
HAL Id: hal-03492191
https://hal.science/hal-03492191v1

Submitted on 18 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Adaptive distributed SDN controllers: Application to
Content-Centric Delivery Networks
Fetia Bannour, Sami Souihi, Abdelhamid Mellouk

To cite this version:
Fetia Bannour, Sami Souihi, Abdelhamid Mellouk. Adaptive distributed SDN controllers: Application
to Content-Centric Delivery Networks. Future Generation Computer Systems, 2020, 113, pp.78 - 93.
�10.1016/j.future.2020.05.032�. �hal-03492191�

https://hal.science/hal-03492191v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1

Adaptive Distributed SDN Controllers :
Application to Content-Centric Delivery Networks

Fetia Bannour, Sami Souihi and Abdelhamid Mellouk
LISSI Laboratory, University of Paris-Est Créteil (UPEC), France

Abstract—This paper aims to propose a deployment solution
for Content-Centric Delivery Networks (C-CDN) based on the
SDN technology in an IoT-like environment. To meet today’s
network requirements in terms of reliability, scalability and
performance and to match the specific IoT needs, the SDN
architecture needs to be physically-distributed, but logically-
centralized. The key idea is to consider the knowledge plane
natively provided by the SDN controllers to build Information-
Centric Networking (ICN) applications (e.g. Video distribution
services). To achieve this, we put forward an adaptive and
continuous consistency model for the distributed SDN controllers
in large-scale deployments. More specifically, we propose to turn
the standard replication technique into a scalable and intelligent
replication strategy following Quorum-replicated consistency.
That strategy uses the read and write Quorum parameters as
adjustable control knobs for a fine-grained consistency level
tuning. The main purpose is to find at run-time appropriate
partial Quorum configurations that achieve, under changing
network and workload conditions, balanced trade-offs between
the SDN application’s continuous performance and consistency
requirements. When compared to ONOS’s static consistency
model, our approach which was implemented for a Content-
Centric Delivery Network (C-CDN) application that we designed
on top of ONOS, proved efficient in minimizing the application’s
inter-controller overhead, while satisfying the SLA-style applica-
tion requirements.

Index Terms—Distributed SDN control, scalability, eventual
consistency, adaptive consistency, Quorum consistency, CDN,
CCN, ICN, C-CDN, ONOS controller, IoT applications.

I. INTRODUCTION

Content-Centric Networking (CCN) or Information-Centric
Networking (ICN) has recently received a lot of attention
as a potential alternative paradigm for the future Internet
architecture. In ICN, the focus is placed on the data itself
instead of its hosting location, as content objects are accessed
from anywhere in the network rather than from specific
end hosts [1]. More specifically, ICN advocates a shift in
the current network architecture from an IP-based and host-
oriented communication model to a content-oriented model in
which content information is accessible by names rather than
host addresses. In particular, location-independent naming,
in-network caching and name-based routing are the most
important features characterizing an ICN architecture [2]. The
main objective of ICN is indeed to improve content delivery,
enhance data dissemination over the network, improve the
overall network performance, and most importantly fulfill the
users’ requirements [3].

By providing easier data access, more efficient resource
utilization, enhanced content-based security, better mobility
and improved scalability, ICN has appeared as a viable

framework to support the Internet of Things (IoT) technology
which is information-based and content-oriented in nature.
In fact, the ICN concept offers a network infrastructure that
is well suited to meet IoT application requirements [4] and
to address the new communication patterns and the practical
challenges associated with interconnecting several billions of
heterogeneous and smart IoT devices.

However, designing and deploying an ICN-based platform
for IoT has brought up new challenges. Some of these chal-
lenges can be answered with the Software-Defined Networking
(SDN) paradigm. The SDN concept could indeed provide the
degree of flexibility, automation and security that is needed
for the control and management of expanding IoT networks.
Recent studies [5, 6] argue that network softwarization with
SDN can be beneficial for IoT as it is expected to combat the
growing complexity facing IoT services, and also facilitate the
dynamic and automatic configuration of IoT platforms.

More precisely, SDN represents a network paradigm shift
that decouples the control plane and the data plane of the
network making it easier to program the network. That said,
SDN natively offers a Knowledge Plane (KP) that can be
leveraged to build ICN services in an IoT ecosystem.
In this context, various deployment configuration options have
been suggested for ICN using SDN capabilities, most of which
seemed attractive for IoT scenarios. In particular, RFC 8763
[7] outlines the different proposals being made regarding the
various ICN approaches that might be well suited to SDN-
based networks. These approaches study the use of ICN ”as-
a-Clean-slate”, ”as-an-Overlay”, ”as-an-Underlay” or ”as-a-
Slice” while reviewing the different possible ways to leverage
the emerging SDN paradigm for ICN goals.

On the other hand, to meet today’s network requirements
in terms of scalability, reliability and performance and to
match the specific IoT needs, the SDN architecture should
be distributed (logically-centralized but physically-distributed
[8]). For this purpose, consistency has been regarded as an
essential design principle. The common distributed SDN ar-
chitecture uses conventional consistency models to manage the
distributed network state among the SDN controller replicas in
the cluster. As explained in [9], the consistency models used
in SDN can be categorized into strong, eventual and weak
[10, 11]. These static and standard consistency models have
both advantages and drawbacks.

In large-scale SDNs and particularly in IoT-based envi-
ronments, the Strong Consistency control model might be
extremely expensive and costly to maintain for certain appli-
cations. Indeed, that model requires important synchronization
efforts among the controller replicas at the cost of causing se-

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X19328316
Manuscript_229ab46192729c6717f24016db8f05c9

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X19328316

rious network scalability and performance issues. By contrast,
the Eventual Consistency control model implies less inter-
controller communication overhead as it sacrifices the strict
consistency guarantees for higher availability and improved
performance. In practice, many scalable control applications
(running) in modern distributed storage systems like Apache’s
Cassandra [12] and Amazon’s Dynamo [13] opt for eventual
consistency to provide such requirements on a large scale.
However, these applications might suffer from the associated
relaxed (weak) consistency guarantees that may temporarily
allow for too much inconsistency.

Recent research works in the area of distributed SDN
control have explored the concepts of Adaptive Consistency
control for various applications [14, 15]. Such categories of
consistency models follow different adaptation strategies that
mainly focus on dynamically adjusting the levels of consis-
tency at run-time under various network conditions in order
to meet the application-defined consistency and performance
needs.

Unlike strong and eventual consistency options, adaptive
consistency control models leverage the broad space of in-
termediate consistency degrees between these two extremes.
They, indeed, use time-varying consistency levels to support
balanced real-time trade-offs between the desired consistency
and performance requirements which can be specified in the
application-defined Service-Level Agreements (SLAs) [16].

In this work, we propose an adaptive consistency model
(based on eventual consistency) for the SDN controller ap-
plications that are deployed in large-scale IoT-like networks.
We target the class of applications that tolerate relaxed forms
and degrees of eventual multi-consistency for the sake of
scalability and performance but yet can benefit from improved
consistency features. More specifically, our approach mainly
consists in turning the eventual consistency model currently
used by popular SDN controller platforms like ONOS into
an adaptive consistency model based on a scalable and more
intelligent replication strategy following Quorum-replicated
consistency models.

In the following, we list the main contributions of this work
with respect to our previous work [17] :

• In this work, we included a more comprehensive analysis
of the application’s inter-controller overheads. Unlike
our previous work, we tried to study the impact of
using different read and write Quorum sizes on the read
and write inter-controller overheads which are analyzed
separately.

• Besides, we enhanced the Q-learning reinforcement learn-
ing algorithm used by our adaptive consistency model.
We adopted a stateful variant of the Q-learning approach
in which we consider the transition between states. We
also followed an incremental strategy where only some
actions are possible to transition from one state to another.
In our Q-function, we gave equal importance to the
immediate rewards for the current action and the expected
future rewards for all possible actions in the next state
(γ = 0.5). This is in contrast to our previous stateless
approach where the actions performed by the agents are
considered as separate events with no state transition

rules, and where immediate rewards for current actions
are given the utmost importance (γ = 0).

