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Abstract 

This paper covers forecast management in decentralized supply chains. For various reasons, 

companies do not always agree to disclose their information. To deal with this issue, we consider a 

downstream demand inference (DDI) strategy in a two-level supply chain. DDI was assessed using 

different forecasting methods and was successfully tested using only a simple moving average. In an 

investigatory context using other forecasting methods, we propose the introduction of the weighted 

moving average method, which affects nonequal weights to past observations. First, we verify the 

unique propagation of demand processes. Second, we consider the forecast mean squared errors, the 

average inventory levels and the bullwhip effect as the supply performance metrics. Third, we 

formalize the manufacturer’s forecast optimization problem and apply Newton's method to solve it. 

The optimization results, based on the simulated demands, confirm the effectiveness of our approach 

to produce further enhanced solutions and to improve the results of DDI. We have shown that a little 

change in the weights of the forecast method improves the competitiveness in the market. Conversely, 

the bullwhip effect is affected due to the nonequal weighting in the forecast method.  

Keywords: Supply Chain Management, Downstream Demand Inference, Weighted Moving Average 

Forecasting, Newton Method, Bullwhip effect 

1. Introduction 

The optimal supply chain performance requires the realization of numerous actions. Regrettably, those 

actions are not always in the best interest of the actors of the same supply chain. The supply chain 

actors are mainly focused on achieving their own objectives and that self-serving focus often leads to 

poor performance. However, enhanced performance is achievable if the companies coordinate their 

operations such that each company’s objectives become aligned with the supply chain’s performance. 

Supply chain management is one of the most important research areas that aims to improve the overall 

supply chain performance. More specifically, actors in supply chains are continuously seeking to 

minimize their inventory levels, which are translated into cost savings over time. In a decentralized 
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two-level supply chain consisting of a manufacturer and a retailer, the manufacturer seeks to improve 

the quality of the forecast MSE with the objective of minimizing his average inventory levels. In fact, 

information sharing presents a common approach to deal with inventory reductions. On one side, a 

stream of papers (Cachon and Fisher, 2000; Yu et al., 2001; Sahin and Robinson 2005) argued that 

information sharing can reduce the inventory holdings, related costs and bullwhip effect occurring in 

supply chains. Conversely, many researchers (Lee and Whang, 2000; Mendelson, 2000; Fawcett et al., 

2007; Forslund & Jonsson, 2007; Klein et al., 2007) also argued that information sharing has a number 

of practical limitations, such as confidential policies, data reliability and the lack of information 

systems’ compatibility. Vosooghidizaji, M. et al., (2019) considers different scenarios wherein 

asymmetric information cannot be shared with supply chain partners because of many reasons that 

include “the fear of losing competitive advantage, getting extra benefits, getting a better price, 

maintaining one’s bargaining power, not being controlled or dictated to by other parties, ensuring 

compatibility of information systems, and other strategic reasons”. An actor not sharing information 

can affect the whole system of the supply chain. It was also argued that, by revealing sensitive demand 

information to the upstream manufacturer, a retailer may lose some advantage in future price 

negotiations (Ha et al., 2010). Wal-Mart announced that it would no longer share its information with 

other companies like Inc and AC Nielson as Wal-Mart considers data to be a top priority and fears 

information leakage (Hays, 2004). In fact, depending on the nature and size of supply chains, not 

sharing information can result to different levels of losses. William Wappler, President of Automotive 

Technology Leader SURGER, says, "The automotive industry is estimated to lose annually more than 

2 billion dollars in the supply chain due to losses in inventory of containers, parts, finished vehicles 

and logistical inefficiencies, through a notorious lack of visibility and inherent control." He adds: 

“Most automotive companies struggle to reduce supply chain costs year over year.” According to their 

internal forecasts, the use of the proposed digital platform can help participants achieve double-digit 

cost savings through highly accurate supply chain visibility and the collaborative power of shared 

information (Henderson 2018). Indeed, industries where component suppliers need to build a high 

capacity in advance due to short lead times, face high inventory costs because of uncertain market 

demand. Generally, it has been accepted that the demand is a private information of the retailers, that 

leads to problems of management of the inventory at the upstream levels.  

Recently, a new coordination supply chain approach, known as downstream demand inference (DDI), 

(Ali et al., 2017; Ali and Boylan, 2011; Ali and Boylan, 2012; Tliche et al., 2019) emerged in the 

supply chain field. The DDI strategy allows the enhancement of decentralized systems without having 

to go through explicit demand information sharing. Instead of demand information sharing, the 

upstream actor can infer the demand from the order history. The DDI strategy assumes that the 

demand process and its parameters are known throughout the two-level supply chain. The first part of 

the assumptions – that is the retailer facing the customer’s demand is able to easily estimate the 
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parameters of the process from his demand history – is evident. The second part of the assumptions – 

that is the ability of the manufacturer to infer the process of the demand occurring at the retailer – is 

subject of research and discussion in the literature. Ali and Boylan (2011) showed that DDI cannot be 

applied with the optimal minimum mean squared error (MMSE) forecast method because the 

propagation of the demand may not be unique. Ali and Boylan (2012) also showed that DDI is not 

possible with the single exponential smoothing (SES) method, but only when the downstream actor 

uses the simple moving average (SMA) method that attaches equal weights to past observations. Ali et 

al. (2017) showed that DDI generally outperforms the no information sharing (NIS) strategy in terms 

of the forecast’s mean squared error (���) and inventory costs under the assumption of an ��(1) 

demand model. Under the DDI strategy, Tliche et al. (2019) considered the ���		
 and average 

inventory level (�
�		
) as upstream supply chain performance metrics and generalized the above results 

for causal invertible1 ����(�, �) demand processes. In a context of DDI strategy, this paper aims to 

further enhance the DDI’s results by acquiring further optimized solutions in terms of MSE and 

average inventory levels. 

A first possibility for improvement can be emphasized on the forecasting method adopted in the DDI 

approach. Since the SMA method is the only method of prediction up to now allowing the inference of 

the downstream demand, we have thought to introduce a variant of this method while keeping in mind 

the orientation of improvement of the average inventory levels. The SMA method is characterized by 

the equal weights associated to the � past observations, to predict the future demand. Every time 

period, the oldest demand observation is dropped out and exchanged by the last demand observation. 

A first intuition is to disrupt the weightings of the method in order to improve the performance. In this 

way, the Weighted Moving Average (WMA) method was selected in order to first investigate its 

feasibility in the DDI approach, and second to investigate whether any enhancement is achievable in a 

two-level supply chain. The WMA method is a simple forecasting method, as well as the SMA 

method. The WMA method attaches different weights/ponderations to the � past demand 

observations, and in the same way as SMA, the oldest demand observation is dropped out and 

exchanged by the last demand observation, every time period. The disruption’s possibility of the 

weights in the method was an opening door for exploring potential improvements in different 

directions. One of these directions is the optimization according to the upstream actor’s average 

inventory levels. 

Consequently, acquiring further “optimized” solutions naturally opens the line of our research to other 

branches of scientific research. Indeed, optimization plays a very important role in several areas of 

application and especially in supply chain management. Omnipresent since the beginning of time, 

optimization is a mathematical discipline, that has grown in importance during the 20th century. This 

                                                      
1 Please refer to Shumway and Stoffer (2011) for more details on ���� models, causality and invertibility. 
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is due to the development of industrial sciences, operations planning (economics, management, 

logistics, scheduling), emerging technologies (automatic, electronic, electrotechnical, etc.) and 

computer science, which has made previously impassable numerical resolution methods efficient. 

Mathematically, it consists of minimizing, or maximizing, a function that represents an objective to be 

achieved on a set called a "domain" or "set of feasible solutions," which is defined as a set of 

constraints that are to be respected. The objective is to find the best solution belonging to the domain 

that acquires the optimal value of the objective function. The nature of the objective function and the 

constraints defining the domain determine the nature of the optimization problem and the difficulty of 

its resolution. 

In this paper, instead of using the SMA method, we use the weighted moving average (WMA) 

method, which attaches different weights to the � past observations, and then re-establish the 

manufacturer ���		
 and �
		
 expressions according to a weighting vector �. Second, we propose 

two measures to quantify the gap separating the adoption of the NIS strategy with the MMSE method 

to the adoption of the DDI strategy with the WMA method on one hand, and on the second hand to 

quantify the gap separating the adoption of the DDI strategy with the SMA method to the adoption of 

the DDI strategy with the WMA method, in terms of bullwhip effect. Third, we mathematically 

formalize the manufacturer’s forecast optimization problem (MFOP) and propose the application of 

the well-known Newton's method in order to obtain the optimal weighting vector �∗. To the best of our 

knowledge, this paper presents the first attempt to introduce Newton’s method into forecasts where the 

WMA method is adopted. The numerical results of the ��� and �
� optimizations based on the 

simulated causal invertible ����(�, �) demand processes confirm the effectiveness of this approach 

to produce further-optimized solutions compared to NIS strategy with MMSE method and DDI 

strategy with SMA method, and consequently to improve the competitiveness in the market. However, 

the WMA method affects the bullwhip effect since nonequal weights generate higher orders’ 

variability. It is concluded that if the supply chain is initially adopting a NIS strategy where the 

MMSE method is used in the downstream forecasts, the downstream actor is emphasized to consider a 

high value of � (beyond a certain break-point) in order to reduce the bullwhip effect. Else, if the 

supply chain is initially adopting a DDI strategy where the SMA method is used in the downstream 

forecasts, the upstream actor needs to use a reserve inventory in order to cover the amplified orders 

variations. Hence, we provide a developed picture of the DDI strategy’s adoption when the WMA is 

used for demand forecasts and where the Newton’s method is employed to quantify the weighting 

vector of the WMA method, according to the minimization of the upstream average inventory levels. 

