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This study investigates the effect of heterogeneity on the failures of repairable systems that undergo imperfect repairs, which are extensively used in reliability engineering. When considering a group of similar systems, the assumption that the repair processes are independent and identically distributed becomes questionable owing to the unobserved heterogeneity in these systems. The basic model we consider is the Kijima type II virtual age process with constant repair efficiency and a Weibull baseline distribution. We use the frailty models to study the heterogeneity between the systems and, in particular, the gammadistributed frailty is investigated. We thus derive the asymptotic properties of

the mixed repair process and corresponding likelihood estimates, and then evaluate the effects on the model parameter estimation process when heterogeneity is erroneously ignored. Furthermore, when the model is established correctly by accounting for the gamma distribution, we find that the maximum likelihood estimator is inconsistent and propose an alternative approach. Three case studies are presented to illustrate the benefits of taking account of unobserved heterogeneity in the estimation of the aging speed and reliability of assets and in scheduling preventive maintenance activities.

Introduction

Industrial systems are subject to repair actions when failures occur. The useful lifetime of an asset is influenced by both the intrinsic aging rate of the system and the effectiveness of the repair action. A better understanding of these two features might be helpful in optimizing maintenance activities.

A perfect or As-Good-As-New (AGAN) maintenance scheme restores the system to a new and identical state. During the perfect repair process, the lifetimes of repairable systems can be described as a renewal process. Conversely, a minimal or As-Bad-As-Old (ABAO) repair scheme makes the system work again without refurbishing it and is usually characterized by a non-homogeneous Poisson process (NHPP) [START_REF] Ascher | Repairable Systems Reliability[END_REF]. In fact, the efficiency of a repair often ranges between those of the AGAN and ABAO schemes as a system can be effectively repaired without necessarily being renewed. This is referred to as an imperfect maintenance scheme [START_REF] Pham | Imperfect maintenance[END_REF], and some of the relevant primary modeling techniques for such schemes are reviewed in [START_REF] Lindqvist | On the statistical modeling and analysis of repairable systems[END_REF].

Among imperfect maintenance models, virtual age (VA) models [START_REF] Kijima | Periodical replacement problem without assuming minimal repair[END_REF] are widely used, wherein the aging of a repairable system is assumed to depend on its virtual age, which can have a value between zero and the calendar age. Two popular VA assumptions have been proposed in [START_REF] Kijima | Some results for repairable systems with general repair[END_REF]: Kijima Type I assumes that the reduced amount of the VA after a repair is a function of the last inter-failure time, whereas in Kijima Type II, the reduction of the VA after a repair is a function of that just before the repair. The two types are unified in [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF] based on the introduction of the model Arithmetic Reduction of Age (ARA) of memory m, denoted as ARA m . The cases m = 1 and m = ∞ respectively correspond to Kijima I and Kijima II with constant restoration factors. It should be noted that ARA 1 is often used to describe deteriorating systems [START_REF] Doyen | Asymptotic properties of imperfect repair models and estimation of repair efficiency[END_REF], with failures arriving more and more frequently; conversely, ARA ∞ is a stable process in the sense that its inter-failure times converge in distribution, and failures in ARA ∞ are arriving at a constant rate [START_REF] Liu | Steady-state imperfect repair models[END_REF], asymptotically.

The study of heterogeneity is widely applied in various fields like accident analysis and safety [START_REF] Saeed | Analyzing road crash frequencies with uncorrelated and correlated random-parameters count models: An empirical assessment of multilane highways[END_REF], modeling of infrastructure conditions [START_REF] Saeed | Methodology for probabilistic modeling of highway bridge infrastructure condition: Accounting for improvement action effectiveness and incorporating random effects[END_REF] and estimation of maintenance expenditures [START_REF] Volovski | Estimation of routine maintenance expenditures for highway pavement segments: Accounting for heterogeneity using random-effects models[END_REF]. In survival analysis, the term 'frailty' was suggested by [START_REF] Vaupel | The impact of heterogeneity in individual frailty on the dynamics of mortality[END_REF] in a demographic context, based on the idea that heterogeneity in the human population might lead to differences in their mortality curve. In its simplest form, when no covariate is considered, a frailty is an unobserved random proportionality factor, often denoted by Z, that modifies the hazard function of an individual: λ(t) = Zλ 0 (t). The effects of frailty in survival analysis have been addressed in many key references, including but not limited to [START_REF] Aalen | Modelling heterogeneity in survival analysis by the compound poisson distribution[END_REF][START_REF] Aalen | Effects of frailty in survival analysis[END_REF][START_REF] Clayton | Multivariate generalizations of the proportional hazards model[END_REF]. For non-repairable systems, this unobserved heterogeneity will not only distort the shape of the failure/mortality rate curve [START_REF] Finkelstein | Asymptotic behavior of a general class of mixture failure rates[END_REF][START_REF] Finkelstein | On the 'rate of aging' in heterogeneous populations[END_REF], but will also influence the estimation of baseline distribution parameters [START_REF] Heckman | A method for minimizing the impact of distributional assumptions in econometric models for duration data[END_REF][START_REF] Lindqvist | Statistical Modeling and Analysis of Repairable Systems[END_REF].

For repairable systems, the unobserved heterogeneity has been combined with minimal repair. [START_REF] Asfaw | Unobserved heterogeneity in the power law nonhomogeneous poisson process[END_REF] investigated the heterogeneous population composed of independent NHPP using gamma-distributed frailty, while [START_REF] Slimacek | Nonhomogeneous poisson process with nonparametric frailty[END_REF] studied the parameter estimations in heterogeneous NHPP population when the distribution of frailty is unspecified; the results are then generalized in [START_REF] Slimacek | Nonhomogeneous poisson process with nonparametric frailty and covariates[END_REF] to incorporate the covariates. Recently, [START_REF] Si | Two-state optimal maintenance planning of repairable systems with covariate effects[END_REF] investigated the maintenance optimization issue for a fleet of repairable systems operating in different environments by introducing a covariate-dependent trend renewal process. The maintenance actions are then planned by accounting for both the covariates and the number of past failures.

We propose a multiplicative frailty model combined with ARA ∞ -type imperfect maintenance. This is motivated by the observed decreasing failure rate of railway signaling system, which contrasts with the common belief that electric components should have a constant or increasing failure rate. Some exchanges with experts in railway infrastructures lead us to consider individual heterogeneity, and to the intuition that a multiplicative frailty model could be a start because of its mathematical convenience. Our model differs from heterogeneous NHPP [START_REF] Asfaw | Unobserved heterogeneity in the power law nonhomogeneous poisson process[END_REF] since ARA ∞ has a stationary regime, whereas in NHPP, the failures are arriving more and more frequently. As a result, it is unnecessary to consider the number of past failures/repairs when planning the maintenance actions, as what has been done in [START_REF] Si | Two-state optimal maintenance planning of repairable systems with covariate effects[END_REF]. Using the multiplicative frailty to account for the unobserved heterogeneity, our model could be useful for situations where no information on covariates is available.