• Moreover, we developed new adaptive mechanisms that
we integrated into our adaptive consistency strategy for
the distributed SDN controllers. Thanks to these new fea-
tures, our consistency model has the ability to adapt, not
only to the dynamic application SLA requirements like
in the previous proposal, but also to the dynamic changes
in application workloads (a read-dominated workload,
a write-intensive workload and a balanced workload).
Indeed, our main objective is to find at run-time, and un-
der varying network and application conditions, optimal
Quorum replication configurations that achieve balanced
trade-offs between the application’s continuous perfor-
mance (latency) and consistency (staleness) requirements.
These real-time trade-offs should provide minimal read
and/or write inter-controller overheads while satisfying
the application-defined thresholds specified in the given
application SLA. Our approach was implemented for
a Content-Centric Delivery Networks (C-CDN) applica-
tion that we developed on top of the distributed open-
source ONOS controllers. Our C-CDN application, which
natively works on top of a distributed SDN controller
platform, raises the possibility of transitioning towards
ICN solutions that can be integrated into networks that
support virtualized architectures in the form of SDN.

The rest of this paper is organized as follows: In Section
II, we conduct a background review of eventual consistency
models in modern distributed data-store systems. Inspired by
the modern consistency techniques used in these scalable data-
stores, we present, in Section III, our adaptive and continuous
Quorum-based consistency model for the distributed ONOS
controllers in large-scale deployments. In Section IV, we
describe our methodology for implementing the proposed
consistency strategy on a C-CDN-like application that we
designed on top of the ONOS controllers. Finally, Section V
elaborates on the test scenarios we developed to evaluate our
proposal and discusses the experimental results.

II. BACKGROUND ON EVENTUAL CONSISTENCY IN
DISTRIBUTED DATA-STORES

A. Consistency and performance Metrics

Guaranteeing the consistency of replicated data in dis-
tributed database systems has always been a challenging task.
Today’s fundamental consistency models (e.g. strong con-
sistency, sequential consistency, causal consistency, eventual
consistency) ensure different discrete levels and degrees of
consistency guarantees. For instance, the strong consistency
model offers up-to-date data, but at the cost of high latency
and low throughput. As a result, weaker forms of consistency
(in the consistency spectrum)-most notably the popular notion
of eventual consistency- have been widely adopted in modern
distributed data-stores which need to be highly-available, fast
and scalable [13, 12]. However, despite being regularly accept-
able and desirable in practice for the latency and throughput
benefits they offer, eventual consistency models provide no
bounds on the inconsistency of data they return. Another

2

major limitation of these models is that the trade-offs they
make among consistency and performance (latency) are diffi-
cult to evaluate. In fact, measuring the concrete consistency
guarantees of eventually-consistent distributed stores remains
challenging.

Yu and Vahdat proposed the TACT framework [18] which
fills in the consistency spectrum by providing a continu-
ous conit-based and multi-dimensional consistency model.
The latter can be leveraged by replicated Internet services
to dynamically choose their own tunable and fine-grained
trade-offs between consistency, performance and availability,
based on client, service and network characteristics. In TACT,
the authors quantify consistency by bounding the amount
of inconsistency or divergence of the replicated data items
in an application-specific-manner using three application-
independent metrics: Numerical error, Order error and Stal-
eness. Besides, Bailis et al. [19, 20] presented an approach
based on a set of probabilistic models to predict the ex-
pected consistency guarantees as measured by the staleness of
reads observed by client applications in eventually-consistent
Dynamo-style partial quorum systems. The authors introduced
the WARS Probabilistically Bounded Staleness (PBS) model
which provides bounds on the expected staleness in terms of
both versions (using the k-staleness metric) and wall clock
time (using the t-visibility metric). Another interesting work
found in [21] proposes an automated self-adaptive consistency
approach called Harmony which embraces an intelligent esti-
mation of the stale read rate metric in Cloud storage systems,
allowing to automatically adjust the consistency level at run-
time according to application needs. That was achieved by
elastically scaling up or down the number of replicas involved
in read operations to preserve a low tolerable fraction of
stale reads. When compared to the static eventual consistency
approach in Cassandra, Harmony significantly enhances the
consistency guarantees by reducing the rate of stale reads
while adding only minimal latency. Besides, when compared
to the strong consistency model in Cassandra, Harmony
improves the performance of the system by increasing the
overall throughput while maintaining the desired consistency
requirements of the applications.

B. Adaptive consistency control

Modern distributed database systems supporting standard
eventual consistency models suffer from the inevitable trade-
offs between consistency, availability and request latency. To
overcome this major limitation, these storage systems have
introduced the concept of adaptive consistency in order to
find appropriate consistency options depending on application
requirements and system conditions. In literature, adaptive
consistency techniques have been broadly classified into two
categories: user-defined and system-defined [22].

In contrast to user-defined adaptive consistency methods
where data and operations need to be mapped in advance to the
desired consistency levels (using specific parameters), system-
defined adaptive consistency methods take into account the
fact that user and system behaviors might change dynamically
over time making the consistency decision-making process

challenging and tricky for application developers. That is why,
system-defined techniques usually rely on system intelligence
and adaptability to automatically provide fine-grained control
over the consistency guarantees at run-time. Accordingly,
many factors can be considered to dynamically estimate and
predict the appropriate system consistency, including data
access patterns, system load, but also the application’s con-
sistency SLAs as discussed in Section II-A. One famous
form of system-defined adaptive consistency is the continuous
consistency model used in TACT [18].

Additionally, it is worth mentioning that designing system-
defined adaptive consistency (falling within the scope of
this paper) requires careful considerations of the appropriate
consistency adaptation strategy. In particular, existing adaptive
mechanisms use different control knobs to be configured for
consistency tuning such as the consistency level, the artificial
read delay, the replication factor and the read repair chance
[23].

C. Existing modern tunable consistency systems

To ensure eventual consistency in existing distributed data-
store systems, different replication mechanisms and reconcil-
iation techniques can be implemented. The most commonly
used replication mechanism is optimistic (lazy) replication
which is believed to offer high-availability, performance and
scalability. There are several variants of optimistic replication
systems [24], but the common basic concept is to passively
replicate the updates to other replica nodes in the system, and
let them be read by clients without the need to wait for a prior
synchronisation of all the copies. In some implementations, a
minimum number of nodes (called a quorum) are involved in
the updates. Other design choices like the number of masters in
the system, might also result in different optimistic replication
system variants.
Along with optimistic replication, eventual consistency sys-
tems may resort to extra conflict resolution and reconciliation
techniques in order to reconcile differences (after they occur)
between multiple copies of distributed data. The most appro-
priate approach to reconciliation depends on the considered
application. For example, Amazon’s DynamoDB [13] uses
Vector Clocks for conflict resolution. In general, reconciliation
strategies include read repair, Anti-Entropy recovery, write
repair and asynchronous repair operation mechanisms.

Popular distributed Cloud storage systems, most notably
Apache’s Cassandra [12], Amazon’s Dynamo [13], Riak [25],
and Voldemort [26] opt ”by default” for eventual consistency
guarantees in exchange for extremely high availability. How-
ever, these systems attempt to provide the applications with
more control over the consistency and performance trade-offs
via built-in settings and features. They indeed extend the con-
cept of eventual consistency by offering tunable consistency
levels for application developers and users based on Dynamo-
style quorum replication policies.

In Cassandra, the consistency level specifies the size of
a quorum for reads and writes, which is the appropriate
number of replicas in the cluster that must acknowledge
a read or write operation before considering the operation

3

successful. The native and well-known consistency options
(levels) in Cassandra are three: ONE replica, a QUORUM
of replicas, and ALL of the replicas. Accordingly, different
choices of read and write consistency levels (quorums) ensure
different consistency guarantees. For instance, to achieve the
highest strong consistency, different quorum configurations
may be selected, but they must satisfy the overlapping quorum
property between read and write replica sets (strict quorums).
On the other hand, to provide acceptable consistency with
improved availability (minimum latency), it is desirable to
use weaker forms of consistency such as the default eventual
consistency option. Such weak consistency levels can be
achieved through different quorum configurations that do not
satisfy the overlapping quorum intersection property (partial
(non-strict) quorums).