The rest of the paper is organized as follows. Section 2 is devoted to the literature review. In Section 3, 

we present the proposed modeling approach. Section 4 is devoted to the implementation, simulation 

and discussions. Finally, in Section 5, we summarize the contributions, the results, the limitations and 

perspectives.  
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2. Literature review  

Demand information sharing is one of the most important catalysts leading to improvements in supply 

chains. Sharing customers’ demand information requires that upstream actors have access to the 

demand data of their respective downstream actors. The need for information sharing mechanisms, in 

order to extract demand information has always been an open topic of discussion in the literature. 

Some researchers (Chen et al., 2000b; Lee et al., 2000; Yu et al., 2002; Raghunathan 2003) argued 

that downstream actors need to share their demand information with upstream actors in order to reduce 

the bullwhip effect. On the other hand, other researchers (Raghunathan 2001, Zhang 2004, Gaur et al. 

2005, Gilbert 2005) relied on some strong arguments to show that the received orders already contain 

information about the customers’ demand process.  

In a context of no information sharing policy, DDI appears to be a novel collaboration management 

approach that allows the upstream actor to infer the demand of his formal downstream actors without 

the need for information sharing mechanisms. According to the DDI approach, the inventory level/cost 

savings from coordination and negotiation are possible if trust is established between parties (Ali et al. 

2017, Tliche et al., 2019).  

The works of Ali and Boylan (2011) and Ali and Boylan (2012) have already shown that “DDI is not 

possible through SES or optimal MMSE methods, but only with nonoptimal SMA method”. This is 

due to the nonfeasibility of DDI when the propagation of the demand throughout the supply chain is 

not unique. Ali et al. (2017) have investigated DDI using the SMA method for an ��(1) demand 

model and conducted numerical analysis based on real data. Based on simulations, Tliche et al. (2019) 

generalized DDI’s results for causal invertible ����(�, �) demand models and showed that this 

strategy reduces the bullwhip effect. Consequently, it is still natural to explore the feasibility of DDI 

and the improvement of the results by using other forecasting methods. It’s first about the margin of 

enhancement still existing between the DDI strategy’s results and the forecast information sharing 

(FIS) strategy’s results which corresponds to the centralized system where the demand information is 

explicitly shared between actors. Therefore, exploring the DDI strategy by adopting simple forecasting 

methods is still an interesting management research area for both researchers and practitioners. 

Forecasting in supply chains is an increasingly critical organizational tool (Sanders and Manrodt, 

2003) for improving business competitiveness. Ali and Boylan (2012) provided a summary of the 

highly ranked forecasting methods according to their usage, familiarity and satisfaction among 

practitioners. Generally, supply chain decision-makers choose a forecasting method based on its 

simplicity. Especially, the SES, regression analysis (RA) and SMA methods are popular among 

forecasting managers for familiarity and satisfaction reasons. As reported in the works of Sanders and 

Manrodt (1994) and Boylan and Johnston (2003), because of their high difficulty and sophistication, 

optimal forecasting methods are most often considered to be undeserving of extra effort. On the other 
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hand, nonoptimal forecasting methods are more intuitive, especially for those with limited 

mathematical backgrounds. In addition, Johnston et al. (1999) showed that “the variance of the 

forecast error for the nonoptimal method SMA was typically 3% higher than the SES method for an �����(0,1,1)”.  

In this paper, we examine the effects of employing a simple nonoptimal forecasting method, namely, 

the WMA, in the downstream actor’s forecasts, where demand follows a causal invertible ����(�, �). The WMA is a method that is widely used in the industry literature (Wang & Cheng, 

2007; Eckhaus, 2010; Alsultanny, 2012; Kapgate, 2014; Kalaoglu et al., 2015; Wenxia et al., 2015). 

We selected the WMA method as a method of interest because it belongs to the moving average 

methods, and more specifically a variant of the SMA method. The narrow difference in weights 

between the SMA and the WMA methods suggested a potential feasibility (uniqueness of demand 

process propagation) of the DDI approach in a decentralized supply chain. Such as SMA method, the 

WMA method is based on the shifting forward of the last � observations in order to predict the future. 

Every time-period, the oldest observation is excluded and the most recent observation is included. 

Table. 1 summarizes the experimented forecasting methods in the context a DDI strategy as well as 

our contribution. 

Table 1: Forecasting when DDI strategy is adopted 

Forecasting method Mathematical expression DDI feasibility Reference 

 

MMSE 

���� = �(����/���, ����, … , ���!") 

• �#� , #��$, … , #��%" is the 

available set of demand history 

 

Not feasible 

         

       Ali and Boylan  

(2011) 

 

 

SES 

���� = & '(� − &))���)
!

)*+  

• �#� , #��$, … , #��%" is the 

available set of demand history 

• , is the smoothing constant 

 

 

Not feasible 

 

 

Ali and Boylan 

(2012) 

 

SMA 
���� = �- ' ���)

-��
)*+  

• � is the moving average 

horizon 

 

 

Feasible 

Ali and Boylan 

(2012) 

 

Ali et al. (2017) 

 

 

 

WMA  

���� = ' ./ �����/
-

/*�  

• � is the moving average 

horizon 

• � = (�$, … , �0) is the 

 

 

 

Feasible 

 

 

 

This paper 
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weighted vector that is 

obtained using Newton’s 

method 

• 1 ∑ �303*$ = 1�3 ≥ 0  ∀6 = 1, … , � 

 

Thus, in this paper, we first show that demand inference is feasible when the retailer uses the WMA 

method in his forecasts. The upstream actor is then able to infer the demand arriving at his formal 

downstream actor as the demand propagation is unique. Next, the consideration of nonequal weights 

for the � past observations in the WMA method, is achieved through the use of the Newton 

optimization method aligned according to the minimization of the MSE and thus according to the 

minimization of the upstream actor’s average inventory levels. In this way, this paper provides a 

methodology that allows the reduction of the average inventory level at the upstream actor. Since there 

are no specific “standard approaches” for determining the optimal setting in terms of parameter � and 

lead-time 7, we study the sensitivity of our approach’s results in comparison with the NIS strategy 

through the MMSE method, and in comparison with the DDI strategy through the SMA method. In 

addition, we present findings on the bullwhip effect in order to obtain a clearer picture of this 

approach.  

3. Modeling approach 

We consider a simple two-level supply chain that is formed by a manufacturer (upstream actor) and a 

retailer (downstream actor) who receives the demand of a final customer. We suppose that a periodic 

review system is adopted for replenishment in which downstream actors place their orders with 

upstream actors after examining their respective inventory levels. Indeed, after the realization of 

demand #� by the retailer at the beginning of time period 8 and after checking his own inventory level, 

the retailer places an order 9� before the end of the period. Then, the manufacturer prepares the 

required order 9� and ships it to the retailer who will receive it at period 8 + 7 + 1. Here, 7 presents 

the replenishment time of both production and shipment. Second, it is assumed that there are no order 

costs. Second, the unit inventory holding costs and shortage costs are constant and respectively 

denoted by ℎ and <. It is also assumed that both the manufacturer and retailer adopt an order-up-to 

(OUT) policy, which minimizes the total costs over an infinite time horizon (Lee et al., 2000).  

These assumptions were adopted in many papers of this stream of research (Ali et al., 2017; Ali et al., 

2012; Hosoda et al., 2008; Hosoda and Disney, 2006; Cheng and Wu., 2005; Alwan et al., 2003; 

Raghunathan, 2001; Chen et al., 2000; Lee et al., 2000; Tliche et al., 2019) and we consider our paper 

is part of the continuity of this stream of works. 
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3.1. Customer’s demand model and forecast method  

Time-series processes have widely been adopted to model the demand of many products in different 

fields. Let us assume that the demand at the retailer is a causal invertible ����(�, �) process. Let #� 

be this demand process at period 8, which is expressed by equation (1) as follows: 

�� = = + ' >)���)
?

)*� + @� + ' A)@��)
B

)*�                                                        (�) 

where  

• C ≥ 0 is the unconditional mean of the demand process,  

• DE where  J ∈ �1, . . , �" is the autoregressive coefficient of the demand process, 

• ME where  J ∈ �1, . . , �" is the moving average coefficient of the demand process, and 

• N� ↝ �P0, QRST where  8 ∈ [0, +∞[ is the independent and identically distributed error term 

that follows a normal distribution.  

Furthermore, let W� be the mean-centered demand process, XY be the unconditional mean of the 

demand process #� and Z[ = \]^(#��[ , #�) be the covariance between demands at periods 8 and 8 +_. These definitions are required for the formulas’ derivations in this work.  

In addition, as mentioned above, we will consider that the retailer adopts the WMA method in the 

demand forecasts, which, at period 8 + 1, is mathematically written as equation (2): 

���� = ' ./ �����/
-

/*�                                                                         (`) 

where �3 is the weight that is associated with the customer’s demand occurring at time period 8 + 1 −
6, which verifies the set of constraints (\):  1 ∑ �303*$ = 1�3 ≥ 0  ∀6 ∈ �1, … , �", and let � = b�$:�0c be the 

weighting vector. 

To apply DDI strategy, it is first important to check whether the propagation of the demand across the 

supply chain is unique.  

3.2. Downstream actor’s orders time-series structure  

Let 9� be the order process arriving at the manufacturer at period 8, which is expressed by equation (3) 

as follows: 

d� = = + ' >)d��)
?