The contributions of this study are multi fold: first, the influence of heterogeneity on repairable systems' reliability is investigated, and the underestimation of the aging rate when the heterogeneity is overlooked is particularly underlined; then, even if the model is not mis-specified, the maximum likelihood estimation (MLE) is revealed to be inconsistent, and an alternative approach is thus proposed; finally, we highlight the potential benefits of accounting for the heterogeneity when scheduling preventive maintenance for systems that undergo imperfect repair.

The rest of the paper is organized as follows: Section 2 describes some basic notions about imperfect repair models, especially the ARA ∞ process; the survival function, mean lifetime and the likelihood of heterogeneous population are presented in Section 3. In Section 4, we discuss the bias generated by MLE when the heterogeneity is ignored. The inconsistency of the proper MLE estimator is explained in Section 5, which also includes details of the proposed alternative inference method. In Section 6, we presents first a case study on signal failure data provided by Bane NOR, showing that accounting for the unobserved heterogeneity leads to better evaluation of system's reliability. Two typical maintenance optimization issues for imperfect repair processes are also investigated. Finally, concluding remarks are outlined in Section 7.

Basic notions on imperfect repair models and ARA ∞

Let T = T 1 , T 2 ... be the successive event times of a point process with T 0 = 0 and X = X 1 , X 2 ... be the inter-arrival times (also called intervals or cycles) with

X 0 = 0 and X i = T i -T i-1 for i ≥ 1. Let N t = ∞ i=1
1 {Ti≤t} be the cumulative number of observed failures up to t. Then, the point process can be defined by its stochastic intensity, with H t -the failure history, as follows:

∀t ≥ 0, λ t = lim ∆t→0 1 ∆t P (N t+∆t -N t -= 1|H t -). (1) 
The notion of virtual age is defined as follows. Let a new system with a lifetime T described by the Cdf F (t) and failure rate λ(t) start operation at t = 0. Then, at age x, the Cdf of the remaining lifetime is given by F (t|x) = 1-F (t+x)/F (x). Assume that after the instantaneous maintenance (corrective or preventive) carried out at time t, the remaining lifetime is defined as the lifetime of a new and unmaintained system having age y, where y < t. Then y is called virtual age. Denote by A i the virtual age after the i-th repair. Then, the remaining lifetime of the repaired system does not depend on the entire failure/repair history, but depends on the virtual age of the system after the most recent repair:

P (X i+1 ≤ t|T 1 , T 2 . . . T i ) = F (t|A i ), ∀i ∈ N, ∀t ≥ 0. (2) 
Thus, a virtual age process is fully defined by the age reduction mechanism, which determines the virtual ages {A i }, and by F (t), the Cdf of a new system.

N t -being the number of failure before t, the virtual age at time t is

V t = t -T N t -+ A N t -, (3) 
and the stochastic intensity 1 of the VA process reduces to:

λ t = λ(t -T N t -+ A N t -). (4) 
The failure rate of a new system, λ(t), is particularly referred to as baseline failure rate. ARA ∞ model assumes that when a repair is performed, the VA is reduced proportionally to that just before the maintenance:

A i = (1 -ρ) (A i-1 + X i ) , ∀i ∈ N * , (5) 
where ρ ∈ [0, 1] is the repair efficiency. In addition, ρ = 0 and ρ = 1 correspond to perfect maintenance (AGAN) and minimal repair (ABAO) cases, respectively.

[24] considered the special case at which an ARA ∞ obeyed a Weibull baseline distribution:

F (t) = 1 -e -αt β , λ(t) = αβt β-1 . (6) 
This Weibull ARA ∞ process is thus fully determined by the triple (α, β, ρ).

The distributions of X n and A n can be found in [START_REF] Nguyen | Analytical properties of an imperfect repair model and application in preventive maintenance scheduling[END_REF]. The limiting distributions as n tends to infinity, denoted as R X∞ and R A∞ , are given by:

R A∞ (t|α, β, ρ) = ∞ k=1 1 (q, q) ∞ 1 q , 1 q k-1 e -αt β q k , (7) 
R X∞ (t|α, β, ρ) = ∞ k=1 ∞ 0 αβx β-1 e -α(x+t) β +α(1-q -k )x β dx q k (q, q) ∞ 1 q , 1 q k-1 , (8) 
where q = (1 -ρ) β , and (a, q) k = k-1 j=0 1 -aq j is the q-Pochhammer symbol. The expected values of X ∞ and A ∞ are also stated below:

E(A ∞ ) = α -1 β Γ( 1 β + 1) ∞ k=1 q k β (q, q) ∞ 1 q , 1 q k-1 , (9) 
µ 0 = E(X ∞ |α, β, ρ) = α -1 β Γ( 1 β + 1) ∞ k=1 q k β (q -1 β -1) (q, q) ∞ 1 q , 1 q k-1 . ( 10 
)
Throughout the paper, we use the notation

L Ω ∆ (•|•), (11) 
to represent the log-likelihood functions: Ω = s if the log-likelihood is derived for a single ARA ∞ process, and Ω = p for an ARA ∞ population; ∆ = f if the pseudo scale parameter α is a constant, and ∆ = r if α is a random variable because of the frailty; particularly, L is employed (in Section 6) to denote the likelihood function if the system has already entered its steady state at the beginning of the observation. This being, the log-likelihood function based on a single ARA ∞ set of observations X = X 1 , X 2 ...X n is [START_REF] Nguyen | Analytical properties of an imperfect repair model and application in preventive maintenance scheduling[END_REF]:

L s f (α, β, ρ|X ) = n•log(αβ)+(β -1) n i=1 log(a i-1 +X i )-α n i=1 (a i-1 +X i ) β -a β i-1 , (12) 
where a i-1 is the VA at the beginning of the i-th cycle calculated iteratively using Eq. [START_REF] Kijima | Some results for repairable systems with general repair[END_REF]. For an ARA ∞ population with observations X M , each row of the matrix represents an individual ARA ∞ sequence of length n j , whereby j ∈ 1...M . X j,i is the i-th interval in the j-th sequence, and a j,i-1 is the VA at the beginning of the i-th cycle in the j-th sequence. The log-likelihood function is

given by [START_REF] Doyen | A generic framework for generalized virtual age models[END_REF]:

L p f (α, β, ρ|X M ) = log(αβ) M j=1 n j + (β -1) M j=1 nj i=1 log(a j,i-1 + X j,i ) -α M j=1 nj i=1 (a j,i-1 + X j,i ) β -a β j,i-1 . ( 13 
)

Heterogeneous ARA ∞ population

In the context of frailty analyses, each individual in the population has its own intensity. This is modeled by Zλ(t), whereby Z (mixing variable or frailty) is a non-negative random variable, and λ(t) is the baseline intensity, which is common for all items. In general, it is assumed that the expectation of Z equals one, which makes λ(t) an "average" intensity. There exist several potential distributions for Z, but the gamma distribution is the most commonly used one.

