Na + or Cl -ion between two regions are immediately related to the resolvation energy of this ion:

Selectivity factor of pores is defined as the ratio of the Na+ and Cl -migrational fluxes via pores:

In view of the relatively large thickness of the TJ channel (about 4 nm) and a low volume fraction of the volume occupied by claudin segments inside the channel the ratio of the diffusion coefficients of these ions inside central regions of such pores, DNa(p) / DCl(p), may be assumed to be close to its value in bulk water [START_REF] Newman | Electrochemical Systems[END_REF]:

The ratio of the Na + and Cl -concentrations inside the channel can be written down with the use of Eqs (A54) and (A55):

where nNa = exp (δWNa / kT), nCl = exp (δWCl / kT).

Claudin molecules bearing negatively charged ionogenic groups are dispersed inside TJs. If their average concentration is denoted ascfix, then the local electroneutrality condition inside pores has the form: Its substitution into Eq (A59) gives an expression for the selectively factor, SNa/Cl, Eq (A57),via nNa, nCl (i.e. δWNa and δWCl) and Xfix = cfix / c o . Its their turn, values of the resolvation energies, δWNa and δWCl, Eq (A50) or (A51), depend on Λp/Λ and rNa or rCl as well as on the choice of the dielectric function of water, Eq (A52) or (A53), and the ion charge distribution via ρ IDA (k, qcav), ρB(k, e) or ρB(k, qcav) and ρext(k) defined by Eq (A41).

The above equations may be simplified in two limiting cases determined by the value of a dimensionless parameter, (Xfix) 2 / (nNa nCl):

If this parameter is much smaller than 1, then Case 1: exp(-Fδϕ / kT) ≈ (nCl / nNa) 1/2 , cNa(p) ≈ cCl(p) ≈ (nNa nCl) 1/2 c o >> cfix, (A63)

i.e. the concentrations of both ions inside the channel are close to one another and they are much higher than the concentration of charged protein groups so that the selectivity factor in Eq (A57) is only determined by the ratio of the diffusion coefficients of ions inside the channel. In the opposite limiting case 2 where the above parameter is much larger than 1, then i.e. a large negative potential inside the channel (compared to that in the outside bulk solution) ensures a strong permselectivity: the counterion (Na + ) concentration is close to that of the charged protein groups while the coion (Cl -) one is much lower. It implies a strong selectivity of the channel in favor of the Na + transport with respect to the Cl -one.