As a result, modern storage systems like Cassandra can
be classified in the category of user-defined adaptive consis-
tency as discussed in the previous section, given that they
offer multiple consistency options. However, although these
systems offer adaptive consistency on top of tunable consis-
tency models that are aimed at creating balanced trade-offs
between consistency and performance, it is usually difficult for
application developers to decide in advance about the required
consistency options for a particular request [22].

III. THE PROPOSED ADAPTIVE QUORUM-INSPIRED
CONSISTENCY FOR ONOS

In this paper, we propose a novel quorum-based and system-
defined adaptive consistency model for the distributed ONOS
controllers. Our approach was partly inspired by the quorum-
replicated consistency techniques used by the modern data-
store systems discussed in Section II-C.

The ONOS approach to state consistency in the latest
releases was described in detail in [9]. It mainly relies on two
consistency schemes that provide two levels of consistency:
strong consistency and eventual consistency. While the strong
consistency model is leveraged by ONOS controller applica-
tions that require strong consistency and correctness guaran-
tees, the eventual consistency model is intended for ONOS
controller applications that favor scalability and performance
over strict consistency.

In this paper, we target the second class of scalable control
applications that have optimistic relaxed consistency needs, but
that can benefit from improved performance and automated
SLA-aware consistency tuning at scale, as offered by our
adaptive continuous consistency strategy.

A. A continuous consistency model for ONOS

As explained in [9], the applications on top of ONOS can
benefit from the continuous consistency model introduced with
TACT [18], by continuously and dynamically specifying their
consistency requirements using three application-independent
metrics to capture the consistency spectrum and bound con-
sistency: Numerical Error, Order Error, and Staleness.

In this work, we focus on the type of applications whose
application-specific consistency semantics can be expressed
using the staleness of data as a metric to quantify the level of

consistency. With such SLA-style consistency metrics, these
applications can prevent the challenges related to potentially
unbounded staleness as in eventual consistency.

Generally speaking, the staleness metric measures data
freshness in distributed data-stores; it describes how far a given
replica lags behind in data operations in comparison to up-to-
date replicas, either expressed in terms of time or versions.
In the literature, the notion of data staleness falls indeed
into two common categories: staleness in time (time-based
staleness) [18, 19], and staleness in data version (version-
based staleness) [19].

In TACT [18], the staleness metric places a real-time bound
on the amount of time before a replica is guaranteed to see a
write accepted by a remote replica. In [20], the authors propose
a probabilistic consistency framework that provides expected
bounds on data staleness with respect to both versions and wall
clock time in eventually-consistent data-stores. In their model,
time-based staleness (t visibility) describes the probability that
a read operation, starting t seconds after a write commits,
will observe the latest value of a data item [19]. On the
other hand, version-based staleness (k staleness) describes
how many versions the value returned by a read lags behind
the most recent write. It is measured as the probability of
returning a value within a bounded number k of versions.

In this work, we adopt the data staleness metric from a
strictly time-based perspective. In our SDN controller appli-
cation, we characterize staleness by an ”Age of Information
(AoI)” timeliness metric [27] that describes the difference
between the query time of a data item and the last update
time on that item. If the last successfully received update was
generated at time u(t) then its age at time t is ∆(t) = t−u(t).

Applications on top of the distributed ONOS controllers
could also benefit from SLA-style performance requirements,
to continuously specify their own fine-grained trade-offs be-
tween performance and consistency. In our work, we consider
the read request latency/delay as our performance metric.
In addition, we evaluate the inter-controller communication
overhead for our ONOS application.

More detailed information about the way we measure our
continuous consistency and performance metrics when imple-
menting our state consistency approach for the new controller
application that we designed on top of ONOS is provided in
Section V-A.

B. Our Quorum-inspired consistency adaptation strategy for
ONOS

1) Quorum consistency:
As explained in Section II-C, quorum-replicated systems en-
sure different consistency guarantees:

• Strong consistency can be guaranteed with strict quorums
that satisfy the condition that sets of replicas written to
and read from need to overlap:
R+W > N , given N replicas and read and write quorum
sizes R and W.

• Eventual consistency occurs with partial quorums that
fulfill the condition that sets of replicas written to and
read from need not overlap:

4

R+W ≤ N , given N replicas and read and write quorum
sizes R and W.

Traditionally, partial quorum-replicated systems ensure
eventually-consistent guarantees, with no limit to the incon-
sistency of the data returned, which may not be acceptable
for certain applications. However, with the PBS model [19],
it has been possible for applications to analyze the staleness
of the data returned, quantify the consistency level, and
therefore measure and control the trade-offs between latency
and consistency for partial quorum systems.

Building on these concepts, we propose an adaptive consis-
tency model for the ONOS applications using partial quorums,
given the latency and scalability benefits they offer. Indeed,
in the context of large-scale networks and IoT-based environ-
ments, most applications opt for relaxed consistency control
models like eventual consistency which can be guaranteed with
partial quorums in order to fulfill their requirements in terms
of availability and performance at the large scale. This is in
contrast with strong consistency models which, being ensured
with strict quorums, are extremely costly to maintain for such
scalable applications due to their important synchronization
overheads among the controller replicas in the cluster.

On the other hand, to measure the consistency semantics
(e.g the staleness metric) of the ONOS applications and thus
meet their consistency requirements (e.g bounded staleness),
we leverage the continuous consistency model discussed in
Section III-A.

Furthermore, using eventually-consistent partial quorums,
it is possible to configure the size of read and write quorums,
denoted respectively as R and W such that R + W ≤ N , to
ensure various consistency levels (e.g. degrees of staleness).
These multiple quorum configurations allow the applications
to achieve different trade-offs between consistency and latency.

2) Adaptive architecture:
In this work, we propose to turn the eventual consistency
model into an adaptive and continuous tunable consistency
model using partial quorums [17]. The proposed model uses
the quorum replication parameters as a control knob, allowing
for an adaptive fine-grained tuning and control over the trade-
offs between consistency and performance. In the following,
we describe the main architecture components of our adaptive
consistency model.

 (...)

Network system Our adaptive consistency strategy

Monitoring Module

Reconfiguration
Module

Application SLA
Module

Automatic Module

Machine
Learning
Module

Application
Workload Identifier

Quorum-based
Replication Module

Controller 1

Controller N

 Application

Fig. 1: Architectural overview of our adaptive Quorum-based
consistency strategy

• Automatic Module
The choice of the size of read and write Quorums used
when executing read and write operations is a funda-
mental factor that affects the application’s consistency
guarantees but also the performance provided by the net-
work system. However, selecting the appropriate Quorum
configuration is a non-trivial task. Our Automatic Module
attempts to find the optimal configuration of the read and
write Quorum sizes while taking into account the current
application workload conditions. The main objective is to
minimize the overhead generated by the application (the
scalability challenge), and potentially other network and
application metrics, while satisfying the consistency and
performance SLAs specified by the application.
This module is fed with a set of application workload
characteristics which are gathered by the Workload Iden-
tifier Module. In our case, it relies on a Machine Learning
Module to predict the expected optimal configuration of
the Quorum parameters for the determined workload, and
then feed them to the Reconfiguration Module.

• Machine Learning Module
This module uses Reinforcement Learning (RL), an area
of Machine Learning (ML) inspired by behaviorist psy-
chology, and concerned with how software agents take
actions in an environment so as to maximize some notion
of cumulative reward.
More specifically, we use a Q-Learning (QL) model-
free RL technique [28]. The main idea is to train an
agent which interacts with its environment by performing
actions that change the environment, going from one state
to another. These actions result in a reward received by
the agent as an evaluation of its actions (reinforcement)
(see Figure 2). In this way, the agent learns some rules
and develops a strategy, referred to as a policy, for
choosing actions that maximize its reward.