)*� + @e� + ' A)@e��)
B

)*�                                                         (f) 
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where  

• C ≥ 0 is the unconditional mean of the order process, 

• DE where   J ∈ �1, . . , �" is the autoregressive coefficient of the order process, 

• ME where   J ∈ �1, . . , �" is the moving average coefficient of the order process, and  

• N
� ↝ �P0, g7SP�$S + �0S + ∑ (�3�$ − �3)S0�$3*$ T + 27�$ + 1i QRST where   8 ∈ [0, +∞[ is the 

independently and identically distributed error term that follows a normal distribution. 

The demand and order processes have the same autoregressive and moving average coefficients, and 

they differ only by their respective error terms (see Appendix A). Indeed, the order’s error terms are 

amplified by a coefficient j = 7SP�$S + �0S + ∑ (�3�$ − �3)S0�$3*$ T + 27�$ + 1 such as QReS = jQRS. 

Consequently, the order process is unique and the upstream actor is able to infer the demand process 

without the need for demand information sharing. Next, we derive the manufacturer’s forecast ���		
 and �
		
 when the WMA method is used in a context of a DDI strategy. The performance 

metrics ���		
 and �
		
 are considered since they are the first direct measures impacted by demand 

inference. Indeed, the upstream actor benefits from the DDI strategy that enables the reduction of the 

MSE and the average inventory level. The next consequence is then the reduction of the inventory 

costs related to these metrics’ enhancements.  
3.3. Derivation of the manufacturer’s mean squared error and average inventory 

level expressions  

Since the forecast expression in equation (2) is a function of the weights, the ���		
 and �
�		
 
expressions are also functions of these weights. We derive the ���		
(�) and �
�		
(�) expressions as 

follows: 

���		
 = klm n'(#��3 − o��3)p�$
3*$ q = klm n' #��3

p�$
3*$ − (7 + 1)o��$q 

⟺  ���		
 = klm b' #��3
p�$
3*$ c + (7 + 1)Sklm(o��$) − 2(7 + 1)\]^ b' #��3

p�$
3*$ , o��$c         (4a) 

We then derive the three components of equation (4a) (see Appendix B) and obtain the final 

expression of equation (4) as follows:  
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uv���w(.) = (x + �)y+ + ` ' / yx���/ x
/*�

+ (x + �)` zy+ ' ./`-
/*� + ` ' {.) ' ./y/�)

-
/*)�� |-��

)*� }                                         (~)
− `(x + �) ' ' .)y/�)��

-
)*�

x��
/*�  

Next, the general expression of the average inventory level under an OUT policy is given by Ali et al. 

(2012) and mathematically written as equation (5a) as follows:  

                            �
� = �� − � b' 9��3
p�$
3*$ c + �(9�)2                                                                (5a) 

where 9� is the order process of the retailer arriving at the manufacturer at time period 8; the 

manufacturer’s optimal OUT inventory level �� is expressed by �� = �� + �QRe √k, where �� and k 

are respectively the conditional expectation and the conditional variance of the total demand over the 

lead-time plus one review time unit; and � = �0(�,$)�$ � ����� is the inverse distribution function for the 

standard normal distribution that is calculated at the ratio point 
����. 

Consequently, under the DDI strategy and using the WMA method for the demand forecasts, we 

obtain equation (5b) as follows:  

�
�		
(�) = ��		
(�) − � b' 9��3
p�$
3*$ c + �(9�)2                                                 (5b) 

where ��		
(�) = ��		
(�) + �QRe �k		
(�) 

Then, the equation (5b) is equivalent to the following equation (5c): 

�
�		
(�) = ��		
(�) + �QRe �k		
(�) − � b' 9��3
p�$
3*$ c + �(9�)2                               (5c) 

We then derive the four components of equation (5C) (see Appendix C), and thus, we obtain the final 

expression of equation (5) as follows: 

we���w(.) = =` �� − ∑ >)?)*� � + ��@e�uv���w(.)                                            (�) 
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We note that �
�		
(�) in equation (5) is a nonlinear function of ���		
(�), which can explain the 

nonproportional evolution linking these two performance metrics. Next, we proceed to deriving the 

resulting bullwhip effect in order to compare the processes variations’ evolution with the cases where 

the NIS strategy with the MMSE is adopted, and then to compare it with the case where the DDI 

strategy with the SMA method is adopted.  

3.4. Bullwhip effect 

In this subsection, we are interested in studying the bullwhip effect occurring in the considered supply 

chain. Let �eE , �eeE and �eeeE be the infinite moving average representation (IMAR) coefficients of the 

orders processes in the cases where the WMA, SMA and MMSE methods are adopted for the demand 

forecasts, respectively. 

First, when the WMA method is used in order to forecast the customer’s demand, the ����(�, �) 

demand process at the retailer where N� is the error term that transforms into an ����(�, �) order 

process at the manufacturer, where N�� = 7g∑ �3(N��3�$ − N��3)03*$ + N�i is the error term. Considering 

the lead-time 7, the parameter � and the IMAR coefficients �E and �eE of the demand and order 

processes, respectively, the bullwhip effect is measured by equation (6) as follows: 

������=��u�(.)  = ���(d�)���(��)
= n7S b�$S + �0S + '(�3�$ − �3)S0�$

3*$ c + 27�$ + 1q b∑ �eES��E*�∑ �ES��E*� c                                (6) 

Second, when the SMA forecasting method is adopted, the ����(�, �) demand process for the 

retailer where N� is the error term transforms into an ����(�, �) order process at the manufacturer, 

where N

� = �p0 + 1� N� − p0 N��0 is the error term (Tliche et al., 2019). Considering the lead-time 7, 

the parameter � and the IMAR coefficients �E and �eeE of the demand and order processes, 

respectively, the bullwhip effect is measured by equation (7) as follows: 

������=�vu�  = ���(d�)���(��) = `x` + -` + `-x-` {∑ ��� )`��)*+∑ �)`��)*+ |                                  (�) 

Third, when the MMSE forecasting method is adopted by the retailer, the ����(�, �) process at the 

retailer transforms into an ����(�, �l�(�, � − 7)) process at the producer (Zhang, 2004). 

Considering the IMAR coefficients of demand and orders processes, respectively, �E and �eeeE, the ratio 

of the unconditional variance of the orders process to that of demand process, namely the Bullwhip 

effect is measured by equation (8) as follows: 
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������=�uuv�  = ���(d�)���(��) = {' �)
x

)*+ |` �∑ ���� )`��)*+∑ �)`��)*+ �                                       ( ) 

Furthermore, considering the obtained expressions of equations (6), (7) and (8), we simply consider 

the ratio of ¡¢£oo£C8¤¥¦ to ¡¢£oo£C8¥¥§¨ and the ratio ¡¢£oo£C8¤¥¦ to ¡¢£oo£C8§¥¦. In 

this manner, we obtain ideas about how the bullwhip effect behaves when switching from a NIS 

strategy with the MMSE method to a DDI strategy with the WMA method (case 1), and when 

switching from a DDI strategy with the SMA method to a DDI strategy with the WMA method (case 

2). Let denote the bullwhip effect evolution of the case 1 by ¡��¥¥§¨¤¥¦ , which is expressed by 

equation (9) as follows: 

���uuv��u� = ������=��u�(.)������=�uuv�
= gx`P.�̀ + .-̀ + ∑ (./�� − ./)`-��/*� T + `x.� + �iP∑ �)x)*+ T` �∑ �� )`��)*+∑ ���� )`��)*+

�                                                             (ª) 

Now, let denote the bullwhip effect evolution of the case 2 by ¡��§¥¦¤¥¦, which is expressed by 

equation (10l) as follows: 

¡��§¥¦¤¥¦ = ¡¢£oo£C8¤¥¦¡¢£oo£C8§¥¦
= �Sg7SP�$S + �0S + ∑ (�3�$ − �3)S0�$3*$ T + 27�$ + 1i27S + �S + 2�7  {∑ �eES��E*�∑ �eeES��E*� |                                            (10l) 

We note here that �eE are equal to �eeE for j from 0 to +∞ since the order processes 9� keep the same 

coefficients DE and ME of the demand processes in the cases where WMA and SMA methods are 

adopted, respectively. Indeed, the only difference between the two structures of 9� is in the error terms. 

Hence, equation (10l) is equivalent to equation (10): 

���vu��u� = ������=��u�������=�vu� = -`gx`P.�̀ + .-̀ + ∑ (./�� − ./)`-��/*� T + `x.� + �i`x` + -` + `-x              (�+) 

The mathematical expression of equation (10) is not a linear function. Studying this equation is not a 

straightforward task since it does not allow one to understand the domains in which ¡��§¥¦¤¥¦ is 

inferior or superior to 1. Therefore, we suggest some simulations for this metric in Section 4 to have 

an approximate idea of the gap of the bullwhip effect, such as separating the situations in which WMA 

and SMA are adopted. Note that ¡��§¥¦¤¥¦ will be noted by ¡��§¥¦¤¥¦/0¬­�®¯ since the vector � in the 

simulation section is the Newton’s optimal weighting. 
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Once the analytical expressions for the different supply chain performance metrics are derived, we 

proceed to detail the problem model and the resolution method. 

3.5. Newton method for optimal weighting 

We assume that the manufacturer aims to minimize his average inventory level when forecasting over 

the time period 7 + 1. In this work, this inventory-oriented enhancement is the main engine of the 

supply chain surplus. Indeed, if the possibility of inventory level minimization still exists, then the 

value of this gap is convertible to a monetary value that can be shared across the supply chain. To do 

this, since the inventory expression in equation (5) is a function of the ���, the manufacturer is 

recommended to simply determine the weighting vector �∗ that minimizes this ���. Then, the 

expression of the ���		
(�) in equation (4) is replaced by the obtained value ���		
(�∗), and the 

optimal average inventory level �
�		
(�∗) is then determined. Let us first define the MFOP, which can 

be expressed as follows: 

(��°±): 
²³³́
³³µ

¶·¸·¶·¹º ���		
(�)
<»¼J£C8 8]

²³³́
³³µ ' �3

0
3*$ = 1

�3 ≥ 0  ∀6 ∈ �1, … , �"
� = b�$:�0c

 

There are several methods that can be applied to solve such problems. In this paper, we select the 

Newton’s method, a gradient-based iterative optimization algorithm that is widely used in the 

literature because of its ease of implementation and quickness of resolution since the convergence is 

quadratic (Qi and Sun, 1999). For a positive quadratic convex function defined on ℝ, the minimum is 

reached if the derivative function is equal to 0 and the second derivative function is positive on ℝ.  