With the Weibull baseline distribution, λ(t) is given by λ(t) = αβt β-1 .

Therefore, merging Z with α leads to a new pseudo scale parameter, Zα. We address the influence of heterogeneity on the population without specifying the distribution of Z, before discussing the asymptotic properties and likelihood functions when Z is gamma-distributed.

Influence of unspecified frailty on the population mean lifetime

Let µ Z be the mean lifetime of an ARA ∞ sequence with frailty Z:

µ Z = E(X ∞ |Zα, β, ρ) = Z -1/β µ 0 , (14) 
where µ 0 is given in Eq. [START_REF] Saeed | Methodology for probabilistic modeling of highway bridge infrastructure condition: Accounting for improvement action effectiveness and incorporating random effects[END_REF]. µ Z is thus a random variable with expectation E(µ Z ), representing the average of mean cycle durations in each individual ARA ∞ sequence. E(µ Z ) can also be regarded as the expected value of the duration of a cycle drawn from an ARA ∞ population when all the members have entered the stable regime. In the following of this paper, E(µ Z ) is referred to as the "population mean lifetime". Its relationship with µ 0 is given below:

Proposition 3.1. The population mean lifetime, E(µ Z ), if it exists, is larger

than or equal to µ 0 . Furthermore, if β > 1, E(1/µ Z ) ≤ 1/µ 0 .
The proof is straightforward using Jensen's inequality given that E(Z) = 1. Proposition 3.1 suggests that the frailty leads to a larger population mean lifetime, compared to the homogeneous case. Its application is provided in section 6.2.

Survival function, mean and likelihood

We postulate the assumption that the pseudo scale parameter α follows a gamma distribution with a shape parameter k and scale parameter θ.

f α (s|k, θ) = 1 Γ(k)θ k s k-1 e -s θ , (15) 
with mean kθ = α. This is equivalent to Z following a gamma distribution with mean 1. Thus, α is an "average" scale parameter to some degree. Consequently, an ARA ∞ population is fully determined by the quadruple (k, θ, β, ρ).

Let X p ∞ be the steady-state population cycle duration. X p ∞ does not represent any individual steady-state cycle duration but could be regarded as the duration of a cycle drawn from the ARA ∞ population when all the members have entered the stable regime. Similarly, let A p ∞ be the steady-state population's VA, which is the VA after a repair of an item randomly drawn from the population that has entered the steady state. The survival functions of A p ∞ and X p ∞ , given parameters (k, θ, β, ρ), are obtained by conditioning R A∞ and R X∞ on the gamma distribution of α:

R A p ∞ (t|k, θ, β, ρ) = ∞ 0 R A∞ (t|s, β, ρ)f α (s|k, θ)ds = ∞ s=1 1 (q, q) ∞ ( 1 q , 1 q ) s-1 (1 + θt β q s ) -k , (16) 
R X p ∞ (t|k, θ, β, ρ) = ∞ 0 R X∞ (t|s, β, ρ)f α (s|k, θ)ds = βk θ k ∞ s=1 1 q s (q, q) ∞ ( 1 q , 1 q ) s-1 ∞ 0 x β-1 [(x + t) β -(1 -q -s )x β + 1 θ ] -(k+1) dx. (17) 
The population mean lifetime, E(µ Z ), and the necessary condition of its existence (in the sense that E(µ Z ) is finite) when α is gamma-distributed is given by Proposition 3.2:

Proposition 3.2. Let an ARA ∞ population be described by (k, θ, β, ρ) with

kθ = α. E(µ Z ) is finite if and only if k > 1 β . Let c v be the coefficient of variation of α. As c v = k -1/2 in a gamma distribution, E(µ Z ) < ∞ if and only if c v < √ β. When this condition is satisfied, E(µ Z ) = µ 0 k 1/β Γ(k -1/β) Γ(k) , (18) 
and

E(1/µ Z ) = 1 µ 0 k -1/β Γ(k + 1/β) Γ(k) , ( 19 
)
where µ 0 is given in 10.

The proof is straightforward and is omitted here. To compute the likelihood function, begin with the survival function of a cycle X starting at age v:

R X|v (t|β, k, θ) = ∞ 0 e -s((v+t) β -v β ) • f α (s)ds = (θ[(v + t) β -v β + 1/θ]) -k , (20) 
with the Pdf and failure rate being expressed as,

f X|v (t|β, k, θ) = kθ -k β(v + t) β-1 [(v + t) β -v β + 1/θ] -k-1 , (21) 
λ X|v (t|β, k, θ) = kβ(v + t) β-1 (v + t) β -v β + 1/θ . ( 22 
)
For a single observation X = X 1 , X 2 ...X n with no censored data, the likelihood can be written as follows:

L(β, ρ, k, θ|X ) = n i=1 kθ -k β(a i-1 + X i ) β-1 [(a i-1 + X i ) β -a β i-1 + 1 θ ] -k-1 . ( 23 
)
Therefore, its log-likelihood is:

L s r (β, ρ, k, θ|X ) = n•log(kθ -k β)+(β-1) n i=1 log(a i-1 +X i )-(k+1) n i=1 log((a i-1 +X i ) β -a β i-1 + 1 θ ). (24) 
It should be noted that when only one ARA ∞ sequence is observed, the pair (k, θ) is non-identifiable because no information on the variation of α is available. Now, consider the case at which M independent ARA ∞ sequences are observed. Using the same notations as in a previous section, the log-likelihood of the ARA ∞ population becomes

L p r (k, θ, β, ρ|X M ) = M j=1 n j • log(kθ -k β) + (β -1) M j=1 nj i=1 log(a j,i-1 + X j,i ) -(k + 1) M j=1 nj i=1 log((a j,i-1 + X j,i ) β -a β j,i-1 + 1 θ ). ( 25 
)

Inferences when heterogeneity is ignored

Under the faulty assumption that all the individual ARA ∞ sequences come from a certain triple (α, β, ρ), one may try to maximize the likelihood function defined by Eq.( 13). In a statistical context, this is often referred to as the MLE of the mis-specified model [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF].