Fig. 2: Reinforcement Learning (RL) architecture

The Q-Learning update rule makes use of the so-called
Action-Value function, commonly known as the Q-
function, representing the “quality” of a certain action in
a given state. The expression of the Q-function is given
by the following Bellman equation [28]:

5

Q(st, at)← (1− α)×Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

×

[learned value︷ ︸︸ ︷
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

× max
a
Q(st+1, a)︸ ︷︷ ︸

estimate of optimal future value

] (1)

The above Q-function is used to update the Q-table with
Q-values at each episode. A Q-value is assigned to a
possible pair of a state st and a current action at. The
Q-function takes as input the pair (st,at), observes a new
state st+1 and returns the expected rewards of that action
at that state. More specifically, the Q-function maps state-
action pairs to the highest combination of the immediate
reward rt for that action with all discounted (using γ)
future rewards that might be collected by later actions.
The future rewards are computed using the maximum
value of Q, given by max

a
Q(st+1, a), for all possible

actions in the next state, assuming that the agent con-
tinues to follow the optimal policy. We also note that the
discount factor γ ∈ [0; 1[determines the importance of
future rewards with respect to immediate/current rewards,
whereas the learning rate α ∈]0; 1] determines to what
extent newly acquired information (during the learning
process) overrides the previous old information.
We also note that the learning agent should achieve a
good strategy for balancing the trade-off between explo-
ration and exploitation, which is inherent to reinforce-
ment learning. That dilemma consists in choosing the
appropriate action at a given episode: either to exploit the
environment by selecting the best action at that specific
time step given the current knowledge provided by the Q-
table, or to explore the environment by choosing random
actions. After each action, the agent is expected to update
the Q-table.
In our case, the Q-learning agent attempts to learn online
the best combination of the read and write Quorum size
parameters, respectively R and W , in an environment
built using our Monitoring Module. An action is defined
as an update of R and W to certain possible values,
thereby transforming the environment to a state defined
by a new estimation of the network (inter-controller
overhead) and application (latency and staleness) metrics.
In our case, one of four possible actions is allowed at each
episode (i.e. incrementing R by one, or decrementing R
by one, or incrementing W by one, or decrementing W
by one).
The reward received by the agent for updating the Quo-
rum parameter values is a function of the read and write
overheads to be minimized. The agent should also learn
how to respect some constraints in order to satisfy the
application requirements specified in the given SLA.

• Reconfiguration Module
This module is able to dynamically adjust the values of
the read and write Quorum sizes, denoted respectively as
R and W. It basically relies on the Automatic Module

to optimize the configuration of the quorum system. The
reconfiguration process launched by this module is a non-
blocking process that is able to re-configure at run-time
the Quorum settings selected by the Automatic Module.
A more detailed description of the way the re-
configuration module sets the values of R and W at run-
time is provided in Section V-B1.

• Quorum-based Replication Module
Given the quorum replication settings, we adopt the fol-
lowing consistency strategy when reviewing the two main
techniques employed by ONOS’s eventual consistency
model:

– Replication Strategy: As explained in [9], ONOS’s
eventually-consistent stores employ an optimistic
replication technique that consists in replicating local
updates across all the controllers in the cluster,
hence causing control plane overhead. Instead, we
put forward a partial quorum replication strategy,
where an eventually-consistent data store writes a
data item on the local replica first and then sends
it potentially to another set of replicas, obeying
the given write quorum parameter (W). On the
other hand, to serve read requests, we propose that
the eventually-consistent data store fetches the data
from the local replica first and then potentially from
another set of replicas, depending on the given read
quorum (R). This is in contrast to ONOS’s strategy
where the read requests are always processed by the
local replica.

– Anti-Entropy reconciliation mechanism: As ex-
plained in [9], ONOS’s optimistic replication strat-
egy is complemented by a background Anti-Entropy
mechanism. That periodic reconciliation approach
ensures that the system state across all replicas
eventually converges to the consistent state. This is
particularly useful in repairing out-of-date replicas
and fixing state inconsistencies potentially resulting
from controller failures. In this work, we assume
that the system is reliable as we experiment with
well-functioning emulated network topologies in the
absence of controller failure scenarios. Therefore, we
propose to deactivate the Anti-Entropy protocol, and
focus on ONOS’s replication strategy. However, it
is worth noting that using additional Anti-Entropy
(expanding partial quorums [19]) might be useful in
particular cases where state inconsistencies become
high and can no longer tolerated by the concerned
applications.

• Application SLA Module
This module offers the possibility for applications on
top of ONOS to express their high-level SLA-style
consistency and performance requirements such as the
staleness and latency guarantees. Accordingly, for a given
ONOS application that we develop on top of ONOS, our
consistency model continuously measures the real-time
metrics involved in quantifying the trade-off between con-
sistency and latency. The Automatic Module translates

6

these requirements into appropriate time-varying partial
quorum replication configurations (R,W,N) that achieve
balanced trade-offs between the specified guarantees.

• Workload Identifier Module
This module identifies the application’s workload char-
acteristics. It considers three different workloads that
are representative of three different application scenarios
[29]. The first workload has a balanced ratio between
read and write operations. The second workload repre-
sents a write-dominated scenario in which 70% of the
generated operations are write accesses. Finally, the third
workload describes a read-intensive scenario where 70%
of operations are read accesses.

• Monitoring Module
This module is responsible for periodically gathering the
application traffic information in a non-intrusive manner.
More specifically, the module measures the system Key
Performance Indicators (KPIs), for different read and
write Quorum configurations and according to different
application workload scenarios. These KPIs include the
performance (e.g. response time) and consistency (e.g
staleness) metrics related to client requests for specific ap-
plication contents, as well as the generated read and write
application overheads. These measurements are used by
our Automatic Module (more particularly the Machine
Learning Module) to learn online the appropriate Quorum
configurations.

IV. IMPLEMENTATION APPROACH ON ONOS

In this section, we describe the implementation details for
realizing the proposed consistency strategy on the Java-based
open-source ONOS controller platform. That strategy was
explained in detail in the previous section and summarized
in Figure 3.

Fig. 3: The proposed adaptive consistency system

A. Design of a C-CDN-like application PoC

To validate our adaptive consistency approach, we devel-
oped a new distributed Content-Centric Delivery Networks
(C-CDN) application running on top of a cluster of multiple
ONOS controllers in an emulated SDN network. Our appli-
cation replicates contents from content providers to hosting
cache servers that are located in multiple geographical loca-
tions (ONOS domains) close to users. These cache servers
are Mininet hosts that run simple HTTP web servers. We
propose to consider a single origin server located in each
ONOS domain. The main idea is to serve client hosts with the

most up-to-date copies of the requested content and within a
reasonable time (low latency).

More specifically, our application consists of two
main components: An ApplicationManager and a
DistributedApplicationStore. The Application
Manager component which is an implementation of the
Application Service is responsible for creating a virtual
network of cache servers and providing mesh connectivity
between these server hosts. On the other hand, the Distributed
Application Store which is an implementation of the
Application Store performs the task of persisting and
synchronizing the information received by the application
manager. It is backed by an eventually consistent map with
eventual consistency guarantees for storing the service’s
application state, namely the list of origin servers in the
network and their respective set of generated contents:
EventuallyConsistentMap <OriginServerID,
Set<Content>>.

Each controller replica that is responsible for a given ONOS
domain operates on a local view of the eventually consistent
map. That view consists of the local origin server from
the same ONOS domain with its generated set of contents,
and other potential origin server hosts located in different
ONOS domains in the network with their respective set of
contents, as seen by the local replica after application state
synchronization.

Besides, we design a cached map that is local to each
controller application instance and that represents the contents
cached in the local C-CDN server within the same ONOS
domain. The local cached map is closely linked to the local
view of the eventually consistent map, and it reflects the
contents stored in the local C-CDN server. The latter performs
the functions of an origin server and at the same time a cache
server. It contains indeed the contents created locally (the
origin server), and potentially other contents that are replicated
from other origin servers (the cache server).

More specifically, on a local controller replica, updates to
the eventually consistent state map (e.g PUT) might trigger
specific actions to feed the local C-CDN server and con-
sequently update the local cached map. If the update to
the content is associated in the map with the local origin
server, that means that the updated content has already been
generated on that origin server. On the other hand, if the
update to the content is associated in the map with another
origin server from another ONOS domain, our application
checks the relevance of that content. In case the content is
important to our application, then the update to the content
gets automatically pulled from the origin server to the local C-
CDN server (cache server) and gets cached in the local cached
map CachedMap <ContentName, Set<Content>>.