We then talk about the 1st order and 2nd order optimality conditions. The Newton's method is suitable 

for the optimization in this setting because of the mathematical nature of the ���. Indeed, the ��� is 

positive and of quadratic convex nature defined on ℝ¯. The 1st optimality conditions (considering the 

constraints of the weights) are presented by the KKT formulation shown next. The 2nd optimality 

conditions (always considering the constraints of the weights) are presented by the Hessian matrix 

∇¿ À�[Á[ Â also shown next, which must be a semi-definite positive matrix. This statement is not evident 

because of the complexity of the matrix components. However, a matrix is semi-definite positive if 

and only if all of its eigenvalues are non-negative (Vandenberghe and Boyd, 1996). In practice, we 

verified this condition in our simulations.  

For the purpose, we go on to state our resolution methodology. We first modify the constraints’ form 

of the MFOP into a matrix form and then the problem is rewritten as follows: 
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(��°±): 
²³
³³́
³³
³µ ¶·¸·¶·¹º ���		
(�)

<. 8.
²³³
³́
³³³
µ � £� ≤ 1−� £� ≤ −1−�3 ≤ 0  ∀6 ∈ �1, … , �"

£ = b1:1c[0,$Ä
� = b�$:�0c

 

⟺ (��°±):

²³³
³³́
³³³
³µ ¶·¸·¶·¹º ���		
(�)

<. 8.
²³³
³́
³³³
µ� � ≤ ¼,   � = b e�−e�−�0c[0�S,0Ä and   ¼ = b 1−100 c[0�S,$Ä

£ = b1:1c[0,$Ä , 00 = b0:0c[0,$Ä , �0 = b1 0 00 ⋱ 00 0 1c[0,0Ä
� = b�$:�0c

 

We first define the necessary Karush-Kuhn-Tucker (KKT) first order optimality conditions that are 

associated with this problem  as follows (Gordon and Tibshirani, 2012): 

(���):

²³
³³
³́
³³
³³
µ (1):       È���		
(�)È� +  ��Á = 00(2):  Á3(�� − ¼)3 = 0,     6 ∈ �1, … , m"

<. 8.
²³³
³́
³³³
µ �� ≤ ¼Á3 ≥ 0,   6 ∈ �1, … , m"m = � + 2� = b�$:�0c

Á = bÁ$:ÁÉc
 

We note here that  Á3 is simply a parameter of the constraints’ satisfaction and is not related to our 

analysis. Next, in order to derive Ê¥§¨ËËÌ(Í)ÊÍ , the ���		
(�) function must be rearranged in the 

following form: 

���		
(�) = (7 + 1)SZ� ' �3S0
3*$ + 2(7 + 1)S ' {�E ' �3Z3�E

0
3*E�$ |0�$

E*$
− 2(7 + 1) ' ' �EZ3�E�$

0
E*$

p�$
3*$ + (7 + 1)Z� + 2 ' 6 Zp�$�3 p

3*$  



15 
 

We separate the four components of the rearranged ���		
(�) expression, and we denote them as 

follows: 

• \$(�) = (7 + 1)SZ� ∑ �3S03*$ = (7 + 1)SZ���0��; 

• \S(�) = 2(7 + 1)S ∑ P�E ∑ �3Z3�E03*E�$ T0�$E*$ ; 

• \Î(�) = −2(7 + 1) ∑ ∑ �EZ3�E�$0E*$p�$3*$ = −2(7 + 1)P∑ Υ3�p�$3*$ T� 

where Υ3 = Ð Z3::Z3�0�$
Ñ ,       6 = 1, … , 7 + 1 

• \Ò(�) = (7 + 1)Z� + 2 ∑ 6 Zp�$�3 p3*$  

We then derive the derivative functions of the four ���		
(�) components as follows: 

• 

ÊÓÔ(Í)ÊÍ = 2(7 + 1)S Z� �0 �, 

• 

ÊÓÕ(Í)ÊÍ = 2(7 + 1)S
Ö××
×Ø ∑ �3Z|3�$|03*$3Ú$ ::∑ �3Z|3�0|03*$3Ú0 ÛÜÜ

ÜÝ
, 

• 

ÊÓÞ(Í)ÊÍ = −2(7 + 1)Υ� where  Υ = Ð∑  Z3p�$3*$::∑  Z3p�03*0
Ñ, and 

• 

ÊÓß(Í)ÊÍ = 00. 

Then, the derivative function of ���		
(�) is finally expressed as follows: 

È���		
(�)È� =

Ö××
×××
×××
×Ø 2(7 + 1)S �Z��$ + ' �3Z|3�$|

0
3*$3Ú$

� − 2(7 + 1) '  Z3
p�$
3*$:::

2(7 + 1)S �Z��0 + ' �3Z|3�0|
0

3*$3Ú0
� − 2(7 + 1) '  Z3

p�0
3*0 ÛÜÜ

ÜÜÜ
ÜÜÜ
ÜÝ

[0,$Ä

 

In a second step, we denote à(�) =  Ê¥§¨ËËÌ(Í)ÊÍ +  ��Á, and then ��� is equivalent to the following 

nonlinear equations system (NLS): 

(�7�): 1 à(�, Á) = 00Á3(¼ − ��)3 = 0, Á3 ≥ 0, (¼ − ��)3 ≥ 0, 6 ∈ �1, … , m" 
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Proposition (Chen et al., 2000a): 

If l ≥ 0 and  ¼ ≥ 0, then l¼ = 0 ⇔  ã(l, ¼) = 0 with ã(l, ¼) = l + ¼ − √lS + ¼S. 

By applying the Proposition to (�7�), we obtain the following system (�7�ä): 

(�7�ä): å à(�, Á) = 00�3(Á3, (¼ − ��)3) = Á3 + (¼ − ��)3 − æÁ3S + (¼ − ��)3S = 0,     6 ∈ �1, … , m" 

Next, let ¿ ��Á� = Àà(�, Á)�(�, Á)Â = 00�É. Consequently, solving (�7�ä) requires solving the following 

nonlinear equation (�): 

(�):        À�[�$Á[�$Â = À�[Á[ Â − ∇¿�$ À�[Á[ Â . ¿ À�[Á[ Â 

The resolution of such an equation requires the computation of the inverse of the Hessian matrix 

∇¿�$ À�[Á[ Â at each iteration _, which could be expensive in terms of time and memory. The best 

solution is then to solve a linear system using the Pivot-Gauss method (Sorensen, 1985). For any linear 

system of the form �� =  ¼, the Pivot-Gauss method consists of staggering the system by making 

changes to the rows of matrix � of the type 73 ←  73 + ,7E to obtain the solution at the end a triangular 

matrix. Finally, solving (S) amounts to solving the following linear equations system (LS):  

(7�):        ∇¿ À�[Á[ Â . ∆»[ = −¿ À�[Á[ Â 

where   

∆»[ = À∆�[∆Á[ Â = À�[�$ − �[Á[�$ − Á[ Â 

and  

∇¿ À�[Á[ Â = Ö××
Ø Èà(�[ , Á[)È� Èà(�[ , Á[)ÈÁ È�(�[ , Á[)È� È�(�[ , Á[)ÈÁ ÛÜÜ

Ý
[0�É,   0�ÉÄ

 

with 

• 

Êé(Íê,ëê)ÊÍ = ÊÕ¥§¨ËËÌ(Íê)ÊÍÕ = z 2(7 + 1)SZ� ⋯ 2(7 + 1)SZ|$�0|⋮ ⋱ ⋮2(7 + 1)SZ|0�$| ⋯ 2(7 + 1)SZ� }, 

• 

Êé(Íê,ëê)Êë = ��, 

• 

Êî(Íê,ëê)ÊÍ = −� + Pï�¦ÍêTð¦
æPëðêTÕ�Pï�¦ÍêTðÕ
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• 

Êî(Íê,ëê)Êë = ñ1 − ëðPëðêTÕ�Pï�¦ÍêTðÕò �(É,É) 
In this section, we established the transformation of the quadratic problem MFOP into a system of 

linear equations (7�). The use of the Pivot-Gauss method allows for the reduction of the execution 

time that is necessary to obtain the Newton’s results.  

We conclude this section by summarizing the collaborative process in the considered supply chain. 

The manufacturer signs an income-sharing contract with the retailer. The latter agrees to adopt the 

WMA/Newton method in his demand forecasting, thus allowing the demand inference at the 

manufacturer. The manufacturer implements the Newton's method to obtain the optimal allocation 

vector according to his average inventory level. Once the system (7�) is solved, the manufacturer 

passes the information on the allocation vector to the retailer who will implement this weighting in his 

WMA forecasting method. The reduction of the MSE and consequently the average inventory level at 

the manufacturer, generates savings that will be shared with the retailer. 

4. Simulation results and discussion 

In this section, we carry out some simulated experiments of our implementation, namely, the 

resolution of some examples that will serve to validate the approach. Then, we discuss the observed 

results compared to the NIS strategy with the MMSE method and compared to the DDI strategy with 

the SMA method. 