The 

Inferences based on the correct model

MLE

The ML estimators are obtained by maximizing Eq.( 25):

( k, θ, β, ρ) = arg max k,θ,β,ρ L p r (k, θ, β, ρ|X M ). ( 26 
)
The MLE estimators are not consistent, that is, when the sample size tends to infinity, k, θ, β, and ρ do not converge to real parameter values. Nevertheless, the population mean lifetime (given by Eq.( 18)) as well as the survival function (given by Eq.( 17)) calculated with k, θ, β, and ρ, do not differ considerably from those computed using real parameters. This is shown in the following example. Underestimation of β and overestimation of ρ causes overestimation of the reliability of the item. In our case, the reliability is not overestimated because the average value of the scale parameter following the gamma distribution with k and θ was overestimated: α = k θ = 2.4437 > 1 = α. Thus, the mean cycle durations of the population are very close, that is, E(X p ∞ |k, θ, β, ρ) = 0.5263, and E(X p ∞ | k, θ, β, ρ) = 0.5268. The distance between the survival functions, R X p ∞ (t|k, θ, β, ρ) and R X p ∞ (t| k, θ, β, ρ), is also almost negligible.

Alternative approach

The principle on which our alternative approach is based is that the estimation of β and ρ could be achieved independently from α. This is illustrated by the fact that when only one ARA ∞ sequence is observed, β and ρ could be accurately estimated if the failure data is sufficiently long. Thus, in our proposed alternative approach, we first estimate β and ρ, and then deduce k and θ.

Estimation of β and ρ

Consider the observation matrix X M in which the j-th row represents a single ARA ∞ observation with a length n j : X j = X j,1 , X j,2 ...X j,nj . Given β and ρ, the scale parameter α j can be estimated by setting the derivative of the likelihood function (Eq.( 12)) with respect to α j to zero:

αj (β, ρ) = n j nj i=1 (a j,i-1 + X j,i ) β -a β j,i-1 . ( 27 
)
The likelihood of a single ARA ∞ sequence given β and ρ is thus L s f ( αj (β, ρ), β, ρ|X j ). When M independent ARA ∞ sequences are superimposed in total, the likelihood given β and ρ is simply the sum of all individual likelihoods:

L * (β, ρ|X M ) = M j=1 n j • log( αj (β, ρ)β) + (β -1) M j=1 nj i=1 log(a j,i-1 + X j,i ) - M j=1 αj (β, ρ) nj i=1 (a j,i-1 + X j,i ) β -a β j,i-1 . ( 28 
)
The estimators of β and ρ, denoted as β * and ρ * , are given as follows:

(β * , ρ * ) = arg max β,ρ L * (β, ρ|X M ). ( 29 
)

Estimations of k and θ

Two possible measures are required to evaluate k and θ once β and ρ have been estimated. The first among them is to derive the individual scale parameters α j , j ∈ 1...M using β * , ρ * :

α * j = n j nj i=1 (a j,i-1 + X j,i ) β * -(a j,i-1 ) β * . (30) 
α * j , j ∈ 1...M are independently and identically distributed (i.i.d.) random variables following a gamma distribution with parameter (k * a , θ * a ), which could be estimated from the standard MLE for gamma distribution. An alternative approach is to estimate k and θ by maximizing the population likelihood func-180 tion in Eq.( 25). The derivatives of Eq.( 25) with respect to k and θ are:

∂L p r (k, θ, β, ρ|X M ) ∂k = 1 k M j=1 n j -log(θ) M j=1 n j - M j=1 nj i=1 log((a j,i-1 +X j,i ) β -a β j,i-1 + 1 θ ), (31) 
∂L p r (k, θ, β, ρ|X M ) ∂θ = - k θ M j=1 n j +(k+1) M j=1 nj i=1 1 θ 2 (a j,i-1 + X j,i ) β -(a j,i-1 ) β + 1 θ . (32) θ *
b and k * b can in turn be numerically obtained by setting the derivatives to zero,

         ∂L p r (k, θ, β * , ρ * |X M ) ∂k     k=k * b ,θ=θ * b = 0 ∂L p r (k, θ, β * , ρ * |X M ) ∂θ     k=k * b ,θ=θ * b = 0 (33) (k * a , θ * a ) and (k * b , θ * b )
are compared in the following of this section.

Bias and variance of the alternative estimator

We address the consistency of the proposed alternative estimator when the sample size is finite or infinite. For illustrative purpose, we study the ARA ∞ On the one hand, the bias of β * is positive, decreasing in N (solid lines in Figure 3a), whereas the bias of ρ * (solid lines in Figure 3b) is negative and its absolute value is also decreasing in N . M has, however, no influence on the bias which means that the accuracy of the estimates is not improved by increasing the number of independent ARA ∞ sequences. We conclude that the alternative estimators over-estimates β and under-estimates ρ. On the other hand, their variances are decreasing in both N and M (dashed lines in Figures 3a and3b).

Compare now β * and ρ * to the maximum likelihood estimators, β and ρ.

For the configuration studied above, the bias of β ranges from -0.47 to -0.55, whereas that of ρ ranges from 0.18 to 0.21. MLE estimators are therefore much more biased (with finite or infinite sample) than the alternative estimators.

k * and θ *

The accuracy of the estimators k * and θ * relies on 1) an accurate estimation of β and ρ and 2) a sufficient number of independent ARA ∞ sequences. Figure 4a representing the bias when M = 200, is the only one that converge to 0 (the black line) as N grows). This being, the practitioner who wishes to estimate k and θ needs to choose the appropriate inference method according to the data size: for example, when a total of 20 ARA ∞ sequences are observed, using the gamma fit approach is more suitable than utilizing the likelihood maximization when a large number of observations is recorded for each individual sequence (when N = 200, dashed red lines are more close to 0 compared to solid red lines); if, however, the numbers of observations in each individual ARA ∞ sequence are also limited, e.g., 20, then the ML estimators, k * b and θ * b , becomes more preferable than k * a and θ * a . Besides, the variance of k * a/b and θ * a/b is not influenced by N but decreases when M increases.

Case studies: reliability of railway signaling system and maintenance optimization

Three case studies are presented in this section. First, the signal failure data provided by Bane NOR is studied, showing how the parameters could be estimated from incomplete/censored data under the presumption that the frailty among the signals is gamma-distributed. The evaluations of the system's reliability, with or without the heterogeneity taken into account, are compared.

Second, the issue of optimal repair degree when the cost of corrective maintenance is an increasing function of ρ is examined for heterogeneous ARA ∞ population. Third, the block replacement PM policy is investigated. We show that the heterogeneity does not influence the optimal repair degree, but do have an impact on the long-run cost per unit of time per system as well as the optimal PM interval. Particularly, example 6.2 illustrates the benefits of taking the heterogeneity into account when scheduling the periodic PM with unknown parameters.