B. State synchronization and content distribution
The custom eventually consistent map we use for the syn-

chronization of our C-CDN application state is based on our
own implementation of the EventuallyConsistentMap
<K,V> distributed primitive. Indeed, the new implementation
we propose for the eventual consistency map abstraction
models the quorum-inspired consistency discussed in III-B1.

7

Fig. 4: Quorum-inspired Write operations in our C-CDN-like
application

In particular, it takes into account the size of the write quo-
rum parameter (W) when replicating the updates related to our
application’s eventually consistent map among the controllers
(see Figure 4). On each local replica, updates to the local
map are queued in time to different EventAccumulators
allocated for different controller peers. The latter are selected
randomly, and their number depends on the write quorum size
W . Whenever an event accumulator is triggered to process
the previously accumulated events and propagate them to the
associated peer, that peer is removed from the list of quorum
peers. New updates will immediately trigger the creation of
a new accumulator associated with a new randomly selected
peer that is is added to the list of quorum peers. That
accumulator will collect the updates together with the other
event accumulators associated with the rest of the quorum
peers. That way, we guarantee that updates to the eventually
consistent map on a local replica are replicated at run-time to
exactly W replicas, including the local replica.

As explained in Section IV-A, such updates to the eventually
consistent map on a local controller replica trigger specific
actions that might feed the local C-CDN server with new
contents (content distribution) and thus update the local cached
map for our application.

C. Content delivery to customers

During a read operation performed by a client, our controller
application instance running on the local controller replica
within the same ONOS domain as that client, receives the
read request to be fulfilled following Quorum-inspired read
consistency protocols (see Figure 5).

More specifically, if the read consistency level is higher
than ONE (read quorum size R greater than 1), then the local

Fig. 5: Quorum-inspired Read operations in our C-CDN-like
application

controller node which serves in our case as the coordinator
node, sends the read request to the remaining randomly-
selected controller replicas forming the read Quorum. The size
R of the read Quorum including the local controller replica is
set in advance by the read consistency level.

We use ONOS’s ClusterCommunicationService to
assist communications between the local controller node and
the rest of the controller cluster nodes in the read Quorum.
More specifically, the local controller node sends the read
request message with a particular subject to each of the
concerned controller nodes using the sendAndReceive
method of the cluster communication service. It expects a
future reply message from each of the involved controllers
that have already subscribed to the same message subject.

That said, to serve the client’s read request for a specific
content (ContentName), each controller node that has sub-
scribed to the specified message subject receives the read
request and uses the application’s handler function for pro-
cessing the incoming message. Accordingly, the application
instance on each controller replica of the read Quorum (in-
cluding the local replica) consults the local cached map. As
explained in Section IV-A, the cached map represents the list
of contents (created by different origin servers) being observed
in the local view of the eventually consistent map, and then
pulled to be cached in the local C-CDN server. Using that
map, each application instance compares the cached versions
of the requested content (ContentName) based on their
LogicalTimestamp properties in order to determine the
freshest version of the content. Then, it produces a reply
containing the selected Content with its four properties
discussed in IV-A, and more importantly the IP address of
the local cache server that has just delivered the requested

8

content.
Each content that is created on the origin server, and

then eventually propagated to cache servers has four prop-
erties; a ContentName, an identifier ID, a real time-
based CreationTime, a LogicalTimestamp, and a
Version.

The local controller replica playing the role of the coor-
dinator, waits for the read Quorum of replicas to respond.
Then, it merges the R responses (including the response
produced on the local replica) to figure out the location
of the freshest version of the requested content among the
concerned C-CDN servers (equal to R in our scenario). Finally,
it sends back the final response to the client and makes sure
a host-to-host connectivity intent is added between the client
host and the determined cache server host, using the ONOS
Intent Framework. Based on that response, the client
which has issued a HTTP request specifying the URL of the
requested content, is redirected, using our C-CDN-like strategy
(described above) and a DNS resolution service, to the selected
cache server in order to retrieve the specified version of the
content.

After each client request, our application collects the con-
tinuous consistency and performance metrics related to that
request. These metrics are described in detail in Section V-A.

V. PERFORMANCE EVALUATION

A. Application-specific performance and consistency metrics

Here, we show the considered continuous and SLA-style
performance and consistency metrics. More specifically, we
show how we measure these metrics when implementing our
adaptive consistency strategy for the C-CDN application that
we designed on top of the distributed ONOS controllers.

• Performance metrics:
– Network-related metrics:

We consider the application inter-controller overhead
as a network performance metric. We first capture all
inter-controller traffic using TCP port 9876. Then,
we filter the captured traffic based on different con-
ditions in order to evaluate the application’s inter-
controller overhead.
Our goal is to minimize the application overhead due
to write and read operations, depending on the given
application SLA, the application workload and the
network context.

AppOverhead =WriteOverhead+ReadOverhead
(2)

– Client-centric metrics:
We also consider the response time to a client
request as a performance metric. As defined by our
application, the response time consists of the delay
to fetch the appropriate version of the requested
content from the local cached maps of the application
instances running on the R controller replicas of the
read Quorum (Latency1), and the delay to retrieve
the specified version of the content from the selected

cache server host (Latency2). We also note that
these latency times do not overlap.

ResponseT ime = Latency1 + Latency2 (3)

• Consistency metrics:
As explained in Section III-A, we consider the
application-specific staleness metric from a strictly time-
based perspective: It describes the age of the information
in terms of wall-clock time. Accordingly, the staleness
of the application content C being returned by a read
operation at time t is measured as follows:

Staleness(C) = QueryT ime− CreationT ime(C) (4)

Besides, we set the staleness ranges used in the consis-
tency SLA based on the application content refresh rate.

B. Experimental setup

Our experiments are performed on an Ubuntu 18.04 LTS
server using ONOS 1.13. We also use Mininet 2.2.1 and
an ONOS-provided script (onos.py) to start an emulated
ONOS network on a single development machine; including a
logically-centralized ONOS cluster, a modeled control network
and a data network. Wireshark is used as a sniffer to capture
the inter-controller traffic which uses TCP port 9876.

1) TCL-Expect scripts:
In this section, we test our proposed adaptive consistency
approach explained in Sections III and IV which we will
subsequently refer to as ONOS-WAQIC (ONOS-With Adap-
tive Quorum-Inspired Consistency) for brevity. The proposed
approach was implemented for our C-CDN application on
ONOS-WAQIC.

To that end, we write two Expect Tcl-based scripts
(main.exp and onos.exp). In each script, we specify a
set of required steps to follow to automate the tasks for our
test scenarios on ONOS-WAQIC as summarized below:

• First, we run our startup Expect script (main.exp).
With Mininet and onos.py, we start up an ONOS cluster
and a modeled data network for the specified topology.
The selected number N of the ONOS controller replicas
that will be forming the ONOS cluster is passed as an
argument to the executed script.

• Then, we run the Mininet CLI built-in pingall com-
mand to discover the network topology. We also launch
a spawned process to install and activate the C-CDN-like
application we developed on ONOS-WAQIC. To force
device/switch mastership re-balancing, we connect to one
of the running ONOS controller instances, and launch the
ONOS CLI balance-masters command.

• First, we parse the output of the dump Mininet command
using regular expressions in Tcl in order to build a
key-value array mapping the IP addresses of hosts to
their Mininet names (array1). Then, in the main Expect
script, we launch N spawned processes that connect
to the N running ONOS controller instances using the

9

Fig. 6: Overview of the main tasks executed by our TCL-Expect scripts

10

same Expect script (onos.exp) we developed, but
run with different arguments (controller IP address, con-
tent name, maximum number of content versions). In
the onos.exp script, we analyze the output of the
masters ONOS CLI command to construct an array
mapping each controller IP with the set of associated
switches (MAC IDs) (array2). In addition, using the out-
put of the Mininet CLI hosts command, we construct
two additional arrays: the first array associates each host
MAC ID with its IP address (array3), and the second
array associates each host MAC ID with the switch ID
to which it is connected (array4).

• It is worth noting that our onos.exp script starts by
running two ONOS CLI commands (set-read and
set-write). We created these commands to set the
read and write Quorum sizes R and W to the values
specified by the consistency level for a given ONOS
controller instance. These values are passed as command
arguments.