4.1. Implementation of Newton’s method 

Using the MATLAB software, we implemented the Newton's method for solving a quadratic problem 

under linear constraints. We adapted the general form of the quadratic problem to coincide with our 

MFOP and then conducted simulations by solving some problems using different predefined demand 

processes. The pseudocode of the Newton’s algorithm is shown as follows: 

Newton’s algorithm: 

� Input of the problem data �, 7, �, ¼ and Z3 for 6 ∈ �1, … , � + 7" 
� Input of the algorithm parameters:  6óôÍ (maximal iterations number) and ü (maximal accepted error) 

� Entry of the initial estimates: _ = 0, �� = {�$�:�0� | and Á� = {Á$�:ÁÉ�|  

� While  þ¿ À�[Á[ Âþ ≥ ü or þ�[�$ − �[Á[�$ − Á[ þ ≥ ü or _ < 6óôÍ 

� Compute ¿ À�[Á[ Â and ∇¿ À�[Á[ Â 

� Solve ∇¿ À�[Á[ Â . ∆»[ = −¿ À�[Á[ Â using the Pivot-Gauss method and deduce 
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 À�[�$Á[�$Â = À�[Á[ Â + ∆»[ = À�[Á[ Â + À∆�[∆Á[ Â 

� _ =  _ + 1 

  End 

� If _ = 6óôÍ, then the algorithm diverges and it will be necessary to change the initial point ��. 

4.2. Simulation experiments 

In this first part of the simulation, we consider the demand models in Table. 1, which are causal 

invertible ����(�, �) models, and we vary the autoregressive parameters  DE where  J = 1, … , � and 

the moving average parameters ME where  J = 1, … , �. Since it is impossible to infinitely compute the 

IMAR coefficients, we only compute the first 1000 �-weights for all simulated ����(�, �) demand 

processes. Then, we conduct comparative studies between the cases where NIS with MMSE and DDI 

with WMA/Newton, and a comparative study between the cases where DDI with WMA/Newton 

method and DDI with SMA method, for the following fixed parameters: C = 10, QRS = 1, 7 = 5, � =12, ℎ =  1, and < = 2. The optimal ponderation vector is obtained by applying the Newton’s method. 

The chosen parameters of Newton’s algorithm are as follows: ü = 10�� and 6óôÍ = 100. The initial 

solution can be arbitrarily chosen as long as it is in the realm of feasible solutions. The eigenvalues of 

the Hessian matrix are positive and for different initial solutions corresponding to multiple simulations 

on the same problem, the optimal solution is always unique. This ensures the global optimality of the 

Newton’s solution. Finally, the Newton’s algorithm does not exceed a dozen iterations and the elapsed 

time is on the scale of a second using the Windows 7 professional operating system.  

4.2.1. Comparative studies  

The following tables present the findings of our simulations on 20 different demand models. We 

selected 20 different demand models used in the simulation for the simple reason of multiple 

illustrations, where we variate autoregressive and moving average parameters of the demand 

processes. Multiple simulations procure more credibility about the robustness of results. Table 2 

shows the coefficients of the demand processes and the obtained Newton’s optimal weights for the � 

past observations. Table 3 shows the simulation results of the ��� and �
�, respectively, when the NIS 

strategy is adopted, when the DDI strategy with the SMA method is adopted, and finally when the 

DDI strategy with the WMA/Newton method is adopted.  

Table 2: Optimal Newton’s weights for ����(�, �) demand models  

Demand model Autoregressive 

and moving 

average 

coefficients 

Newton weights vector .∗ 
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1 D$ = 0.400 �0.2218;  0.0667;  0.0667;  0.0667;  0.0667;  0.0667;0.0667;  0.0667;  0.0667;  0.0667;0.0667;  0.1112 � 

2 D$ = 0.500 �0.2835;  0.0597;  0.0597;  0.0597;  0.0597;  0.0597;0.0597;  0.0597;  0.0597;  0.0597;0.0597;  0.1194 � 

3 D$ = 0.600 �0.3653;  0.0508;  0.0508;  0.0508;  0.0508;  0.0508;0.0508;  0.0508;  0.0508;  0.0508;0.0508;  0.1269 � 

4 M$ = 0.400 �0.1727;  0.0370;  0.0913;  0.0696;  0.0782;  0.0749;0.0758;  0.0764;  0.0739;  0.0806;0.0636;  0.1061 � 

5 M$ = 0.500 �0.1952;  0.0143;  0.1046;  0.0596;  0.0818;  0.0714;0.0753;  0.0760;  0.0704;  0.0837;0.0560;  0.1118 � 

6 M$ = 0.600 �0.2116;  0.0000;  0.1171;  0.0467;  0.0880;  0.0659;0.0756;  0.0756;  0.0659;  0.0880;0.0476;  0.1171 � 

7 D$ = 0.400 M$ = 0.051 
�0.2397;  0.0567;  0.0661;  0.0656;  0.0656;  0.0656;0.0656;  0.0656;  0.0656;  0.0657;0.0631;  0.1149 � 

8 D$ = 0.400 M$ = 0.100 
�0.2569;  0.0455;  0.0666;  0.0645;  0.0647;  0.0647;0.0647;  0.0647;  0.0646;  0.0652;0.0593;  0.1186 � 

9 D$ = 0.400 M$ = 0.300 
�0.3186;  0.0000;  0.0752;  0.0575;  0.0628;  0.0613;0.0615;  0.0621;  0.0596;  0.0680;0.0400;  0.1334 � 

10 D$ = 0.400 M$ = 0.300 MS = 0.100 

�0.3550;  0.0000;  0.0449;  0.0692;  0.0574;  0.0586;0.0593;  0.0585;  0.0616;  0.0565;0.0413;  0.1378 � 

11 D$ = 0.400 M$ = 0.300 MS = 0.150 

�0.3733;  0.0000;  0.0271;  0.0758;  0.0572;  0.0557;0.0582;  0.0578;  0.0624;  0.0504;0.0420;  0.1400 � 

12 D$ = 0.400 M$ = 0.300 MS = 0.200 

�0.3909;  0.0015;  0.0068;  0.0829;  0.0593;  0.0514;0.0567;  0.0583;  0.0631;  0.0441;0.0428;  0.1423 � 

13 D$ = 0.400 M$ = 0.300 MS = 0.180 MÎ = 0.060 MÒ = 0.050 

�0.4138;  0.0091;  0.0259;  0.0590;  0.0410;  0.0602;0.0562;  0.0493;  0.0551;  0.0464;0.0425;  0.1415 � 

14 D$ = 0.200 DS = 0.150 M$ = 0.100 

�0.2194;  0.1045;  0.0584;  0.0630;  0.0626;  0.0626;0.0626;  0.0626;  0.0627;  0.0614;0.0742;  0.1059 � 

15 D$ = 0.200 �0.2806;  0.1607;  0.1142;  0.0694;  0.0308;  0.0347;0.0344;  0.0336;  0.0415;  0.0509;0.0615;  0.0878 � 
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DS = 0.150 DÎ = 0.120 DÒ = 0.100 M$ = 0.100 

16 D$ = 0.200 DS = 0.150 DÎ = 0.120 DÒ = 0.100 M$ = 0.100 MS = 0.065 

�0.3018;  0.1767;  0.0979;  0.0623;  0.0261;  0.0321;0.0335;  0.0318;  0.0389;  0.0463;0.0629;  0.0899 � 

17 D$ = 0.200 DS = 0.150 DÎ =    0.120 DÒ =    0.100 M$ = 0.100 MS = 0.065 MÎ = 0.060 MÒ = 0.051 

�0.3293;  0.1994;  0.1171;  0.0501;  0.0000;  0.0177;0.0256;  0.0257;  0.0357;  0.0468;0.0629;  0.0898 � 

18 D$ =    0.200 DS = −0.150 DÎ =    0.120 DÒ = −0.100 D� =    0.080 D� =    0.070 D� =    0.060 D� = −0.051 M$ = 0.100 

�0.1484;  0.0679;  0.1154;  0.0721;  0.1023;  0.0792;0.0672;  0.0589;  0.0657;  0.0760;0.0606;  0.0865 � 

19 D$ =    0.200 DS = −0.150 DÎ =    0.120 DÒ = −0.100 D� =    0.080 D� =    0.070 D� =    0.060 D� = −0.051 M$ = 0.100 

�0.1614;  0.0772;  0.1089;  0.0709;  0.0992;  0.0770;0.0627;  0.0550;  0.0642;  0.0734;0.0617;  0.0884 � 
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MS = 0.060 

20 D$ =    0.200 DS = −0.150 DÎ =    0.120 DÒ = −0.100 D� =    0.080 D� =    0.070 D� =    0.060 D� = −0.051 M$ = 0.100 MS = 0.060 MÎ = 0.040 MÒ = 0.010 

�0.1712;  0.0842;  0.1169;  0.0648;  0.0958;  0.0730;0.0592;  0.0499;  0.0600;  0.0737;0.0627;  0.0887 � 

 

Table 3: ��� and �
� results for ����(�, �) demands when NIS, DDI with SMA and DDI with 

WMA/Newton methods, are adopted 

Demand 

Model 

NIS with MMSE method DDI with SMA method DDI with WMA/Newton 

method 

���0
§ �
�0
§ ���		
 �
�		
 ���		
∗
 �
�		
∗

 