Bane NOR signaling system

Consider the signal failure data provided by Bane NOR. The failure times of the lamps in a signal head have been recorded, but the sources have not, that is, we can only observe the failure at a system level but we do not know which lamp is failing. Thus, this is a superimposed renewal process with masked information. The aging and remaining lifetime of this system could be studied using an imperfect maintenance model. In particular, each time a lamp fails, it is replaced by a new one, while the others are not repaired. Thus, at a system level, the repair is imperfect. Each repair has almost the same efficiency because the proportion of the system that is renewed does not change as a function of the time of replacement. Using ARA ∞ process to approximate an SRP is addressed in [START_REF] Liu | On approximation of superposition of renewal process[END_REF]. In the following subsection, we shall address the inference problem when fitting an ARA ∞ to such failure data.

One common problem in survival analysis is that failures are generally rare.

Accordingly, the asset does not break too often, which results in a short failure history. When fitting a parametric model to a dataset with a short length, the power of the statistical inference should be questioned. Therefore, one is often led to use the data gathered from a group of similar assets based on the assumption that they are identical.

In the following case study, we reveal the influences of unobserved heterogeneity on the inferences. The signals at the Brumunddal station are investigated. Accordingly, their interfailure times are listed in table C.2. Although the geometrical closeness could possibly eliminate certain sources of heterogeneity, such as environmental conditions (humidity, temperature, precipitation, etc.), different frequencies of use (numbers of switching on and off) and manufacturers still constitute an origin of heterogeneity. We postulate the assumption that the heterogeneity is primarily presented in the scale parameter, that is, each signal would have the same aging rate β (because of similar external environmental conditions) and the same repair effectiveness ρ (performed by the same crew).

It should be noted that the beginning of the observation window is considered to be after sufficient time has elapsed following its installation. Therefore, it is logical to assume that when the observations began, the systems were already in their steady states. In this case, the use of the Eqs.( 12) and ( 13) is inappropriate because they are valid only if the initial age of the system is known. If the VA is considered after the first failure, the correct likelihood for a single ARA ∞ sequence can be obtained as indicated in [START_REF] Dijoux | Statistical inference for imperfect maintenance models with missing data[END_REF]:

Ls f (α, β, ρ|X ) = ∞ (1-ρ)X1 L s f (α, β, ρ|X , a 0 = y 1 -ρ -X 1 )f A∞ (y)dy. ( 34 
)
The log likelihood of ARA ∞ population is computed by summing up individ- Let us now consider the assumption that α is not a constant but is drawn from a certain distribution. As shown, the estimation of β and ρ is independent from the distribution of α. Given that the initial ages are unknown, the inference procedure described in 5.2.1 needs to be modified; consequently, it can be expressed as follows:

(β * , ρ * ) = arg max β,ρ M j=1 Ls f (α j (β, ρ), β, ρ|X j ), (35) 
with

α j (β, ρ) = arg max α Ls f (α|β, ρ, X j ). ( 36 
)
Using Eqs.( 36) and ( 35), β and ρ are estimated, that is, β * = 2.74 with CI Based on the assumption that the system is in the steady-state at the beginning of observation, k and θ can no longer be estimated using Eq.( 33). Instead, they should be determined numerically by maximizing the corresponding likelihood. The likelihood of a single ARA ∞ with an unknown initial age and gamma-distributed α is given by:

Ls r (k, θ, β, ρ|X ) = ∞ (1-ρ)X1 L s r (k, θ, β, ρ|X , a 0 = y 1 -ρ -X 1 )f p A∞ (y)dy, ( 37 
)
where f p A∞ (t) is the Pdf of A p ∞ , and the steady-state population of VA is: given by Eq.( 8) with α = 1.18 • 10 -5 , β = 1.46, and ρ = 0.59 (red solid line in Figure 5). Assuming that the gamma-distributed frailty is present among the signals, the survival function is computed using Eq.( 17) with β * = 2.74, ρ * = 0.22, k * = 0.37 and θ * = 4.37 • 10 -10 (blue dashed line in Figure 5).

f p A∞ (t) = ∞ s=1 1 (q, q) ∞ ( 1 q , 1 q ) s-1 (1 + θt β q s ) -k-1 • kθβ q s • t β-1 . ( 38 
Obviously, the survival function has a heavier tail when the heterogeneity is taken into consideration. This agrees with the observed decreasing failure rate when we investigated all the dwarf signals in another study. In fact, if we look at the distribution of failures that have occurred during the observation window (around ten years) for all dwarf signals in the railway network (see Table C.1), we notice immediately that a large proportion of signals has never failed: some systems are more "robust" than others, resulting in an overall decreasing failure rate.

Optimal repair degree

In this section, we focus particularly on the repair process of heterogeneous ARA ∞ population with the increasing baseline failure rate. [START_REF] Finkelstein | On the optimal degree of imperfect repair[END_REF] has considered the optimal degree of imperfect repair that achieves the minimal, expected longrun cost rate for one single system. In the following, we investigate how the frailty, not necessarily gamma-distributed, influence the expected long-run cost rate as well as the optimal repair degree. But first, let us recall the setting.

Assume that the degree of repair, ρ, is a decision variable and that the cost of an imperfect maintenance action at any cycle depends only on ρ. This situation occurs when one can decide to what extent the system is maintained. For example, let a series system be composed of many independent components that are aging. When one component fails, one may choose to 1) replace the failed item (which almost corresponds to a minimal repair since only a small proportion of the system is renewed) or 2) replace all (a perfect repair) or 3) replace a certain number of components, including the failed one. The third case corresponds to an imperfect repair at a system level and the proportion of the replaced items determines ρ. Denote by C(ρ|α, β) this cost. It is natural to assume that it is an increasing function of ρ and

C m = C(0|α, β) ≤ C(ρ|α, β) ≤ C(1|α, β) = C p , (40) 
where C m and C p are the costs of minimal and perfect repairs, respectively.

Consider now the long-run average maintenance cost rate. The ARA ∞ process enters its steady state and the mean cycle length for the corresponding Weibull IFR baseline distribution, µ(ρ|α, β) = E(X ∞ |α, β, ρ), is an increasing function of ρ. Based on the renewal reward theory reasoning, for a single system, the expected long-run cost per unit of time c(ρ) is given by:

c(ρ|α, β) = C(ρ|α, β) µ(ρ|α, β) . (41) 
This is also the long-run average repair cost per unit of time per system when maintenance activities are carried out on homogeneous population. Existence of an optimal maintenance degree ρ * , which minimizes c(ρ|α, β), has been addressed in [START_REF] Finkelstein | On the optimal degree of imperfect repair[END_REF]. Basically, it requires that c(ρ|α, β) be increasing as ρ tends to 1.