• Using array2, array3 and array4, each of the N currently
spawned processes running the onos.exp script for a
specific ONOS instance builds another Tcl array (array5)
that identifies the list of hosts (MAC addresses) asso-
ciated with each ONOS controller instance (controller
IP address) in the network. Based on that array, our
script randomly selects, for the specified ONOS controller
instance, a list of hosts that will serve as origin cache
servers and a list of hosts that will serve as clients in
the concerned ONOS controller domain. The number of
selected cache and client hosts depends on the applica-
tion scenario/workload (see Section III-B2). Each ONOS
process communicates the MAC and IP addresses of
the origin server to the local application instance using
our ONOS CLI set-cache command. Our script also
runs the ONOS CLI add-host command which we
created to add the cache server hosts to our application’s
EventuallyConsistentMap (discussed in Section
IV-A).
Besides, information about these cache server hosts is
sent (using ”puts”) to the running main.exp script
process. The latter identifies the Mininet names of these
hosts using array1 and connects to the Mininet CLI
command in order to install a SimpleHTTPServer on
each of the cache server hosts.

• At this stage, we make sure that our main process
(running main.exp) and the N spawned processes (run-
ning onos.exp with different arguments) are synchro-
nized. Afterwards, each of the N spawned processes
connecting to an ONOS controller instance starts adding
(then updating with a certain refresh rate) the contents
to the origin server host in the involved ONOS do-
main. We use the add-content ONOS CLI com-
mand that we created to add a given content version
(second command argument) to the specified origin
server host (first command argument) in the applica-
tion’s EventuallyConsistentMap. Further details
about content distribution and state synchronization us-
ing Quorum-inspired write consistency are provided in

Section IV-B .
On the other hand, in parallel with the updating of
contents, our main process that is handled by the
main.exp script starts issuing and serving client re-
quests for specific contents. That was achieved using
our get-IP-content CLI command which takes one
argument, namely the requested ContentName, and
returns the IP address of the cache server containing the
freshest/selected version of the requested content, Then,
our script retrieves the content from the determined server
using ”wget”. In addition, after each client request, con-
tinuous application-specific consistency and performance
metrics related to that request are collected with our
script using regular expressions in Tcl. More details about
the content delivery strategy we follow using Quorum-
inspired read consistency are given in Section IV-C.

2) OpenAI Gym simulator:
To implement the Machine Learning Module (see Section
III-B2) for our C-CDN-like application on ONOS-WAQIC, we
build a simulator based on OpenAI Gym [30], an open-source
Python toolkit for developing and comparing reinforcement
learning algorithms.

More specifically, we build a new environment to simulate
knowledge exchange in an ONOS SDN cluster: We start by
building an off-line data-set using our TCL-Expect scripts
explained in Section V-B1. Our data-set stores the information
collected by the Monitoring Module about client requests
for specific C-CDN contents. As detailed in Section IV-C,
for a given client request, the returned information contains
the current values of the Quorum parameters R and W , the
expected returned version of the content (content update step),
the actual returned version of the content, the staleness of
the returned content, the delay incurred in searching for the
freshest version of the content from R controller replicas
(latency1), the read overhead, the write overhead, and the
application scenario determined by the Workload Identifier
Module.

The data-set is fed to the Automatic Module which hands
it over to the Machine Learning Module to learn online the
read and write Quorum size parameters. Implemented with
Gym, the latter module uses the data-set to learn the Kernel
Density Estimation (KDE with scipy) for each metric using
the data of some clients. That client data is selected with
respect to the current configuration of R and W parameters.
That configuration was set following an action performed by
the agent (see the explanation of the Q-learning algorithm in
Section III-B2 for more details). That way, using KDE, our
ML Module estimates the expected metrics for each selected
Quorum configuration, and then updates the Q-table with the
Q-value of that action at that state, at each step (or episode)
of the Q-learning algorithm.

3) Various learning agent policies:
We implemented three learning agents that adopt different
policies. The latter are compared and validated through five
scenarios. Each scenario reflects a specific use case (e.g. a
latency-sensitive application, a consistency-favoring applica-
tion). To minimize the application’s overall inter-controller
overheads, our agents use the estimated overhead as a negative

11

”reward” when performing actions (setting R and W) that
change the environment state. The controlled and constrained
agents are proposed with the aim to improve the simple greedy
agent. Below is a brief description of these agents:

• A simple ε-greedy agent [31]: This agent follows a simple
ε-greedy policy with a fixed ε value, where ε is the
exploration rate and (1-ε) is the exploitation rate. We
test three simple ε-agents: ε-greedy5 (ε=0.5), ε-greedy10
(ε=0.10) and ε-greedy15 (ε=0.15).

• A controlled dynamic ε-greedy agent: This agent follows
a dynamic ε-greedy strategy where the exploration rate
ε decays as the algorithm’s episode count increases. The
purpose is to account for the fact that the agent learns
more about the environment in time, and becomes pro-
gressively more confident and ”greedy” for exploitation.
We use the following decay function for reducing ε as a
function of episode count. x is the episode number.

f(x) = ε ∗ (0.5 + log10(2− arctan(
x

10
− 2))) (5)

To attempt to satisfy the application’s latency and stale-
ness thresholds, the simple and controlled agents reject,
at each exploitation episode, any action violating these
constraints and remove its Q-value from the Q-table.

• A constrained ε-greedy agent: To make the agent learn
how to satisfy the application’s SLA, we create a Q-
constraint list that we update over the episodes. Its
size corresponds to the number of potential actions: the
number of R and W combinations such that R+W ≤ N .
The list represents the number of constraint violations by
each Quorum configuration. The considered constraints
are both the latency and staleness thresholds specified
in the SLA. During each exploitation phase, we update
the Q-constraint list, and use it to generate a new Q-list
containing the Quorum configurations that give less con-
straint violations. These configurations are then exploited:
They are compared using their Q-values in the Q-table
(based on the estimated overhead reward) to select the
best Quorum configuration (action) at that episode.

C. Results

1) Impact of the Read and Write Quorum sizes:
In this section, we present an experimental study that is
aimed at assessing the impact of using different read and
write Quorum sizes (R and W respectively) on the read and
write inter-controller overheads of our C-CDN-like application
running on a 5-node ONOS cluster in the network topology.

In the conducted experiments, we consider three application
workloads that are representative of three application scenar-
ios (see the Workload Identifier Module in Section
III-B2 for more details). For the studied workloads, we show
the captured read and write packets within a specified time
interval (i.e. 400 ms in our tests) of read and write client op-
eration accesses, for all possible eventually-consistent partial
quorum configurations (R,W) (e.g. (R,W) combinations such
that R+W ≤ N where N = 5).

(a) Read packets when varying (R,W)

(b) Write packets when varying (R,W)

Fig. 7: Workload 1: A Read-intensive application scenario

(a) Read packets when varying (R,W)

(b) Write packets when varying (R,W)

Fig. 8: Workload 3: A Write-intensive application scenario

12

Our results clearly show that, when increasing the read
Quorum size R, the number of read packets increases, mainly
in a read-dominated workload (see Figure 7(a)). In addition,
increasing the write Quorum size W results in a drastic
increase of the number of write packets, especially in a write-
intensive workload. Their number reaches indeed 400 during
the specified time interval for a partial Quorum configuration
where W is equal to 5 (see Figure 8(b)).

Given the high inter-controller overheads observed in our
experimental data for certain Quorum configurations, we pro-
pose to tune the R and W parameters and therefore optimize
the configuration of the Quorum system to better match
the varying application SLA requirements and the dynamic
application workloads, as we further discuss in the following
sections.

2) Quorum configuration optimization:
a) Dynamic application SLA requirements:

To evaluate our ONOS-WAQIC proposal for the C-CDN-like
application we developed, we run our TCL-Expect scripts
(see Section V-B1) with a 5-node ONOS cluster according
to different scenarios. In these scenarios, we use different
partial Quorum configurations (R, W), and we follow various
application workloads with respect to different ratios between
read and write operations. Then, we use the data collected as
an input to our Q-Learning simulator (see Section V-B2). In
the simulator environment, we set α =γ=0.5 and the number
of episodes to 1000. We also consider different test scenarios
that reflect different application requirements in terms of
performance and consistency as summarized in table I.