1 67.3756 19.6936 20.3867 11.5614 19.4392 11.4855 

2 138.3996 33.0452 26.7926 14.3894 24.6456 14.2098 

3 300.1029 62.3794 36.5808 18.7090 31.8348 18.2922 

4 11.7600 7.8951 16.2400 07.4301 15.8909 7.4038 

5 13.5000 8.5608 18.5000 07.7789 17.9541 7.7376 

6 15.3600 9.3215 20.9400 08,1536 20.1583 8.0942 

7 74.3786 21.3331 22.3074 11.8812 21.0996 11.7838 

8 81.4330 23.0569 24.2527 12.2041 22.7645 12.0835 

9 113.5408 31.7447 33.2078 13.6816 30.2764 13.4401 

10 131.3007 37.0936 37.4282 14.4392 33.4410 14.1049 

11 140.6645 40.1215 39.6913 14.8415 35.1010 14.4536 

12 150.3507 43.2234 42.0563 15.2594 36.8125 14.8132 

13 166.6726 48.7798 44.6284 15.8453 38.2068 15.2839 

14 49.8496 17.7593 19.6140 10.8756 18.5583 10.7887 
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15 82.8049 34.5483 24.1279 15.9735 20.8552 15.6680 

16 90.6387 37.3469 26.5067 16.4101 22.4153 16.0256 

17 99.4028 41.1695 29.7530 17.0342 23.9784 16.4813 

18 14.6534 10.3757 12.8447 8.4158 12.5980 8.3972 

19 15.5426 10.5792 13.8480 8.6012 13.5038 8.5747 

20 16,4370 10,6580 14.4736 8.7396 14.0079 8.7030 

 

Table 3 reports two important results. The first one is that this table exhibits the effectiveness of the 

DDI strategy with WMA/Newton compared to the NIS approach. Therefore, the DDI strategy remains 

valuable when there is no information sharing mechanisms, regardless of the used forecasting method. 

Besides, based on simulated models in Table 3, the WMA method with the Newton’s allocation 

proves its efficiency by outperforming the SMA method with regards to the two performance metrics. 

It’s about the second result where this table proves that decision-makers in supply chains can enhance 

their DDI performance and market competitiveness by simply considering the optimal weighting that 

is generated by Newton’s method, rather than considering an equitable weighting of the order of 1/�. 

As expected, the enhancement of the two metrics is different when we vary the autoregressive and the 

moving average parameters of the demand processes. This is due to the nonlinear relation mentioned 

above in equation (5) that connects the forecast ��� to its effective consequence, the average 

inventory level.  

Besides, since there are no specific “standard approaches” for determining the best configuration, and 

for investigation purposes, we study in the next subsection the sensibility of these metrics according to 

the lead-time 7 and moving average parameter � values. For illustration purposes, we consider an 

arbitrary example of an ����(3,2) demand process, which is defined as follows: 

#� = 10 + 0.6 #��$ + 0.4 #��$ − 0.3 #��$ + N� + 0.1 N��$ + 0.08 N��S 

4.2.2. Comparison between the DDI strategy with WMA/Newton method and the NIS 

with MMSE method with respect to lead time and moving average parameters 

Based on the comparison between DDI with WMA/Newton results and NIS with MMSE results, we 

study the sensibilities of the two performance metrics with respect to the lead-time 7 and the moving 

average �. In the cases where the lead-time 7 is fixed and � varies, Figure 1 presents the simulation 

results in terms of the ���		
 and �
�		
 improvements in percentages. These improvement 

percentages are computed as follows:  

���		
_�
�m]^£
£�8 = ����		
∗ − ���0
§���0
§ � 
 100 
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and 

�
�		
_�
�m]^£
£�8 = ��
�		
∗ − �
�0
§�
�0
§ � 
 100 

 

Figure 1: Improvements of adopting DDI strategy with WMA/Newton method rather than 
adopting NIS strategy according to the moving average parameter N 

The obtained results in Figure 1 show that the evolution of the improvements with respect to � is a 

linear function. This means that the more the parameter � increases, the more the DDI strategy with 

WMA/Newton is more efficient in comparison with the NIS approach. This result is expected since 

the parameter � does not interfere in the MMSE method used in the NIS approach. In terms of MSE 

and average inventories, managers are advised to increase their parameter � as well as possible while 

their lead-time is constant.  

In the same way, Figure 2 schematically presents the simulation results in terms of percentage 

improvements where the moving average parameter � is fixed and the lead-time 7 varies. 
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Figure 2: Improvements of adopting DDI strategy with WMA/Newton method rather than 
adopting NIS strategy according to the moving average parameter L 

The same reasoning is adopted. The obtained results in Figure 2 show that the evolution according to 7 

is a logarithmic function. That is, for a fixed parameter �, the evolution of the enhancement in 

percentage becomes less important as the lead-time 7 becomes more important. Indeed, for low values 

of 7, the evolution in performance is important in comparison with cases where the values of 7 are 

high. This result further confirms that the lead-time value always plays an important role in the 

performance of the supply chains. 

4.2.3. Comparison between the DDI strategy with WMA/Newton method and the DDI 

strategy with SMA method with respect to lead time and moving average 

parameters 

Based on the comparison between DDI with WMA/Newton results and DDI with SMA results, we 

study the sensibilities of the two performance metrics with respect to the lead-time 7 and the moving 

average �. In the cases where the lead-time 7 is fixed and � varies, Figure 4 presents the simulation 

results in terms of the ���		
 and �
�		
 improvements in percentages. These improvement 

percentages are computed as follows:  
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Figure 3: Improvements of adopting DDI strategy with WMA/Newton method rather than 
adopting DDI with SMA according to the moving average parameter - 

The obtained results in Figure 3 show that the evolution of the improvements with respect to � is a 

concave function. These numerical results show that this function attains its maximal enhancement 

at � = 10 for 7 = 5. This corresponds to a 7.44% improvement in the average inventory savings. 

Otherwise, the enhancement is not optimal, but it still exists. In practice, the decision-makers can 

conduct some simulations by varying the parameter � over a fixed interval and then by choosing the 

value that maximizes this enhancement.  

In the same way, Figure 4 schematically presents the simulation results in terms of percentage 

improvements where the moving average parameter � is fixed and the lead-time 7 varies. 
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Figure 4: Improvements of adopting DDI strategy with WMA/Newton method rather than 
adopting DDI with SMA according to the lead-time x 

The same reasoning is adopted in Figure 4. The obtained results show that the evolution according to 7 

is also a concave function. These numerical results show that this function attains its maximal 

enhancement at 7 = 3 for � = 12. This corresponds to a 7.65% improvement in the average inventory 

savings. Generally, the lead-time value does not change since it depends on the transportation and 

logistics systems, and managers do not truly have the power to easily manipulate its value. 

4.2.4. Evolution of the bullwhip effect 

In this subsection, we study the evolution of the bullwhip effect that is associated with the 

WMA/Newton forecast method. Thus, we consider an example of an ����(2,2) demand process 

with the following fixed parameters set: C = 10, D$ = 0.4, DS = 0.2, M$ = 0.15, MS = 0.10 and QRS =1. We mainly compute the ¡��¥¥§¨¤¥¦/0¬­�®¯ and ¡��§¥¦¤¥¦/0¬­�®¯
 indicators in equations (9) and (10) 

in order to approximate the gap of the bullwhip effect, thereby separating on one hand, the DDI 

strategy with the WMA/Newton method to the NIS strategy with the MMSE method, and on the 

second hand, the DDI strategy with the WMA/Newton method to the DDI strategy with the SMA 

method. While these indicators are functions of the moving average � and lead-time 7, we also check 

the variations according to these two parameters.  
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Figure 5: Simulated ¡��¥¥§¨¤¥¦/0¬­�®¯ indicator according to moving average N and lead-time L 

Figure 5 illustrates the behavior of the evolution of the bullwhip effect when an actor switches from 

the MMSE method in a NIS strategy to the WMA/Newton method in a DDI strategy. For a fixed 

configuration of the parameter �, the performance of the WMA/Newton method becomes more 

important as the lead-time 7 decreases. In this example, for � = 8, DDI with WMA/Newton is 

valuable in terms of bullwhip effect if the lead-time value is equal to 2. Next, for a fixed lead-time 7, 

the performance of the WMA/Newton method is more valuable as the parameter � increases. In terms 

of 7, the results show that the value of the break-point � increases as the lead-time 7 increases. This is 

expected as generally, the performance of the MMSE method compared to the WMA/Newton 

improves with increasing the lead-time value. On the other hand, the results show that the break-point 7 decreases with the value of � as the performance of WMA/Newton improves with the length of the 

history being used. We conclude that for each value of the lead-time 7, there exists a unique threshold 

of � from which the DDI strategy with the WMA/Newton method is more valuable than the NIS 

strategy with the MMSE method, in terms of bullwhip effect.  
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Figure 6: Simulated ¡��§¥¦¤¥¦/0¬­�®¯ indicator according to moving average � and lead-time 7  

Figure 6 illustrates the behavior of the bullwhip effect when the SMA and WMA/Newton methods are 

used in the forecasts. There are two important results. The first one is that the SMA method 

outperforms the WMA/Newton method in terms of bullwhip effect. Indeed, for the simulated data, the ¡��§¥¦¤¥¦/0¬­�®¯ results are always greater than one. This is due to the unequal weights that are 

associated with the � past observations in equation (2). This can be argued to be a limitation of the 

WMA/Newton approach compared to the SMA method, since the SMA method provides lower 

variability of order processes. The second one is that the ¡��§¥¦¤¥¦/0¬­�®¯ indicator increases with � 

or 7. The results also show that these amplifications evolve in a quasi-logarithmic manner. That is, the 

increase in the indicator becomes less important as one of the two parameters increases. Hence, the 

bullwhip effect amplifies in the case of a DDI strategy where the downstream actor decides to switch 

from the use of the SMA method to the use of the WMA/Newton method. The amplified bullwhip 

effect is surely critical if the upstream actor doesn’t use a safety stock as a buffer against orders 

variations. Indeed, excess inventory can result in waste, while insufficient inventory can lead to poor 

customer experience and lost business. Thus, the upstream actor is emphasized to use a reserve 

inventory in such context. 