Consider now a heterogeneous ARA ∞ population. The baseline failure intensity of the systems is characterized by frailty Z. The corresponding long-run average cost rate is therefore given by:

c(ρ|Zα, β) = C(ρ|α, β) µ Z (ρ|α, β) , (42) 
where µ Z (ρ|α, β) = E(X ∞ |Zα, β, ρ). The long-run average cost rate per system can be obtained by taking the expectation:

E(c(ρ|Zα, β)) = C(ρ|α, β)E( 1 µ Z (ρ|α, β) ) ≤ c(ρ|α, β). (43) 
The inequality follows Proposition 3.1. It seems that the frailty reduces the long-run average cost per unit of time per system. This is because the systems in a heterogeneous population survive, in average, "longer" than those in a homogeneous one. In addition, it is obvious that the optimal repair degree ρ * minimizing c(ρ|α, β) will also minimize E(c(ρ|Zα, β)). We therefore conclude that the frailty reduces the long-run average cost rate per system without influencing the optimal repair degree.

Block replacement policy in ARA ∞ population

The block replacement policy [START_REF] Kijima | Periodical replacement problem without assuming minimal repair[END_REF]is widely used in industry because it is easier to administer than other policies which are potentially more cost effective, like age-based PM or failure-limit PM [START_REF] Nguyen | Analytical properties of an imperfect repair model and application in preventive maintenance scheduling[END_REF]. It consists in replacing the item periodically at fixed interval τ, 2τ, 3τ... and the periodic replacement is supposed to be perfect in the current study. Here, we make the assumption that if an item fails within an interval, it is imperfectly repaired with an repair degree ρ.

There is no maintenance delay and the repair time is assumed to be negligible.

For a single ARA ∞ process, the long-run average cost per unit of time is

given by:

c(τ |α, β, ρ) = C p + C c • M (τ, 0|α, β, ρ) τ , (44) 
where C p and C c are respectively the cost of PM and of CM. M (t, v|α, β, ρ)

is the renewal-type function in an ARA ∞ process with parameters (α, β, ρ),

representing the expected value of number of events within an interval t when the system starts working at age v. It is the solution of the following renewaltype equation:

M (t, v|α, β, ρ) = t 0 [1 + M (t -y, (1 -ρ)(v + y)|α, β, ρ)] f (v + y|α, β, ρ) F (v|α, β, ρ) dy, (45) 
where f and F are the Pdf and survival function of the first interval (see [START_REF] Dagpunar | Renewal-type equations for a general repair process[END_REF] for more details). Eq.(44) holds for homogeneous population wherein each item shares the same PM period. Now, let us consider a heterogeneous ARA ∞ population governed by the frailty Z. When the population size is large, the average long-run cost per unit of time per system is obtained by taking the expectation of c(τ |Zα, β, ρ):

E(c(τ |Zα, β, ρ)) = C p + C c • E(M (τ, 0|Zα, β, ρ)) τ . (46) 
Eq.( 46) shows that the frailty has a direct impact on the renewal-type func- The model parameters are seldom known in real life: they have to be estimated from existing failure/repair records. In section 3, the parameters estimated under the faulty assumption that the population is homogeneous are proved to be biased. When scheduling PM activities for a heterogeneous population, the biased estimates will lead to non-optimal PM interval as is shown in the following example. It should be noted that we are not advocating that an optimal PM interval should be assigned individually for each item: this usually leads to cumbersome computation and is not easy to implement or administer. Instead, we argue that an optimal PM period, same for all items in the population, could be obtained by accounting for the heterogeneity. Three circumstances are considered: A) the PM interval is determined using the true parameters: this is the ideal situation and serves as a reference; B)

We ignore the heterogeneity, and assume that all systems in the ARA ∞ population are identical (share the same parameters); C) We assume that the baseline failure intensities of the systems differ only in α (with the same β and ρ). It should be noticed that the significant reduction of long-run repair cost in example 6.2 is related to the large size (100 × 50) of the simulated dataset: 390 the more data we have, the more accurately we can estimate the parameters and the more the red line converges to the orange line. When the data size is limited, the position of the red line may have a large variation (depending on the dataset itself) and a more cost effective PM interval is not necessarily achieved by accounting for the heterogeneity, due to the potential bias of the estimates.

Considering the heterogeneity, if we further assign an individual PM interval for each system, the average long-run repair cost rate for the population depicted in example 6.2 is around 3.088, which is the mean value of the minimums of 100 different cost curves. Although administering such a PM policy is generally troublesome, the maintenance cost is reduced significantly compared to the situation where all systems are preventively maintained with the same period. In Bane NOR, a compromised approach (not for the signal systems) which consists in classifying assets into different groups (subpopulations) before planning the maintenance activities accordingly, is used. This allows a balance between the practicability of the maintenance strategy and the maintenance expenditure.

Conclusions

In this study, we have considered the case wherein heterogeneity among systems is combined with stable imperfect repair models. After investigating the influence of unspecified frailty on the population mean lifetime, we considered specifically the gamma distribution on the pseudo-scale parameter of the ARA ∞ process and derived the asymptotic properties, including the distributions of the population mean cycle duration and population VA and then presented the consequences for instances wherein the heterogeneity among systems was erroneously ignored. In particular, when the model was mis-specified, the aging rate was underestimated, while the repair efficiency was overestimated. These results were also demonstrated using a case study on failure data collected from signals alongside a Norwegian railway station. Furthermore, owing to the specialty of ARA ∞ , that is, dependent intervals, the MLE established on the correct model was still inconsistent. Therefore, an alternative approach has been proposed and its consistency was verified. Finally, the issue of maintenance optimization for population that undergoes imperfect repair is addressed, and the benefits of considering the heterogeneity when scheduling preventive maintenance activities is demonstrated.