In particular, using our data-set and knowing the refresh
rate of our C-CDN-like application, we learn the t staleness
ranges. In other words, we learn the relationship between the
t staleness value of a certain content being returned and by
how many versions that returned content is old. As a result,
estimating the t staleness ranges allowed us to set the time-
based staleness thresholds in the SLA while having an idea
about the associated version-based staleness thresholds.

Test Latency t Staleness k Staleness
scenarios threshold (ms) threshold (ms) Version old
no1 5 300000 3
no2 25 220000 2
no3 50 120000 1

TABLE I: Application SLA scenarios

In each test scenario that we run on the simulator, our
application expresses the performance and consistency SLAs
using the latency threshold (in ms) and the staleness threshold
(in ms). For example, in scenario no3, our application which
is consistency-favoring enforces the following SLA: It expects
that a read operation gets a reply in under 100ms, and
returns a content value no older than 120seconds (i.e. no older
than 1 version stale). Accordingly, our consistency approach
attempts to find the best Quorum combination of R and W
that minimizes the application’s read and/or the write inter-
controller overheads while ensuring the desired performance-
consistency trade-offs.

For a given Quorum configuration, we compute the read
overhead ratio by normalizing the generated read overhead

(bytes/s) with respect to the Quorum configuration generating
the maximum read overhead and zero write overhead (the
configuration (R = 5,W = 1)) in our case) for each
application scenario. We follow the same steps for computing
the write overhead ratio based on the generated write overhead
with respect to the Quorum configuration (R = 1,W = 5)
which corresponds to the standard implementation of ONOS’s
eventual consistency model. On the other hand, whenever we
aim to minimize both the read and write overheads (e.g. in
a balanced workload scenario), we consider the mean of the
read and write overhead ratios which we will subsequently
refer to as the global overhead ratio.

In Figures 9, 10 and 11, we show the results of our
experimental tests for the three considered application sce-

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
20
40
60
80

100
120
140
160
180
200

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

10

20

30

40

50

60

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stagesN
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
ra

tio

(c) Overhead ratio

Fig. 9: Scenario 1: A Latency-sensitive application

13

narios. To study the impact of changing the application SLA
requirements, we set the application workload to Workload
2 (a balanced workload scenario that has a balanced ratio
between the read and write operation accesses) in which
our consistency approach attempts to minimize the global
overhead ratio, and satisfy the staleness and latency SLA
thresholds set by the application. Moving from one application
workload scenario to another (e.g. a read-intensive scenario)
will be dealt with in the following section.

Figure 9 shows that, in a latency-sensitive application sce-
nario, the constrained and the controlled agent policies are
the most appropriate. The number of constraint violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

5

10

15

20

25

30

35

40

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
10
20
30
40
50
60
70
80
90

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
ra

tio

(c) Overhead ratio

Fig. 10: Scenario 2: A Consistency/Latency-balancing
application

decreases with episode stages (see Figures 9(a) and 9(b)), and
the generated global (read and write) inter-controller overhead
(see Figure 9(c)) is minimal as compared to the simple greedy
agent policy, and to the standard ONOS implementation. We
also notice that the three agents converge towards Quorum
configurations where R = 1 (i.e. (R = 1,W = 2),
(R = 1,W = 3) and (R = 1,W = 4)). This is due to
the given strong constraint on latency.

Figure 10 shows that, in a balanced application scenario,
the constrained and the controlled agent policies offer the
best real-time trade-offs between the application’s latency and
staleness needs (see Figures 10(a) and 10(b)) while ensur-
ing minimal global overhead ratio (approximately 25%) (see
Figure 10(c)). In particular, the constrained agent converges

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.2

0.4

0.6

0.8

1

1.2

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
a

tio
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

20

40

60

80

100

120

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
 r

at
io

(c) Overhead ratio

Fig. 11: Scenario 3: A Consistency-favoring application

14

towards balanced Quorum configurations (i.e. (R = 2,W = 2)
and (R = 2,W = 3)). On the other hand, the simple ε-greedy
agents provide a small number of latency violations, but at the
cost of generating more overhead.

As can be seen from Figure 11, in a consistency-favoring
application scenario, all agents perform well at reducing the
staleness violations (see Figure 11(b)), especially the simple
greedy agents. Besides, all agents respect the relaxed latency
constraint (see Figure 11(a). They all converge towards a
common Quorum configuration (R = 3,W = 2). We also note
that the constrained and controlled agents ensure a significant
gain in overhead, almost 80%.

Other application scenarios were tested like an application
scenario (scenario no4) where latency is favored and con-
sistency is completely relaxed (”any”). Our results showed
that, in such scenarios, the learning agents converge towards
a common Quorum configuration (R = 1,W = 1).

Table II summarizes the final results of the constrained
and controlled agents for the considered application scenarios.
More specifically, it shows the optimal Quorum configurations
(R,W) reached after algorithm convergence for different
application SLA requirements.

Application Latency Staleness Read Quorum Write Quorum
scenario sensitive favoring size R size W
no1 +++ + 1 3
no2 ++ ++ 2 2
no3 + +++ 3 2
no4 ++++ – 1 1

TABLE II: Final Q-learning results of the constrained and
controlled agents for the considered application scenarios

b) Dynamic application workloads:
In this section, we aim to assess the ability of our adaptive
Quorum-inspired consistency strategy (ONOS-WAQIC) for
the C-CDN-like application we developed, to adapt to time-
varying application workloads. The dynamic changes in such
application workload patterns may indeed affect the observed
network and application metrics (e.g. inter-controller overhead,
staleness and access latency).

Taking that into consideration, our adaptive consistency
model attempts to adjust the consistency level at run-time by
continuously tuning the Quorum configuration parameters in
order to better match the varying workloads.

In this context, we consider three workloads as dis-
cussed in Section III-B2 (see the Workload Identifier
Module). In the three studied workloads, our model aims to
satisfy the latency and staleness SLA requirements. Addition-
ally, in the read-dominated workload (Workload 1), our model
attempts to minimize the read overhead. Conversely, in a write-
intensive workload (Workload 3), it focuses on reducing the
write overhead. Finally, in a balanced workload, our approach
aims to minimize both the read and write overheads (the global
overhead).

To experiment with these workloads, we set the appli-
cation scenario to Scenario 2 (see Section V-C2a) which
represents an application scenario with balanced consistency
(staleness)/latency SLA requirements. Then, we conduct some
tests on our Q-learning simulator. During these tests, we apply
different variations in the application workload. More specifi-

cally, the first time period of the tests (the first 400 episodes)
is characterized by a balanced workload (Workload 2). At
episode 400, we run a read-dominated workload (Workload
1). Finally, starting from episode 700, we consider a write-
intensive workload (Workload 3).

As we can see from Figure 12, our results clearly show
that, unlike the simple ε-greedy agents, the constrained and
controlled agents react quickly to the dynamic workload

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

10

20

30

40

50

60

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
10
20
30
40
50
60
70
80

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stagesN
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.1

0.2

0.3

0.4

0.5

0.6

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
e

a
d

 r
a

tio

(c) Overhead ratio

Fig. 12: Dynamic changes in the Workload
(Workload 2-Workload 1-Workload 3) in a

Consistency/Latency-balancing application scenario
(Scenario2)

15

variations. These agents not only offer balanced real-time
trade-offs between the performance (latency) and consistency
(staleness) application SLA requirements, but also provide
minimal overhead at run-time.

Besides, when analyzing the generated Quorum configura-
tions during the conducted tests, we observe that, in Workload
1, the constrained agent converges to Quorum configurations
where R is minimal in order to reduce the application’s read
inter-controller overhead. On the other hand, in Workload 3,
the Quorum configurations where W is small are eventually
selected. Finally, in Workload 2, the constrained agent con-
verges to balanced Quorum configurations where R=W=2
to reduce the application’s read and write inter-controller
overheads.