4.3. Discussion 

In decentralized supply chains, actors often do not want to share their private information, especially 

in regard to the market demand. This variable is often considered as key data providing competitive 

power. Even when supply chain actors favor information sharing, other issues (the trust in the shared 

data, information leakage, high investment costs, systems compatibility, etc.) may still persist. 
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This work provides an initial attempt to introduce the WMA forecasting method in a decentralized 

supply chain in which actors favor adopting the DDI strategy. The propagation of demand processes 

using the WMA forecast method is unique. The introduction of the Newton optimization method 

allows for the quantification of the weighting of past demand observations with the purpose of 

minimizing the mean squared error and average inventory. The study of the improvements, according 

to the parameters, shows that supply chain decision-makers are able to estimate the optimal parameter 

values. While simulations allow practitioners to obtain general ideas and approximate settings, varying 

the lead-time is not truly possible. However, they can easily change the moving average while 

conducting forecasting as long as this value does not exceed the historical time horizon. 

It is first important for decision-makers to further reduce inventory levels and gather additional 

savings. Indeed, the resulting reduction in the manufacturer translates into cost savings over time. 

These savings are the most important engine leading to DDI adoption. Our work shows through 

simulations that savings from the WMA/Newton approach exceed the savings from the SMA method. 

We estimate that Newton's method itself is not expensive in terms of the time implementation. While 

it is natural to expect a distribution of these savings between the manufacturer and the retailer, 

coordination is essential to achieve such improvements. 

If the DDI strategy is adopted in a supply chain where actors decide to adopt WMA/Newton method, 

the decision-makers are faced with compromising the two major criteria axes: the forecasted mean 

squared errors and average inventory levels on one side, and the bullwhip effect amplifications on 

another side. In this paper, we have considered the enhancement of the forecast MSE and inventory 

level metrics since they are directly related to average inventory costs over time. The bullwhip effect is 

then costly to the supply chain if the upstream actor decides to base his forecasting only on the 

received orders process. However, in the case of the DDI strategy, the upstream actor bases his 

forecasting on orders and inferred demand at the same time. The knowledge of the estimated 

parameters and error variance interfere in the reduction of the MSE and the average inventory level at 

the upstream actor. If the supply chain is initially adopting a NIS strategy where the MMSE method is 

used in the downstream forecasts, the downstream actor is emphasized to consider a high value of � 

(beyond a certain break-point) in order to reduce the bullwhip effect. Else, if the supply chain is 

initially adopting a DDI strategy where the SMA method is used in the downstream forecasts, the 

subject of bullwhip effect amplification can be critical if the upstream actor decide to not use a safety 

stock as a buffer against orders variations. Consequently, the upstream actor needs to use a reserve 

inventory in order to cover the orders variations.  

Except for the optimal weighting information that must be shared between the supply chain actors, this 

approach does not require further assumptions than those that are required by DDI with the SMA 

method, namely, the knowledge of the demand process (time-series structure) and its estimated 
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parameters all along the supply chain. Thus, it is also essential to consider the costs of such 

coordination. These costs are primarily related to the implementation of the method itself (if another 

forecast method was adopted) and the weighting information sharing.  

The WMA/Newton forecasting approach for the DDI strategy can be established through different 

managerial contracts between the manufacturer and the retailer. The literature on such contracts is 

abundant. For example, the manufacturer may propose contracts to the retailer based on principal 

agent relationships (Müller and Turner, 2005), the supply chain actors can negotiate through proposals 

(Taghipour & Frayret, 2013; Dudek & Stadtler, 2005). Buyback (Chen and Bell, 2011) or price 

discount (Jain et al., 2011) contracts may also be proposed. 

5. Generalization for multi-level supply chains 

The DDI results where the downstream actor adopts the WMA/Newton forecast approach can be 

extended to multi-level supply chains where there is more than two actors. Let consider a n-level 

supply chain where each downstream actor places an order to his formal upstream actor after revising 

his inventory level. We suppose that all actors accept to adopt DDI strategy through the 

WMA/Newton method. It means that each actor 6 = 2,3, … ,� will use the WMA/Newton forecast 

method by considering the weighting vector of his formal upstream actor 6 − 1. Then every upstream 

actor 6 = 1, 2, … ,� − 1 is able to infer the demand occurring at his formal downstream actor 6 + 1. 

Notice that the first upstream actor is not concerned about a specific forecast approach. Figure 5 shows 

a demonstration of such a multi-level supply chain. 

 

Figure 7: N-level supply chain where actors accept DDI while adopting WMA/Newton forecasting 

In a set configuration such as Figure 7, Actor 1 is generally a supplier of raw materials who endures 

large inventory costs. Let suppose a customer of a single product whose demand follows an ����(�, �) process at the actor �. After revising his inventory level, this actor will place an order at 

the actor � − 1. The order process will keep the same autoregressive moving average structure as the 

demand but it will increase its error variability, as one moves further up the supply chain. Moreover, 

for illustration, let consider an example of an initial customer’s demand model of an ����(2,1) 

defined by:  
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#� = 10 + 0,2 #��$ + 0,15 #��S + N� + 0,1 N��$ 

where N� ↝ �(0, 1) is the standard normal distributed error at period 8. The order process arriving at 

the actor � − 1 is also an ����(�, �) process defined by: 

9� = 10 + 0,2 9��$ + 0,15 9��S + N
� + 0,1 N
��$ 

where N� ↝ �(0, 27S ∑ �3S03*$ + 27�$ + 1) is the normal error distributed error at period 8, and where �3 are the Newton’s weights shared by the actor � − 1 and used by actor � in his forecasts.  

We present in Table 6 the different metrics values at actor � − 1 where NIS, DDI with SMA method 

and DDI with WMA/Newton method are evaluated.  

Table 2: NIS and DDI results for ����(2,1) demand process 

Adopted 

strategy 

 

 

 

 

Metrics 

NIS DDI 

with SMA 

forecasting 

DDI with 

WMA/Newton 

forecasting 

% of 

Reduction 

when adopting 

DDI with 

WMA/Newton 

rather than 

NIS 

% of 

Reduction 

when adopting 

DDI with 

WMA/Newton 

rather than 

DDI with 

SMA uv� 49.8496 19.6140 18.5583 62,7714 5,3823 we� 17.7593 10.8756 10.7887 39,2504 0,7990 

 

Reductions of MSE and average inventory level at Table 6 is improving when moving from SMA 

method to WMA/Newton method. In this example, DDI with WMA/Newton allows the actor � − 1 to 

reduce his average inventory level by about 39% compared to NIS and nearly 0,8% compared to DDI 

with SMA method. Such reductions are translatable into real inventory savings if both actors were 

favorable to collaborate through a benefit sharing contract. That is, we suppose that the downstream 

actor is favorable to such contract if he will gain a part of the savings at the upstream actor.  

In the same way, let suppose every upstream actor 6 = 1, … ,� − 1 of a supply chain propose a 

revenue-sharing contract to his formal downstream actor in order to convince him to adopt 

WMA/Newton method. Let �3 be the inventory savings of DDI adoption, at actor 6. We also assume 

that the costs of adopting WMA/Newton are related to the Newton’s weighting vector information 

sharing in addition of the implementation costs. Let \33�$ be the sum of the Newton’s weighting 

information sharing cost at actor 6 and the implementation cost at actor 6 + 1. The net profit of such 

collaboration is then expressed by �33�$ = �3 − \33�$ which will be shared with the downstream actor 
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6 + 1 according to their contract. Let j3 be the proportion of the net profit �33�$ shared with the 

downstream actor 6 + 1, where j3 verifies 0 ≤ j3 ≤ 1. Then �3 the inventory savings of the actor 6, 
resulting from concluding two contracts of collaboration with actor 6 − 1 and actor 6 + 1 is expressed 

as follows:  

�3 = j3�$�3�$3 + (1 − j3)�33�$ 

�3 = j3�$P�3�$ − \3�$3 T + (1 − j3)P�3 − \33�$T 

Note that for actor 1, there is no actor 0 and only one contract can be established with actor 2 which 

implies j� = 0 and ��$ = 0. Consequently, �$ = (1 − j$)(�$ − \$S). In the same manner, note that 

for actor �, there is no actor � + 1 and only one contract can be established with actor � − 1 which 

implies j¯ = 0 and �¯̄�$ = 0. Consequently, �¯ = j¯�$(�¯�$ − \¯�$¯ ).  

Now if we consider the whole n-level supply chain, the total supply chain inventory savings from 

adopting DDI strategy with the WMA/Newton method, where a revenue sharing contract is 

established between every successive couple of actors, is expressed as follows: 

� = '�3
¯

3*$ = �$ + ' �3
¯�$
3*S + �¯  

� = (1 − j$)(�$ − \$S) + 'gj3�$P�3�$ − \3�$3 T + (1 − j3)P�3 − \33�$Ti¯�$
3*S + j¯�$(�¯�$ − \¯�$¯ ) 

The last total profit equation proves that the DDI approach with WMA/Newton forecasting improves 

the performance of the entire decentralized supply chain, as well as DDI with SMA method does. The 

enhancement is much more considerable compared to NIS strategy and it is more important than DDI 

with SMA method. Indeed, all the DDI with WMA/Newton forecasts outperforms the DDI results 

with SMA in terms of average inventory level and consequently in inventory savings. Based on our 

simulations, we conclude this section by the following statement: 

�0
§ <<<  �§¥¦		
 < �¤¥¦/0¬­�®¯		
  

6. Conclusion 

Improving the results of supply chains coordination is one of the most important areas for academic 

researchers and management practitioners. Optimization presents a mathematical branch and an 

effective tool for collecting better management solutions. In a decentralized supply chain, actors aim 

to reduce their total costs by applying effective coordination approaches. One of the most cost-

effective coordination approaches, namely, DDI, can be set up when actors agree to negotiate and 

cooperate. DDI allows the upstream actor to infer the demand of his formal downstream actors without 

the need for information sharing mechanisms. DDI has proved its effectiveness by obtaining almost 
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near-optimal solutions. The literature has shown that the DDI approach cannot be applied through 

MMSE or SES methods for the downstream actors but only through the SMA method due to the 

uniqueness of the processes’ propagation. Consequently, we found that it is natural to study the 

feasibility of DDI using other forecasting methods. 