We aim to continue related work to explore several directions as described below. First, in the current study, the heterogeneity was expressed through the proportional baseline failure intensities by combining a frailty variable with the pseudo scale parameter. Thus, it is the logical next step to investigate the situations in which heterogeneity exists relevant to a) the shape parameter (different aging rates owing to different working environments), or b) the repair effectiveness (if the maintenance is conducted by different individuals). In fact, if the assets are maintained by several maintenance groups with different skills, then the repair factor may be a constant for each sub population, but differs from subpopulation to subpopulation. Second, other imperfect maintenance processes, which are not necessarily stable, could be taken into consideration, such as Brown-Proschan, ARA with memory of unity (ARA 1 ), and geometric process, among others. The inference issues on these models have been studied, but once heterogeneity is introduced, interesting asymptotic properties could be revealed (as we did in the current study), and the consequences of inference on the mis-specified model could also be investigated. Finally, it would be of value to incorporate the covariate into the current model: for instance, the signals associated with the turn on/off processes of the lights bulbs alongside the railway station will effectively influence their lifetimes. Modeling them with a covariate and including them into a random effect model will certainly lead to a better understanding of the aging process, and will enable the formulation of a maintenance plan that will be more cost effective. and Research) and the European Regional Development Fund, through contract with Université de Technologie de Troyes. X i = F -1 (U |A i-1 )

6: for σ 2 ∈ σ 2 (α) do // variance of α 9:

A i = (A i-1 + X i )(1 -ρ)
Determine k, θ: θ = σ 2 , k = 1/θ 10:

Generate vector α of length M = 5000 from Γ(k, θ)

11:

for i = 1 : M do 12:

Generate ARA ∞ sequence of length N = 1000 with parameters ( α(i),β,ρ) 

  following example shows how the variation of α influences the amplitude of the underestimation of β and overestimation of ρ. The ARA ∞ parameters are configured as follows: ρ ∈ [0.25, 0.5, 0.75] for the cases associated with low/medium/high repair effectiveness, and β ∈ [1.5, 3.5] associated the slow/fast wear out. In addition, α follows a gamma distribution Γ(k, θ), whereby the mean is fixed to unity: kθ = α = 1. It should be noted that σ 2 (α) is the variance of α. If the variation of α is considerably big, then the mean cycle duration E(X ∞ ) will also present considerable heterogeneity. Accordingly, maximization of the likelihood defined by 13 is obviously inappropriate. Thus, we will only investigate the situations at which the c v value is smaller than one. For illustration, two vectors of σ 2 (α) are considered: σ 2 (α) = 0.01 : 0.01 : 0.15 for the case β = 1.5, and σ 2 (α) = 0.05 : 0.05 : 1 for the case β = 3.5. The pseudocode of the Monte Carlo simulation is given in Appendix B, and the simulation of a single ARA ∞ sequence is shown in Appendix A.The length of a single ARA ∞ observation, N , was selected as 1000, and the total number of pooled ARA ∞ , M , was set to 5000. These values were aimed at reducing the variance of the MLE estimators such that when the curves of the estimation bias are plotted, there should be some observable patterns or trends instead of points exhibiting large variations.

  (a) Bias for β, β = 1.5 (b) Bias for β, β = 3.5

Figure 1 :

 1 Figure 1: Bias for β. The amplitude of underestimation of β (vertical axis) increases with the variation of α (horizontal axis). Blue, red and yellow curves represent the variation of estimation bias according to different repair efficiencies: the larger the ρ, the smaller the bias.

  (a) Bias for ρ, β = 1.5 (b) Bias for ρ, β = 3.5

Figure 2 :

 2 Figure 2: Bias for ρ. The amplitude of overestimation of ρ (vertical axis) increases with the variation of α (horizontal axis).

Example 5 . 1 .

 51 Consider the case where the ARA ∞ population is configured as follows: k = 2, θ = 0.5, β = 3.5, and ρ = 0.5. The mean value of the scale parameter, α, equals one. To construct the observation matrix X M , generate M = 10000 independent ARA ∞ sequences, each with a length of N = 1000. The ML estimators obtained using Eq.(26) are: k = 6.3328, θ = 0.3859, β = 2.072, and ρ = 0.8471. Thus, although the likelihood is correctly established, β is still underestimated, whereas ρ is overestimated.

185 population configured as β = 2 ,

 2 ρ = 0.75, k = 4, θ = 0.25. The individual ARA ∞ sequences share the common length: n 1 = n 2 = ... = n M = N . The asymptotic consistency of the estimators is demonstrated by estimating the parameters from a very large sample (generated by Monte Carlo simulation): setting N = 20000 and M = 20000, the parameters are estimated as: β * = 2.0004, ρ * = 0.7499, k * = 3.9914 and θ * = 0.2508. In practice, however, the "infinite sample" can never be achieved, which makes it necessary to investigate how the bias and variance of the estimates change as a function of N and M . 5.3.1. β * and ρ * The combinations of M = [20, 50, 100, 200] and N = [20, 50, 100, 200] are studied. A total of 5000 independent samples, each of size M ×N , are generated. 5000 estimates of the parameters, β * 1 , β * 2 , ...β * 5000 and ρ * 1 , ρ * 2 , ...ρ * 5000 are obtained for a given M and N . The bias of β * is defined as 1/5000 i β * i -β (the same goes for ρ).

  and 4b show that the estimates of k and θ, no matter obtained with gamma fit (k * a and θ * a ) or with likelihood maximization (k * b and θ * b ), converge to k and θ only if both M and N are very large (the pink line with cross marker, (a) β * (b) ρ *

Figure 3 :

 3 Figure 3: Bias and variance of β * (left) and of ρ * (right). The y-axis on the left side represents the bias (drawn correspondingly in the graphs with solid lines) while that on the right side shows the variance (dashed lines). The horizontal axis represents N .

Figure 4 :

 4 Figure 4: Bias of k * (left) and of θ * (right). k * a and θ * a are plotted using dashed lines: they are derived by fitting a gamma distribution to α. k * b and θ * b are plotted using solid lines: they are obtained by maximizing the corresponding likelihood.

  ual log-likelihoods. The estimated parameters when the heterogeneity between the systems is ignored are therefore equal to α = 1.1833 • 10 -5 with a 90% confidence interval (CI) [1.1828 • 10 -5, 1.1838 • 10 -5], β = 1.46 with CI [1.22, 1.70], and ρ = 0.59 with CI [0.56, 0.64].

[ 2 .

 2 56, 2.93] and ρ * = 0.22 with CI [0.03, 0.40]. Clearly, when the heterogeneity is overlooked, the aging parameter is largely underestimated, which might have 280 some impact on the maintenance planning.

  ) Correspondingly, the likelihood of the ARA ∞ population, with an unknown initial age and a gamma-distributed α value, given the observation matrix X M , is the product of individual likelihoods. Having estimated β * and ρ * , k and θ can be derived as follows: (k * , θ * ) = arg max k,θ M j=1 Ls r (k, θ|X j , β * , ρ * ). (39) Using the equations listed above along with β * and ρ * , k and θ are estimated as k * = 0.37 with CI [0.18, 0.77] and θ * = 4.37 • 10 -10 with CI [1.18 • 10 -10 , 1.62 • 10 -9 ]. We can now compare the survival functions of the time between failure for the signals. Without considering the heterogeneity, the survival function is

Figure 5 :

 5 Figure 5: Survival functions of interfailure time

  325tion. A thorough study of how M (t, v|Zα, β, ρ) is influenced by Z is part of future work, but is beyond the scope of the current paper. Since there exists no explicit formula for M (t, v|α, β, ρ), Monte Carlo simulation is used to determine the optimal replacement period τ * . The following example demonstrates how a homogeneous population differs from a heterogeneous one in maintenance cost 330 and in optimal PM period. Example 6.1. A heterogeneous population is composed of M = 25000 independent ARA ∞ sequences with α = 1, β = 3, ρ = 0.6. The heterogeneity is governed by the variance of α, σ 2 (α), ranging in [0, 0.1, 0.2, 0.3]. α follows a gamma distribution with mean 1. The repair costs are set as C p = 1, C c = 5. In

Figure 6 :Figure 6 ,

 66 Figure 6: Long-run repair cost rate per system

Example 6 . 2 .