VI. CONCLUSION

In this paper, we studied the use of an adaptive and con-
tinuous consistency model for the distributed SDN controllers
following the notion of partial Quorum consistency at scale.
Our consistency adaptation strategy was implemented for a
Content-Centric Delivery Networks (C-CDN) application de-
veloped on top of ONOS. It mainly consists in turning ONOS’s
optimistic replication technique into a more scalable and
intelligent Quorum-inspired replication strategy using various
online Q-learning RL approaches. Our experiments showed
that the constrained ε-greedy approach we tested in a 5-
node ONOS cluster proved efficient in helping our C-CDN-
like application find the appropriate read an write Quorum
replication parameters at run-time. In fact, the adjustable and
time-varying partial Quorum configurations determined by our
strategy at run-time have achieved, under changing network
and application workload conditions, balanced trade-offs be-
tween the application’s continuous performance (latency) and
consistency (staleness) requirements. Besides, these real-time
trade-offs ensured a substantial reduction in the application’s
inter-controller read and write overhead (especially in a large-
scale ONOS network) while satisfying the application-defined
thresholds specified in the given application SLA.

Moreover, our proposed adaptive and Quorum-inspired con-
sistency model could be further enhanced by leveraging the
compulsory Anti-Entropy reconciliation mechanisms proposed
in the previous work [9] (expanding partial Quorums). Such
mechanisms are indeed useful in particular cases (e.g. failure
scenarios, controller crashes) where the system consistency
observed by the applications is at high risk, and cannot be
fixed only by adjusting the Quorum parameters.

Our proposed C-CCN application might obviously be lever-
aged by several ICN use-cases. For example, it can meet the
needs of video-on-demand services, and more particularly,
the requirements of live and pre-recorded streaming where
video files are versioned based on current time [32]. Another
interesting use-case could be vehicular networks. Our proposal
can indeed provide solutions to frequent changes in network
topology state and content (e.g. degree of pollution and traffic
conditions) [33].

Finally, it is worth noting that our self-adaptive and au-
tomated consistency mechanisms for the distributed SDN

controllers might be applied to many other concrete dis-
tributed network applications. The latter should have con-
sistency adaptability requirements at scale such as the need
for a dynamic adaptation of the replication style given the
varying patterns of application behavior and network context.
These applications might include Cloud data storage services,
Website visitors (e.g. discussion forums), e-commerce and
media-service providers (e.g. Amazon and Netflix), security
applications but also smart-home services.

REFERENCES

[1] Dirk Kutscher, Suyong Eum, Kostas Pentikousis, Ioan-
nis Psaras, Daniel Corujo, Damien Saucez, Thomas C.
Schmidt, and Matthias Wählisch. Information-Centric
Networking (ICN) Research Challenges. RFC 7927, July
2016.

[2] Boubakr Nour, Kashif Sharif, Fan Li, Sujit Biswas,
Hassine Moungla, Mohsen Guizani, and Yu Wang. A
survey of Internet of Things communication using ICN:
A use case perspective. Computer Communications, 142-
143:95 – 123, 2019.

[3] B. Nour, F. Li, H. Khelifi, H. Moungla, and A. Ksentini.
Coexistence of ICN and IP Networks: An NFV as a Ser-
vice Approach. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, Dec 2019.

[4] Maroua Meddeb. Information-Centric Networking,
A natural design for IoT applications? Theses,
INSA de Toulouse ; Ecole Nationale des Sciences de
l’Informatique, September 2017.

[5] M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, K. Shuaib,
and F. Sallabi. Softwarization of Internet of Things In-
frastructure for Secure and Smart Healthcare. Computer,
50(7):74–79, 2017.

[6] A. H. Shamsan and A. R. Faridi. Network softwarization
for IoT: A Survey. In 2019 6th International Conference
on Computing for Sustainable Global Development (IN-
DIACom), pages 1163–1168, March 2019.

[7] Akbar Rahman, Dirk Trossen, Dirk Kutscher, and Ravi
Ravindran. Deployment Considerations for Information-
Centric Networking (ICN). RFC 8763, April 2020.

[8] F. Bannour, S. Souihi, and A. Mellouk. Distributed SDN
control: Survey, taxonomy, and challenges. IEEE Com-
munications Surveys Tutorials, 20(1):333–354, Firstquar-
ter 2018.

[9] F. Bannour, S. Souihi, and A. Mellouk. Adaptive State
Consistency for Distributed ONOS Controllers. In 2018
IEEE Global Communications Conference(Globecom),
pages 1–7, 2018.

[10] ONOS. https://onosproject.org/.
[11] ODL. http://opendaylight.org/.
[12] Avinash Lakshman and Prashant Malik. Cassandra: A

decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, April 2010.

[13] Swaminathan Sivasubramanian. Amazon dynamoDB: A
Seamlessly Scalable Non-relational Database Service. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 729–730, New York, NY, USA, 2012. ACM.

16

[14] Mohamed Aslan and Ashraf Matrawy. A clustering-based
consistency adaptation strategy for distributed SDN con-
trollers. In 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), 2018.

[15] Ermin Sakic and Wolfgang Kellerer. Impact of adap-
tive consistency on distributed SDN applications: An
empirical study. IEEE Journal on Selected Areas in
Communications, page 13, 2018.

[16] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna
Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and
Hussam Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 309–324, 2013.

[17] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk.
Adaptive Quorum-inspired SLA-Aware Consistency for
Distributed SDN Controllers. In International Confer-
ence on Network and Service Management (CNSM 2019)
(CNSM 2019), Halifax, Canada, October 2019.

[18] Haifeng Yu and Amin Vahdat. Design and evaluation of
a continuous consistency model for replicated services.
In Proceedings of the 4th Conference on Symposium on
Operating System Design & Implementation - Volume 4,
OSDI’00, Berkeley, CA, USA, 2000.

[19] Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica. Prob-
abilistically bounded staleness for practical partial quo-
rums. Proc. VLDB Endow., 5(8):776–787, April 2012.

[20] Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica. Quan-
tifying eventual consistency with pbs. Commun. ACM,
57(8):93–102, August 2014.

[21] H. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez.
Harmony: Towards automated self-adaptive consistency
in cloud storage. In 2012 IEEE International Conference
on Cluster Computing, pages 293–301, Sept 2012.

[22] Sathiya Prabhu Kumar. Adaptive Consistency Protocols
for Replicated Data in Modern Storage Systems with a
High Degree of Elasticity. Theses, CNAM, March 2016.

[23] Canh Son Nguyen Ba. Adaptive control for availability
and consistency in distributed key-values stores. Theses,
University of Illinois, 2015.

[24] Ahmed Bouajjani, Constantin Enea, and Jad Hamza.
Verifying eventual consistency of optimistic replication
systems. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, pages
285–296, 2014.

[25] Rusty Klophaus. Riak core: Building distributed ap-
plications without shared state. In ACM SIGPLAN
Commercial Users of Functional Programming, CUFP
’10, pages 14:1–14:1, New York, NY, USA, 2010. ACM.

[26] Voldemort project. http://www.project-
voldemort.com/voldemort/design.html.

[27] Jing Zhong, Roy D. Yates, and Emina Soljanin. Minimiz-
ing content staleness in dynamo-style replicated storage
systems. CoRR, abs/1804.00742, 2018.

[28] H. Ge, Y. Song, C. Wu, J. Ren, and G. Tan. Coopera-
tive Deep Q-Learning With Q-Value Transfer for Multi-

Intersection Signal Control. IEEE Access, 7:40797–
40809, 2019.

[29] Maria Couceiro, Gayana Chandrasekara, Manuel Bravo,
Matti Hiltunen, Paolo Romano, and Luı́s Rodrigues. Q-
opt: Self-tuning quorum system for strongly consistent
software defined storage. In Proceedings of the 16th
Annual Middleware Conference, Middleware ’15, pages
88–99, 2015.

[30] OpenAI Gym Project. https://gym.openai.com/.
[31] Hai-Anh Tran, Sami Souihi, Duc A. Tran, and Ab-

delhamid Mellouk. Mabrese: A new server selection
method for smart SDN-based CDN architecture. IEEE
Communications Letters, 23:1012–1015, 2019.

[32] Derek Kulinski and Jeff Burke. NDNVideo : Random-
access Live and Pre-recorded Streaming using NDN.
2012.

[33] E. Kalogeiton, Z. Zhao, and T. Braun. Is SDN the
solution for NDN-VANETs? In 2017 16th Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-
Net), pages 1–6, 2017.

17