This paper is a follow-up study to previous works with the purpose of improving existing DDI results 

through the theoretical analysis of inventory models based on some strong assumptions. In a context of 

the DDI coordination strategy, instead of using the SMA method, we proposed the adoption of the 

WMA method combined with the well-known Newton optimization method. This paper thus enriches 

the existing literature by exploring the feasibility of the DDI approach when the WMA forecasting 

method is adopted. 

We first established the expressions of the manufacturer’s forecasting ���		
 and �
		
 and the 

resulting bullwhip effect. We proposed two measures, namely ¡��¥¥§¨¤¥¦/0¬­�®¯, to assess the 

amplification of the bullwhip effect separating the adoption of the DDI with the WMA method from 

the adoption of the NIS strategy with the MMSE method, and ¡��§¥¦¤¥¦/0¬­�®¯, to assess the 

amplification of the bullwhip effect separating the adoption of the DDI strategy with the 

WMA/Newton method from the adoption of the DDI with the SMA method. Second, we 

mathematically formalized the MFOP and proposed the application of Newton's method for the 

resolution. Finally, the results for the ���		
 and �
		
 optimization based on the simulated causal 

invertible ����(�, �) demand processes confirm the effectiveness of the WMA/Newton approach to 

propose further enhanced supply chain solutions.  

The implications of this paper are as follows. Supply chain managers can introduce the WMA forecast 

method in the context of the DDI strategy because of the uniqueness of the generated orders process 

for upstream actors. First, the paper provides WMA/Newton as a novel approach for coordination in 

decentralized supply chains. This approach does not require further assumptions than those required 

by the DDI strategy with the SMA method, except for the optimal weighting vector, which must be 

shared between the supply chain actors. Second, based on the conducted simulations, the paper 

confirms that the DDI strategy with the WMA/Newton approach generally outperforms the NIS 

strategy and the DDI strategy with the SMA method in terms of ���		
 and �
		
. Therefore, the 

paper concludes that the DDI’s performance depends on the allocation vector, and especially ���		
 
and �
		
 generally improve with the optimal Newton’s allocation. The “generally” statement is 

employed here since this work does not provide an exhaustive sensitivity analysis of the performance 

according to the demand process parameters. Indeed, it is not easy to check the entire sensitivity of the 

DDI strategy according to the combination of two sets of parameters D3�3*$,…,�" and ME�E*$,…,�", 
especially since they are not fixed in advance. Indeed, in this case, the threshold can take the form of a 

summation, a product, or any other linear or non-linear relationship, from which we can state a general 
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expression of a yield threshold. Establishing such relation requires a deep study on the sensitivity 

according to the process parameters. Since the demand models are mathematically discrete and no 

continuous, there is no way to get through the partial derivative functions. We think it can be a case-

by-case study to bring an exhaustive benchmark and then be able to generalize some threshold models.  

Reversely, the bullwhip effect is affected. In comparison with the NIS strategy, DDI with 

WMA/Newton method is valuable if the parameter � is high enough vis-à-vis the lead-time 7. As 

shown in the simulation section, a break-point from which DDI with WMA/Newton is more valuable 

than the NIS strategy can be determined by varying the parameter � of the forecast method. In the 

case of a DDI adoption where the downstream actor is favourable to switch from an initial situation of 

an SMA method to the WMA/Newton method, the bullwhip effect amplifies. This was predictable 

because of the non-equitable weights that are associated with the � historical demand observations in 

the method. However, the fact that the ponderation vector in the downstream actor’s forecasts, is 

determined according to the minimization of the average inventory level of the upstream actor, results 

into the reduction of the mean inventory costs of the upstream actor over the time. In this case, 

the bullwhip effect can be costly to the upstream actor of the supply chain if he doesn’t use a safety 

stock as a buffer against orders variations. Indeed, excess inventory can result in waste, while 

insufficient inventory can lead to poor customer experience and lost business. Thus, the upstream actor 

is emphasized to use a reserve inventory in such context of methods’ change. Third, the paper 

concludes that supply chain managers, when the DDI with the WMA/Newton is adopted, can 

potentially determine the optimal parameters (�, 7) in terms of MSE and average inventory levels 

improvements. The value of the WMA parameter � can be easily manipulated through some 

simulations, while managers do not truly have a large margin to vary the lead-time 7. Indeed, the lead-

time is often related to supply chain transportation.  

From the point of a supplier or a manufacturer, the additional merit of going the extra steps of 

WMA/Newton method is the evident forecast MSE and inventory levels reduction which will be 

earned over time. The reduction of error is important because it is directly correlated to the reduction 

of inventory levels. As shown in equation 5, the average inventory level is a positive non-linear 

function of the forecast MSE. The simulated experiments in Table 3 show that all empirical inventory 

means resulted from adopting WMA/Newton are lower than empirical inventory means resulted from 

adopting SMA method. This difference may not seem significant. However, the gap percentage 

separating the two compared methods depends on the size of the enterprise and therefore varies from a 

small, medium or multinational enterprise. In addition, batch sizing rules and product structure affect 

the costs of a company's inventory system. (Lea and Fredendall, 2002). As example, let suppose a two-

level supply chain adopting the NIS strategy where the downstream actor, a retailer, adopts the MMSE 

method. Moreover, let suppose that the retailer faces an ARMA(2,1) demand pattern and the average 

inventory level at the upstream level, a manufacturer, is equal to 1000 units. By adopting the DDI 
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strategy where the retailer uses the SMA method, the manufacturer earns the reduction of nearly 40% 

of his average inventory level, let’s say 400 units, and then the average inventory level is equal to 600 

instead of 1000 units. In the same way, by adopting the DDI strategy where the retailer uses the 

WMA/Newton method, the manufacturer earns an additional average saving of 8 units plus 400 units. 

Hence, our work provide supplementary inventory reductions based only on the forecasting method. 

The Newton method’s implementation is not an exhausting task. The time and resources needed for 

such a method depends on the capacity of qualified human resources to implementation. Moreover, the 

initial implementation cost is unique. We then estimate that the costs associated with the sharing of the 

Newton weighting vector are negligible, especially when we know that the unit holding costs of some 

industry products are relatively high. Indeed, if we suppose that a manufacturer produces furniture that 

is stored in a warehouse and then shipped to retailers, the manufacturer must either lease or purchase 

warehouse space and pay for utilities, insurance, and security for the location. the company is 

responsible for paying the salaries of the personnel responsible for moving the goods in and out of the 

warehouse. In addition, the company is exposed to a certain risk of damage of the goods when moving 

to trucks or trains for shipping. All these factors are taken into account in the calculation of the unit 

inventory cost. Therefore, minimizing inventory costs is an important supply-chain management 

strategy. The inventory presents an asset account that requires significant cash outlays. The importance 

of this account is then linked to the decisions made by the managers, who must minimize it in order to 

maintain a reasonable level of liquidity for other purposes. For example, increasing the inventory 

balance by 20000 dollars means that less cash is available to operate the business each month. This 

situation is considered an opportunity cost. If a company wants to have more cash, it must sell its 

products as quickly as possible to reap its profits and move its business forward. The faster the money 

is raised, the more the company is able to develop its business in the short term. A commonly used 

indicator is the inventory turnover rate, which is calculated as the cost of goods sold divided by the 

average inventory (Lee et al., 2015). For example, a company that has 1 million dollars in cost of 

goods sold and an inventory balance of 250,000 has a turnover ratio of 4. The goal is to increase sales 

and reduce the required amount of inventory so that the turnover ratio increases. By projecting our 

results of simulations on this indicator, the turnover ratio of the manufacturer where the retailer uses 

the WMA/Newton method, is higher than that where the retailer uses the SMA method, because the 

average inventory level in the first case is lower than that in the second case �
¤¥¦/0¬­�®¯		
 ≤ �
§¥¦		
  for 

the same fixed cost of goods sold. Consequently, this capability of reducing the average inventory 

level and increasing the turnover ratio is one of the most important catalysts of an enterprise to 

enhance productivity and competition. As it was argued in this paper, some typical contracts can be 

proposed by the upstream actor to his formal downstream actor, in order to collaborate with the aim of 

of creating common and shared opportunities of trust, transparency and future coordination. 
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The SMA method is preferable against the WMA method in terms of bullwhip effect. However, The 

SMA method is not preferable in terms of the distribution of the inferred demand when compared 

against the WMA method, because the results of the SMA method present one specific case of the 

results of the WMA method. Indeed, if we replace �3 by 1/� for 6 = 1, … , � in all the expressions 

where WMA is used, we exactly retrieve all the expressions where SMA is used for forecasts. It’s then 

concluded that there is no preference between SMA and WMA in terms of the distribution of the 

inferred demand.  

We conclude our paper with natural lines for future studies. First, the DDI strategy can still be 

evaluated using other forecasting methods. Second, it would be interesting to adopt the minimization 

of the bullwhip effect as the objective function of the WMA/Newton approach. Another direction is 

the consideration of multiobjective optimization for parallel improvements of the supply chain 

performance metrics.  
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