 62 Consider a fleet of M = 100 independent repairable systems under imperfect repair of type ARA ∞ . The individuals have different baseline failure intensities governed by the pseudo scale parameter α j , j ∈ 1...M , which follows a gamma distribution with mean 1 and variance 0.2 (k = 5, θ = 0.2).Their values are given in table D.3. Other parameters are set as β = 3, ρ = 0.6, C c = 5, C p = 1. A total of N = 50 observations are recorded for each system (generated with Monte Carlo simulation). Therefore, the failure histories of the population consist of a matrix of dimension 100 × 50, based on which we will determine the optimal PM interval.

Circumstance A :

 : When the true parameters α j , β, ρ are known, c(τ |α j , β, ρ) = 1/100 100 j=1 c(τ |α j , β, ρ) is drawn by the orange line with cross marker in Figure 7. c(τ |α j , β, ρ) is defined by Eq.(44), representing the long-run repair cost per unit of time for system j when the PM interval is τ . It is obtained via Monte Carlo simulation due to the intractability of the renewal-type function.The true optimal PM interval τ * 0.47 (the orange diamond in Figure7), with c(τ * |α j , β, ρ) = 3.207.Circumstance B: Under the incorrect assumption that all items are identical, the triple (α, β, ρ) is estimated as (1.4717, 2.2932, 0.758): β and ρ are under/over estimated, which is consistent with the findings in section 4. For such a homogeneous ARA ∞ population, c(τ |α, β, ρ) is shown by the blue line with cycle marker in Figure7. τ 0.405 is the optimal PM period.Circumstance C: Taking the heterogeneity into consideration, the ARA ∞ parameters are estimated as β = 3.0891, ρ = 0.5960 using the inference method given in section 5.2.1. The pseudo parameters αj , j ∈ 1...M are estimated individually for each item by Eq.(30) (see TableD.4 for their values). For such a heterogeneous ARA ∞ population, c(τ |α j , β, ρ) is drawn by the red line with triangle marker in Figure7, and the optimal PM period τ 0.485. The advantage of considering the heterogeneity among the individual systems when scheduling PM activities is therefore highlighted by the fact that, red line is much closer to the orange line compared to the blue line. This is further verified 385 by comparing τ and τ : c(τ |α j , β, ρ) = 3.212, whereas c(τ |α j , β, ρ) = 3.285. The maintenance cost is therefore reduced when implementing PM with period τ on the ARA ∞ population governed by α j , β, ρ.

Figure 7 :

 7 Figure 7: Long-run repair cost rate per system computed with the correctly specified model (heterogeneity taken into account, red line with triangle marker) and that computed with erroneous model (heterogeneity ignored, blue line with cycle marker). The former is obviously closer to the real cost rate (orange line with cross marker) computed with true parameters.

  Appendix A. Simulation of an ARA ∞ sequence Herein, we described the simulation steps of an ARA ∞ sequence with a length of N . Let F (t) be the baseline distribution and F (t|x) = 1-F (t+x)/F (x) be the Cdf of a cycle starting at age x. Let U be a random variable uniformly distributed in the interval [0, 1].Algorithm 1ARA ∞ simulation 1: Initialization: determine F (t) and repair efficiency ρ2: X 1 = F -1 (U ) // first cycle 3: A 1 = (1 -ρ)X 1 // VAafter the first repair 4: for i = 2 : N do 5:

7 : 2 Measurement of the estimation bias when the inappropriate model is used 1 : 2 :

 7212 end for Appendix B. Algorithm for obtaining the estimation bias Algorithm for β = [1.5, 3.5] do //aging rate for ρ = [0.25, 0.5, 0.75] do //repair effectiveness

15 : 16 : 17 :

 151617 Construct observation matrix X M of dim M × N where each line represents a single observation Formulate an inference on X M using MLE (maximizing equation 13) and obtain β and ρ Calculate bias: D β = β -β, D ρ = ρ -ρ

Table C .

 C 2: Signal failure times: right censoring is marked with * Table D.3: Gamma-distributed α with mean 1 and variance 0.2 , 1.2023, 1.3204, 0.8472, 0.9019, 1.1292, 0.9863, 1.3729, 1.0510, 0.5389 61-70 1.4663, 0.7808, 0.5427, 0.7428, 0.9825, 1.0740, 1.4025, 1.4956, 1.6669, 0.9881 71-80 0.8993, 1.0332, 1.3903, 0.4209, 1.3331, 0.7264, 0.5097, 0.7389, 1.8043, 1.4037 81-90 0.9368, 0.6506, 0.8958, 0.6694, 1.1633, 0.4694, 1.2520, 0.8719, 1.8471, 0.4888 91-100 0.4602, 0.9907, 0.8761, 0.9943, 0.6160, 2.4571, 0.7519, 0.5588, 1.0749, 0.5470 Appendix D. Example 6.2 α and its estimation α Table D.4: Estimated α when considering the heterogeneity

	Assets Interfailure times 1 250, 23, 163, 533, 55, 1528, 637 * 2 529, 17, 735, 370, 1026, 883 * 3 82, 872, 928, 1308 * 4 1608, 94, 1488 * 5 424, 1887, 879 * 6 84, 3106 * 7 268, 2922 * 8 2667, 523 Systems α 1-10 1.1112, 0.7888, 1.0228, 0.7078, 0.4585, 1.0262, 1.0676, 1.3801, 1.5179, 0.6737 11-20 0.4991, 1.8064, 1.0205, 0.6743, 0.4940, 0.6842, 1.0363, 2.0480, 1.5938, 0.4546 21-30 1.1723, 1.1506, 1.6589, 0.6718, 1.3610, 0.9838, 1.0836, 0.5291, 0.4475, 1.7738 31-40 0.5742, 0.7877, 1.2642, 0.7957, 1.7981, 1.0499, 1.0643, 1.0395, 1.7266, 0.8707 41-50 0.8874, 0.8284, 3.1533, 0.3342, 1.3241, 0.7923, 0.3795, 0.9183, 0.5149, 0.5693 51-60 1.3762Systems α

* 
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